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Research on teaching and learning of proofs in linear algebra is scarce. To help fill 

this gap, we interviewed six students taking a second linear algebra course and 

examined some of their coursework that they handed in. In this paper, we examined 

students’ ways of understanding and ways of thinking (Harel, 2008) in the formal 

world (Tall, 2008) of mathematical thinking from their statements as they unpacked a 

particular linear algebra proof. The results show that students were able to unpack 

and adjust the proof formally in a second course and reacted positively. 

BACKGROUND AND THEORETICAL PERSPECTIVES 

Linear algebra is an important topic for many mathematics majors. In a survey paper 

by Stewart, Andrews-Larson, and Zandieh (2019), the authors summarized some 

advances in many areas of linear algebra education (e.g., span, linear independence, 

eigenvectors, and eigenvalues). These studies highlight students’ thought processes 

and difficulties while making sense of these concepts. The authors also identified areas 

needing more research and revealed some gaps in the literature. For example, research 

on how students make sense of linear algebra proofs is scarce. Research on topics in 

second courses of linear algebra, which contain more abstract content, is also 

desperately needed. The Linear Algebra Curriculum Study Group (LACSG) 

recommended that “at least one second course in matrix theory/linear algebra should 

be a high priority for every mathematics curriculum” (Carlson, Johnson, Lay, & Porter, 

1993, p. 45). The LACSG 2.0 recommends that mathematics departments offer a 

variety of second courses (e.g., numerical linear algebra) and include wider topics 

(Stewart et al., 2022). 

 Recognizing the wealth of studies in proof in mathematics education literature, in this 

paper, we focus our attention explicitly on linear algebra proofs (e.g., Stewart & 

Thomas, 2019; Britton & Henderson, 2009; Hannah, 2017; Uhlig, 2002; Malek & 

Movshovitz-Hadar, 2011). Stewart and Thomas (2019) aimed to uncover linear algebra 

students’ perceptions of proofs in a first course. The results revealed that many students 

expressed their need for understanding. Both Hannah (2017) and Britton and 

Henderson (2009) agreed that the number of new definitions which linear algebra 

students must learn to begin writing proofs is overwhelming and makes learning proofs 

more difficult. Malek and Movshovitz- Hadar (2011) employed one-on-one workshops 

to determine the effect of using their Transparent Pseudo Proofs (TPPs) in teaching 

first-year linear algebra proofs. Their results showed that, for non-algorithmic proofs, 

students who learned using the TPPs wrote more in-depth and satisfactory answers 
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than students who learned proofs traditionally. For algorithmic proofs, both groups of 

students performed equally. Likewise, Uhlig (2002) developed a novel approach 

compared to the traditional Definition, Lemma, Proof, Theorem, Proof, Corollary 

(DLPTPC) to teach linear algebra proofs. His technique includes asking the following 

questions: “What happens if? Why does it happen? How do different cases occur? 

What is true here?” (p. 338). He believed after exploring these questions deeply for one 

specific subject, we can collect the gained knowledge in ‘Theorems’. “Such a 

WWHWT sequence of presentation quickly leads students to understand, construct, 

reason through, enjoy, and actually demand ‘salient point’ type proofs” (p. 338).   

As part of the framework of three worlds of mathematical thinking, Tall (2008) 

asserted that the formal world of mathematical thinking, which is based on formal 

definitions and proofs, “reverses the sequence of construction of meaning from 

definitions based on known objects to formal concepts based on set theoretical 

definitions” (p. 7). Harel (2008) introduced the notion of a mental act as actions such 

as interpreting, conjecturing, proving, justifying, and problem solving, which are not 

necessarily unique to mathematics. Harel (2008) also defined the notion of a way of 

understanding as “a particular cognitive product of a mental act carried out by an 

individual” (p. 269), and a way of thinking as “a cognitive characteristic of a mental 

act” (p. 269). In Harel’s (2008, p. 269) view: 

when analyzing students’ mathematical behavior in terms of ways of understanding and 

ways of thinking, one begins with, and fixes, a mental act under consideration, looks at a 

class of its products (i.e., ways of understanding associated with it), and attempts to 

determine common cognitive properties among these ways of understanding. Any property 

found is a way of thinking associated with the mental act.  

Harel asserts that the ability to reason abstractly, generalize, structure, visualize, and 

reason logically comes under the umbrella of ways of thinking. In terms of proofs, 

Harel (2008) claims that many students depend on the authority of the teacher or the 

textbook, namely the “authoritative proof scheme” (p. 271), others may rely on 

examples and visual tools, namely “empirical proof scheme” (p. 271). In his view, 

“proof schemes are ways of thinking associated with the proving act” (p. 271), and a 

proof is a way of understanding. Employing the above theories, the overarching 

research question for this project is: What are the ways of understanding and ways of 

thinking necessary for grasping linear algebra proofs in the formal world?  

