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Abstract
A number of applications would benefit from neural approaches that are capable of generating graphs from images in an
end-to-end fashion. One of these fields is optical music recognition (OMR), which focuses on the computational reading
of music notation from document images. Given that music notation can be expressed as a graph, the aforementioned
approach represents a promising solution for OMR. In this work, we propose a new neural architecture that retrieves a certain
representation of a graph—identified by a specific order of its vertices—in an end-to-end manner. This architecture works by
means of a double output: It sequentially predicts the possible categories of the vertices, along with the edges between each
of their pairs. The experiments carried out prove the effectiveness of our proposal as regards retrieving graph structures from
excerpts of handwritten musical notation. Our results also show that certain design decisions, such as the choice of graph
representations, play a fundamental role in the performance of this approach.

Keywords Optical music recognition · Graph representation · Deep learning

1 Introduction

Graphs are mathematical structures that model pairwise rela-
tionships between objects in linked data sources. These data
representations have, in the last fewdecades, become increas-
ingly popular in the deep learning researchfield owing to their
expressiveness and ability to represent complex associations
among pieces of information—such as social network com-
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munities, molecule dynamics, or drug dealing interactions
[28].

Many studies dealing with the extension of deep learning
approaches for graphs have recently emerged. This growing
research area focuses on the processing of graphs as an input
structure. The existing literature reports that the main archi-
tecture employed is that of graphs neural networks (GNN),
with the goal of performing tasks such as node classifica-
tion, edge prediction, and graph classification [22]. Despite
the increasing interest in this area, most of this literature
understands graphs as a learnable input data source, but less
attention is paid to their use as an output representation of a
specific information source. That is, little literature explores
the inference of graphs conditioned to a given input.

One interesting subject based on this concept is image-to-
graph formulation. In this context, a neural model outputs
a graph representing the connected elements of an input
image by following a holistic or end-to-end formulation.1

Several research fields could benefit from this approach, one
of which is that of optical music recognition (OMR), which
studies how to computationally read music notation from
score images [4].

1 The term “holistic” will be used from here on, since “end-to-end”
could be interpreted as those strategies that solve an entire task, regard-
less of whether or not they are divided into substages.
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Fig. 1 Excerpt from the “Ludwig van Beethoven, Piano Sonata op.
2 no. 2, Largo apassionato” which illustrates some ubiquitous spatial
relationships of music notation. On the left side, there is the original
excerpt; on the right side, one possible interpretation of the music-
notation structure as a graph: the primitives highlighted in red as nodes
and a set of possible relationships, which include both syntactic ones
(expressed in blue dashed lines) and reading order (green dashed lines),
as edges

Music notation can intuitively be interpreted as a visual
languagewhose primitives—the graphic elements of which a
music symbol is composed—can be modeled using pairwise
relationships [12]. This intuition motivates the understand-
ing of music notation as a graph structure. One example of
how music notation could be interpreted as a graph is found
in Fig. 1. In this specific interpretation, music primitives—
such as noteheads, flags, or stems—are considered the nodes
of the graphs. Two types of relationships are found in this
interpretation: syntactic ones—which group the primitives
that conform to a music structure—and time-dependency
ones, which indicate the order in which these nodes have
to be read. Regardless of which relationships are applied,
we observe that the graph structure is capable of conveying
the structural information. Image-to-graph formulation is,
therefore, of particular interest as regards developing holistic
approaches for OMR.

In this paper, we propose a holistic image-to-graph neural
methodology that is able to retrieve a graph representation
from an input image. This method can be trained with a
dataset that consists only of pairs of images and their corre-
sponding graphs. These data samples do not need to provide
any geometric information about the elements of the image—
such as pixel-level regions or bounding box annotations.
In other words, our method works with weakly annotated
datasets.

Experiments were carried out in which our method was
applied to excerpts of handwritten music notation from the
MUSCIMA++ dataset. Our method successfully retrieved
the graphs that represent the structures of the input images
as regards predicting both the categories of the vertices and
their pairwise relationships.

The remainder of the paper is organized as follows: Sect.
2 provides a description of the context and background of
this work as regards both the OMR and graph retrieval fields,
while Sect. 3 shows a formal definition of the problem and
presents the proposed approach. Section 4 contains an expla-
nation of the experimental setup of this work for the sake of
reproducibility, and the experimental outcomes are reported
and discussed in Sect. 5. Finally, the conclusions are shown
in Sect. 6.

