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Abstract: For English multiword terms (MWTs) of three or more constituents (e.g., sea level rise), a 

semantic analysis, based on linguistic and domain knowledge, is necessary to resolve the dependency 
between components. This structural disambiguation, often known as bracketing, involves the 

grouping of the dependent components so that the MWT is reduced to its basic form of 

modifier+head, as in [sea level] [rise]. Knowledge of these dependencies facilitates the 

comprehension of an MWT and its accurate translation into other languages. Moreover, the 
resolution of MWT bracketing provides a higher overall accuracy in machine translation systems and 

sentence parsers. This paper thus presents a pilot study that explored whether the bracketing of a 

ternary compound, when used as an argument in a sentence, can be predicted from the semantic 
information encoded in that sentence. It is shown that, with a random forest model, the semantic 

relation of the MWT to another argument in the same sentence, the lexical domain of the predicate, 

and the semantic role of the MWT were able to predict the bracketing of the 190 ternary compounds 
used as arguments in a sample of 188 semantically annotated sentences from a Coastal Engineering 

corpus (100% F1-score). Furthermore, only the semantic relation of an MWT to another argument in 

the same sentence proved enormous capability to predict ternary compound bracketing with a binary 

decision-tree model (94.12% F1-score). 
Keywords: Semantic Relation, Multiword-Term Bracketing, Random Forest, Decision Tree. 

Resumen: En unidades terminológicas poliléxicas (UTP) con tres o más formantes en lengua 

inglesa (p.ej., sea level rise), establecer la dependencia entre dichos formantes requiere de un análisis 
lingüístico y de conocimiento especializado del área concreta en que se emplean las UTP. Esta 

desambiguación estructural, o bracketing, implica el agrupamiento de los formantes para reducir la 

UTP a su estructura básica de modificador+núcleo, como en [sea level] [rise]. Conocer el bracketing 
de una UTP no solo facilita su comprensión y traducción a otras lenguas, sino que también mejora el 

desempeño de los sistemas de traducción automática y de los analizadores sintácticos. Por tanto, en 

este artículo presentamos un estudio piloto que explora si el bracketing de una UTP con tres 

formantes, al emplearse como argumento en una oración, puede predecirse a partir de la información 
semántica codificada en dicha oración. Se muestra que, con un modelo random forest, la relación 

semántica de la UTP con otro argumento en la misma oración, el dominio léxico del verbo y el rol 

semántico de la UTP son capaces de predecir el bracketing de las 190 UTP ternarias que se usan 
como argumento en una muestra de 188 oraciones, anotadas semánticamente y extraídas de un 

corpus sobre ingeniería de costas (con un valor de F1 del 100 %). Además, únicamente la relación 

semántica que mantiene una UTP ternaria con otro argumento en la misma oración posee una 

enorme capacidad para predecir su bracketing mediante un árbol de decisión binario (con un valor de 
F1 del 94,12 %). 

Palabras clave: Relación Semántica, Desambiguación Estructural de Unidades Terminológicas 

Poliléxicas, Random Forest, Árbol de Decisión. 
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1 Introduction 

A set of 1,694 sentences from a Coastal Engineering 
corpus, in which a named river (e.g., Salinas River) 

was an argument of the predicate of the sentences, 

were semantically analyzed and annotated with the 
semantic relation between the arguments, the lexical 

domain of the predicates, and the semantic role of the 

arguments. 

This paper presents the statistical analysis of those 
semantic annotations with a view to finding evidence 

that the structural disambiguation, or bracketing, of a 

three-component multiword term (e.g., [sand supply] 
[decrease]) can be predicted from the semantic 

information encoded in the sentence where the 

ternary compound is used as an argument. For this 
experiment, we assumed that the context, which 

constrains the factors that drive understanding (Leech 

G., 1981), also helps to resolve the structural 

disambiguation of a ternary compound. This 
assumption comes from the daily experience of a 

translator who must deal with ternary compounds in a 

specialized text. Although the compounds are 
somewhat familiar, it is useful to craft definitions for 

them to facilitate their translation into another 

language based on their context of use. 

The rest of this paper is organized as follows. 
Section 2 presents a fundamental background of 

bracketing of multiword terms. Section 3 provides a 

literature review of predictive models for bracketing, 
mostly from the perspective of variables and 

resources used for the task of compound bracketing 

prediction. Section 4 explains the materials used in 
this study. Section 5 covers our semantic approach to 

predicting ternary compound bracketing based on two 

supervised models, namely decision tree, and random 

forest. Also described are the sample of ternary 
compounds, the training and testing phases for the 

predictive models, and the results, which provide 

linguistic insights as to how semantic relations, 
predicate lexical domains, and semantic roles are 

intertwined with the bracketing of ternary 

compounds. Section 6 discusses the results and 
compares them to those outlined in the literature 

review. Finally, Section 7 presents the conclusions 

derived from this work along with plans for future 

research. 

2 Bracketing of Multiword Terms 

When multiword expressions are used in specialized 
domains, they are known as multiword terms 

(MWTs). MWTs often have more than two 

components. For instance, in Coastal Engineering, 

beach size sand supply refers to the supply of sand, 

usually provided by rivers, whose grain size is 

appropriate to mitigate beach erosion. The most 

frequent MWTs in specialized texts are endocentric 
because they specify a broader concept or hypernym. 

For example, beach size sand supply is a type of sand 

supply since the grain size of the sand is specified. It is 
thus the dimension activated to form the hyponym. 

