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A B S T R A C T

A surrogate-based multi-objective optimization framework is employed in the design of natural gas liquefaction
processes using reliable, black-box process simulation. The conflicting objectives are minimizing both power
consumption and heat exchanger area utilization. The Pareto solutions of the single-mixed refrigerant (SMR)
and propane-precooled mixed refrigerant (C3MR) processes are compared to determine the suitability of
each process in terms of energy consumption and heat exchanger area. Kriging models and the 𝜀-constraint
methodology are used to sequentially provide simple surrogate optimization subproblems, whose minimizers
are promising feasible and non-dominated solutions to the original black-box problem. The surrogate-based
𝜀-constrained optimization subproblems are solved in GAMS using CONOPT. The Pareto Fronts achieved with
the surrogate-based framework dominate the results from the NSGA-II, a well-established meta-heuristics of
multi-objective optimization. The objective functions of non-dominated solutions go as low as 1045 and 980.3
kJ/kg-LNG and specific UA values of 212.2 and 266.9 kJ/(◦C kg-LNG) for SMR and C3MR, respectively. The
trade-off solutions that present the minimum sum of relative objectives are analyzed as well as the dominance
of C3MR over SMR at low power consumption values and conversely at low heat exchanger area utilization.
1. Introduction

Multi-objective optimization is a key to success in engineering
design when the decision-making process involves multiple, competing
objectives. However, to use optimization techniques in those tasks,
models that describe the considered system are required. For complex
chemical processes, modular-sequential process simulators (flowsheet-
ing programs) are often resorted as simulated models. These programs
provide accurate predictions for a variety of processes by using rigorous
thermodynamic and unit operation models and numerical methods.
The motivating problem for this work is the design of natural gas
liquefaction processes considering the conflicting goals of minimizing
both power consumption and heat transfer area utilization. The main
challenge that makes the use of modular-sequential process simula-
tors attractive in this application is modeling the multi-stream heat
exchangers (MSHEs). That is especially the case because the streams
in these heat exchangers undergo phase transitions, and their com-
positions and flow rates vary as they are design variables. There are
attempts in the literature to model the MSHEs with algebraic formula-
tion using Generalized Disjunctive Programming for dealing with phase
change [1], superstructure-based approach [2], and nondifferentiable

∗ Corresponding author at: Institute of Chemical Process Engineering, University of Alicante, Ap. Correos 99, 03080, Alicante, Spain.
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models explicitly [3]. In the present work, the advantages and dis-
advantages of using black-box process simulators are dealt with and
elaborated.

Some challenges come from embedding such simulated, or implicit,
models into optimization problems. The simulator-dependent black-box
functions are by definition not available in symbolic form, which pre-
vents the use of deterministic global optimization [4]. Derivatives have
to be estimated using numerical differentiation via perturbation of in-
dependent variables. These functions can be noisy due to round-off and
numerical convergence tolerance [5]. Such noise is usually negligible
for simulation, but it can hamper the calculation of accurate derivatives
for gradient-based optimization methods. In addition, the computa-
tional effort to evaluate these functions is not negligible. This prohibits
optimization approaches that require lots of function evaluations like
second-order methods that use hessian information, for example. Fi-
nally, the black-box aspect of the model hides from the user important
information from the algebraic model such as nondifferentiabilities,
which is notably the case for MSHEs [3].

Multi-objective simulation–optimization (MOSO) problems can be
defined as to determine a set of 𝒙∗ ∈ R𝑛 that are non-dominated
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solutions of the following:

min
𝒙∈

𝒇 (𝒙) =
[

𝑓1(𝒙),… , 𝑓𝑘(𝒙)
]

𝑠.𝑡. 𝒈(𝒙) ≤ 0.
(MOSO)

The objectives 𝒇 ∶ R𝑛 ↦ R𝑘 and constraints 𝒈 ∶ R𝑛 ↦ R𝑞 are
computationally-intensive, moderately noisy, black-box functions. 𝑘
nd 𝑞 are the number of objectives and constraints, respectively, and
is the dimension of 𝒙. Since the noise is neglected for function

valuation, the expected value of these functions are approximated to
he simulated value.

A suitable application for the Problem (MOSO) is the optimal design
f LNG processes considering conflicting goals. The purpose of such
rocesses is to cool the natural gas stream to −160 ◦C using refrigera-
ion cycle(s) so it is liquefied at atmospheric pressure. These processes
re mandatory for the natural gas safe and efficient commercializa-
ion and transportation through long distances, i.e. when the natural
as resources are far apart from the end consumer [6]. This energy-
ntensive part of the LNG supply chain is responsible for 40%–60%
f the cost of the final project [7]. For that, energy optimization of
NG processes have been extensively studied in the past [8]. However,
he energy-optimum design solution without heat exchanger area limit
ight not be appropriate [9]. That is because the optimum design of

hese processes presents a clear trade-off between energy consumption
nd equipment size [10]. The concern of achieving high energy effi-
iency and diminished equipment size is further emphasized in offshore
rocesses, where the plant site size is significantly restricted.

Although there is a vast literature on single-objective optimization
f natural gas liquefaction processes, the evaluation of optimal trade-off
n these processes’ design has been timidly addressed. Khan et al. [10]
pplied multi-objective optimization to the dual-mixed refrigerant LNG
rocess. The BOX optimization method was used to minimize sepa-
ately the specific compression power and the heat exchanger area.
he authors identified that these objectives are competing ones, and
hey used the non-dominated sorting genetic algorithm version two
NSGA-II [11]) implemented in the ‘‘gamultiobj’’ function from MAT-
AB to deal with balancing the objectives. Ghorbani et al. [12] used
enetic Algorithms (GAs) for single and multiple objectives to opti-
ize the propane-precooled mixed-refrigerant (C3MR) LNG process.
he competing goals of maximizing exergy efficiency and minimizing
otal product cost were considered. A trade-off non-dominated solution
as determined with 7.25 $/h of product cost and 50.71% exergy
fficiency. Song et al. [13] optimized the nitrogen expansion LNG
rocess with carbon dioxide expansion precooling. The authors used
simple GA to individually minimize the specific energy consumption

nd maximize the liquefaction rate. The multi-objective scenario was
onsidered using the NSGA-II and increased the liquefaction rate from
.77 to 0.81, while diminishing the energy consumption by 10.1%
ompared to a base case.

Nguyen et al. [14] provided an interesting comparison of the single-
ixed refrigerant (SMR), single-expander, and dual-expander LNG pro-

esses considering the trade-off between power consumption and heat
xchanger area. A multi-objective GA was employed for the optimiza-
ion, and different natural gas compositions were considered. Their
indings indicate that the SMR is more energetically efficient at the
rice of having increased heat exchanger area utilization and process
omplexity. Primabudi et al. [15] optimized the C3MR process consid-
ring exergy efficiency and total product cost objectives. The NSGA-II
olver was applied and the Pareto feasible solutions are between 0.557
nd 0.613 for exergetic efficiency and between 45600 and 52776 $/h
or the total cost of the product. Mofid et al. [16] optimized the
arallel nitrogen expansion LNG process using a multi-objective particle
warm optimization (PSO) algorithm in two scenarios. At design, the
bjectives of minimizing energy consumption and heat exchangers size
ere considered. At operation, the minimization of energy consumption
nd maximization of liquefaction rate, with fixed equipment size are
2

erformed. The non-dominated solutions of the multi-objective PSO
pproach dominated the base case and GA results.