2 Background

This section shows the fundamental background of the two
research fields that converge in this work: OMR and graph
retrieval. In order to assess the contributions of this work to
each field, both backgrounds are presented individually.

2.1 Optical music recognition

OMR has traditionally been divided into several stages that
have been approached independently [17]. Fundamentally,
there is a first step in which the music primitives—such
as noteheads, beams, or accidentals—are detected. This
involves processing the input image in order to isolate and
categorize these components, which is not straightforward
owing to the presence of artifacts such as staff lines and
composite symbols [11]. In the second stage, syntactic rela-
tionships among the primitives retrieved are inferred in
order to recover the structure of the music score. These
stages are solved by combining image processing techniques
with heuristic strategies based on handcrafted rules [18].
Unfortunately, these solutions have proven to be largely
insufficient [3].

Some authors have proposed solutions to OMR by fol-
lowing this aforementioned state-of-the-art holistic approach
utilizing a serialized (sequential) version of music nota-
tion [1,20], in much the same way as has been attempted
in other visual domains [27]. In the case of sheet music,
this serialization represents a great simplification that still
wastes most of the relational information. In the simplest
cases, such as monophonic music or certain preceding nota-
tional systems—such as mensural or pneumatic notation—
sequential holisticmethods have shownpromising results [5].
This approach, however, has never been extended in order to
deal with any kind of sheet music because of current limi-
tations related to the expressiveness of the output structure
[4].

One promising holistic formulation for OMR requires the
output domain to be more expressive than a sequence, as rel-
evant information may otherwise be wasted. This problem is
not specific to OMR, as this same challenge appears in other
graphic domains, such as mathematical expression recogni-
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tion [8] or road layout generation [10], to name but a few. In
the case of music notation, a graph does represent a struc-
ture that fits naturally with the type of expressiveness that
needs to be captured [12]. However, no attempts have been
made to holistically retrieve a graph from an image, or more
specifically, from a music score image.

2.2 Graph prediction

As stated above, there is a vast body of research focused
on processing input graphs using GNNs. Nevertheless, the
objective herein is not to process a graph, but rather to retrieve
these structures as a whole conditioned to an input image.

The closestwork to our goal is known as deep graph gener-
ation. This research field focuses on generative neuralmodels
for graphs. Two main approaches for graph generation cur-
rently exist: (i) one-shot generating methods [6,19] and (ii)
sequential generation [15,25]. The former attempts to gen-
erate graphs in a single step, while the latter uses sequential
neural networks, such as those with recurrent units, that iter-
atively generate the sequence of nodes and edges of which
the graph is built. Recent work on this specific formulation
has also been carried out, including a proposal for a general
framework [24] and some practical approaches [13,16]. In
all cases, however, the problem is approached by learning a
generative model from a given dataset of graphs. However,
in this work, we aim to learn a discriminative model that is
conditioned to an image input.

Another research area that is worth highlighting is that
of scene graphs. This field focuses on the extraction and
construction of graphs that model semantic relationships
between entities detected in images [9]. However, the whole
construction process is based on the premise of having spa-
tial information about the objects for their detection. This
assumes that, in order to establish such semantic relation-
ships, precise information about the position of the objects
in the scene is available.

To the best of our knowledge, there is only one work that
addresses discriminative graph retrieval conditioned by an
input image [2]. However, this work focuses solely on the
structure of the graph, as the method predicts only edges
between unlabeled nodes. This is clearly not applicable to
OMR, for which the nodes must have a category that repre-
sents a music-notation primitive.

3 Methodology

In this section, we describe the problem of holistic graph
retrieval from images and the methodology adopted to deal
with these tasks in the context of OMR.

3.1 Formulation

In its simplest definition, a graph is an abstract mathemati-
cal structure that represents pairwise relationships between
elements—nodes or vertices—through connections—edges.
As mentioned previously, the goal of this paper is to directly
retrieve graphs from images that contain music-notation
structures. The formal definition of the problem is shown
as follows.