For MWTs of three or more constituents, a 

semantic analysis, based on linguistic and domain 
knowledge, is necessary to resolve the dependency 

between components. This structural disambiguation, 

often known as bracketing or parsing, involves the 

grouping of the dependent components so that the 
MWT is reduced to its basic form of modifier+head, 

as in [beach size] [sand supply]. Knowledge of these 

dependencies facilitates the comprehension of an 
MWT and, consequently, its accurate translation into 

other languages. 

Therefore, before including MWTs in 
terminological knowledge bases, it is often necessary 

to structurally disambiguate them to make their 

relational structure explicit and thus favor knowledge 

acquisition (León-Araúz P. et al., 2021). Furthermore, 
the resolution of MWT bracketing provides a higher 

overall accuracy in machine translation systems 

(Green N., 2011), sentence parsers (Vadas D. and 
Curran J.R., 2008), and in systems aimed at 

determining the implicit semantic relation holding 

between modifier and head in MWTs of three or 

more components (Kim S.N. and Baldwin T., 2013). 

3 Review of Bracketing Prediction Methods 

Previous work on compound parsing/bracketing 
exploits either unsupervised methods (e.g., based on 

bigram corpus frequency) or supervised ones (i.e., 

based on training data, containing manually 

parsed/bracketed compounds, which are used to train 
an algorithm for predicting compound bracketing). 

The two basic unsupervised approaches are the 

adjacency model (Marcus M., 1980; Pustejovsky J. et 
al., 1993), and the dependency model (Lauer M., 

1994). For a ternary compound such as sea level rise 

(i.e., increase in sea level), the adjacency model 
concludes whether level is more closely associated 

with sea (leading to a left-branched structure) or to 

rise (leading to a right-branched structure). In 

contrast, the dependency model resolves whether sea 
is more strongly associated with level (leading to a 

left-branched structure) or with rise (leading to a 

right-branched structure). In this case, the correct 
bracketing of sea level rise is left-branched. The way 

of measuring the association strength between two of 

the words (or constituents) in the compound is based 

on association measures estimated from corpus data, 
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such as bigram frequency, point-wise mutual 

information, or chi-squared, among others. 

Resnik P.S.'s (1993) method for ternary 
compounds, based on the adjacency model and the 

association measure called selectional association, 

estimated from the parsed Wall Street Journal corpus 
(30 million words), achieved an overall accuracy of 

72.6% (with a sample of 157 ternary compounds 

from the Penn Treebank corpus, 64.1% left-branched, 
and 35.9% right-branched). In contrast, Lauer M. 

(1995) adopted the dependency model for his 

method, based on the ratio of left- to right-bracketing 

probability for a ternary compound, estimated from 
Grolier’s Encyclopedia (8 million words). The author 

calculated probabilities of conceptual categories in the 

taxonomy underlying Roget’s Thesaurus (Roget 
P.M., 1852)1, rather than for individual words, to 

avoid data sparsity problems. His method reached an 

overall accuracy of 80.7% (with a sample of 244 
ternary compounds from Grolier’s Encyclopedia, 

66.8% left-branched, and 33.2% right-branched). 

Nakov P. and Hearst M. (2005) developed an 

unsupervised, knowledge-rich method for parsing 
ternary compounds. Their approach included: 

(1) Ten types of surface variable, such as dashes 

(e.g., beach-sand transport points to a left-bracketed 
compound), possessive markers (e.g., city's water 

supply indicates a right-bracketed compound), and 

acronyms (e.g., pH quality control (QC) reveals a 

right-bracketed compound). 
(2) Three types of paraphrase variable, namely 

prepositional phrases (e.g., distance from the river 

mouth means that river mouth distance is 
left-bracketed), copula paraphrases (e.g., water 

product that/which is a mixture proves that mixture 

water product is right-bracketed), and verbal 
paraphrases (e.g., impacts associated with river 

pollution implies that river pollution impact is 

left-bracketed). 

The authors concluded that the adjacency and 
dependency models showed comparable performance 

when using the chi-squared association measure and 

the number of web search engine page hits for 
approximating corpus frequencies, as suggested by 

Lapata M. and Keller F. (2004). Although their 

method achieved an overall accuracy of 95.35%, this 
result was probably biased toward the majority 

left-bracketing class because of the 

bracketing-imbalanced sample of 430 ternary 

compounds from a corpus of biomedical domain 
abstracts retrieved from MEDLINE (84% 

left-branched, and only 16% right-branched). 

 
1 http://www.gutenberg.org/ebooks/10681. 

Girju R. et al. (2005) implemented a supervised 

model for bracketing ternary compounds with the 

machine-learning technique decision tree. They 
employed a total of 15 semantic variables based on 

WordNet senses, five variables for each compound 

constituent, namely the top three WordNet semantic 
categories for each constituent, derivationally-related 

forms, and whether the constituent was a 

nominalization. The algorithm reached an overall 
accuracy of 83.10%, with a sample of 728 ternary 

compounds from the Wall Street Journal component 

of the Penn Treebank corpus (Marcus M. et al., 

1993), 67.4% left-branched, and 32.6% 
right-branched. 

Kim S.N. and Baldwin T. (2013) devised a 

method that consisted of automatically determining 
the semantic relations between the pairs of words in a 

ternary compound, and then predicting bracketing 

from the constituent pair whose semantic relation 
coincided with that of the ternary compound. When 

this method was combined with that of Nakov P. and 

Hearst M. (2005), it achieved an overall accuracy of 

74.1% with a sample of 1,571 ternary compounds 
from the Wall Street Journal corpus. However, no 

information was provided regarding the percentage of 

left- and right-bracketing within the sample. 
The supervised method by Bergsma S. et al. 

