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Abstract: The aim of this study was to determine the adsorption performance of a petroleum pitch-
based activated carbon (PPAC1:3) before and after a post-treatment with H2S. In the first step, a
microporous activated carbon (PPAC1:3) with a highly developed porous structure was produced
through a chemical activation route with KOH. Afterward, the synthesized activated carbon was
thermally treated yielding two different series of functionalized activated carbons: (i) a series of
carbons were treated directly with H2S at elevated temperatures (600 ◦C and 800 ◦C), and (ii) a
series of carbons were generated by combining an oxidation treatment with plasma followed by H2S
treatment at elevated temperatures (600 ◦C and 800 ◦C). The chemical and structural characteristics of
the S-doped and S-/O-co-doped porous carbons were investigated by means of different experimental
techniques, such as XRD, RAMAN, FESEM, XPS, TPD, N2, and CO2 adsorption, and finally tested
in CO2 and CH4 adsorption at atmospheric and high pressure. The functionalized porous carbons
possessed specific surface areas of 2420–2690 m2/g, total pore volume of 1.05–1.18 cm3/g, and sulfur
content up to 2.55 atom % (the sulfur content of the original carbon was 0.19%). After a careful analysis
of the carbon dioxide and methane uptake at atmospheric (0.1 MPa) and high pressure (4 MPa),
adsorption results confirm that the microporous structure is the main structural parameter defining
the adsorption performance and, to a lower extent, the surface chemistry. Overall, a significant
improvement in the total uptake can be appreciated after the H2S treatment.

Keywords: activated carbon; sulfur-doped carbon; CO2 and CH4 adsorption

1. Introduction

As a result of increasing energy consumption, society is confronting important conse-
quences associated with global warming issues due to the release of greenhouse gases (such
as CO2 and CH4) into the atmosphere [1]. As a result, climate change is accelerating, with
drastic weather events already occurring and the full scope of the climate crisis’s impacts,
with more to come [2]. To mitigate global warming and the associated climatic changes,
researchers are concentrating their efforts on the development of alternative energy sources
(e.g., solar, wind, geothermal, tidal). However, at the same time, there must be a major
reduction in global net greenhouse gas (GHG) emissions, as well as a move toward ‘green’
energy sources, to meet the Paris Agreement’s temperature targets [3]. Due to these reasons,
the development of novel, low-cost CO2 capture systems is required. Additionally, the
global economy’s transportation sector must shift away from conventional fossil fuels to-
ward cleaner, renewable fuels, such as natural gas (CH4) and hydrogen (H2). Although not
a carbon-neutral fuel, natural gas can be generated in a sustainable manner from biomass,
its combustion generating much less CO2 and other pollutants compared to other energy
sources [4,5].

The challenge with storing or capturing CO2, CH4, or H2 is due to their gaseous nature
at ambient temperatures and the difficulty to condensate them at a reasonable cost [6–9].
Therefore, the challenge becomes both economic and practical—how to store and transport
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these gases in the most cost-effective and space-efficient manner possible. Currently,
industrial CO2 capture is mostly accomplished by reacting liquid amines with water
to generate aqueous ammonium bicarbonates, whereas commercial systems for natural
gas/CH4 and H2 storage depend on expensive compression or liquefaction approaches.
The high cost of liquid amine capture is mostly due to its poor CO2 capacity and the energy
required to regenerate the amine from ammonium bicarbonate [10,11].

Chemical (chemisorption) or physical (physisorption) adsorption onto a suitable solid
material is a promising alternative technique for gas storage. Physisorption has distin-
guishing benefits over chemisorption in that the adsorbate can be easily regenerated by
lowering the pressure or raising the temperature. Microporous adsorbents, such as porous
polymers [12], porous inorganic membranes [13], metal–organic frameworks [14–16],
and zeolites [17], provide potential storage options, but they are limited in their life-
cycles, owing to heat instability or unwanted reactivity with concomitant species, such as
water. Although the capacities reported on MOFs are extremely high, the drawbacks in the
application of these materials are (at times) their low stability in the presence of moisture
and the high costs associated with their production. These aspects direct the attention
of the researchers toward activated carbons, classical well-known adsorbents exhibiting
high surface areas and well-developed porosity [18]. Another important feature of these
materials is the relative easiness of their surface modifications via the incorporation of
heteroatoms. Porous carbons offer a comparatively affordable storage medium with high
thermal and chemical stability. Additionally, the porosity of the carbons may be modified
to be selective for certain adsorbate and adsorption circumstances [11,19–22].