A graph can be defined as a pair (V , E) in which V rep-
resents the set of nodes and E the set of edges. Two nodes,
vi , v j ∈ V are connected if there is an edge, ei j = (vi , v j ) ∈
E . Let us use G to denote the space of all possible graphs.
Given an image x, we seek to retrieve themost probable graph
ĝ:

ĝ = argmax
g∈G

P(g | x). (1)

A graph can, in computational terms, be modeled by
employing a set of representations, each of which is iden-
tified by a specific order of its nodes. In such a case, the
nodes are denoted by a sequence rather than a set. LetR(g)
be the set of all representations of a graph g ∈ G. Equation1
can, therefore, be rewritten as:

ĝ = argmax
g∈G

P(g | x) = argmax
g∈G

∑

r∈R(g)

P(r | x) (2)

It is unfeasible to compute Eq. 2 in practice, even for small
graphs, given that the possible representations of a graph
grow as the factorial of the number of nodes |V |!. Instead, we
approximate the solution by seeking the graph that indicates
the most probable representation r̂ :

ĝ = argmax
g∈G

P(g | x) ≈ argmax
g∈G

max
r∈R(g)

P(r | x) (3)

The objective of our approach is to solve Eq. 3 by means
of deep neural networks.

3.2 Approach

Figure 2 provides a general overview of the proposed neural
network.

In order to retrieve a graph representation, we concep-
tually divide the problem into two tasks: node and edge
prediction. In the first task, the nodes of a specific repre-
sentation of a graph are retrieved by means of a sequential
prediction of node categories.

In the second task, the network predicts whether a pair
of nodes are connected, which can be seen as predicting the
adjacency matrix of that graph representation.

In this work, we propose a multi-output architecture that
performs the two tasks simultaneously. With regard to the
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goal of retrieving a sequence of symbols as nodes from
an image, the first stage involves the implementation of
an image-to-sequence neural model similar to image cap-
tioning approaches—in which the goal is to describe an
image by means of natural language. This is done using
an encoder–decoder architecture that retrieves image fea-
tures by employing a convolutional neural network (CNN).
These images are then fed to a recurrent neural network
(RNN), which decodes a primitive and its representation for
each timestep2 until an end-of-graph—< EOG > token—is
attained. The embeddings generated at each timestep (RNN
activations) are also used for node classification and, by
grouping them by pairs, the model predicts whether there is
an edge between them. The main challenge the network has
to deal with is that of obtaining appropriate embeddings that
represent both the music primitives and the features present
in the image, as they are key elements for both node and edge
prediction. We are, therefore, forcing the network to capture
the richness ofmusic-notation structures in a holisticmanner.

3.3 Training

In our case, we require the neural network to be trained with-
out any specific geometric information concerning where the
vertices are located in the input image. Note that this might
represent a competitive advantage when creating training
sets, as it is much less expensive to annotate music scores
in this way and the process could also be automated from
existing encoded sheet music.

Let us assume that our training set consists of pairs (x, g).
As occurs in Eq. 3, it will not be possible to directly train
the network in order to optimize g given x and it is instead
necessary to choose a specific representation fromR(g) as a
ground truth for the neural network. However, this decision
should not be made arbitrarily in each case, and it is, rather,
necessary to ensure some consistency in order to facilitate
the learning process of the network. Let us denote as � a
function that consistently maps a graph g onto one of its
representations in the form r = �(x, g). Note that� can also
be conditioned to the input image x . Thismapping transforms
a set of nodes v = {v1, v2, v3, . . . } into an ordered sequence
v′ = [v1, v2, v3, . . . ]. The way in which function� operates
will be described in the implementation details and will be
analyzed empirically.

Transforming the graph representation into a sequence of
nodesmakes it possible to deal with the first task as an image-
to-sequence problem. Let � be the set of possible music-
notation primitives. It is then necessary to seek the sequence
of nodes v̂:

2 A timestep can be understood as each instantiation of the RNN cells
throughout the input/output sequences.

v̂ = arg max
v∈�∗ P(v | x) (4)

in which the goalin which the goal is to predict the sequence
of tokensv = [v1, v2, . . . vt ]. This can be trained byminimiz-
ing the sum of the negative log likelihood of the probability
of the correct symbol vt for each timestep t in the sequence
v:

Lnodes = −
N∑

t=1

log P(v̂t = vt |t) (5)

With regard to edges, this prediction task is addressed as
a binary classification problem in which the binary cross-
entropy (BCE) loss for every pair of nodes in the graph is
minimized as:

LBCE =
∑

ei j∈A

ei j log(êi j ) + (1 − ei j ) log(1 − êi j ) (6)

where ei j is the edge that pairs nodes (vi , v j ). This corre-
sponds to a specific cell in the adjacency matrix A of the
given graph.