(2010) used both n-gram variables (the logarithm of 

the frequency of all constituent subsets appearing in 

the Google V2 corpus), and Boolean lexical variables 
that indicated the presence or absence of a particular 

string at a given position in the compound (the 

constituents and their position, the entire ternary 
compound, as well as a capitalization pattern of the 

constituent sequence). As a machine-learning 

technique, the authors applied the support-vector 
machine algorithm, which reached an overall 

accuracy of 91.6%, with a sample of 2,150 ternary 

compounds from the Wall Street Journal corpus 

(70.5% left-branched, and 29.5% right-branched). 
Vadas D. and Curran J.R. (2007) developed a 

supervised method for parsing ternary compounds 

based on the machine-learning technique of logistic 
regression. They used 88,568 variables, an extremely 

large number, which can be summarized as follows: 

(1) Bigram frequencies were collected from two 
sources, namely hit counts from the web search 

engine Google, and frequencies in the Google Web 

1T corpus (Brants T. and Franz A., 1993). 

(2) The pairs of compound constituents, and the 
surface variables by Nakov P. and Hearst M. (2005), 

were compared according to both the adjacency and 

dependency models by means of the chi-squared, and 
bigram probability association measures. 

143

Semantic Relations Predict the Bracketing of Three-Component Multiword Terms 

http://www.gutenberg.org/ebooks/10681


(3) Lexical features for all unigrams and bigrams 

in a ternary compound, along with their position 

within the compound. 
(4) Contextual variables, consisting of 

bag-of-word features for both the words in the 

sentence where the compound is used, and for a 
two-word window on each side of the compound. 

(5) For every n-gram and context window feature, 

their part-of-speech tags and named entity tags were 
added. 

(6) For each sense of each constituent in the 

ternary compound, a semantic feature for its synset, as 

well as the synset of each of its hypernyms up to the 
root, were extracted from WordNet, and incorporated 

into the supervised model as additional variables. 

This method achieved an F1-score of 93.01%, 
with a sample of 5,582 ternary compounds from the 

Penn Treebank corpus (58.99% left-branched, and 

41.01% right-branched). 
The supervised system by Pitler E. et al. (2010) 

was able to bracket compounds of three or more 

constituents (including the conjunction and). 

Applying the support-vector machine algorithm, the 
system first calculated the probability that a word 

sequence, within a compound, was a constituent, 

given the entire compound as context. Then, using 
these probabilities, the system predicted the 

bracketing of a compound with the CYK parser (i.e., 

Cocke-Younger-Kasami algorithm). As variables for 

the system, the authors employed: 
(1) The position of the proposed bracketing within 

the compound. 

(2) The association measure point-wise mutual 
information (PMI) between all word pairs in the 

compound, derived from the Google V2 corpus (Lin 

D. et al., 2010). 
(3) Boolean lexical variables to indicate the 

presence of a particular word at each position in the 

compound. 

(4) Boolean variables to inform about the shape of 
the compound, namely the presence of capitalized 

letters and hyphenated words provided information 

concerning the possibility that the compound included 
a named entity. 

The system reached an overall accuracy of 95.4%, 

with a sample of 64,844 compounds of three or more 
constituents from the Penn Treebank corpus, but 

bracketing-related information in the form of 

percentages was not provided. 

Lazaridou A. et al. (2013) tackled the parsing of a 
ternary compound using a semantic plausibility 

measure derived from a distributional semantic model 

trained on a corpus of 2.8 billion tokens, where the 
vector of a ternary compound was obtained from the 

combination of the vectors of each of its constituents. 

This supervised method relied on the support-vector 

machine algorithm with 14 variables, summarized as 

follows: (1) 12 variables for representing the semantic 
plausibility of either the left- or right-bracketing; 

(2) two variables for the PMI values of the word pairs 

in the compound, according to the adjacency model. 
The method achieved an overall accuracy of 85.6%, 

with a sample of 2,227 ternary compounds from the 

Penn Treebank corpus (34.4% left-branched, and 
65.6% right-branched). 

Faruqui M. and Dyer C. (2015) also addressed the 

ternary compound bracketing with word vectors. 

However, their semantic model was 
non-distributional because the vectors did not encode 

any word co-occurrence information. Instead, the 

vector dimensions were Boolean variables that 
represented linguistic knowledge derived from 

resources such as WordNet (Fellbaum C.A., 1998), 

FrameNet (Ruppenhofer J. et al., 2010), and Penn 
Treebank. As such, the vector length for a single word 

included a total of 172,418 dimensions. The vector of 

a ternary compound was then obtained by appending 

the vector of each constituent, which resulted in a 
ternary compound vector of 517,254 dimensions. 

This combined vector was the input of the 

machine-learning technique of logistic regression, 
which achieved an overall accuracy of 83.3% in the 

same sample of ternary compounds collected by 

Lazaridou A. et al. (2013). 