The literature on multi-objective optimization of natural gas lique-
action processes is entirely based on meta-heuristics, namely NSGA-II
nd multi-objective PSO. Recent findings have shown that, to this class
f simulation–optimization problems, surrogate-based approaches cou-
led with gradient-based optimization can perform better than state-
f-the-art meta-heuristics, such as GA and PSO [17]. Consequently,
rameworks based on surrogate models applied to the multi-objective
roblem in the design of LNG processes can improve the assessment of
heir competing objectives. This work’s objective is to apply a multi-
bjective optimization framework based on surrogates to the optimal
esign LNG processes using reliable process simulators and considering
ompeting objectives.

The proposed methodology is an adaptation of our previous work
17] to the multi-objective problem. This framework includes using
riging models to replace the black-box objectives functions and con-
traints and 𝜀-constraint method to handle competing objectives. The
urrogate optimization subproblems are embedded into a nonlinear
rogramming problem and solved with CONOPT local solver in the
eneral Algebraic Modeling System (GAMS). This paper embodies as
ase study the optimal design of the SMR and C3MR processes for
atural gas liquefaction considering the minimization of both power
onsumption and heat transfer area utilization. The Pareto Front deter-
ined by the present approach is compared with results from NSGA-II,
well-established and highly employed meta-heuristic method in multi-
bjective optimization of LNG processes. Suitable trade-off solutions
f the SMR and C3MR processes are analyzed. These processes are
ompared regarding dominance in the objective functions space, and
heir suitability is discussed. Therefore, the novelty of the present
ork is two-fold. First, to the best of the knowledge of the authors,

his is the first application of multi-objective surrogate-based optimiza-
ion to design natural gas liquefaction processes. Second, an in-depth
omparison between the optima results of the SMR and C3MR pro-
esses is performed. The comparison assessment does not consider only
he single-objective energy optimum of each process as it is usually
erformed in the literature. Instead, the Pareto solutions of these pro-
esses with respect to the competing objectives of power consumption
nd heat exchanger area utilization are compared and a dominance
nflection point is derived.

. Kriging-based multi-objective optimization

An extension to the single-objective kriging-based optimization ap-
roach in Santos et al. [17] is proposed to solve the multi-objective
imulation–optimization problems as in Problem (MOSO). The present
ramework relies on kriging surrogate modeling, 𝜀-constraint method,

and gradient-based solver.

2.1. Kriging model

The data-driven, interpolating model called kriging is defined as
the sum of a regression model and an estimated error. The latter is
considered to be the realization of a Gaussian process that predicts the
deviation between the regression model and the underlying function.
It is assumed to have zero mean and covariance given by some spatial
correlation function. Kriging models are derived to be the best linear
unbiased predictors at unsampled points [18]. In other words, the krig-
ing model interpolates the data, and the departure between regression
and actual function is more correlated for points that are closer together
in space than those that are far apart.

It is first considered that 𝐗 = [𝒙(1) ... 𝒙(𝑚)]𝑇 , the set of 𝑚 sampled
oints, and their output values

= [𝒇 (𝒙(1)) ... 𝒇 (𝒙(𝑚)); 𝒈(𝒙(1)) ... 𝒈(𝒙(𝑚))]𝑇 (1)
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are available. For smoothness of the surrogate models, the Gaussian
correlation function is used as

(𝜃𝜃𝜃,𝒙(𝑖),𝒙(𝑗)) = exp

[

−
𝑛
∑

ℎ=1
𝜃𝜃𝜃ℎ

(

𝑥(𝑖)ℎ − 𝑥(𝑗)ℎ

)2
]

. (2)

iven the data and correlation model, it is possible to define the
atrix 𝐑(𝜃𝜃𝜃) ∈ R𝑚×𝑚×(𝑘+𝑞) of the correlation function evaluated at

he sampled points for each objective and constraint, and the matrix
(𝒙, 𝜃𝜃𝜃) ∈ R𝑚×(𝑘+𝑞) of the correlation function evaluated at an unsampled
oint and the data for each objective and constraint. Both 𝐑 and 𝐫 are
unctions of the correlation parameters 𝜃𝜃𝜃 ∈ R𝑛×(𝑘+𝑞), which are defined
y minimizing the log-likelihood of the model given the data of each
unction [19].

In the present work, the kriging models assume a constant regres-
ion term (ordinary kriging), such that the error model captures the
ehavior of the underlying function that generates the data. Consider-
ng the above-mentioned assumptions and following the derivation of
riging as the best linear unbiased predictor as in Santos et al. [19] for
and 𝒈, these surrogates become

𝑖̂(𝒙) = 𝛽𝑖 + 𝐫𝑖(𝒙)𝑇𝐑−1
𝑖 (𝐘𝑖 − 𝟏𝛽𝑖), 𝑖 = 1,… , 𝑘 + 𝑞. (3)

n which 𝛽𝑖 = 𝟏𝑇 𝐑−1
𝑖 𝐘𝑖∕𝟏𝑇 𝐑−1

𝑖 𝟏, 𝑖 = 1,… , 𝑘 + 𝑞 are the generalized
east square solution of the ordinary kriging for each objective and
onstraint.

.2. 𝜀-constraint method

The 𝜀-constraint method consists of selecting one objective to be
ptimized (𝑖 = 𝑠), while the others (𝑖 ≠ 𝑠) are converted into constraints
uch that [20]

𝑖 ≤ 𝜀𝑖, 𝑖 = 1,… , 𝑘 | 𝑖 ≠ 𝑠. (4)

he multi-objective problem in Problem (MOSO) can be reformulated
nto an 𝜀-single-objective simulation–optimization (𝜀-SO) one as fol-
ows:
min
∈

𝑓𝑠(𝒙)

𝑠.𝑡. 𝑓𝑖(𝒙) ≤ 𝜀𝑖, 𝑖 = 1,… , 𝑘 | 𝑖 ≠ 𝑠

𝒈(𝒙) ≤ 0.

(𝜀-SO)

arying the values of 𝜀𝑖 yields non-dominated solutions of Problem
MOSO), forming the Pareto Front [21].

.3. Multi-objective surrogate optimization problem

The kriging models defined in Eq. (3) are readily available in
athematical notation and can be implemented in specialized soft-
are, algebraic modeling language systems, to be solved with efficient
radient-based optimization tools [17]. Algebraically, these kriging
odels in Eq. (3) are

𝑖̂(𝒙) = 𝛽𝑖 +
𝑚
∑

𝑗=1
𝛼𝑗,𝑖 𝑒

−
∑𝑛

𝑙=1 𝜃𝑙,𝑖(𝑥𝑙−𝑋𝑗,𝑙 )2 , (5)

n which 𝛼𝛼𝛼∶,𝑖 = 𝐑−1
𝑖 (𝐘𝑖 − 𝟏𝛽𝑖). Notice that, the memory-intensive matrix

does not need to be stored. Instead, only 𝛼𝛼𝛼, 𝜃𝜃𝜃, and 𝐗 do.
Given the algebraic formulation of kriging model in Eq. (5), it is pos-

ible to rewrite the problem in Problem (𝜀-SO) into the 𝜀-constrained
urrogate optimization subproblem (𝜀-SBO) explicitly such as

min
∈,𝑓𝑠

𝑓𝑠

𝑠.𝑡. 𝑓𝑠 = 𝛽𝑖 +
𝑚
∑

𝑗=1
𝛼𝑗,𝑖 𝑒

−
∑𝑛

𝑙=1 𝜃𝑙,𝑖(𝑥𝑙−𝑋𝑗,𝑙)2 , 𝑖 = 𝑠

𝛽𝑖 +
𝑚
∑

𝑗=1
𝛼𝑗,𝑖 𝑒

−
∑𝑛

𝑙=1 𝜃𝑙,𝑖(𝑥𝑙−𝑋𝑗,𝑙)2 ≤ 𝜀𝑖, 𝑖 = 1,… , 𝑘 | 𝑖 ≠ 𝑠

𝛽𝑖 +
𝑚
∑

𝛼𝑗,𝑖 𝑒
−
∑𝑛

𝑙=1 𝜃𝑙,𝑖(𝑥𝑙−𝑋𝑗,𝑙)2 ≤ 0, 𝑖 = 𝑘 + 1,… , 𝑘 + 𝑞.