The sum of both losses can be seen as minimizing the
following multi-loss function Ltotal, given by:

Ltotal = Lnodes + LBCE. (7)

This multi-loss is minimized jointly at training time via con-
ventional backpropagation.

3.4 Prediction

The prediction process of this method closely follows the
workflow described during training. First, an image x is fed
into the CNN, which outputs a feature map. The RNN block
then receives this featuremap in order to condition its internal
states and outputs one embedding vector for each timestep t .
A sequence of vertices v and their corresponding edges are
subsequently obtained.

In order to compute v, we pass the embedding vector of
each timestep through a multilayer perceptron (MLP) layer
that performs a classification. The class that represents each
node vi is determined by following a greedy strategy inwhich
the primitive with the highest activation in the output layer is
chosen. The edge set is obtained using the combination of the
embeddings retrieved from the RNN to predict the adjacency
matrix of the graph in the edge prediction module. For each
pair, the module predicts the probability of the existence of
an edge between them.

Once the nodes and the edges have been retrieved, we
have implicitly retrieved the most probable representation of
a graph given the input image, which satisfies Eq. 3.
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Fig. 2 General schema of the methodology. A CNN extracts the image representation, which is the input to the RNN decoder. This RNN is trained
to produce each symbol for each timestep t alongside the node representation. Finally, we predict edges using these node representations per pairs

4 Experimental setup

In this section, we present the experiments carried out in
order to evaluate the image-to-graph task in the context of
OMR. We describe the data and metrics used, along with the
implementation details for the models presented. Finally, we
present the evaluation scenarios designed for this work.

4.1 Data

The experiments were carried out using the MUSCIMA++
dataset [12]. This dataset provides a great variety of hand-
written music scores, which consist of musical symbols—
primitives—and the annotated relationships between them,
presented in the form of graphs.

For our task, we extracted the musical structures present
in each score. We specifically considered only those exam-
ples in which the number of primitives was strictly greater
than three.We assumed that musical structures with less than
three symbols could be easily recognized and eventually
obtained a dataset of independent annotated image-graphs
pairs containing the nodes—music-notation primitives—and
the relationships between them as an adjacency matrix.
Figure 3 shows some examples of the dataset eventually
obtained. For further details, Tables 1, 2 and Fig. 4 present
some statistics regarding the symbols and the graphs consid-
ered.

4.2 Implementation details

We implement our neural approach with two specific neural
networks with few differences between them. Both imple-
mentations consist of an encoder part that extracts image
features and a decoder that retrieves the sequence of sym-
bols and constructs the adjacencymatrix.Using the technique
employed for the encoder–decoder connection part as a basis,
we denote them as (i) the non-attention model and (ii) the
visual-attention-based model. The most important differ-
ence concerns the encoder–decoder connection part. The first
model extracts the image features with 4 layers of alternating
convolution and poolings with 64, 128, 256, and 256 filters,
while the second outputs 512 filters in the last layer. The
poolings are 2 × 2 in both models for each layer, with the
exception of the last layer of the first model, which is 4x4 in
order to reduce the dimensionality of the feature vector. All
these layers use rectilinear uniform (ReLU) as the activation
function.