The fundamental properties of activated carbons that make them useful as adsorbents
are the large volume of micropores and highly extended surface areas [23]. It has been
demonstrated that a pore volume smaller than 2 nm is essential for high CO2 and CH4
adsorption capacities, particularly at ambient temperatures, due to the improved adsorption
potential in pores with similar sizes to the adsorbate molecules (the kinetic diameter of
the CO2 molecule is 0.33 nm and CH4 is 0.38 nm) [24–26]. To maximize the volume of
small pores, the well-known activation with KOH has often been utilized on a variety of
carbonaceous precursors [27]. Thus, phenolic resin, polysaccharides, and biomass, as well
as soft-templated produced carbons, hard-templated produced carbons, and petroleum
wastes could be activated using this chemical agent [25]. Numerous efforts have been
made to increase the surface area of the specific material since a highly porous structure is
required for high adsorption capacity. Meanwhile, it is necessary to increase adsorption
efficiency and the contact between gas and carbon material, which is critical for carbon
material adsorption [22].

At this point, it is important to highlight that carbonaceous materials often contain rich
surface chemistry with different heteroatoms, including hydrogen, oxygen, nitrogen, sulfur,
boron, phosphor, and halogens, which are present predominantly as surface functional
groups at the edges of the graphene layers or in the aromatic rings [28]. The presence
of heteroatoms alters the properties of carbon materials [22,25], and may result in an
improvement in their performances, e.g., gas adsorption [29–31], lithium batteries [32,33],
fuel cells [34,35], supercapacitors [36], and so on.

Due to their spontaneous production on the carbon surface when exposed to air, the
oxygen functional groups have been the most thoroughly researched [19]. Their nature and
quantity can be further modified by oxidative treatments carried out in either the gaseous
or liquid phase. Nitrogen doping is also very well-known, as its presence increases the
performance of carbon materials used in supercapacitors, adsorption, and catalysis, among
other applications [37–39]. Meanwhile, due to their wide variety of possible uses, sulfur-
doped carbons have witnessed a tremendous increase in popularity in recent years [40].
For example, the heterogeneous catalysis used in ORR reactions, where S-doping increases
not only the catalytic performance, but also the selectivity of oxygen reduction; anodes
for Li-ion batteries, and electrodes for supercapacitors are some of the electrochemical
applications where S-doping is useful. It has been demonstrated that such doped carbons
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are effective in adsorption applications, such as CH4 and CO2, hazardous gases, desulfur-
ization, and photocatalysis [1,29,41]. In terms of gas adsorption, the surface polarity caused
by the electronegativity difference between the heteroatom and carbon might increase
the interactions between gas molecules and the carbon surface, resulting in improved
adsorption properties [22]. Sulfur-doped carbons are synthesized either directly by the
pyrolysis of sulfur-rich precursors at various temperatures, or indirectly using carbon
adsorbent exposed to sulfur vapor/gas precursors, such as H2S, SO2, CS2, or dimethyl
disulfide [41,42].

Based on these premises, the aim of this manuscript was to evaluate the effects of
sulfur functional groups (incorporated using post-synthesis treatments) on the performance
of carbon materials for CO2 and CH4 adsorption at atmospheric and high pressure. In
an initial step, a microporous activated carbon (PPAC1:3) was produced by the activation
with KOH of a petroleum pitch residue. In a subsequent step, sulfur functionalities were
introduced through a thermal treatment at high temperatures with H2S either to the
original carbon or samples previously treated with plasma. These two series of S-doped
activated carbon samples were tested in the physisorption of carbon dioxide and methane
at atmospheric and high pressure. The objective of this work is to analyze the combined
effect of porosity and surface chemistry (sulfur and oxygen functionalities) on CO2 and
CH4 adsorption. The synthesized materials possess small micropores, important for CO2
and CH4 adsorption, and high sulfur content in various configurations. The effects of the
porous structure and surface functional groups on the measured adsorption capacity will
be discussed.

2. Materials and Methods
2.1. Preparation of Petroleum Pitch-Based Activated Carbons

Activated carbon (PPAC1:3) was produced using petroleum pitch as a carbon precur-
sor. Initially, the original petroleum pitch (PP) was pyrolyzed at 460 ◦C under a nitrogen
atmosphere (1 MPa) for 90 min (pyrolysis yield 52%). The pyrolyzed material was pulver-
ized into a fine powder using a ball mill (500 µm particle size). In the following step, the
mesophase pitch was mixed with KOH as a chemical activating agent (pitch/KOH ratio 1:3)
in a ball mill until a homogenous mixture was formed. The carbon sample was activated
at 700 ◦C for 2 h in a nitrogen flow of 100 mL/min. Finally, the synthesized carbon was
washed with HCl (37%) and distilled water until neutral pH and dried at 75 ◦C overnight.
The yield of activation for the activated carbon was 52%.