(𝜀-SBO)
3

𝑗=1
The multi-objective surrogate optimization in Problem (𝜀-SBO) is an al-
gebraic approximated substitute of the original black-box optimization
in Problem (𝜀-SO). Its solution is a possibly feasible, Pareto optimal
candidate of the original problem considering the 𝜀 value.

It is worth mentioning that in the nonlinear programming model
in Problem (𝜀-SBO), 𝜃𝜃𝜃, 𝛽̂𝛽𝛽, and 𝛼𝛼𝛼 are constant. The resulting surrogate
problem has 𝑛 + 1 variables, which are 𝑓𝑠 and 𝒙, and 𝑘 + 𝑞 nonlinear
constraints. Notice that the variable 𝑓𝑠 receives the residual of 𝑓𝑠(𝒙)
and is only necessary because some algebraic modeling systems, such
as GAMS, solve for the minimization or maximization of a variable and
not for the residual of an equation directly. Otherwise, 𝑓𝑠(𝒙) would
be consider as objective function and Problem (𝜀-SBO) resembling
the definition of the Problem (𝜀-SO). Therefore, the present kriging-
based framework transforms the multi-objective black-box optimization
in Problem (MOSO) into simpler 𝜀-constrained nonlinear program-
ming problems solved sequentially to provide samples that are possible
non-dominated solutions to the original problem.

3. LNG processes

The optimal design of the SMR and C3MR processes, considering the
trade-off between energy consumption and equipment size are assessed
as case study in the present work. These refrigeration processes use
a mixture undergoing a thermodynamic cycle to produce a heat sink
in the evaporation stage to liquefy the natural gas stream. The C3MR
process adds a refrigeration cycle operating with pure propane that
evaporates at different pressure levels precooling the natural gas and
mixed refrigerant streams. Fig. 1 illustrates the process flow diagrams
of both the SMR and the C3MR.

The mixed-refrigerant cycle employs a compression system with
four stages, considering coolers in between compressors and flash
separators for recovering the liquid phase. The refrigerant condensate
is sub-cooled in the MSHE-1 separately from the vapor phase, which
is further cooled, liquefied, and possibly sub-cooled in the MSHE-2.
These multi-component streams are mixed back inside the MSHE-1
in the cold pass, as represented in Fig. 1. A four-stage compression
system is also considered in the propane cycle. The propane stream is
expanded in valves at four pressure levels, and the resulting condensate
is separated in the flash drums. The condensate streams are totally
evaporated in different passes of the MSHE-100 to pre-cool the natural
gas and mixed-refrigerant streams.

3.1. Process simulation

The rigorous process simulations are performed using Aspen
HYSYS® V9, employing as thermodynamic package Peng–Robinson
that is suitable for nonpolar mixtures like hydrocarbons and nitrogen.
It is supplied to the liquefaction process a natural gas stream (NG)
at 5000 kPa and 32 ◦C. In Table 1, the NG composition jointly with
some process considerations and other simulation parameters following
the literature [22] are presented. The NG mass flow rate is 1 kg/h
as a basis of calculation. However, it does not loose of generality,
once the results can be reproduced for different natural gas flow
rates. That can be achieved by multiplying the extensive variables of
refrigerant component mass flow rate, specific power consumption, and
specific heat conductance (UA), to be presented later, by the factor
of increase/decrease. The mixed-refrigerant refrigerant is composed of
nitrogen, methane, ethane, propane, and i-pentane. Each component
mass flow rate is a decision variable of the optimization problem. The
heavy component i-pentane is considered only for the SMR to account
for the cooling task at high temperatures as it increases the bubble
point temperature of the mixture [23]. This is not required in the C3MR
because that is achieved by the propane precooling cycle. The pressure
of discharge and suction of the mixed-refrigerant cycle, 𝑃𝑑𝑖𝑠 and 𝑃𝑠𝑢𝑐 ,
are also decision variables, while the intermediate pressures come out
of the constant pressure ratio assumption given by (𝑃𝑑𝑖𝑠∕𝑃𝑠𝑢𝑐 )1∕4. The
temperatures of hot streams leaving an MSHE are equal and set to the

expansion temperature (stream 11l in SMR and 9l in C3MR) for MSHE-
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Fig. 1. Process flow diagram of (i) SMR and (ii) C3MR.
1, which is a design variable. To ensure the LNG requirements at the
final pressure as exposed in Table 1, the temperature of −149.7 ◦C is
fixed in the final expansion stage.

The propane cycle in the C3MR has some degrees of freedom that
can be satisfied with the following assumptions. Setting discharge
pressure (stream 20’) to the minimum, while above saturation pressure
of propane at 40 ◦C at stream 1’. This pressure is set to 1398 kPa. The
propane streams leave MSHE-100 (3l’, 6l’, 9l’, and 12l’) as a saturated
vapor at the same temperature of the inlet streams, such that only
the heat of vaporization is used as heat sink. The propane streams
enter MSHE-100 (2l’, 5l’, 8l’, and 11l’) 3 ◦C below the temperature of
the cold-end hot streams (14, 15, 16, 17) to guarantee the minimum
temperature driving force. The latter is calculated to achieve a constant
temperature step at each pass of MSHE-100 that is 𝑇14−𝑇𝑓,𝑝𝑟𝑒𝑐𝑜𝑜𝑙∕4. The
final temperature of precooling cycle (stream 1 and NG5 in Fig. 1 (ii))
is a decision variable of the process optimization. Given these assump-
tions and decision variables, the precooling cycle is fully determined
and the mass flow rate of propane, as well as the intermediate pressures
of the cycle, come from the energy balances performed by the process
simulator.

3.2. Process optimization

The goal of design in natural gas liquefaction processes is to reduce
energy consumption while maintaining small pieces of equipment. Also,
a minimum value of temperature difference between hot and cold
streams all through the MSHE 1 and 2 has to be assured, once in
MSHE-100 it is already specified as elaborated in Section 3.1. The
kriging model, which is to be used to replace objectives and constraints,
requires some degree of smoothness of the black-box functions, and that
may not be the case for this constraint at every configuration of decision
variables. In fact, the nonlinear behavior of enthalpy with temperature
in mixtures, which is worsened by phase change, can cause a change
in the pinch point location of the multi-stream heat exchanger. The
change in the pinch location from a stream regime to another, e.g.
from vapor to vapor and liquid or liquid phase, can cause an abrupt
4

Table 1
Simulation parameters and process considerations for the LNG processes, based
on the available literature [22].
Natural gas feed condition

Property Condition

Temperature 32 ◦C
Pressure 5,000 kPa
Flow rate 1.0 kg/h

Composition Molar fraction

Nitrogen 0.0022
Methane 0.9133
Ethane 0.0536
Propane 0.0214
i-Butane 0.0046
n-Butane 0.0047
i-Pentane 0.0001
n-Pentane 0.0001

Design parameters and considerations

Temperature of intermediate cooling 40 ◦C
Cold utility temperature 30 ◦C
Pressure drop intermediate cooling 25.0 kPa
Molar vapor fraction of LNG 8.0%
Temperature of LNG −158.6 ◦C
Pressure of LNG 120.0 kPa
Compressor adiabatic efficiency 0.75
Pump adiabatic efficiency 0.75
Thermodynamic package Peng–Robinson
MSHE-100 pressure drop at each pass (hot stream) 25.0 kPa
MSHE-100 pressure drop at each pass (cold stream) 0.0 kPa
MSHE-1 and 2 pressure drop at each pass (hot stream) 50.0 kPa
MSHE-1 and 2 pressure drop at each pass (cold stream) 5.0 kPa
Minimum temperature approach 3 ◦C

variation of the minimum temperature approach with respect to the
decision variables. That is illustrated in the dashed lines of Fig. 2 with a
sensitivity analysis around a carefully selected configuration of decision
variables, where the non-smooth behavior of this constraint happens.