For the unsupervised method by Ménard P.A. and 
Barrière C. (2014), the usage of different resources for 

the bracketing of compounds of three and more 

constituents was compared, namely the English 
Google Web N-grams (Lin D. et al., 2010), English 

Google Books Ngrams (Michel J.B. et al., 2010), and 

open linked data DBpedia (Hellmann S. et al., 2009). 
The association measures chi-squared, PMI, and 

Dice, and the number of valid DBPedia paths were 

also analyzed. Their algorithm created an initial list 

containing all of the word pairs from a compound, 
which were then sorted in descending order of 

association scores. A second list of dependencies, 

which defined the complete bracketing of the 
compound, was constructed from the first list. For 

ternary compounds, the method with the English 

Google Books N-grams and the PMI achieved the 
highest overall accuracy, with a value of 81.47% on a 

sample of 2,889 ternary compounds from the Penn 

Treebank corpus (79.2% left-branched, and 20.8% 

right-branched). 
Similarly, for the bracketing of compounds of 

three and more constituents, Barrière C. and Ménard 

P.A. (2014) applied the unsupervised method of 
Ménard P.A. and Barrière C. (2014), but relied on a 

word association model that combined the lexical, 
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relational, and coordinate nature of the associations 

between all pairs of words within a compound. The 

information for their word association model was 
collected from Wikipedia. The system reached an 

overall accuracy of 73.16%, with a sample of 4,749 

compounds of three and more constituents from the 
Penn Treebank corpus, but the specific accuracy for 

the subset of ternary compounds was not provided. 

León-Araúz P. et al. (2021) developed an 
unsupervised, knowledge-rich method for bracketing 

specialized ternary compounds in the domain of wind 

energy. The authors used 12 variables, mainly related 

to the surface and paraphrase variables proposed by 
Nakov P. and Hearst M. (2005), which measured 

frequency counts in a specialized corpus on wind 

energy. The counts were collected by means of CQL 
(Corpus Query Language) queries in the Sketch 

Engine corpus manager. A total of 34 specific CQL 

queries were designed for the extraction of 
occurrences of each of the linguistic structures 

underlying the 12 variables. Based on the results, the 

authors formulated 16 rules to decide on the 

bracketing of a ternary compound. Hence, the final 
bracketing structure was decided by applying the 

majority vote strategy to the votes of the individual 

rules. As such, the CQL queries and rules permitted 
the implementation of a system to automate the 

compound bracketing task for users such as 

translators and terminologists. The method achieved 

an overall accuracy of 86.4%, with a sample of 103 
ternary compounds from the wind energy domain 

(67% left-branched, and 33% right-branched). 

In short, previous research focused on semantic 
information provided by the components of an MWT. 

The number of variables used for prediction ranged 

from 12 to 517,254 features. These variables were 
mostly based on n-gram statistics, and semantic 

information of the MWT components stored in 

linguistic resources such as WordNet. The overall 

accuracy of the prediction models ranged from 
72.60% to 95.40%. 

Our approach, however, was based on semantic 

information that previous research has not as yet 
considered. This semantic information was encoded 

in both the co-text of a ternary compound (i.e., the 

sentence where the ternary compound was used as an 
argument) and the ternary compound seen as a unit 

(i.e., its semantic role). The set of predictor variables 

consisted of only three (i.e., the semantic relation, 

predicate lexical domain, and semantic role of the 
MWT), whereas previous research employed a 

minimum of 12 variables (León-Araúz P. et al., 

2021). 

4 Materials 

A set of 1,694 sentences, in which a named river (e.g., 
Mississippi River) was an argument of the predicate 

of the sentences, were semantically analyzed and 

annotated. These sentences were extracted from a 
subcorpus of English texts on Coastal Engineering, 

comprising roughly 7 million tokens and composed 

of specialized texts (scientific articles, technical 

reports, and PhD dissertations), and semi-specialized 
texts (textbooks and encyclopedias on Coastal 

Engineering). This subcorpus is part of the English 

EcoLexicon Corpus (23.1 million words) (see 
León-Araúz P. et al. (2018) for a detailed description). 

5 Semantic Approach for MWT Bracketing 

Since the semantic information in a sentence firmly 
guides its syntactic parsing (Fillmore C.J., 1968; 

Lazaridou A. et al., 2013), one could assume that the 

correct bracketing of an MWT, when used as an 
argument in a sentence, can be predicted from the 

semantic information encoded in that sentence. In other 

words, the context, which constrains the factors that 
drive understanding (Leech G., 1981), helps to resolve 

the structural disambiguation of the ternary compound. 

As semantic information in a sentence, this pilot 

study explored the contribution of three semantic 
variables to the prediction of ternary compound 

bracketing. These variables were the lexical domain 

of the verb, semantic role of the ternary compound, 
and semantic relation of the ternary compound to the 

named river. From the 1,694 sentences semantically 

analyzed and annotated, 188 sentences contained 190 

ternary compounds as arguments. This sample of 190 
ternary compounds, along with the values of the 

abovementioned three semantic variables annotated in 

their corresponding sentences, were employed for the 
training and testing of two supervised models to 

predict whether a ternary compound was 

right-branched or left-branched. 

5.1 Annotation of the Semantic Variables 

A set of 1,694 sentences from the corpus, where 294 

different rivers are mentioned, were annotated by 
three terminologists from the LexiCon research group 

of the University of Granada (Spain). They performed 

the semantic annotation of the predicate-argument 
structure of a sentence by assigning a: (1) lexical 

domain to the predicate; (2) semantic role to the 

arguments of the predicate; (3) semantic relation to 

the link between the named river and the other 
arguments in the sentence; and (4) bracketing (left or 

right) to the ternary compounds used as arguments in 

the sentence. The values of these four semantic 
variables are shown in Table 1. 
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Semantic 

variables 

annotated 

Values 

Lexical domain of 
the predicates (8 

values) 

CHANGE, MOVEMENT, EXISTENCE, 
POSSESSION, POSITION, MANIPULATION, 

ACTION, COGNITION 

Semantic roles of 
the arguments (13 

values) 

AGENT, RESULT, PATIENT, THEME, 
LOCATION, RECIPIENT, INSTRUMENT, 
TIME, RATE, MANNER, DESCRIPTION, 
CONDITION, PURPOSE 

Semantic relation 
between the ternary 
compound and the 
named river (30 

values) 

type_of, part_of, made_of, 
delimited_by, located_at, 

takes_place_in, phase_of, affects, 
causes, result_of, attribute_of, 
has_function, studies, measures, 
effected_by, improves, worsens, 
creates, becomes, gives, gives_to, 
receives, receives_from, drains, 
has_path, transfers, discharges_into, 
places, controls, applied_to 

Bracketing of the 
ternary compounds 
in the sentences (2 
values) 

RIGHT, LEFT 

Table 1: Semantic variables annotated in the set of 

sentences, and their values. 
 