2.2. Plasma Treatment

Plasma Tucano COL-1B-MF was used to oxidize the PPAC 1:3 sample. This equipment
has two gas lines, each with a flow regulator and a needle valve. The equipment works
with 13.56 MHz of radio frequency (RF) and 500 W of power supply. The chamber where
the sample is introduced has a volume of 5.5 L and a diameter of 15 cm. The sample was
treated for 180 s with 100% O2 and its weight was noted before and after the treatment. The
plasma-oxidized samples were labeled PPAC1:3P.

2.3. H2S Post-Treatment Experiments

PPAC1:3 and PPAC1:3P samples were subjected to a flow of 1000 ppm H2S in N2
(30 mL/min) using a U-shaped quartz reactor. The thermal treatment was conducted for
a total of 6 h at two temperatures (600 ◦C and 800 ◦C). The primary objective of this step
was to incorporate sulfur functionalities in the original and oxidized carbon PPAC1:3 and
PPAC1:3P.

2.4. Sample Characterization

Gas adsorption measurements were used to characterize the textural properties of the
synthesized samples: N2 at −196 ◦C and CO2 at 0 ◦C. More specifically, N2 adsorption
at cryogenic temperatures has been applied to evaluate the micro-/mesoporous network,
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while CO2 adsorption has been used to evaluate the narrow microporous structure. In
addition, the Brunauer−Emmett−Teller (BET) equation was applied to the N2 adsorption
data to estimate the apparent BET surface area (SBET). The Dubinin−Radushkevich (DR)
equation was applied to the N2-adsorption data to determine the total micropore volume
(<2 nm) and to the CO2 adsorption isotherms to determine the narrow micropore volume
(pores size <0.7 nm). Mesoporosity (Vmeso) has been estimated as the difference between
the total pore volume at a relative pressure of 0.95 and the total micropore volume. Pore
size distribution profiles were obtained after the application of the QSDFT model to the
nitrogen adsorption data. Before the adsorption measurements, samples were submitted to
an outgassing treatment under ultra-high vacuum (UHV) conditions at 250 ◦C for 4 h.

Field emission scanning electron microscopy (FESEM) images were recorded in ZEISS
equipment (Merlin VP compact model) equipped with an EDX microanalyzer Quantax 400
from Bruker.

X-ray diffraction (XRD) patterns of the prepared materials were obtained using Bruker
equipment, model D8-Advance, provided with a copper anode and a Göebel mirror to
avoid the necessity of removing the Cu Kβ radiation with a Ni filter. Hence, the Cu Kα

radiation was used. The samples were scanned between 3◦ and 60◦ with a pre-set time of
3 s, an angular speed of 1◦ min−1, and a step of 0.05. RAMAN spectroscopy was carried
out in a Raman Jasco NRS-5100 equipment using a 532 nm laser and a 600-lines-per-mm slit
between 0 and 4000 cm−1. TPD profiles were obtained using a U-shaped reactor inside an
electric furnace, connected to a quadrupole mass spectrometer. About 100 mg of a sample
was introduced into it and heat treated from room temperature up to 1000 ◦C, using a heat
ramp of 5 ◦C min−1 under a flow of helium. The masses (m/z) monitored for all samples
were 28 (CO), 44 (CO2) 48 (SO), and 64 (SO2).

X-ray photoelectron spectroscopy (XPS) was performed with a K-ALPHA spectrometer
(Thermo Scientific, Waltham, MA, USA). Each spectrum was recorded using Al-Kα radia-
tion (1486.6 eV), monochromatized by a twin crystal monochromator, generating a focused
X-ray spot with a diameter of 400 nm, at 3 mA × 12 kV. The alpha hemispherical analyzer
was set to the constant energy mode with survey scan pass energies of 200 eV to access the
whole energy band and 50 eV in a narrow scan to selectively evaluate the specific elements.
Charge compensation was accomplished using a system flood gun that produced both low-
energy electrons and argon ions. The powder samples were compressed and affixed to the
sample holder before being put in the vacuum chamber. Before capturing the spectrum, the
samples were kept in the analysis chamber until a residual pressure of ca. 5 × 10−7 N m−2

was established. After subtracting the S-shaped background, the quantitative analysis was
determined by calculating the integral of each peak and fitting the experimental curve
to a combination of Lorentzian (30%) and Gaussian (70%) lines. Scanning energy from
279.08 to 302.08 eV for carbon; from 525.08 to 545.08 eV for oxygen; from 392.08 to 410.08 eV
for nitrogen, and from 157.08 to 175.08 eV for sulfur was carried out.

2.5. Atmospheric Pressure and High-Pressure CH4 and CO2 Adsorption Measurements

Atmospheric pressure and high-pressure CH4 and CO2 adsorption measurements
were performed in a home-built manometric system [43]. Before the adsorption measure-
ments, samples were outgassed under an ultra-high vacuum (UHV) setting at 250 ◦C for
4 h. Adsorption isotherms were obtained at 25 ◦C and up to 0.1 MPa and 4.0 MPa, for both
CH4 and CO2.