To overcome this issue, Santos et al. [17] propose to discretize the
MSHEs 1 and 2 in 𝜅 = 1,… , 𝐾×𝑁 sections to make it more likely
𝑀𝑆𝐻𝐸
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Fig. 2. Minimum temperature approach behavior with respect to 𝒙 in the MSHEs with and without discretization.
that the temperature driving force constraints are smooth functions.
𝐾 is the number of sections in each of the 𝑁𝑀𝑆𝐻𝐸 multi-stream heat
exchangers. It is also illustrated in Fig. 2 with 𝐾 = 10, for which it is
possible to see that the 𝐾 ×𝑁𝑀𝑆𝐻𝐸 functions (solid lines) are less stiff
than the one without discretization (dashed line). The optimal process
design can be formulated as the following multi-objective optimization
problem

min
𝒙∈

𝒇 (𝒙) =

[
∑

𝑝∈𝑃𝑀 𝑊𝑝(𝒙)
𝑚̇𝐿𝑁𝐺

;
∑

𝑒𝑥∈𝐻𝐸 𝑈𝐴𝑒𝑥(𝑥)
𝑚̇𝐿𝑁𝐺

]

𝑠.𝑡. 𝑔𝜅 (𝒙) = 1 −
min𝓁∈𝛺𝜅

{

𝑇ℎ𝜅,𝓁(𝒙) − 𝑇 𝑐𝜅,𝓁(𝒙)
}

3
≤ 0, 𝜅 = 1,… , 𝐾 ×𝑁𝑒

 = [𝒙𝑙𝑏, 𝒙𝑢𝑏].

(LNG)
5

In Problem (LNG), 𝑊𝑝(𝒙) is the power consumption of unit 𝑝 that
is contained in compressors and pumps set, 𝑃𝑀 . 𝑊𝑝(𝒙) is given by
the enthalpy change caused by the compression as if it was isentropic
divided by the isentropic efficiency, 𝜂𝑐 ,

𝑊𝑝 =
𝑊𝑝,𝑖𝑑𝑒𝑎𝑙

𝜂𝑐
=

[

𝐻(𝑇 𝑜𝑢𝑡𝑖𝑑𝑒𝑎𝑙 , 𝑃 𝑜𝑢𝑡) −𝐻(𝑇 𝑖𝑛, 𝑃 𝑖𝑛)
]

𝜂𝑐
,

where 𝑇 𝑜𝑢𝑡𝑖𝑑𝑒𝑎𝑙 is the temperature that provides equal entropy in the
inlet and outlet streams (𝑆(𝑇 𝑖𝑛, 𝑃 𝑖𝑛) − 𝑆(𝑇 𝑜𝑢𝑡𝑖𝑑𝑒𝑎𝑙 , 𝑃 𝑜𝑢𝑡) = 0). For the
SMR process, 𝑃𝑀 ={K-1, K-2, K-3, K-4, P-3, P-4}, and for the C3MR,
𝑃𝑀 ={K-1, K-2, K-3, K-4, K-101, K-102, K-103, K-104}. 𝑈𝐴𝑒𝑥(𝑥) is
the global heat transfer coefficient multiplied by the area of the heat
exchanger 𝑒𝑥 in the set of all heat exchangers 𝐻𝐸, given by the heat
exchanger duty, 𝑄 , divided by the mean logarithmic temperature
𝑒𝑥
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𝑈

F
f
T
3
a
r

Table 2
Search space bounds for the multi-objective optimization study.
𝒙 SMR C3MR

𝒙𝑏𝑎𝑠𝑒 𝒙𝑙𝑏 𝒙𝑢𝑏 𝒙𝑏𝑎𝑠𝑒 𝒙𝑙𝑏 𝒙𝑢𝑏

𝑚𝑁 [kg h−1] 0.250 0.000 0.375 0.200 0.000 0.300
𝑚𝐶1 [kg h−1] 0.700 0.350 1.050 0.600 0.300 0.900
𝑚𝐶2 [kg h−1] 1.000 0.500 1.500 1.000 0.500 1.500
𝑚𝐶3 [kg h−1] 1.100 0.550 1.650 0.600 0.300 0.900
𝑚𝑖𝐶5 [kg h−1] 1.800 0.900 2.700 – – –
𝑃𝑠𝑢𝑐 [kPa] 250.0 125.0 375.0 250.0 125.0 375.0
𝑃𝑑𝑖𝑠 [kPa] 5000 2500 7500 5000 2500 7500
𝑇𝑓,𝑝𝑟𝑒𝑐𝑜𝑜𝑙 [◦C] – – – −35.00 −37.00 −30.00
𝑇𝑒𝑥𝑝 [◦C] −40.00 −60.00 −20.00 −125.0 −135.0 −115.0
w

e
3
4
f

O

t
T
e
e
(
c

m
s
p
a

difference, 𝛥𝑇𝑚𝑙𝑒𝑥,

𝐴𝑒𝑥 =
𝑄𝑒𝑥

𝛥𝑇𝑚𝑙𝑒𝑥
.

or the SMR process, 𝐻𝐸 ={MSHE-1, MSHE-2, C-1, C-2, C-3, C-4}, and
or the C3MR, 𝐻𝐸 ={MSHE-1, MSHE-2, MSHE-100, C-1, C-2, C-3, C-4}.
he cold utility used in the coolers {C-1, . . . , C-4} is considered to be at
0 ◦C. Notice that these calculations, jointly with the equation of state
nd flash calculations, are performed in the process simulator and these
esults are readily available to the user. The work consumption and UA

values are divided by the mass flow rate of LNG, 𝑚̇𝐿𝑁𝐺, to generalize
the process energy consumption and heat conductance in terms of
LNG production. Therefore, the total power consumption and UA are
readily available for a different natural gas flow rate by multiplying the
resulting LNG production by the respective specific values. 𝑻 𝒉𝜅 (𝒙) and
𝑻 𝒄𝜅 (𝒙) are the temperatures of hot and cold composite curves in the 𝜅th
segment of the MSHE-1 and MSHE-2, and 𝛺𝜅 is the set of the 𝑁𝓁 points
from composite curves calculations that belong to section 𝜅 [17]. These
values are also readily available to the user in the ‘‘LNG Exchanger’’
unit operation of the Aspen HYSYS process simulator, which, to account
for the nonlinear behavior of enthalpy with temperature, performs a
temperature discretization in the hot and cold streams and assures
energy balance in each temperature stage. Notice that the temperature
driving force constraints are not required because it is already assured
by setting the temperature of the cold streams 3 ◦C below the cold-end
of the hot streams, as explained in Section 3.1.