The most frequent verbs in the corpus are general 

language verbs (e.g., accumulate, pollute, increase, 

discharge, supply, drain), which are also used in 
specialized texts and thus reflect how environmental 

entities interact. In this sense, such verbs are 

susceptible to classification in the lexical domains 
proposed by Faber P. and Mairal R. (1999), within the 

Functional Lexematic Model. These lexical domains 

were used to annotate the predicates of our set of 
sentences, and shown in Table 1. 

Specialized knowledge representation includes 

semantic properties that help to describe the nature of 

entities and processes. These semantic properties are 
reflected as the relations between a predicate and its 

arguments, which are typical semantic roles. The 

semantic roles used to annotate the arguments in our 
set of sentences largely coincided with those specified 

by Kroeger P.R. (2005: 54-55), and Thompson P. et 

al. (2009), and summarized in Table 1. 

Conceptual description of specialized concepts 
includes their relational behavior. These relations, 

depicted by Faber P. et al. (2009) for environmental 

concepts, with additional non-hierarchical relations 
specific to named rivers (Rojas-Garcia J., 

forthcoming), were all used to annotate the semantic 

relation between the arguments in our set of 
sentences, and collected in Table 1. 

The inter-annotation agreement coefficient, 

Cohen’s kappa (κ), showed a very good agreement 

for all the annotator pairs (κ>90%, p-value<0.05) in 
the annotation of the semantic roles, relations, and 

bracketing according to Krippendorff K.’s (2012) 

recommendations for text content analysis. 

Notwithstanding, the disagreements in the original 

annotations were resolved based on discussion between 
the annotators to reach a consensus on the definitive 

annotations of semantic roles, relations, and bracketing. 

For the initial annotation of predicates with lexical 
domains, the inter-annotation agreement was lower 

for all the annotator pairs (84%<κ<88%, 

p-value<0.05), indicating that this variable lent itself 
to alternative, though plausible, interpretations. A 

review of the differences between annotators showed 

that the lexical domains of MOVEMENT and 

POSSESSION were more prone to confusion. The 
issues fundamentally arose from verbs that could 

potentially belong to more than one lexical domain 

(e.g., drain and discharge), as Faber P. and Mairal R. 
(1999) already proved. To arrive at a consensus on the 

definitive annotations of lexical domains, the 

factorization of meaning from the Functional 
Lexematic Model framework was applied to verbs to 

resolve disagreements between the annotators. 

5.2 Description of the Sample of MWTs 

A selection of 10 sentences from the sample, which 

incorporated ternary compounds as arguments, is 

provided in Table 2. For each of those 10 sentences, 

Table 3 shows the values of the following four 
annotated variables: (1) lexical domain of the 

predicate (LexDom); (2) semantic role of the ternary 

compound (SemRol_mwt); (3) semantic relation 
between the ternary compound and the named river 

(SemRel); and (4) bracketing of the ternary compound 

(Bracketing), which was the variable to be predicted.2 
The distribution of bracketing structures within the 

MWT sample was reasonably balanced between 

left-branching (110 MWTs, 58% of the sample), and 

right-branching (80 MWTs, 42% of the sample). 
Table 4 summarizes the counts for the sample data, 

disaggregated by lexical domain and bracketing 

structure of the MWTs, and describes the distribution 
of the 190 MWTs across these variables. Some 

conclusions could be drawn from the characteristics 

of the sample: (1) sentences whose predicate 
belonged to the lexical domains of MOVEMENT, 

ACTION, POSITION, MANIPULATION, and COGNITION 

included ternary compounds which were only 

right-branched; and (2) sentences whose predicate 
belonged to the lexical domain of POSSESSION 

incorporated ternary compounds which were only 

left-branched. 

 
2 The whole dataset of MWTs, the values of the 

annotated variables, and the corpus will be available on the 

website of the LexiCon research group of the University of 

Granada (Granada, Spain) (http://lexicon.ugr.es/). 
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Sentences from the Sample with Ternary Compounds as 

Arguments 

(1) Blackstone River draining into Narragansett Bay has been 

extensively dammed, and although not well quantified, models show 

decreasing sediment load in the Blackstone River. 

(2) The dramatical sediment load variation in the Pearl River, with the 

almost unchanged water discharge level, represents an example of 

such effect that human activities can have on river deltas. 

(3) Muddy silt deposition in the Clyne River discharging into the 

Swansea Bay would increase. 

(4) Rising sea levels change Salinas River Estuary and could thus 

potentially alter sediment supplies and process patterns. 

(5) The Salinas River no longer contributes substantial beach size 

sand to the Littoral Cell because the river gradient has greatly 

decreased with sea level rise, reducing the flow rate. 

(6) The River Murray flows across Tertiary formations to enter coastal 

lagoons behind the dune calcarenite barriers of Encounter Bay. 

(7) Not all the sediments drained by the Dee River participate to 

coastal sediment transport. 

(8) The field site for this study is the Zuidgors salt marsh, located in 

the Western Scheldt estuary in The Netherlands. 