3. Results and Discussion
3.1. Textural Characterization

The porous structures of the synthesized carbon materials were evaluated using
gas adsorption measurements (N2 at −196 ◦C and CO2 at 0 ◦C). Figure 1 compares the
adsorptions of these two probes N2 (1a,b) and CO2 (1c,d), for non-oxidized (PPAC1:3) and
plasma-oxidized (PPAC1:3P) samples, both treated with H2S at high temperatures. Textural
characteristics are reported in Table 1. As it can be appreciated, all samples exhibited a type
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I N2 adsorption isotherm, according to the IUPAC classification, indicating the microporous
nature of the synthesized samples. The exclusive presence of microporosity can be verified
from the pore size distribution (PSD) profiles obtained after the application of the QSDFT
model to the nitrogen adsorption data (Figure 1e,f). As it can be appreciated, the amount
of N2 and CO2 adsorbed increases in all cases after the heat treatment with H2S for 6 h
at 600 ◦C and 800 ◦C, Figure 1a,c. However, this increase is much larger for the samples
pre-oxidized with plasma before being exposed to H2S, Figure 1b,d.
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Figure 1. (a,b) N2 adsorption/desorption isotherms at −196 ◦C, (c,d) CO2 isotherms at 0 ◦C for
the different samples evaluated, and (e,f) pore size distribution after the application of the QSDFT
method to the nitrogen adsorption data (slit-shaped pore model).

Table 1. Textural parameters deduced from the nitrogen and CO2 adsorption measurements.

Sample SBET
(m2/g) V0 (cm3/g)

Vmeso
(cm3/g)

Vtotal
(cm3/g)

Vn
CO2

Increase
in SBET

(%)
PPAC1:3 2325 0.98 0.02 1.00 0.89 -

PPAC1:3600 2423 1.04 0.01 1.05 0.93 4.0
PPAC1:3800 2536 1.06 0.02 1.08 0.96 9.1
PPAC1:3P 2049 0.88 0.02 0.90 0.66 -

PPAC1:3P600 2587 1.11 0.03 1.14 0.99 11.3
PPAC1:3P800 2692 1.17 0.01 1.18 0.99 15.8

PPAC1:3P800N2 2148 0.78 0.18 0.96 0.81 -
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Table 1 reports the textural parameters for the different samples evaluated. In general,
the BET surface area and the micropore volume (V0) increase with the temperature of
the thermal treatment. However, these changes are more significant for the pre-oxidized
samples, e.g., the oxidized sample PPAC1:3P800 shows the highest BET surface area
(2692 m2/g), i.e., 16% higher than the original sample PPAC1:3.

An additional sample (PPAC1:3P800N2) was prepared following the same protocol
but replacing H2S with N2 in the last thermal treatment. The main goal of this sample
was to confirm that the increases in the BET surface area and micropore volume were not
due to the effect of the thermal treatment itself and/or to the plasma treatment but rather
to the H2S atmosphere used during the thermal treatment. As presented in Table 1, the
BET surface area of the original sample (PPAC1:3) decreases after the plasma treatment
(2049 m2/g vs. 2325 m2/g). The decreased BET surface area after the oxidation treatment
must be attributed either to the partial collapse of the microporous structure during the
plasma treatment or to the partial inhibition of nitrogen adsorption in small micropores
due to the newly created oxygen functional groups at the pore mouth [44]. The subsequent
thermal treatment without H2S at 800 ◦C (under N2 atmosphere) does not give rise to
significant changes in the BET surface area, i.e., there is a slight increase to 2148 m2/g
but far away from the value obtained in the same temperature conditions, but using H2S
(2692 m2/g) (Figure 1b,d). These findings confirm the promoting effect of H2S in the
development of the porosity of PPAC1:3 samples, preferentially after a pre-oxidation
treatment with plasma.

A similar tendency can be observed for the CO2 adsorption isotherms. While changes
in the porous texture are minimal in the original PPAC1:3 sample after the thermal treatment
with H2S (samples PPAC1:3x00), significant variations take place in the pre-oxidized
samples. As described above for nitrogen, the plasma treatment becomes detrimental
for the porous structure with a significant decrease in the narrow micropore volume (Vn).
Either the porous network deteriorates after the plasma treatment or the presence of oxygen
functionalities at the pore mouth alter the adsorption performance. However, a subsequent
thermal treatment with H2S promotes the development of the narrow microporosity with a
total narrow micropore volume close to 0.99 cm3/g in the sample PPAC1:3P800. Overall,
these results confirm that a thermal treatment with H2S at high temperatures has a dual
role in the carbon materials, i.e., to modify the surface chemistry (as will be shown below)
and to promote the development of the porosity, preferentially in samples pre-oxidized in
plasma conditions.