As discussed in Section 3.1, there are eight decision variables in
𝒙 for each process so 𝑛 = 8. For the SMR process optimization, 𝒙 =
[𝑚𝑖∈𝑅𝐸𝐹𝑅, 𝑃𝑠𝑢𝑐 , 𝑃𝑑𝑖𝑠, 𝑇𝑒𝑥𝑝], in which 𝑅𝐸𝐹𝑅 = {nitrogen (N), methane
(C1), ethane (C2), propane (C3), i-pentane (iC5)}. For the C3MR pro-
cess optimization, 𝒙 = [𝑚𝑖∈𝑅𝐸𝐹𝑅, 𝑃𝑠𝑢𝑐 , 𝑇𝑓,𝑝𝑟𝑒𝑐𝑜𝑜𝑙, 𝑃𝑑𝑖𝑠, 𝑇𝑒𝑥𝑝], in which
𝑅𝐸𝐹𝑅 = {nitrogen (N), methane (C1), ethane (C2), propane (C3)}. 
contains the lower and upper limits for the decision variables (𝒙𝑙𝑏 𝒙𝑢𝑏),
and 𝑚̇𝐿𝑁𝐺 is the LNG mass flow rate produced. The upper and lower
limits of 𝒙 are reported in Table 2 for SMR and C3MR. These values
are set to be between 50% below and above a heuristically determined
base case, i.e.

[

0.5𝒙𝑏𝑎𝑠𝑒, 1.5𝒙𝑏𝑎𝑠𝑒
]

. These bounds are intended to include
promising regions while avoiding unstable simulations convergence
because of flowsheet configuration that is far beyond the feasible space.
The lower bound of 𝑚𝑁 is set to 0 to account for refrigerant mixtures
without nitrogen. The final precooling and expansion temperatures are
bounded heuristically.

4. Optimization framework

The present multi-objective simulation–optimization framework is
presented in Algorithm 1. Also, a schematic illustration is introduced
in Fig. 3 to improve the clarity of the presented algorithm as well as
the connections between the pieces of software. This framework sub-
stitutes the black-box objectives and constraints functions with kriging
models and employs the 𝜀-constraint method to handle the competing
objectives. The algebraic approximated optimization subproblems are
6

i

embedded into a nonlinear programming problem and solved with
CONOPT local solver in GAMS.

Algorithm 1: Kriging-based multi-objective optimization frame-
work
Input: Initial sample size 𝑚0 ∈ N+, maximum number of samples 𝑚𝑓 ∈ N+,

design space  ∈ R2×𝑛, a function to calculate 𝒇 and 𝒈 values
for a 𝒙 ∈  ⊆ R𝑛, and the number of non-dominated solutions
(𝜀-constraint values) 𝑛𝜀 ∈ N+

1) Generate 𝑚0 samples X with respective simulation output values
Y = [𝒇 ; 𝒈]⊺ and define D0 = [X Y];

2) Solve the single-objective optimization problem for each 𝒇 𝑖, 𝑖 = 1, 2:

min
𝒙∈

𝑓𝑖(𝒙)

𝑠.𝑡. 𝒈(𝒙) ≤ 0,

using kriging-based adaptive sampling procedure [17] to determine 𝒙∗
1

and 𝒙∗
2 (solutions of 𝑓1 and 𝑓2, respectively), with D = D0, 𝑚𝑓 , , and

𝑚 ← 𝑚0:
hile 𝑚 < 𝑚𝑓 and stall iterations < 5 do

2.1) Fit/Update kriging models for 𝑓𝑖 and 𝒈;
2.2) Solve surrogate optimization problem in GAMS;
2.3) Simulate at the surrogate solution, append new data D, and

iterate 𝑚 = 𝑚 + 1;
nd
) Define 𝜀 as the equally spaced 𝑛𝜀-vector from 𝑓1(𝑥∗1) to 𝑓1(𝒙∗

2);
) Append to the data: D2 = D0 ∪

[

𝒙∗
1 , f(x

∗
1), 𝒈(𝒙∗

1)
]

∪ [𝒙∗
2 , 𝒇 (𝒙∗

2), 𝒈(𝒙∗
2)]];

or 𝑖𝑡𝑒 = 3, ..., 𝑛𝜀 do
5) Solve the Problem (𝜀-SO) with D = D𝑖𝑡𝑒−1, 𝑚𝑓 , , and
𝑚 ← 𝑚0 + 𝑖𝑡𝑒 − 1:
while 𝑚 < 𝑚𝑓 and stall iterations < 5 do

5.1) Fit/Update kriging models for 𝒇 and 𝒈;
5.2) Solve Problem (𝜀-SO) in GAMS;
5.3) Simulate at the surrogate solution, append new data D, and

iterate 𝑚 = 𝑚 + 1;
end
6) Append the solution to the data: D𝑖𝑡𝑒 = D𝑖𝑡𝑒−1 ∪ [𝒙∗

𝑖𝑡𝑒,𝒇 (𝒙
∗
𝑖𝑡𝑒), 𝒈(𝒙

∗
𝑖𝑡𝑒)];

end
7) Eliminate dominated and infeasible solutions from D𝑛𝜀 to form P, the

set of non-dominated solutions;
utput: Pareto solutions, P.

The calculation of 𝒇 and 𝒈 at given 𝒙 is achieved by a function writ-
en in MATLAB that connects to the process simulator Aspen HYSYS.
his connection is via the MATLAB built-in function ‘‘actxserver’’ that
xposes the Aspen HYSYS objects and functions to the programming
nvironment. The values of 𝒙 are set to the respective object property
stream or unit operation), and the 𝒇 and 𝒈 values are acquired after
onverging the simulation.

Step 1 of Algorithm 1 is to generate 𝑚0 samples of 𝐗. For that, the
aximization of the sample points’ minimum distance in the search

pace  is performed, employing a Latin Hypercube algorithm. With
rogramming and simulation environments connected, the value of 𝒇
nd 𝒈 are calculated in the simulation for each 𝒙 ∈ 𝐗. The initial data
s defined as 𝐃 = [𝐗 𝐘].
0
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Fig. 3. Algorithmic building blocks of present multi-objective optimization framework based on kriging surrogate model.
Given 𝐃0, 𝑚𝑓 , and , step 2 of Algorithm 1 is the single-objective
optimization for each 𝑓𝑖 objective, solved using the framework for
constrained, black-box optimization proposed in Santos et al. [17]. It
consists of using the data in 𝐷0 to fit kriging models for the objective
and constraints kriging-based adaptive sampling procedure (𝜀 or regu-
lar ones). These models are implemented in a nonlinear programming
problem in GAMS and solved with CONOPT gradient-based solver. The
solution, which is a promising feasible and decreasing candidate, is
evaluated in the simulation and the 𝒙, 𝑓𝑖, and 𝒈 values are attached to
the dataset. The surrogate models are upgraded with the new data and
this process is repeated until the surrogate problem optimization fails
to provide an improving candidates five times or simulation evaluation
budget 𝑚𝑓 is reached. Talk about stopping criteria. The reader is invited
to read Santos et al. [17] for more information on this algorithm and
implementation.