Another difference between the models concerns how the
featuresmap obtained from theCNN is reshaped to be treated
as a sequence. For themodelwithout visual attention, the fea-
ture map is flattened in order to compute a 1024-dimensional
feature vector. The visual-attention model instead uses the
visual attention mechanism, as in the work of Xu et al. [23].
This mechanism is applied to the feature map, obtaining 64
vectors with 512 features each that are then fed to the decoder
as an initial state.
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Fig. 3 Music notation structures
extracted from the
MUSCIMA++ dataset

Table 1 Statistics of the music-notation primitives (�) in the structures
selected from the MUSCIMA++ dataset

Primitive

Full notehead 14,868

Empty notehead 213

Stem 13,843

Beam 6575

8th flag 698

16th flag 487

Total 36,684

Table 2 Statistics regarding the ground truth data obtained once the
MUSCIMA++ dataset had been filtered

Graphs

No. of graphs 5047

No. of nodes 36,684

No. of edges 70,558

Avg. no. of nodes 7.3 ± 2.6

Avg. degree 1.8 ± 0.3

Avg. indicates the average ± the standard deviation

With regard to the decoder, both models use a long short-
term memory (LSTM) layer in the recurrent part to extract
each symbol for each timestep, with 1024 hidden units in (i)
and 512 in (ii). In the last part of the decoder, both models
have a linear layer with asmany units as the size of the vocab-
ulary � and a softmax activation for the node classification.
For the adjacency matrix reconstruction, we concatenate the
hidden states by pairs corresponding to the node embeddings
generated by the LSTM. For this binary classification task,
we use a two-layeredMLP with 256 units in the hidden layer
plus a sigmoid activation function to predict the probabil-
ity of a link between two nodes from their embeddings. At

Fig. 4 Distribution of the graph size in the dataset considered. The
range of nodes per graph goes from 4 to 26

prediction time, we establish a decision threshold of 0.5 to
determine the existence of an edge. Concerning the size of
the models, the neural network without visual attention and
the neural network with visual attention comprise 9.5M and
6.5M trainable parameters, respectively.

We also apply basic data augmentation techniques, such
as rotations up to 45 degrees, padding, and vertical and hor-
izontal flips, to the input images.

With regard to the learning process, we train both models
for a maximum of 200 epochs. A batch size of 64 is used
and an Adam optimizer [14] is applied with a learning rate
of 0.001. The loss function used in these models is defined
in Eq. 7. A doubly stochastic attention term from [23] is also
included for the model with attention.

Finally,we use two approaches for the node ordering given
by the function �: (i) sorting nodes according to the image
topology, ordered from left to right and top to bottom (this
approach is, hereafter, denoted as “topology”), and (ii) sort-
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ing the nodes alphabetically, according to the vocabulary �,
which we denote as “alphabetical.”

4.3 Metrics

Computing a graph edit distance is known to be an N P-hard
problem [21]. This fact leads us to discard a singlemetric that
encompasses all the differences between the predicted and
ground truth graphs. Alternative metrics that could correlate
with the performance are, therefore, required in this task.
Here, we measure two factors for the graph prediction task
in hand: (i) the accuracy of the node sequences predicted
and (ii) how accurately the edges between these nodes are
predicted. For the former, we consider the symbol accuracy
(Acc), whereas the latter is measured using the F1.

4.3.1 Symbol accuracy

Symbol accuracy is a metric based on the symbol error rate
(SER). This is a commonmetric in tasks related to sequences,
such as handwritten text recognition.3 This value measures
the error of themodel in the recognition task and correlates to
the effort that a user would have to make in order to manually
correct the results. Let H be the predicted sequence and R be
the reference sequence. The SER is computed by measuring
the edit distance between H and R normalized by the length
of R. When measuring accuracy, it is possible to resort to
symbol accuracy (Acc), which is computed as 1−SER. This
is an analogous metric to the Word Accuracy metric. We
resort to this metric for the sake of readability so that both
metrics (F1 and Acc) stick to “the higher the better.”

4.3.2 F1 metric

The F1 metric is defined as the harmonic mean of precision
(P) and recall (R):

P = TP

TP + FP
R = TP

TP + FN
(8)

F1 = 2 · P · R
P + R

= 2 · TP
2 · TP + FP + FN

(9)

where TP, FP, and FN are the true positives, false positives,
and false negatives, respectively. As we wish to measure the
accuracy in the predicted edges, we use actual edge connec-
tions as the positive class to compute the F1.

3 In this field, the metric is called word error rate or character error
rate depending on the unit considered. Here, we employ the generic
term “symbol,” as there is no clear analogy between music-notation
primitives and words/characters from text.