The morphology of the original and S-/O-co-doped activated carbons was evaluated
using field-emission scanning electron microscopy (FESEM). Figure 2 shows some represen-
tative images of the samples treated at the highest temperature (800 ◦C), with and without
plasma. As it can be appreciated, all carbons possess an amorphous morphology with large
holes or cavities due to the removal of the KOH used during the activation step. Neither
the plasma treatment nor the thermal treatment with H2S gives rise to appreciable changes
in the morphology of the synthesized carbons.

The crystallographic and vibrational characteristics of the synthesized carbon materials
have been evaluated by means of X-ray diffraction and Raman spectroscopy measurements.
Due to the similarity in the results obtained among the samples, only samples treated at
the highest temperature (800 ◦C) were compared. As expected, all three samples evaluated
are amorphous in nature with a broad XRD signal with maxima at 20–30◦ and 45◦. These
contributions resemble the (002) and (100) reflections of graphite and must be associated
with the stacking of graphite layers and the in-plane structures of graphitic crystallites
(Figure 3a). The Raman spectra for the three samples are dominated by two intense bands
at 1605 and 1350 cm−1, attributed to vibrational modes of sp2- and sp3-bonded carbon
atoms. More specifically, the first band corresponds to the C-C bond stretching of pairs
of sp2 carbon atoms with E2g symmetry, and the second band corresponds to the lattice
breathing mode with A1g symmetry. It is well-known in the literature that the intensity ratio
ID/IG provides useful information about the degree of the structural disorder. This ratio
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is rather similar for the three samples evaluated (ID/IG: 0.99, 0.98, and 0.95 for PPAC1:3,
PPAC1:3800, and PPAC1:3P800, respectively). Only a slight decrease in the ID/IG ratio is
appreciated after the plasma treatment and/or after the thermal treatment with H2S, most
probably associated with a certain graphitization of the samples at these high temperatures.
The higher graphitic characteristics after the different H2S treatments are also reflected
in the second order Raman line at 2700 cm−1, with a significant increase in the sample
PPAC1:3P800, as appreciated in Figure 3b.
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Figure 3. (a) XRD patterns and (b) Raman spectra for original and modified activated carbons.

3.2. Evaluation of the Surface Chemistry

Both the porosity and the surface chemistry influence the adsorption characteristics of
activated carbons. Typically, surface functional groups are bound to aromatic sheet edges
and corners. The surface behavior of carbon relies on the size and form of graphene sheets,
the existence and position of surface functionalities, and π-electrons. X-ray photoelectron
spectroscopy (XPS) examination enables us to determine the elemental composition of
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the surface layers of the synthesized activated carbons (with an analytical depth of about
10–12 nm) and the nature of the surface species. Figure 4 shows some representative XPS
spectra obtained for the samples treated at 800 ◦C. The XPS survey demonstrates that
heteroatoms have been effectively incorporated into porous carbons (preferentially sulfur
and oxygen).
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Figure 4. XPS spectra in the (a) overall survey, (b) C1s, (c) O1s, (d) N1s, and (e) S2p region for the
samples PPAC1:3, PPAC1:3800, and PPAC1:3P800.

The quantification of the percentages of C, O, N, and S from the XPS data are sum-
marized in Table 2. The original petroleum pitch-based activated carbon does not have
rich surface chemistry. In fact, oxygen content does not exceed 5.5 at. % and the sulfur
and nitrogen content are very small (0.19 at. % and 0.30 at. %, respectively). As expected,
the plasma treatment increases the number of oxygen functionalities up to 21 at. %. For
both series of samples (oxidized and non-oxidized), the subsequent thermal treatment with
H2S gives rise to a reduction in the amount of oxygen functional groups at the expense of
sulfur functionalities. Oxygen content after the H2S treatment is around 4.5 at. % for the
non-oxidized samples and around 9.50 at. % for the oxidized samples. On the contrary,
sulfur content increases from 0.19 at. % in the original PPAC1:3 sample up to 2.5 at. %
and 2.2 at. % for samples PPAC1:3800 and PPAC1:3P800, respectively. Nitrogen content is
relatively small in all samples with values around 0.3 at. % for the non-oxidized samples
and ca. 0.5 at. % for the plasma-treated samples.
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Table 2. Carbon, oxygen, nitrogen, and sulfur content (at. %) for the different samples evaluated
obtained from the XPS spectra.

