ANSWER-CHECKING STRATEGIES REVEAL GROWTH IN COGNITIVE POWERS: NUMERICAL REASONING OF A STUDENT WITH LEARNING DIFFICULTIES IN MATH

<u>Helen Thouless¹</u>, Ron Tzur², Cody Harrington², Nicola Hodkowski³, Alan Davis² ¹St. Mary's University, ²University of Colorado Denver, ³Digital Promise

This is a case study of a 6th grade boy identified as having learning difficulties in mathematics. He was a participant in a larger research and professional development project focused on teaching math conceptually (grades K-5). We used constructivist teaching experiments (Cobb & Steffe, 1983) to make inferences about and build models of how the learners constructed conceptual structures and operations.

A major challenge for students experiencing difficulties in learning mathematics is to overcome a long-learned coping mechanism of looking to others as authorities for "right or wrong answers" (Brousseau & Warfield, 1999). Therefore, we examined what strategies the student used to check his answers. This led to the research question: how do the student's answer-checking strategies relate to his problem-solving strategies? The video data was collected across four teaching episodes during which we used an activity designed to support an advance from count-all to count-on.

Episode	Problem-solving strategy	Answer-checking strategy
1	Count All	No strategy
2	Prenumerical Count-On	Count All
3	Numerical Count-On	Prenumerical Count-On

Table 1: Correspondence of problem-solving to answer-checking strategies

As seen in Table 1, this boy's answer-checking strategies remained one conceptual step behind the ones he used for problem-solving. His answer-checking strategies were evidence of what he could achieve independently, whereas his problem-solving strategies were those he was still developing. Therefore, answer-checking strategies can serve as a formative assessment for what strategies children use independently.

References

Brousseau, G., & Warfield, V. M. (1999). The case of Gaël. Journal of Mathematical Behavior, 18(1), 7-52.

Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83-94.

4 - 408

^{2022.} In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), *Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education* (Vol. 4, p. 408). PME.