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A HELPING HAND IN OUTDOOR MATHEMATICS – THE ROLE 
OF GESTURES IN MATHEMATICS TRAILS 

Simone Jablonski1, Sandy Bakos2 

1Goethe University Frankfurt, Germany 
2Simon Fraser University, Canada 

 
Mathematics trails provide learners with opportunities to leave the classroom to 
discover and engage with mathematics outdoors, using real-world objects and 
structures. Students are immersed in mathematical problems that require them to think 
about and make connections between the mathematics learned in the classroom and 
how this knowledge can be applied in a novel context. In this qualitative study, 
participants engaged in a mathematics trail, during which we observed a significant 
use of gestures in the interactions between group members and the physical objects 
that formed the basis of the mathematical problems. Seeing a connection to the idea of 
embodiment, we pay particular attention to the types and functions of those gestures 
that emerged in the outdoor mathematics trail context.  
INTRODUCTION 
Compared to the confines of the classroom where students often remain seated while 
working at their desks, outdoor mathematics, a form of mathematics education that 
occurs in an outdoor environment, provides students with both movement and a less 
familiar context for doing mathematics. Mathematics trails are an approach to this that 
guide students along a predetermined route of mathematics tasks that use real objects 
along the trail (Gurjanow & Ludwig, 2018). By solving mathematics tasks outdoors, 
using real-world, physical objects, students engage in first-hand, out-of-class 
experiences of mathematics, which play a “central role […] in the learning process” 
(Kolb et al., 2000, p. 1) according to the Experiential Learning Theory (ELT). Given 
that gestures have been shown to be important to foster student learning (Sinclair & de 
Freitas, 2014), we wanted to study students’ gesturing in this new, less constrained 
mathematics trails environment. 
THEORETICAL BACKGROUND 
Outdoor mathematics in the context of modelling and experiential learning 
To solve a mathematics trail task, it is necessary to consider the object’s outdoor 
context and to transfer it into the mathematical world. These processes are described 
in the modelling cycle outlined by Blum & Leiss (2007), where learners must first 
engage in “understanding” and “structuring/simplifying” the outdoor context before 
“mathematising” in order to transfer from the real-life object to the mathematical 
model. After students use the necessary procedures to solve the mathematics, the 
results must then be retransferred back to reality. This is referred to as “interpreting” 
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the results before being subsequently “validated” and “presented” at the real object. To 
highlight the two domains, “Reality” and “Mathematics”, Figure 1 shows a modified 
version of the modelling cycle which emphasises these transfer processes specifically 
in the context of an outdoor mathematics task. 

 
Figure 1: Modified modelling cycle for the outdoor context (Blum & Leiss, 2007). 

In relation to ELT, activities that are linked to “Reality” seem especially relevant, since 
these first-hand experiences must necessarily take place at a physical object. 
The role of gestures in outdoor mathematics education 
From an embodied perspective, gestures, i.e. “hand movements that co-occur with 
speech” (Goldin-Meadow, 2003, p. 4), play an important role in learning and teaching 
mathematics concepts. “Children can express thoughts in gesture that they don’t even 
know they have. And those thoughts tend to be on the cutting edge of their knowledge” 
(p. 116). Hereby, gestures can occur in different forms, which McNeill (1992) 
categorised into four different types (see Table 1).  

Gesture Explanation 
Iconic Movements and shapes of body, objects, people in space 

Metaphoric Gestures that represent abstract ideas rather than concrete objects 
Deictic Indicate people, objects and locations in the real world 

Beat Gestures that beat musical time 

Table 1: Types of gestures according to McNeill (1992). 
Gestures, independent of their type, often occur unconsciously. However, in relation 
to mathematical concepts, they are used for different purposes, which Kita et al. (2017) 
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summarised as the four functions of gestures: 

• Activating Spatial Information, i.e. focus on new/different information 
• Manipulating Spatial Information, i.e. rearrange, translate, rotate, invert  
• Structuring Spatial Information, i.e. organise information for the act of 

speaking  
• Exploring Spatial Information, i.e. explore more complex situations and 