Sample C (%) O (%) S (%) N (%)
PPAC1:3 93.96 5.55 0.19 0.30

PPAC1:3600 93.54 4.56 1.53 0.39
PPAC1:3800 92.85 4.37 2.55 0.23
PPAC1:3P 77.99 21.51 0.08 0.42

PPAC1:3P600 88.58 9.25 1.59 0.58
PPAC1:3P800 87.59 9.63 2.20 0.57

A careful analysis of the XPS core levels for C1s, O1s, N1s, and S2p is reported in
Figure 4. Due to the similarity between the XPS spectra of the synthesized samples, it
is important to mention that only the spectra for samples PPAC1:3800 and PPAC1:3P800
are deconvoluted, as shown in Figure S1 (in Supplementary Materials). The XPS spectra
of the C1s give rise to a wide contribution in the 283–291 eV range in all samples. In
the case of the C1s peak, four contributions can be deconvoluted in both samples, with
the primary contribution at 284.6 eV and three declining shoulders at 285.8, 287.1, and
289.4 eV. According to the literature, the main contribution corresponds to C-C and C=C
bonds, while the shoulders must be attributed to C-N or C-S at 285.8 eV, C=O at 287.1 eV,
and O-C=O at 289.4 eV [45,46]. The XPS spectra of O1s were deconvoluted in three main
contributions at 531.75, 533.0, and 534.5 eV. Previous studies described in the literature
have assigned these groups to the carbonyl oxygen of quinones (C=O at 531.0–531.9 eV),
and carbonyl oxygen atoms in esters, anhydrides, and oxygen atoms in hydroxyl groups
(C-O at 532.3–532.8 eV) [47,48]. In the case of the sample PPAC1:3800, the N1s signal shows
only one well-defined contribution at 400.5 eV, while the sample PPAC1:3P800 contains
two contributions at 398.7 and 401.0 eV. These contributions correspond to pyridinic-N and
pyrrolic/pyridinic-N functional groups, respectively [47]. However, their contributions
are very small. Finally, the XPS S 2p for both samples was deconvoluted into two different
sulfur species, the peak at 164–166 eV corresponding to C–S–C and the peak at 167–170 eV
to C–SOx–C (x = 2, 3, 4), in the form of sulfate or sulfonate [45].

Another approach to evaluate the surface chemistry of the synthesized carbons was
based on the analysis of the gases that evolved after a temperature-controlled decom-
position treatment (TPD). Figure 5 shows the evolution profiles for carbon monoxide
(CO, m/z 28), carbon dioxide (CO2, m/z 44), sulfur monoxide (SO, m/z 48), and sulfur diox-
ide (SO2, m/z 64) for the three representative samples up to 1000 ◦C in an inert atmosphere.

The TPD profile for CO shows a broad contribution in the temperature range of
400–1000 ◦C due to the decomposition of the basic and neutral functional groups, such as
quinones, ethers, carbonyls, anhydrides, and phenols [49]. This profile is rather broad for
the original PPAC1:3 carbon, while sharp and well-defined peaks can be appreciated for the
modified samples (PPAC1:3800 and PPAC1:3P800); these contributions are slightly shifted
to higher temperatures (maximum at 800 ◦C). A similar scenario takes place for CO2 with
similar profiles for the three samples. In all cases, there is a broad decomposition profile
with two well-defined maxima at 250 ◦C and 450 ◦C, attributed to the decompositions
of the more acidic oxygen functional groups, e.g., carboxylic groups or lactone groups,
and a shoulder above 600 ◦C (for the modified carbons). These results confirm that the
synthesized samples exhibit a wide variety of oxygen functional groups, both acidic and
basic functionalities, with the amount of these groups being higher for the H2S-treated
samples [50].
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The nature of the sulfur-containing functionalities on the representative samples
was also studied using TPD. In this case, the TPD profiles are highly sensitive to the
thermal treatment suffered. The SO and SO2 profiles (m/z 48 and 64) exhibit sharp peaks at
280 ◦C, the intensity of these peaks being larger for sample PPAC1:3P800. This observation
is in close agreement with the amount of sulfur quantified by XPS measurements. This
contribution could be attributed to the decomposition of C-SO2-C and C-SO-C groups [51].
The TPD profile is rather similar to sample PPAC1:3800, although the peaks have lower
intensity and are slightly broader (an additional contribution appears at around 500 ◦C).
The additional shoulder at a high temperature must be linked to the heterogeneity of the
sulfur species and their existence as sulfoxides, sulfones, and thioesters [1].