(9) Natural sediment supply within this region is defined by the 

Ventura River that drains large watersheds. 

(10) The average discharge rate of beach size sand in the Salinas River 

is estimated at approximately 65,000 cubic yards per year. 

Table 2: Selection of 10 sentences (from the sample 
of 188 sentences), which included 10 ternary 

compounds as arguments. 

 

MWT LexDom 
SemRol

_mwt 
SemRel 

Brack

eting 

decreasing 
[sediment 
load] 

EXISTENCE 
DESCRIPT

ION 
attribute
_of 

RIGHT 

[water 
discharge] 
level 

EXISTENCE THEME 
attribute
_of 

LEFT 

[muddy 

silt] 
deposition 

CHANGE PATIENT 
takes_pl
ace_in 

LEFT 

rising [sea 
level] 

CHANGE AGENT worsens RIGHT 

[beach 
size] sand 

POSSESSION THEME gives LEFT 

dune 
[calcarenite 
barrier] 

MOVEMENT AGENT has_path RIGHT 

coastal 
[sediment 
transport] 

ACTION 
DESCRIPT

ION 
affects RIGHT 

Zuidgors 

[salt 
marsh] 

POSITION THEME 
located_
at 

RIGHT 

natural 
[sediment 
supply] 

MANIPULATION PATIENT controls RIGHT 

average 
[discharge 

rate] 

COGNITION THEME 
attribute
_of 

RIGHT 

Table 3: Semantic annotations and variables for a set 
of 10 MWTs out of the 190 MWTs that comprised 

the sample. The semantic information in the rows 

corresponds to the respective sentences in Table 2. 
 

Lexical 

Domain 

LEFT-branched 

MWTs 

RIGHT-branched 

MWTs 
Total 

MOVEMENT   0 10 10 (  5.3%) 

POSSESSION 30   0 30 (15.8%) 

CHANGE 20 10 30 (15.8%) 

EXISTENCE 60 20 80 (42.0%) 

ACTION   0 10 10 (  5.3%) 

POSITION   0 10 10 (  5.3%) 

MANIPULAT.   0 10 10 (  5.3%) 

COGNITION   0 10 10 (  5.3%) 

Total 110 (58%) 80 (42%) 190 (100%) 

Table 4: Description of the sample of ternary 

compounds. 

5.3 Supervised Models 

Regarding the supervised models for classification, 

binary decision tree and random forest were tested to 
predict ternary compound bracketing. Since variables 

in our dataset were categorical, both tree-based 

models were adopted because they can efficiently 
manage qualitative variables (James G. et al., 2015: 

315). 

A decision-tree model is simple and readily 

interpretable because the set of prediction rules is 
graphically summarized in a tree, typically drawn 

upside down, in the sense that the terminal nodes or 

leaves, which convey the predictions, are at the 
bottom of the tree. However, it is usually not 

competitive with other predictive models. 

For that reason, we also experimented with a 
random forest model, which produces a large number 

of decision trees, and then combines them to reach a 

single consensus prediction. Namely, each tree in the 

ensemble (or forest) casts a vote for the bracketing of 
an MWT, which is finally classified into the 

bracketing structure that has the most votes. Random 

forest models thus lead to remarkable improvements 
in prediction accuracy, at the expense of loss in 

interpretation since it is difficult to obtain insight as to 

how the model makes the predictions. 

5.4 Data Splitting 

For the construction and evaluation of the models, the 

dataset with the 190 MWTs was divided into two: 
(1) the training dataset to create the models (with 133 

MWTs, 70% of the original dataset), and (2) the test 

dataset to qualify model performance (57 MWTs, 

30% of the original dataset). 
For both the training and test datasets to have the 

same distribution in the outcome variable (i.e., 

Bracketing) as the original dataset (i.e., 58% 
left-branched MWTs, and 42% right-branched 

MWTs), stratified random sampling was conducted, 

which randomly sampled observations within the 
classes LEFT and RIGHT of the Bracketing variable in 

the original dataset. 
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5.5 Model Performance Measures 

The quality of the two models (decision tree and 
random forest) was assessed by analyzing how well 

they performed on the test dataset, which was hidden 

from the model-building process for evaluation 
purposes. As such, the predictions of the models were 

compared to the true classes of the test dataset (i.e., 

the true bracketing structures LEFT and RIGHT, 

recorded in the Bracketing variable of the test dataset), 
and performance measures were calculated. 

A widely used performance measure is overall 

accuracy, which provides the percentage of correctly 
classified instances. However, this measure has some 

drawbacks in imbalanced datasets, or datasets whose 

outcome variable exhibits a significant disproportion 
among the number of instances of each class. 

According to Fernández A. et al. (2018: vii), the 

learning process of most classification algorithms, 

including decision tree and random forest, is often 
biased toward the majority-class instances, and 

minority-class ones are thus not well modelled into 

the final system. Consequently, in imbalanced 
scenarios, the accuracy measure may mask a poor 

classification performance in the minority class. 

Unfortunately, as already seen in the literature review, 

there is much research on bracketing prediction that 
still uses overall accuracy with severely 

bracketing-imbalanced datasets. Therefore, despite 

the fact that our dataset was only slightly 
bracketing-imbalanced, we preferred to use, in 

addition to accuracy, other measures that were not 

sensitive to disparities in the class proportions to 
evaluate classification performance. Such measures 

were the area under the ROC curve, and the F1-score 

(Fernández A. et al., 2018: 52-55). 