METHOD 

This case study is part of a larger study on linear algebra proofs. The first named author 

was teaching a second course which was highly theoretical and proof-based, and 

selected the textbook, Linear Algebra Done Right by Sheldon Axler (2015) for this 

course. Abstract Linear Algebra course is the only second course in linear algebra 

offered at this mathematics department. The course is also slash-listed, meaning that 

graduate students can also take it since many do not have an adequate background in 

linear algebra and often benefit from taking this course. A second course in linear 
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algebra usually attracts mathematics majors primarily. However, because of the 

increasing importance of linear algebra in business and industry, some computer 

science, meteorology, and physics majors (to name a few) also take this course. All 

students had taken a first course in linear algebra and at least one more advanced 

course, such as abstract algebra or analysis.  

Theorem  Theorem Description Proof 

Pythagorean 

(p. 170) 

Suppose u and v are 

orthogonal vectors in V. 

Then  
||𝑢 + 𝑣||2 =  ||𝑢||2 + ||𝑣||2. 

 
 Complex 

Spectral  

(p. 218) 

Suppose F = C and T ∈
𝐿(𝑉). Then the following are 

equivalent:  

(a) T is normal. 

(b) V has an orthonormal 

basis consisting of 

eigenvectors of T. 

(c) T has a diagonal matrix 

with respect to some 

orthonormal basis of V. 

 

Table 1: The Pythagorean and Complex Spectral theorems and proofs (Axler, 2015).  

The course covered the following topics: Vector spaces and their properties (including 

special Vector Spaces such as Isomorphic Vector Spaces and Invertibility), subspaces, 

span, and linear independence, bases, dimension, linear maps, polynomials, 

eigenvalues, eigenvectors, and invariant subspaces, inner product spaces/ operators on 

inner product spaces (The Spectral Theorem, Self-Adjoint, and Normal Operators, 

etc.), and trace and determinant. The course was taught as a mixture of lectures and 

tasks assigned in groups. The lecturer (first named author) engaged the students in a 

variety of activities, including evaluating proofs for clarity, elegance, and other criteria. 

On occasions, students were given pieces of a proof on paper to reassemble. Students 

also came to the front of the class and presented their own proofs or explained an 

existing one. Some homework assignments included unpacking a proof in their own 

words and sometimes coming up with different proofs and presenting them to the class. 

The interviews with six volunteers from this course took about 40-45 minutes. They 
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were audio-recorded and later transcribed. A sample of the interview questions was: 

Which of the following proofs are convincing to you and why (Pythagorean 

theorem; Gram-Schmidt procedure; Characterization of Isometries, Complex and Real 

Spectral Theorems)? What is the purpose of the proofs in linear algebra? Describe the 

nature of the proofs in linear algebra. Is there a difference between linear algebra proofs 

and abstract algebra or real analysis proofs? How can we best teach linear algebra proof 

to enhance your learning experiences? Open coding by Strauss and Corbin (1998) was 

performed to analyse the data. In this paper, we analyse students’ responses to the 

question of which of the given five proofs was most convincing and briefly show a 

glimpse into students’ responses on the nature of linear algebra proofs. We also 

examined students’ responses to a homework that asked them to: Study the proof of 

the Complex Spectral Theorem and fill out the gaps (missing steps or theorems).  

RESULTS 

Five out of six students mentioned that the proof of the Pythagorean Theorem (see 

Table 1) was the most convincing. Their common reason was that it “follows from 

definition”, “used properties of inner products”, “really simple and easy to 

understand”, “no words only symbols”, “the proof looks clean”, “it’s familiar. You 

know what the start and end are going to be”. For example, Student 1 (S1) said: 

S1:  I felt like it followed directly from the definition; only needed like one or 

two definitions to work through that proof, that’s what made it more 

convincing to me, no words, all just equals, equals, equals, which is a pretty 

clear contrast from spectral theorems, where it’s a lot of explaining.  

Student 4 (S4) found the proof for the Gram-Schmidt theorem more convincing. 

Among the five proofs presented, students also made remarks about the Complex 

Spectral Theorem and found the proof convincing.   

Normally, to prove three equivalent statements, we show (a) implies (b) implies (c) 

implies (a). To prove the Complex Spectral Theorem, Axler (2015) stated that the 

equivalence of (b) and (c) is easy and only focused on proving (c) implies (a) and (a) 

implies (c). To prove (c) implies (a), following the definitions, the proof naturally 

emerged (Table 1). However, the other direction, (a) implies (c), required more work. 