3.3. Gas Adsorption Isotherms at Atmospheric and High Pressure

In a final step, the adsorption performance of the sulfur-doped samples has been tested
for two different probe molecules, CO2 and CH4. Figures 6 and 7 compare the adsorption
performances at atmospheric and high pressure for both series of samples, PPAC1:3 and
PPAC1:3P. As described above in the textural characterization section, plasma-treated
samples exhibit larger differences in the adsorption performance among samples due to
the combined effects of an improved 3D network and richer surface chemistry.
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Figure 6. CO2 adsorption isotherms measured at 0.1 MPa (a,c) and 4 MPa (b,d) and 25 ◦C.
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Figure 7. CH4 adsorption isotherms measured at 0.1 MPa (a,c) and 4 MPa (b,d).
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3.3.1. Adsorption of CO2 at Atmospheric Pressure and High Pressure

Figure 6 shows the CO2 isotherms at atmospheric and high pressure for the H2S-
treated samples (oxidized and non-oxidized). In general, the adsorption performance
of the synthesized samples is very good with values as high as 1100–1200 mg/g at
4 MPa for H2S-treated samples [24,25]. This excellent performance is mainly attributed to a
highly developed porous structure upon the H2S treatment, although some contributions
from the surface functionalities cannot be ruled out at this point. Even at atmospheric
pressure (0.1 MPa), the amount adsorbed at 25 ◦C (ca. 210 mg/g) is much higher than that
reported in the literature for S-/N-co-doped activated carbons prepared using KOH as the
activating agent [52,53]. As expected, the adsorption performance is rather similar for the
non-oxidized samples both at low and high pressures, due to their similar porous structure.
The excess uptake for non-oxidized samples reaches up to 1040 mg/g at 4.0 MPa.

These results anticipate that the effect of the surface chemistry, if any, must be rather
small. For the oxidized samples the differences in the adsorption uptake among samples
are much larger, in close agreement with the N2 adsorption data described above. Overall,
these results confirm that the adsorption performances of the S- and O-/S-modified carbon
materials are mainly defined by the porous structures with an upper uptake as high as
1160 mg/g at 25 ◦C and 4 MPa for the plasma-treated samples. In any case, the thermal
treatment with H2S has a promoting effect, i.e., sample PPAC1:3800 has 14% and sample
PPAC1:3P800 has 26% higher adsorption capacity than the original sample (PPAC1:3) at
atmospheric pressure. These results are among the best described in the literature for CO2
adsorption under mild-pressure conditions (adsorption values are reported in Table 3) [54].

Table 3. CO2 adsorption capacity measured at 0.1 MPa and 4 MPa.

Sample
CO2

Adsorbed (mg/g)
0.1 MPa

CO2
Adsorbed (mg/g)

4 MPa

PPAC1:3 167.0 972.7
PPAC1:3600 181.4 1013.4
PPAC1:3800 190.5 1043.9
PPAC1:3P 152.0 904.6

PPAC1:3P600 189.6 1111.7
PPAC1:3P800 210.6 1155.0

3.3.2. Adsorption of CH4 at Atmospheric Pressure and High Pressure

In a similar manner, excess CH4 adsorption has been measured both at atmospheric
and high pressure for the non-oxidized and oxidized samples. In the case of methane,
differences in the total uptake are significant for both sets of samples, although much larger
for plasma-treated samples. In both cases, the thermal treatment with H2S gives rise to a
significant improvement in the CH4 uptake (25% and 44% improvement at atmospheric
pressure and 10% and 25% at high pressure, for non-oxidized and oxidized samples,
respectively). The excess uptake at 4 MPa reaches values as high as 20–21 wt.%. These
values are again among the best reported in the literature and perfectly correlate with the
excellent textural properties of the synthesized samples [55].

The amount of methane adsorbed at atmospheric and at high pressure in the evaluated
samples is reported in Table 4.
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Table 4. CH4 adsorption isotherms measured at 0.1 MPa and 4 MPa.

Sample
CH4

Adsorbed (wt.%)
0.1 MPa

CH4
Adsorbed (wt.%)

4.0 MPa

PPAC1:3 2.7 17.9
PPAC1:3600 3.1 18.4
PPAC1:3800 3.4 19.8
PPAC1:3P 2.5 16.8

PPAC1:3P600 3.1 20.7
PPAC1:3P800 3.6 20.9

3.3.3. Effect of the Porous Structure

To identify the role of the porous structure in both adsorption processes, the amounts
adsorbed for CO2 and CH4 at both low and high pressures were correlated with the
BET surface area and the total micropore volume (V0). Previous studies described in the
literature have anticipated that the porous structure is the main parameter defining the
adsorption of these two probes evaluated [24,25,55,56]. The complexity of H2S-modified
samples is due to the combined effect of the porous structure and surface chemistry in
a single carbon network. To give more insight into the adsorption process, these two
variables will be evaluated separated.