The receiver operating characteristic (ROC) 
curve is a function of the sensitivity and specificity of 

a two-class predictive model to evaluate its trade-off 

between both measures. Sensitivity is the fraction of 

the minority-class instances (in our case, the 
right-branched MWTs) that are correctly classified, 

whereas specificity refers to the proportion of the 

majority-class instances (in our case, the left-branched 
MWTs) that are correctly classified. Hence, the area 

under the ROC curve (henceforth referred to as AUC) 

is a method for combining sensitivity and specificity 
into a single value. AUC ranges from 0 to 1. The 

higher the AUC, the better the performance of the 

model at distinguishing between the two classes. 

The F1-score is the harmonic mean between the 

precision and recall of a predictive model. Precision is 

the fraction of correctly classified minority-class 

instances among the instances classified as belonging 

to the minority class, whereas recall is the same as 

sensitivity. Thus, the F1-score evaluates the trade-off 

between correctness and coverage in classifying 

minority-class instances. 

5.6 Construction of the Predictive Models 

The predictors SemRel, LexDom, and SemRol_mwt 
were used to construct two predictive models with the 

caret package (Kuhn M., 2021) for the R 

programming language. 

For the random forest, 7-fold cross-validation in 
the training dataset was used to evaluate its 

performance in training. Although 10 folds are 

conventionally employed, we chose 7 folds, a divisor 
of 133, so that the number of instances in all folds 

would be the same (i.e., 19 instances). During the 

process of tuning parameters, the AUC performance 
measure was chosen to be maximized. Accordingly, 

the random forest model attained in training an AUC 

value equal to 1.0 when: (1) the splits in the trees were 

allowed to use one predictor of a subset of one 
predictor; and (2) the number of trees in the forest 

was, surprisingly, only three trees. In the test dataset, 

the random forest also achieved an AUC value equal 
to 1.0. Consequently, the three predictors were 

capable of correctly predicting bracketing in the test 

dataset with a random forest model. 

Similarly, for the decision tree, 7-fold 
cross-validation in the training dataset was employed 

to evaluate its performance in training. During the 

process of tuning parameters, the AUC performance 
measure was also chosen to be maximized. Therefore, 

the decision-tree model yielded in training the greatest 

AUC, equal to 0.9545, when: (1) the cost-complexity 
parameter (cp) was equal to cp=0.8392857; and 

(2) the splitting criterion for predictors was the 

information gain, and not the Gini index. In the test 

dataset, the decision-tree model achieved an AUC 
value also equal to 0.9545, which indicated a very 

satisfactory performance. 

Table 5 provides further performance measures, in 
the training and test datasets, for the random forest 

and decision-tree models. 

 
Predictors: SemRel, LexDom, and SemRol_mwt 

 Decision Tree Model 

Dataset AUC Precision Recall F1 Accura. 

Train 0.9545 0.8952 1.000 0.9430 0.9474 

Test 0.9545 0.8889 1.000 0.9412 0.9474 

 Random Forest Model (3 ensembled decision trees) 

Train 1.0000 1.0000 1.0000 1.0000 1.0000 

Test 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 5: Performance measures of the models for 

bracketing prediction with the predictors semantic 

relation, lexical domain, and semantic role. 
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Since the decision-tree model reached a 

significant AUC in the test dataset (AUC=0.9545), its 

only prediction rule, graphically summarized in 
Figure 1, is worth mentioning. 

 

 
Figure 1: Classification tree for bracketing prediction, 
inferred by the decision-tree model trained with the 

predictors semantic relation, lexical domain, and 

semantic role of the MWTs. 
 

In our constrained context (i.e., specialized ternary 

compounds from Coastal Engineering, used in 
sentences where a named river was mentioned), the 

classification tree of the model, displayed in Figure 1, 

can be interpreted as follows. 

SemRel was the most important factor in 
determining Bracketing, and the only predictor 

selected by the decision-tree model. In our opinion, 

the predictive power of the semantic relation between 
an MWT and another argument in the same sentence 

is so high that the model was obliged to reject the use 

of the predictors LexDom and SemRol_mwt to avoid 

overfitting to training data. 
As such, the ternary compounds whose semantic 

relation to the other argument, filled with a named 

river in our case, belonged to the group formed by 
causes, gives, improves, and takes_place_in 

(right-hand branch in the classification tree) 

accounted for 53% of the sample; these MWTs were 
all left-branched and correctly classified. It thus 

seemed that these four semantic relations forced the 

use of only left-branched MWTs. 

In contrast, the ternary compounds whose 
semantic relation to the other argument fell into the 

group formed by affects, attribute_of, controls, 

has_path, located_at, and worsens (left-hand branch 
in the classification tree) comprised 47% of the 

sample, and could be right- or left-branched; under 

these conditions, the model correctly classified all the 
right-branched MWTs (89%), but misclassified the 

true left-branched MWTs (11%) as right-branched. 

An analysis of the errors made by the 

decision-tree model revealed that, both in the training 
and test datasets, those left-branched MWTs with the 

values SemRel=attribute_of, LexDom=EXISTENCE, 

and SemRol_mwt=THEME (e.g., water discharge 

level, in row 2 of Table 3), were all misclassified as 

right-branched. 

5.7 Baseline Models 

The results of our semantic approach were compared 

to those of four baseline models, namely: 
(1) adjacency model with the point-wise mutual 

information (PMI) association measure, as defined by 

Marcus M. (1980); (2) adjacency model with the 

chi-squared association measure; (3) dependency 
model with PMI; and (4) dependency model with 

chi-squared. These non-supervised models, widely 

used in the literature on bracketing prediction, were 
applied to the whole sample of 190 MWTs. 