The third step is to use the value of 𝑓1 at the solutions of each
single-objective problem, 𝑓1(𝒙∗1) and 𝑓1(𝒙∗2), to bound the 𝜀 vector. The
𝜀-constraint vector is defined as the equally distributed 𝑛𝜀-vector from
𝑓1(𝒙∗1) to 𝑓1(𝒙∗2). Fourth step consists of appending the single-objective
solutions to the data 𝐃2. The subscript of 𝐃 stands for the number of
non-dominated solutions it already stores. In this case, it is two that
account for the single-objective solutions. For the other entries of 𝜀,
the 𝜀-constrained single-objective optimization in Problem (𝜀-SO) is
solved using a slight modification of the aforementioned framework
for constrained, black-box optimization proposed in Santos et al. [17].
The difference now is that the surrogate optimization problem includes
the kriging-based 𝜀-constrain for the 𝑓1. Each optimization solution is
appended to 𝐃𝑖𝑡𝑒−1, so that 𝐃𝑖𝑡𝑒 = 𝐃𝑖𝑡𝑒−1 ∪ [𝒙∗𝑖𝑡𝑒,𝒇 (𝒙

∗
𝑖𝑡𝑒), 𝒈(𝒙

∗
𝑖𝑡𝑒)].

The last step of the proposed framework is to eliminate dominated
and infeasible solutions from 𝐃𝑛𝜀 , which contains the non-optimal ini-
tial data (𝐃0) and possibly non-improving iterations from the algorithm.
The new set, 𝐏, is the Pareto Front as it only contains non-dominated
solutions. In other words, the solutions that are infeasible 𝒈(𝒙) > 0
are eliminated. Also, every solution that is dominated by another is
eliminated, i.e. if there exists at least one 𝒙𝑗 ∈ 𝐏 such that 𝑓𝑖(𝒙𝑗 ) <
𝑓𝑖(𝒙𝑘) for all 𝑖, then 𝒙𝑘 is dominated and eliminated. Notice that the
data in 𝐃 and, consequently, in the non-dominated solutions 𝐏 are
7

given by the rigorous simulation and not by the surrogates models.
Therefore, the optimal natural gas liquefaction processes designed with
Algorithm 1 would conform with rigorous thermodynamic and unit
operation models, instead of surrogate approximations.

5. Results

The kriging-based multi-objective optimization approach is applied
to the optimum design of SMR and C3MR processes for LNG production,
considering 𝑘 = 2 objectives of minimizing power consumption and
heat exchanger area utilization. The optimization parameters are initial
sample size 𝑚0 = 10𝑛, function evaluation budget 𝑚𝑓 = 20𝑛, number
of decision variables 𝑛 = 8, and number of sections into which each
MSHE is divided 𝐾 = 10. The number of non-dominated solutions
is heuristically determined as the number of objectives times the size
of the problem plus the number of objectives for the single optima:
𝑛𝜀 = 𝑘 × 𝑛 + 𝑘 = 18. The NSGA-II parameters are set to the default of
the algorithm from the MATLAB optimization toolbox (‘‘gamultobj’’),
except for individuals (10𝑛) and generations (20) that are selected
heuristically and to match the function evaluation budget of 20𝑛 for
a fair comparison between algorithms. To account for the randomness
of the initial sample in both approaches, each algorithm was run three
times.

Fig. 4 illustrates the Pareto Front delimited by the non-dominated
solutions achieved with the present framework as well as the NSGA-
II algorithm. For both SMR and C3MR, the present Pareto Fronts
dominate the meta-heuristics results. The optimal SMR processes have
non-dominated solutions that present energy consumption as low as
1045 kJ/kg-LNG and specific UA value of 212.2 kJ/(◦C kg-LNG). Mean-
while, the extreme solutions for NSGA-II are 1222 kJ/kg-LNG of energy
consumption and specific UA value of 216.7 kJ/(◦C kg-LNG). The non-
dominated solutions of the C3MR process have energy consumption
and specific UA as low as 980.3 kJ/kg-LNG and 266.9 kJ/(◦C kg-
LNG), while the NSGA-II have 1054 kJ/kg-LNG and 284.7 kJ/(◦C
kg-LNG). These results show that the present framework was also able
to provide broader Pareto Fronts in the single-objectives directions. It
can be inferred that the ranking method of dealing with competing

objectives in population-based approaches was unable to spread the
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Fig. 4. Non-dominated solutions from present approach and NSGA-II.
non-dominated solutions enough to reach close to the single-optimum
solutions. Therefore, bounded objective function methods such as the 𝜀-
constraint with an appropriate single-objective optimization framework
of the transformed multi-objective problem have shown to be more ef-
ficient. The limitations of the present approach are for many objectives,
as the size of the 𝜀 vector grows quickly with the number of objectives.

The shape of these Pareto curves shows that the rate of change
in the heat exchanger area with specific power consumption is more
pronounced at low values of the latter. That is expected from the phys-
ical point-of-view because the heat exchanger area is roughly directly
proportional to the inverse o the temperature differences between hot
and cold composite curves. And, to achieve low power consumption,
these temperature differences have to be very small, which makes
its inverse (roughly area) explodes to high values. Based on that, an
interesting trade-off solution would be not so small in power consump-
tion because the UA values increase too quickly (high rate of change),
but not so small on UA as it requires to increase power consumption
too much (low rate of change). Trade-off solutions can be derived
numerically from the Pareto curve in various ways [24]. In the case
of heat exchanger area and power consumption objectives, a decision-
maker could choose from the non-dominated solutions considering
weight factors that take into account their costs and environmental
impacts. However, these values are volatile and uncertain, requiring
8

a more in-depth study for a single application. On the other hand, a
simple, more robust, and yet good choice of non-dominated solution
that balances high energy efficiency and heat exchanger area utilization
is the one given by the reference point criterion [25]. This consists
of choosing the non-dominated solution with smaller euclidean norm
to a reference point in the objective function space. The reference
point is here considered to be the minimum value of 𝑈𝐴 and power
consumption ([min𝑖𝑖∈𝑁𝑆 (𝑈𝐴𝑖𝑖),min𝑖𝑖∈𝑁𝑆 (𝑊𝑖𝑖)]), such that where 𝑡𝑠 is the
trade-off solution (see Eq. (6)), and 𝑁𝑆 is the set of non-dominated so-
lutions. For both processes, these solutions are the fifth non-dominated
one, which are highlighted in Fig. 4 with the magenta star. For the
SMR process, the trade-off solution presents a 24.40% increase in work
consumption and a 43.83% increase in UA compared to the energy
and UA optima. For the C3MR process, it presents a 16.70% increase
in work consumption and a 14.54% increase in UA compared to the
energy and UA optima. For a further investigation of the process
design point of view of these optimization results, Tables 3 and 4
present the decision variables, objectives, and constraints of the energy-
optimum, UA-optimum, and the trade-off solution of SMR and C3MR,
respectively.

From the multi-objective optimization results of the SMR process
in Table 3, it is evident that the energy-optimum solution presents a
greater mass flow rate of the heaviest components to achieve phase
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𝑡𝑠 = arg min
𝑖∈𝑁𝑆

⎧

⎪

⎨

⎪

⎩

√

(

𝑊𝑖 − min𝑖𝑖∈𝑁𝑆 (𝑊𝑖𝑖)
max𝑖𝑖∈𝑁𝑆 (𝑊𝑖𝑖) − min𝑖𝑖∈𝑁𝑆 (𝑊𝑖𝑖)

)2
+
(

𝑈𝐴𝑖 − min𝑖𝑖∈𝑁𝑆 (𝑈𝐴𝑖𝑖)
max𝑖𝑖∈𝑁𝑆 (𝑈𝐴𝑖𝑖) − min𝑖𝑖∈𝑁𝑆 (𝑈𝐴𝑖𝑖)

)2⎫
⎪

⎬

⎪

⎭

(6)

Box I.
Table 3
Multi-objective optimization results for the SMR process for LNG production.