4.4 Evaluation scenarios

In this work, we have considered the following scenarios for
evaluation:

1. Function 8 choice. As explained above, we must consider
a function � that consistently converts a graph into a spe-
cific representation in which its nodes are expressed as
a sequence. We shall now analyze how the choice of �

affects the performance of the models.
2. Visual-attention. The main differences between the two

neural models implemented concern the visual-attention
mechanism. In this work, we study the impact of using
this mechanism on the final performance.

3. Scarcity of data. We study the behavior of this proposed
formulation under data limitation conditions. This could
be of special relevance in the case of handwritten scores,
for which it is not easy to obtain labeled data. In order to
simulate different conditions, we restrict the data used for
training to the following percentage: 5 %, 25 %, 50 %,
and 100 %.

5 Results

We shall now present the results obtained for the differ-
ent evaluation scenarios described in the previous section.
It must be noted that all the reported scores come from
strategies and scenarios proposed in this paper, as we only
focus on the image-to-graph retrieval formulation. Unfortu-
nately, our work cannot be compared with the state of the
art since they have different endpoints: in (some) previous
works, a sequence of music-notation tokens representing the
music shown in the image is obtained. However, our work—
designed precisely for music scores for which a sequence is
not enough—ends with a graph on which a final step needs to
be performed to recover the semantics of musical notation.
There is currently no known strategy to perform this last step
“from graph to music,” so the results of the state of the art
are still incompatible with ours.

Table 3 shows the average results in the test set, following
a fivefold cross-validation strategy. For a better global com-
parison, a graphical representation of these same results is
provided in Fig. 5.

First note that the proposed approaches are successful
in carrying out their tasks, obtaining satisfactory results in
almost any scenario. Note also that the symbol accuracy
and F1 score are closely related. The correlation of these
metrics, calculated on the basis of the results obtained, is
specifically 0.998, as shown in Fig. 6. This high correlation
denotes that, although these tasks are measured indepen-
dently, their performances are linked. That is, if the model
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Table 3 Average test set results
for the different evaluation
scenarios from the fivefold CV
process. Best results for each
data availability percentage are
highlighted

Model % of training data

� choice Attention 5 25 50 100
Acc F1 Acc F1 Acc F1 Acc F1

Topology ✓ 59.0 53.7 64.2 55.8 69.0 63.1 77.0 74.1

✗ 53.7 53.2 64.3 64.1 73.6 71.5 77.9 76.4

Alphabetical ✓ 62.3 56.1 88.7 80.8 92.0 86.2 95.4 91.6

✗ 46.7 42.8 82.7 78.4 80.2 77.4 87.1 85.8

Fig. 5 Barplot visualization (meanand standarddeviation) of the results
presented in Table 3

is able to correctly classify the symbols, it is also able to
correctly reconstruct the edges of the graph with high accu-
racy. This fact empirically demonstrates that the proposed
loss function in Sect. 3.1—which joins node classification
and edge reconstruction—enables the network to learn to
classify nodes and reconstruct their edges equally, with no
bias toward either.

With regard to the choice of the � function, there are sig-
nificant differences in the performance. Choosing the � that
sorts the symbols alphabetically specifically increases both
symbol accuracy and F1 by approximately 20%. The reason
for this difference might be the sensitivity to image varia-
tions of the topological order and its impact during training.
When presented with two similar images that have displaced
elements, it is likely that their graph representations will be

topologically different, as the nodes appear in a different
order and this alters the adjacency matrix. This is problem-
atic in neural network training, since similar inputs that have
completely different outputs—usually referred to as noisy
data—lead to convergence issues during the optimization
process and decrease the robustness of the model. In our
case, there are music primitives with this problem, as shapes
tend to be similarwith slight variations.When using the topo-
logical sorting as the� function, it is likely to be introducing
this kind of phenomena, which downgrades the network per-
formance. In addition, this case is likely to be aggravated
when data augmentation is applied. The model improves
significantly when a � function that sorts the graph nodes
independently to the image layout is used. This is probably
because similar samples are very likely to obtain a similar
graph representation, which facilitates the convergence of
the neural network during training.

With regard to the use of the visual-attention mecha-
nism, there were no significant differences in most scenarios.
Nevertheless, in scenarios in which data scarcity becomes
more prominent, we find that models that use the visual
attention mechanism clearly outperform models that do not.
This is because attention mechanisms are able to obtain
filtered information from specific feature representations,
which enable the model to converge with fewer training sam-
ples.