Table 6 shows that the two predictive models, 

explained in this paper, outperformed the baseline 
models. Furthermore, the dependency model 

achieved better performance than the adjacency 

model, and the chi-squared association measure 

yielded better results than PMI. 
 

Models Precision Recall F1 

Adjacency model with PMI 0.6444 0.7250 0.6823 

Adjacency model with chi-squared 0.6623 0.7375 0.6979 

Dependency model with PMI 0.6818 0.7500 0.7143 

Dependency model with chi-squared 0.7011 0.7625 0.7305 

Decision tree model 0.8889 1.0000 0.9412 

Random forest model 1.0000 1.0000 1.0000 

Table 6: Comparison of the decision-tree and random 

forest models to four baseline models. 

5.8 Comparison of the Models 

Despite the promising results, it is obvious that further 

investigation is necessary to acquire a more in-depth 
understanding of the influence of the semantic 

variables in this study on ternary compound 

bracketing. Therefore, the following statements 

should be considered scope-bounded because they 
were derived from a restricted framework in which 

this research was conducted, namely specialized 

ternary compounds from Coastal Engineering used in 
sentences mentioning named rivers. 

As far as the selection of the best model is 

concerned, there are convincing arguments in favor of 
either model. Since the random forest model had an 

error-free performance, it could be used to implement 

a system for bracketing ternary compounds. 

Nevertheless, the performance of the decision-tree 
model was also fairly good. It also has the advantage 

of interpretability and visualization, which affords 

linguistic insights into how ternary compound 
bracketing is governed by semantic information 

encoded in a sentence. Since the binary decision-tree 

model only needed the SemRel predictor to achieve a 
highly satisfactory level of performance, practical 

applications for automatic bracketing could employ 
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solely the semantic relation between a ternary 

compound and another argument in the same 

sentence. 

6 Discussion 

Although the comparison of our study with previous 
research in the literature review is far from ideal, it 

still serves as an indication of the performance of our 

semantic approach. 

For bracketing prediction, previous research 
focused on semantic information provided by the 

components of an MWT. The number of variables 

that they used for prediction ranged from 12 to 
517,254 features. These variables were mostly based 

on n-gram statistics, which could arguably capture 

some semantic information encoded in frequent 
co-occurrences of MWT components (Lazaridou A. 

et al., 2013: 1909). Other research studies relied on 

semantic information of the MWT components stored 

in linguistic resources such as WordNet. The overall 
accuracy of the prediction models ranged from 

72.60% to 95.40%. 

Our semantic approach, however, was based on 
semantic information that previous research has not as 

yet considered. The semantic information was 

encoded in both the co-text of a ternary compound 

(i.e., the sentence where the ternary compound was 
used as an argument) and the ternary compound seen 

as a unit (i.e., its semantic role). The set of variables 

consisted of only three (semantic relation, lexical 
domain, and semantic role of the MWT), whereas 

previous research employed a minimum of 12 

variables (León-Araúz P. et al., 2021). This set of 
three variables yielded, in the test dataset, an error-free 

performance with a random forest model, whereas the 

highest overall accuracy achieved in previous 

research was 95.40% with support vector machine 
(Pitler E. et al., 2010), a less interpretable predictive 

model. 

7 Conclusions 

A set of 1,694 sentences, in which a named river was 

an argument of the predicate of the sentences, were 

semantically analyzed and annotated with the lexical 
domain of the predicates, the semantic role of the 

arguments, and the semantic relation between the 

arguments. Those semantic annotations were 
analyzed to see whether the bracketing of a ternary 

compound, when used as an argument in a sentence, 

can be predicted from the semantic information 
encoded in that sentence. 

The semantic relation of the MWT to another 

argument in the same sentence, the lexical domain of 

the predicate, and the semantic role of the MWT were 

able to predict the bracketing of the 190 ternary 

compounds used as arguments in a sample of 188 

semantically annotated sentences (out of the 1,694 
annotated sentences). A random forest model, with 

three ensembled decision trees, achieved in the test 

dataset an AUC equal to 100% (overall accuracy of 
100%). When a decision tree was trained, the model 

only needed the semantic relation to yield, in the test 

dataset, an AUC equal to 95.45% (overall accuracy of 
94.74%). Hence, the semantic relation of an MWT to 

another argument in the same sentence proved 

enormous capability to predict ternary compound 

bracketing. 
Therefore, this pilot study showed that the 

semantic information in a sentence, encoded in the 

semantic relation of the MWT to another argument in 
the same sentence, the lexical domain of the predicate, 

and the semantic role of the MWT, contributed 

substantially to compound parsing. Given the 
beneficial effects of multiword-term bracketing on 

overall accuracy of sentence parsers (Vadas D. and 

Curran J.R., 2008), and machine translation systems 

(Green N., 2011), this result potentially suggests a 
novel research direction in the integration of such 

semantic variables into syntactic parsers and machine 

translation applications, in line with Agirre E. et al. 
(2008), Girju R. et al. (2005), and Kim S.N. and 

Baldwin T. (2013). 

Evidently, it is not as yet clear whether such 

semantic variables are also able to predict the 
bracketing of MWTs of four or more constituents. 

This issue is thus deferred for further investigation. 

Finally, notwithstanding the promising results, 
they should be considered scope-bounded because of 

the small size of the MWT sample and the restricted 

framework in which the analysis has been conducted, 
namely specialized ternary compounds from Coastal 

Engineering used in sentences that mentioned named 

rivers. In future research, a wider framework shall be 

established to acquire a more profound understanding 
of the influence of the semantic variables focused in 

this study on multiword-term bracketing. 
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