Decision variables results Energy-optimum UA-optimum Trade-off solution

𝑚𝑁 [kg h−1] 0.2566 0.1479 2.959E−02

𝑚𝐶1 [kg h−1] 0.4407 0.7652 0.4209

𝑚𝐶2 [kg h−1] 1.4170 1.141 0.9545

𝑚𝐶3 [kg h−1] 0.7914 1.009 0.7317

𝑚𝑖𝐶5 [kg h−1] 1.842 1.175 1.410

𝑃𝑠𝑢𝑐 [kPa] 338.7 125.0 125.0

𝑃𝑑𝑖𝑠 [kPa] 3567 7500 5277

𝑇𝑒𝑥𝑝 [◦C] −27.43 −20.00 −60.00

Objective functions and constraints summary

Net work consumption
[

kJ
kg NG

]

1045 2001 1300

Specific UA
[

kJ
◦C kg LNG

]

874.9 212.2 305.2

MSHE-1 minimum temperature approach [◦C] 3.009 15.13 3.897

MSHE-2 minimum temperature approach [◦C] 3.009 7.726 3.006

Detailed Results

𝑊𝐾−1

[

kJ
kg NG

]

281.1 512.7 349.8

𝑊𝐾−2

[

kJ
kg NG

]

296.5 568.5 377.7

𝑊𝐾−3

[

kJ
kg NG

]

251.7 513.5 330.5

𝑊𝐾−4

[

kJ
kg NG

]

207.6 392.0 229.3

𝑊𝑃−3

[

kJ
kg NG

]

4.870 0.000 1.489

𝑊𝑃−4

[

kJ
kg NG

]

3.499 14.60 11.29

𝑈𝐴𝑀𝑆𝐻𝐸−1

[

kJ
◦C kg LNG

]

354.7 39.70 125.1

𝑈𝐴𝑀𝑆𝐻𝐸−2

[

kJ
◦C kg LNG

]

438.6 83.25 106.5

𝑈𝐴𝐶−1

[

kJ
◦C kg LNG

]

13.26 15.46 12.91

𝑈𝐴𝐶−2

[

kJ
◦C kg LNG

]

26.25 18.90 15.86

𝑈𝐴𝐶−3

[

kJ
◦C kg LNG

]

24.24 30.35 28.43

𝑈𝐴𝐶−4

[

kJ
◦C kg LNG

]

17.77 24.27 16.35
i
O
t
i
c
s
s
o
c
a
U
r

separation so that the liquid phase is the most responsible for the
cooling task down to 𝑇𝑒𝑥𝑝 of −27.43 ◦C in MSHE-1. This helps save
power consumption in the compressors. Also, the overall pressure ratio
of 10.53 is the smallest among the three non-dominated solutions
analyzed in this table. The UA-optimum solution presents an LNG
process configuration that exploits high pressure ratio (60) of the
refrigeration cycle to increase the temperature difference between hot
and cold composite curves in the MSHEs to diminish their heat transfer
area. The composition and flow rate of the multi-component refrigerant
are also determined by the optimization approach to maintaining the
high-temperature driving force throughout the MSHEs, as the power
consumption is not been taken care of. The trade-off solution presents
an intermediate cycle pressure ratio (42.22) compared to the other
two solutions. The amount of heavy component (iso-pentane) in the
mixed refrigerant is also in-between values of single-objective optima.
The same behavior can be observed in the multi-objective optimization
results of the C3MR process in Table 4. The overall cycle pressure ratio
9

t

goes from 12.63 to 32.13, and finally to 59.57 for energy-optimum,
trade-off solution, and UA-optimum, respectively. The detailed results
of specific 𝑊𝑝∈𝑃𝑀 in Tables 3 and 4 show that the power consumption
n the mixed-refrigerant cycle follows the net power consumption trend.
n the other hand, the compressors of the propane cycle consume

he most energy for the energy-optimum solution, which is counter-
ntuitive. The mixed-refrigerant for this solution is richer in heavier
omponents (ethane and propane) so it requires more propane heat
ink and, consequently, more compression power. That pays off with
maller overall pressure ratio as explained above. The detailed results
f specific UA𝑒𝑥∈𝐻𝐸 in Tables 3 and 4 present clearly that the main
ontributors for diminishing or augmenting the overall heat transfer
rea utilization are the MSHE-1 and MSHE-2. Therefore, the overall
A is mostly dependent on the mixed-refrigerant composition and flow

ate, even for the C3MR process.

Apart from the design variables analyzed in the previous paragraph,
he other variables do not present an intermediate relationship between
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Table 4
Multi-objective optimization results for the C3MR process for LNG production.

Decision variables results Energy-optimum UA-optimum Trade-off solution

𝑚𝑁 [kg h−1] 2.523E−02 0.2106 2.052E−02

𝑚𝐶1 [kg h−1] 0.4079 0.6017 0.4187

𝑚𝐶2 [kg h−1] 0.8983 0.6884 0.7393

𝑚𝐶3 [kg h−1] 0.5550 0.4725 0.5482

𝑃𝑠𝑢𝑐 [kPa] 2.387 125.9 130.0

𝑃𝑑𝑖𝑠 [kPa] 3014 7500 4177

𝑇𝑓,𝑝𝑟𝑒𝑐𝑜𝑜𝑙 [◦C] −37.00 −36.98 −37.00

𝑇𝑒𝑥𝑝 [◦C] −122.2 −134.7 −135.0

Objective functions and constraints summary

Net work consumption
[

kJ
kg NG

]

980.3 1518 1144

Specific 𝑈𝐴
[

kJ
◦C kg LNG

]

508.3 266.9 305.7

MSHE-1 minimum temperature approach [◦C] 3.010 5.647 3.009

MSHE-2 minimum temperature approach [◦C] 3.011 9.702 3.039

Detailed Results

𝑊𝐾−1

[

kJ
kg NG

]

125.9 245.1 166.5

𝑊𝐾−2

[

kJ
kg NG

]

145.1 313.1 201.9

𝑊𝐾−3

[

kJ
kg NG

]

165.3 330.1 225.7

𝑊𝐾−4

[

kJ
kg NG

]

162.5 304.2 207.6

𝑊𝐾−101

[

kJ
kg NG

]

158.5 140.4 147.7

𝑊𝐾−102

[

kJ
kg NG

]

111.2 93.34 102.3

𝑊𝐾−103

[

kJ
kg NG

]

76.80 61.94 62.65

𝑊𝐾−104

[

kJ
kg NG

]

34.89 30.21 29.90

𝑈𝐴𝑀𝑆𝐻𝐸−1

[

kJ
◦C kg LNG

]

269.1 55.62 94.67

𝑈𝐴𝑀𝑆𝐻𝐸−2

[

kJ
◦C kg LNG

]

25.08 3.792 6.263

𝑈𝐴𝑀𝑆𝐻𝐸−100

[

kJ
◦C kg LNG

]

116.7 102.6 104.5

𝑈𝐴𝐶−1

[

kJ
◦C kg LNG

]

0.000 8.521 5.354

𝑈𝐴𝐶−2

[

kJ
◦C kg LNG

]

7.215 10.15 7.995

𝑈𝐴𝐶−3

[

kJ
◦C kg LNG

]

7.985 12.27 9.098

𝑈𝐴𝐶−4

[

kJ
◦C kg LNG

]

82.14 73.91 77.80
i
n
o
L
t
f
p
a
f
s
s

b
a
p
c
l
m
p
t
a
h

energy and UA optima. In other words, the non-dominated solutions
re not fine-tuned interpolations of single-objective ones. This inter-
sting finding shows the capability of a multi-objective optimization
ramework to determine complex and unique non-dominated solutions
orming a Pareto curve for a decision-maker to choose from. Therefore,
he importance of multi-objective optimization approaches to design
roblems with competing objectives is determining the rate of change
f one objective with the other and deriving trade-off solutions that
re not mere adjusted interpolations of single-objective ones. The same
uality of trade-off analysis would not be possible by simply using
ingle-objective optimization of a function that weights the competing
bjectives.