Student 1 (S1) did not hand in his homework. During the interview, he mentioned: “my 

understanding of them was not as great as it could have been… it’s not that I distrusted, 

didn’t trust the proofs, but I was that it was less like obvious or implicit, I guess”.   

Student 2 (S2) seemed to find the proof complete and wrote, “Are there any holes in 

this proof…? It looks pretty complete to me.” However, during the interview, when 

she was shown this proof again, she showed some concerns:  

S2: I also think is a little confusing. I get lost personally where we show that 

the matrix is the diagonal matrix. I think that that’s something I understand 

from experience with other, like, I understand why that’s true, but not 

because of the way that the proof is presented here.   
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It seems that S2 had some conflicts with the way proof was written. We noticed that 

Student 3 (S3) translated everything symbolically for the proof of (c) implies to (a) (see 

figure 1). The theorem and its proof appeared after all the definitions and their symbolic 

representations were established and explained in the textbook prior to the proof. Here 

is the statement of the main definition: “An operator on an inner product space is called 

normal if it commutes its adjoint” (Axler, 2015, p. 212). Namely, T is normal if 

TT*=T*T.  

During the interview, Student 3 (S3) mentioned:  

S3:  I like his complex spectral. I think the only reason why I can read through 

it so quickly now is just because I have it practically memorized. But I like 

the way he goes through it. It’s very satisfying proof because it uses these 

two not exactly like, these two different ways of looking at this 

transformation or, and it provides a lot of, I guess, inside of like really why 

that ends up working side of, I’d almost say that this one my second 

favourite one of the bunch. It uses Schur’s theorem, which isn’t super 

intuitive, right off the top of your head.  

Student 4 suggested some changes to (a) implies (c) part of the proof to make it clearer. 

She mentioned: “It would have been better to reaffirm that T* is conjugate transpose 

matrix of T. She also wrote: “It would have been nice to see an ‘updated’ M(T) 

after…so that we can visualize that”. During the interview, she said:  

S4:  I really like the arguments that’s given in the complex spectral theorem 

proof, um, as to particularly why there is a diagonal matrix with respect to 

the Schur’s, the normal basis that I, I found very clever but also relatively 

easy to follow. Um, and so I was, um, I guess that’s the main part of the 

proof. The proof of a and b is it’s straightforward. But then that last, the last 

part of the proof, I, I think I was able to follow it and, and understand how 

we got the diagonal matrix based on, on those basic assumptions. I thought 

that was pretty cool.   

She added that “I’m better at remembering like the symbols that go with it because the 

words to me are easier to put on. So, I like ones with symbols and words”. In some 

ways, Student 5 went ahead and performed some of the ideas that Student 4 suggested 

(figure 1, RHS). He unpacked part of Axler’s (c) implies (a) section by displaying the 

matrices. He showed both M(T) and M(T*) matrices which were similar to the work 

shown by S3 (LHS), who wrote: M(T) M(T*) = M(T*) M(T). Student 5 also tried to 

visualize the vectors by expanding them. He did not make any comments about this 

proof during his interview. Similarly, Student 6 (S6) wrote and included all the 

definitions and theorems that were mentioned but not shown in the text. 
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Figure 1: S3 (LHS) and S5’s (RHS) works on Complex Spectral Theorem. 

The analysis of the data also revealed that students believed that linear algebra proofs 

are different from other pure mathematics subjects such as analysis, algebra, and 

topology. The most common themes among their responses were: Connections to other 

concepts, many definitions, and theorems, unique, self-contained subjects and 

definitions, and conceptually difficult. For example, Student 3 noted the structure of 

linear algebra proofs and the ability to progressively reach the destination without 

worrying about small things along the way.   

S3:   It’s like a lot of structure with a lot of linear algebra stuff. I enjoyed like 

being able to really not have to worry about the fact that or not having to 

worry about any type of convergence or doing epsilon delta proofs like you 

would an analysis. They’d get kind of messy, and you’re just trying to 

almost like the little, the little thing that makes everything fall. It didn’t feel 

the same with linear algebra. It felt much more like you’re progressively 

getting to your destination rather than how can I find the one little key that 

or one little like modification to this Delta or Epsilon to make this work.   