In the specific case of CO2, Figure 8 shows a relatively good agreement (coefficient of
determination R2 above 0.90) between the total uptake and the main textural parameters
for both sets of samples and at the two evaluated conditions (low- and high-pressures).
These findings are in close agreement with the crucial role exhibited by micropores and
small mesopores for CO2 adsorption in carbon materials [24,25]. Presser et al. anticipated
that small micropores govern the adsorption performance at atmospheric pressure, while
Casco et al. identified large micropores and small mesopores as responsible for the high-
pressure adsorption process. For CH4 adsorption at atmospheric and high pressure, the
correlations are not straightforward (Figure 9). In general, the agreement between the
amount adsorbed and the textural parameters is quite poor, except for the measurements
at high pressure (4 MPa). Under these specific conditions, there is a good agreement
between the excess amount adsorbed and the BET surface area. These results suggest that
the amount of methane adsorbed at atmospheric pressure does not scale with the main
textural parameters (neither micropore volume nor apparent surface area). Only at high
pressure (4 MPa) does the porous structure (microporosity and mesoporosity) seem to
govern the excess uptake for methane (coefficient of determination R2 above 0.8–0.9). In a
last attempt to understand methane adsorption at 0.1 MPa, Figure S2 compares the total
uptake with the volume of narrow micropores (Vn, those below 1 nm). In this specific case,
the agreement is very good, i.e., narrow cavities (<1 nm) define the adsorption performance
for CH4 at 0.1 MPa. Moreover, the narrow micropore volume (Vn) correlates relatively
well with the amount of CO2 adsorbed at atmospheric pressure (Figure S3). In summary,
narrow micropores define the adsorption performance for CO2 and CH4 at atmospheric
pressure, whereas under high-pressure conditions (4 MPa), the BET surface area defines
the adsorption performance for methane (micropores and small mesopores) and the total
micropore volume governs the adsorption of CO2.
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3.3.4. Effect of Surface Chemistry

The identification of the effect exerted by the surface chemistry is much more difficult
due to the predominant effect of the porous structure in the adsorption process. To identify
the isolated effect of surface functional groups, recent studies from Sanchez-Sanchez et al.
proposed the normalization of the uptake by the main textural parameter defining the
adsorption process [57]. In the specific scenario of H2S-treated activated carbons, the narrow
micropore volume (Vn) can be anticipated, a priori, as the most significant parameter for
the normalization step. Figure 10 shows the normalized uptake (mg/cm3) for the different
samples evaluated as a function of the atomic percentage of sulfur estimated from the
XPS data.
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As seen in Figure 10, the identification of the effect of the surface chemistry in the
adsorption process is not straightforward. Correlations highly depend on the final pressure
applied and the presence of additional functionalities (e.g., oxygen surface groups after the
plasma treatment). The best fittings are obtained at atmospheric pressure (0.1 MPa). Under
these conditions, the correlations anticipate a certain positive effect of the surface chemistry,
although very small, for both probes, either for non-oxidized or oxidized samples. This
positive effect is more pronounced for oxidized samples most probably due to the synergic
effect between sulfur and oxygen functionalities. This observation is in close agreement
with the higher sensitivity of the gas–solid interactions at lower pressures. Under high-
pressure conditions, the definition of a clear statement is not easy for CH4. For CO2, one
could argue a certain effect of the surface chemistry, i.e., negative effect for non-oxidized
samples and positive for oxidized samples, most probably due to the presence of the oxygen
surface groups. However, in the case of CH4 at high pressure, no clear tendencies can be
appreciated, most probably reflecting the absence of clear effects of the surface chemistry
in the methane adsorption process. In any case, these observations must be considered
carefully due to the scarce effect of the surface chemistry (the adsorption process is mainly
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governed by the porous structure), and the intrinsic uncertainty in the estimation of the
sulfur and oxygen content (previous studies from our group have anticipated that in highly
heterogeneous samples such as these plasma-treated and H2S-treated samples, the surface
chemistry largely differs for different sample positions) [42].

4. Conclusions

Two series of sulfur-doped and sulfur/oxygen-co-doped activated carbon materi-
als were successfully prepared from a petroleum pitch-based activated carbon material
(PPAC1:3). Sulfur functionalities were incorporated through a thermal treatment with H2S
at high temperatures (600 ◦C and 800 ◦C) in the original (PPAC1:3) and plasma-treated
samples (PPAC1:3P). Characterization results show that the thermal treatment with H2S
highly improves the porous structure, preferentially in plasma-treated samples, and the
surface chemistry (preferentially sulfur and oxygen functionalities). The synthesized ac-
tivated carbons are among the most promising candidates reported in the literature for
high-pressure methane and CO2 storage. The excellent adsorption performance is at-
tributed to the presence of a highly developed porous structure combining narrow and
wide micropores. Narrow micropores govern the adsorption performance for methane and
CO2 at atmospheric pressure, while wider micropores and small mesopores are needed for
high pressure. Concerning the role of the surface chemistry, the scenario is more complex.
Although some trends can be anticipated for sulfur-doped carbons, care must be taken due
to the heterogeneity in the oxygen and sulfur content in these kinds of samples.
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