In relation to data scarcity, the performance is also strongly
linked to the choice of �. With the proper ordering function,
the model behaves well even when data scarcity is extreme,
as in the case of only 5% of the available data. As shown in
Table 3, the models with alphabetical sorting and only 25 %
of the available data perform better than the best model with
topological sorting using the complete dataset.

In order to illustrate the performance, Fig. 7 depicts two
predictions in the test set from the best model from Table 3.
As shown in Fig. 7a, the model labels all the nodes correctly
and successfully retrieves their corresponding edges. Never-
theless, there are some errors in Fig. 7b: one node is wrongly
labeled—it predicts an 8th flag rather than a beam, which
can be considered a reasonable mistake from the graphics
recognition point of view, and the edge between the bottom-
left notehead and the top beam is missed. Note that, since
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Fig. 6 Scatter plot correlating the results in the test set obtained as
regards symbol accuracy (Acc.) and F1 for each fold of the 5-CV for
all models

Fig. 7 Examples of test set predictions. Images on the left represent
the input image given to the model, while those on the right represent
the graphs retrieved by our best model. Note that the bounding boxes
depicted are simply a visual aid, as our approach does not retrieve them
specifically. Green indicates correct predictions and red indicates errors,
which are described in each example

the graphs are inferred without specific indications about the
positions of the nodes in the input image, these visualizations
are simply a possible interpretation of the relationships that
the neural network could have established.

Finally, Fig. 8 shows the obtained attention matrices dur-
ing the inference of a selected test sample. Although this is
just a selected example within the entire dataset, we believe
that it is representative of the behavior of themodel. Note that
while in some timesteps, the tokenmatcheswith the positions
of high activation of the attention matrix (e.g., first stem), in
other cases the attention matrix is quite sparse (e.g., beam).

6 Conclusion

In this paper, we propose a new holistic image-to-graph
model with which to retrieve a graph representation of the
elements present in an input image. We propose a formu-
lation based on sequential node classification and pairwise
edge reconstruction. This formulation has been devised for
use in the optical music recognition (OMR) field.

Several experimental scenarios are proposed in our experi-
mentation, such as the suitability of attentionmechanisms for
the recurrent model, the availability of data, and the means of
mapping the set of nodes in the ground truth into an ordered
sequence that sticks to a consistent graph representation.
These scenarios were tested in the MUSCIMA++ dataset,
which contains handwritten music fragments annotated in
the form of a graph.

The results showed that the proposed methodology and
formulation are successful in solving the image-to-graph task
within the specific context of music-notation structures. Our
method is able to retrieve the graph from the image without
the need for spatial information regarding the elements in the
input source.

This paper makes it possible to draw certain interesting
conclusions: First, the selection of the graph representa-
tion according to the sequential ordering of its nodes would
appear to have a strong influence on the performance of the
model; second, the model needs to extract edges for every
single pair of nodes. This computation can be expensive in
large-graph scenarios and require a considerable amount of
time to be trained.

The primary objective of our future work is to retrieve
graphs from full pages, since the state-of-the-art models are
limited as regards the task of retrieving the sequence rep-
resentation of these document types. This will open up an
interesting scenario for the use of graph representation in
order to approach the complete OMR problem. However,
there is still an additional step to develop in order to compare
our method with the state-of-the-art OMR systems, which
is to retrieve complete music-notation semantics from the
graph. This task is not trivial, as simple rule-based systems
are too strict to develop a robust solution to recover these
semantics. This will require further efforts in future works.

Furthermore, some drawbacks found in this work must
also be addressed, such as creating loss functions or neural
network architectures that do not depend on node ordering—
which is analogous to that which the DEtection TRansformer
[7] or Deep Sets [26] models do when predicting unordered
sets—or new methodologies that approach edge retrieval
more efficiently. This probably requires estimating an effi-
cient edit distance between graphs representing musical
structures, which is an interesting challenge for the future. In
addition,we plan to test our approach in other document anal-
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Fig. 8 Visualization of the attention weights for each timestep during inference in a selected test sample. Subcaptions indicate the node class
predicted in each timestep

ysis tasks that might benefit from a holistic image-to-graph
formulation.
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