DISCUSSION AND CONCLUDING REMARKS 

Results of this small case study revealed that students’ ways of understanding and ways 

of thinking of dealing with the proof of the Complex Spectral Theorem had some 

common characteristics. All four students (S3, S4, S5, & S6) were content in working 

in the formal world and presented their arguments in the most general form. Their 

responses during the interviews indicated that they enjoyed the proof, and it was 

satisfying to learn it. There was no sign that they accepted the proof because they 

blindly trusted the textbook. However, both S1 and S2 appeared to place the 

responsibility of understanding a proof, in this case, the act of analysing a proof, on 

themselves. S1 mentioned that he still trusted the proofs even though his 

“understanding of them was not as great as it could have been”. S2 also claimed that 

she did not find any holes in the proof, but she later said that it confused her. These 
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conflicts seem to indicate that they simply trust the proof and they do not consider the 

book or teacher at fault for their confusion. According to Harel (2008, p. 286): 

…a way of understanding should not be treated by teachers as an absolute universal entity 

shared by all students, for it is inevitable that each individual student is likely to process 

an idiosyncratic way of understanding that depends on her or his experience and 

background. 

Results also showed that the proof of the Pythagorean Theorem was most convincing 

for most students in this study. Their ways of thinking on this were almost identical. 

This was unexpected from the researchers’ standpoint since we spent a considerable 

amount of time on the Complex Spectral Theorem in class, and in some ways, it is the 

climax of many fun previous results.   

Although the literature reveals some insights on students’ thought processes in first 

courses in linear algebra, studies on second courses and unravelling students’ ways of 

understanding and ways of thinking in the formal world need more careful attention.  

While employing Harel’s (2008) framework in this study showed a glimpse into 

students’ ways of understanding and ways of thinking, it is not the aim of this small 

study to make any concrete conclusions. From the teaching point of view, we believe 

that evaluating and constantly reviewing proofs in groups during the class helped the 

students to think critically about any written proofs. In Harel’s view, “the goal of the 

teacher should be to promote interactions among students so that their necessarily 

different ways of understanding become compatible with each other and with that of 

the mathematical community” (p. 286). As Tall (2008, p. 15) asserts: 

 …as mathematicians we begin to appreciate the purity and logic of the formal approach, 

but as human beings we should recognise the cognitive journey through embodiment and 

symbolism that enabled us to reach this viewpoint and helps us sustain it.  

As we continue this new terrain of research, we plan to develop the theoretical 

framework further. Our future work will also include collecting more data from 

students and making recommendations for teaching linear algebra proof in seconds 

courses.   

 References 

Axler, S. (2015). Linear algebra done right (3rd ed.). Undergraduate Texts in Mathematics, 

Springer. 

Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand 

students’ conceptual difficulties. International Journal of Mathematical Education in 

Science and Technology, 40(7), 963-974. 

Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The linear algebra curriculum 

study group recommendations for the first course in linear algebra. The College 

Mathematics Journal, 24(1), 41–46.  



Stewart & Tran 

 

 

4 - 50 PME 45 – 2022 

  

Hannah, J. (2017). Why Does Linear Algebra Have to Be So Abstract? In S. Stewart (Ed.). 

And the Rest is Just Algebra (pp. 205-217). Springer, Cham. 

Harel, G. (2008). What is mathematics? A pedagogical answer to a philosophical question. In 

B. Gold & R. Simons (Eds.). Proof and other dilemmas: Mathematics and Philosophy, 

Washington, DC: Mathematical Association of America, pp. 265-290. 

Malek, A., & Movshovitz-Hadar, N. (2011). The effect of using transparent pseudo-proofs 

in linear algebra, Research in Mathematics Education, 13(1), 33-58. 

Stewart, S., Axler, S., Beezer, R., Boman, E., Catral, M., Harel, G., McDonald, J., Strong, D., 

and Wawro, M. (2022, in press). The Linear Algebra Curriculum Study Group (LACSG 2. 

0) recommendations. Notices of the American Mathematical Society. 

Stewart, S., Andrews-Larson, C., & Zandieh, M. (2019). Linear algebra teaching and 

learning: Themes from recent research and evolving research priorities. ZDM Mathematics 

Education, 51(7), 1017-1030.   

Stewart, S., & Thomas, M. O. J. (2019). Student perspectives on proof in linear algebra. ZDM 

Mathematics Education, Springer, 51(7), 1069-1082.  

Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research: Grounded theory 

procedures and techniques (2nd ed.). Newbury Park, CA: Sage.  

Tall, D. O. (2008). The transition to formal thinking in mathematics, Mathematics 

Education Research Journal, 20(2), 5–24.   

Uhlig, F. (2002). The role of proof in comprehending and teaching elementary linear 

algebra, Educational Studies in Mathematics, 50(3), 335-346.   

 

   