Another important use of the multi-objective optimization approach
s to serve as a tool for helping to decide among technologies. Fig. 5
llustrates a comparison between the SMR and C3MR liquefaction
rocesses based on specific power consumption and heat exchange
rea utilization. Given economic and industrial site scenarios, it would
e readily possible to determine which is the natural gas liquefaction
echnology most suited considering the price of electricity, installed
ower, heat exchanger costs, and available plant site area. For the given
atural gas conditions and process considerations, the C3MR solutions
ominate the SMR ones up to around 1355 kJ/kg-LNG of specific power
onsumption and 274.5 kJ/(◦C kg-LNG) of specific UA. It means that,
10

v

f energy consumption is required to be below this value, the C3MR
atural gas liquefaction process should be employed. However, if the
verall UA value is expected to be smaller than 274.5 kJ/(◦C kg-
NG), then the SMR process should be selected. This inflection point
hat separates the dominance between C3MR and SMR in objectives
unctions space is drawn in Fig. 5 with the blue point. All-in-all, C3MR
rocesses are more energetically efficient for flexible heat exchanger
rea utilization, whereas SMR processes are more energetically efficient
or strict heat exchanger area utilization. SMR processes can achieve
mall values of UA that C3MR cannot, while the former can achieve
mall values of power consumption that the latter cannot.

Comparing the optimization results with the literature is challenging
ecause the different author uses different process considerations such
s natural gas pressure, temperature, and composition, compressors and
umps efficiency, pressure drop in heat exchangers, LNG specifications,
ooling temperature, and process constraints. Table 5 presents the
iterature results of natural gas liquefaction processes optimized to
inimize the specific power consumption that considered the same
arameters and considerations presented in Table 1. These results show
he competitiveness of the kriging-based that surpassed the recent liter-
ture, except for the SMR proposed by Qyyum et al. [26]. They included
ydraulic turbines in the refrigeration cycle instead of Joule–Thomson
alves, which increases the energy efficiency but is not conclusive
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Fig. 5. SMR and C3MR Pareto Fronts comparison.
Table 5
Comparison with literature results on energy-optimum natural gas liquefaction processes.

Khan et al. [27] Khan et al. [22] Qyyum et al. [26] Ali et al. [28] Ali et al. [29] Majeed et al. [30] Present work

LNG technology SMR C3MR SMR C3MR SMR SMRa SMR SMR SMR C3MR SMR C3MR

Power
[

kJ
kg LNG

]

1557 1002 1709 1021 1344 1019 1665 14315 1444 1017 1045 980

MITA [◦C] 3.010 3.000 3.003 3.015 3.000 3.000 2.813 2.640 3.000 3.000 3.009 3.011

Decision Variables

𝑚𝑁 [kg h−1] 0.2276 0.0395 0.2690 0.0900 0.2590 0.0700 0.3219 0.2424 0.1650 0.0800 0.2566 0.0252

𝑚𝐶1 [kg h−1] 0.5343 0.4223 0.5290 0.5130 0.4630 0.4780 0.4665 0.5124 0.4630 0.4490 0.4407 0.4079

𝑚𝐶2 [kg h−1] 0.6312 0.6455 0.6190 0.8300 0.7660 0.5110 0.7210 0.5260 0.6360 0.8430 1.4170 0.8983

𝑚𝐶3 [kg h−1] 2.7280 0.6800 2.8470 0.5320 2.2670 1.8190 2.8265 2.9022 2.2880 0.5690 0.7914 0.5550

𝑚𝑖𝐶5 [kg h−1] – – – – – – – – – – 1.842 –

𝑃𝑠𝑢𝑐 [kPa] – – – 3.30 2.03 2.60 – – 1.55 2.75 3.39 2.39

𝑃𝑑𝑖𝑠 [kPa] 49.97 46.50 48.00 50.00 62.49 78.90 48.34 45.57 59.50 43.43 35.67 30.14

𝑇𝑁𝐺2 [◦C] – – – 22.40 – – – – – 18.40 – –

𝑇𝑁𝐺3 [◦C] – – – 4.00 – – – – – 0.00 – –

𝑇𝑁𝐺4 [◦C] – – – −14.00 – – – – – −16.75 – –

𝑇𝑓,𝑝𝑟𝑒𝑐𝑜𝑜𝑙 [◦C] – – – – – – – – – – – −37.00

𝑇𝑒𝑥𝑝 [◦C] – – −155.00 −133.40 – – −159.26 −152.97 – – −27.43 −122.20

aReplaced Joule–Thomson valves with hydraulic turbines.
without an economic assessment. Therefore, these results provide a
flavor of the quality of the processes designed in this paper using the
kriging-based multi-objective approach.

6. Conclusions

This paper presented an application of a kriging-based optimization
framework to solve constrained, black-box, multi-objective, simulation–
optimization problem of the optimal design of SMR and C3MR natural
gas liquefaction processes, considering the minimization of both power
consumption and heat exchanger area utilization and using a reliable
process simulator. The framework is based on fitting kriging models to
simulation data to substitute the black-box objectives and constraints
with a simple algebraic formulation. The 𝜀-constraint methodology
is employed to reformulate the multi-objective problem into several
11
single-objective ones. The surrogate, single-objective optimization sub-
problems are solved in GAMS with CONOPT solver to provide a sam-
pling tool of promising feasible and non-dominated solutions to the
original problem.

The Pareto Fronts determined by the present approach to the SMR
and C3MR processes dominate the ones achieved with well-established
multi-objective meta-heuristics of NSGA-II and are also broader in the
single-objective directions. The objective functions of non-dominated
solutions go as low as 1045 kJ/kg-LNG and specific UA value of 212.2
kJ/(◦C kg-LNG) for SMR and 980.3 kJ/kg-LNG and 266.9 kJ/(◦C kg-
LNG) for C3MR. The trade-off solutions that present the minimum sum
of relative objectives were analyzed. These trade-off results balance the
objectives by a 24.40% increase in work consumption and a 43.83%
increase in UA for the SMR process and a 16.70% increase in work
consumption and a 14.54% increase in UA for the C3MR process,
compared to the energy and UA optima. The comparison of Pareto
solutions of the SMR and C3MR processes showed that the C3MR
solutions dominate the SMR ones up to around 1355 kJ/kg-LNG of
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specific power consumption and 274.5 kJ/(◦C kg-LNG) of specific UA.
This finding provides a numerical metric for choosing between the
C3MR, which is suitable for energetically efficient applications, and
the SMR, which is more appropriate for restricted heat exchanger
area utilization. A comparison of optimal LNG processes with previous
works showed the competitiveness of the kriging-based that surpassed
the recent literature.

The importance of multi-objective optimization approaches to de-
sign problems with competing objectives is determining the rate of
change of one objective with another, deriving complex trade-off so-
lutions that are not mere adjusted interpolations of single-objective
ones, and providing a more thorough and robust platform to compare
among choices with competing objectives. For the case of natural gas
liquefaction process design, it allowed deriving promising SMR and
C3MR solutions that balance power consumption and heat transfer
area utilization. Also, an inflection point in the objective space is
observed. This point separates dominance between C3MR and SMR pro-
cesses, making it easier for a decision-maker to choose the appropriate
technology for specific scenarios.
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