distinguish relevant and non-relevant information  
Together with these functions, “gesturing may make it easier to link a speaker’s words 
to the world. […] linking words and phrases to real-world objects, is required for 
comprehension” (Goldin-Meadow, 2003, p. 163). Finally, the positive impact of 
content-related movements and gestures in relation to learning and thinking about 
mathematical concepts are well known (e.g., Sinclair & de Freitas, 2014). In particular, 
these authors look at manipulating gestures in the context of a touchscreen 
environment. In addition to in-the-air movements, the authors also consider contact 
and touching gestures to be actual gestures. We follow this understanding of gestures.   
From the connection between ELT and embodiment, we assume that gestures will be 
observed while learners engage in the solution process for mathematics trail tasks. Prior 
observations in the outdoor context confirm this hypothesis and show that deictic 
(particularly pointing) and iconic gestures in particular, seem to be relevant during the 
modelling steps of simplifying and structuring (Jablonski, 2021). Therefore, we assume 
that most gestures in the outdoor context are linked to “Reality” (see Figure 1) and to 
the work occurring at that task’s object. The physical presence of the object at the task’s 
location may influence the occurrence of gestures, which will be investigated in more 
detail.  
Though in a different material-based mathematical context, the observations of Menz 
(2015) and Hare & Sinclair (2015) allow the hypothesis that the presence of real-world 
outdoor objects might extend the pointing, especially for deictic gestures, to an actual 
touching gesture. Therefore, we formulate the following research question for the 
outdoor mathematics context: [RQ1] Does the presence of physical objects extend the 
use of deictic gestures from pointing to touching gestures during outdoor mathematics?  
The outdoor context makes it possible to interact with a task’s object that is physically 
present. Therefore, students encounter a material-based situation, though the material 
object itself is not variable in its position and situation. This may lead to a more intense 
use of manipulating gestures in activities that are linked to “Reality” and prepare the 
actual “Transfer R à M”. Based on this hypothesis, a second research question is taken 
into consideration: [RQ2] What role do manipulating gestures play during activities 
linked to the real object of a mathematics trail task? 
METHODOLOGY 
A qualitative study was conducted at Simon Fraser University (SFU), Canada during 
September and October 2021 to investigate the role of gestures in mathematics trails. 
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The sample is comprised of eleven participants (doctoral or master students and a 
professor) from the field of mathematics education at SFU, who volunteered to take 
part in the project. Each group of two to three participants solved eight tasks along a 
mathematics trail located on campus. The mathematics trail was created in the 
MathCityMap system, which guides students along the outdoor tasks, includes optional 
hints and provides immediate feedback on the quality of the entered solution (see 
Gurjanow & Ludwig, 2018). The groups required 60–90 minutes to solve all of the 
tasks and were accompanied by one of the researchers, who filmed the solving process 
and recorded observations relevant to the research questions.  
The eight math trail tasks cover various topics of secondary school mathematics and 
required participants to gather the information necessary to solve the problem while at 
the outdoor location. Table 2 presents two tasks concerning outdoor objects, the task 
formulation and mathematical activities that could be useful for solving each task. 

Object/Situation Task Formulation Mathematical Activities 

 

What is the volume of 
this pyramid? Give the 

result in m³. 

Choose mathematical model (regular 
pyramid) and data (height and base 

length), take necessary 
measurements, use a formula 

 

Determine the height 
you will cover when 

you run up the hill. Give 
the result in meters. 

Choose mathematical model (total 
height as sum of height of each step) 

and take necessary measurements 
(individual steps), addition 

Table 2: Two mathematics trail tasks from the study. 
The recordings of the solution processes used by each group resulted in more than four 
hours of video. For this paper, we chose the “Pyramid” and “Hill” tasks outlined in 
Table 2. These tasks were chosen for a comparative analysis due to the different foci 
on mathematics necessary to solve each task: the “Pyramid” task focuses on a 
characteristic of a physical object (i.e. its volume) and the “Hill” task is based on a 
real-life situation (i.e. running up the hill). In the first step, there were 37 sequences of 
gestures selected for analysis. Hereby, all noticeable hand movements are considered 
sequences and a single hand movement represents one sequence.  
In the second step, the selected sequences of gestures, in conjunction with their 
accompanying speech between group members, were analysed in terms of the 
mathematical content (description of the task solution process) and outdoor context 
(categorisation of the sequence according to Figure 1). The latter identifies whether a 
sequence contains an activity that is either linked to “Reality”, to “Mathematics” or to 
the “Transfer from Reality to Mathematics” or vice versa. 
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In the third step, the gestures within each sequence were coded using the categories 
from McNeill’s (1992) Type of Gesture (iconic, metaphoric, deictic and beat) and Kita 
et al.’s (2017) Function of Gesture (activate, manipulate, structure and explore). 
Deictic gestures were further coded as pointing or touching. It seems legitimate to 
make reference to already existing categories of schemes, since gestures occurring 
outside should, hypothetically, be completely assignable. The categorisations were 
empirically confirmed in the context of the study with good values (Kappa between 
.72 and .8) of intercoder reliability. Finally, all analysed units are connected and taken 
into consideration for deeper analysis with regard to the research questions. 
RESULTS 
In the first part of the results presentation, we summarise the data for all identified 
sequences, while in the second part, we take individual sequences with either deictic 
(touching) and manipulating gestures into account.  
General description of gestures  
Analysis of the outdoor context shows that the majority of gestures occurred during 
activities that are linked to “Reality” (56.8%), followed by activities in the “Transfer 
from Reality to Mathematics” (37.8%), though they also played a minor role in 
“Mathematics” and “Transfer from Mathematics to Reality”. These results are 
consistent with previous research findings in the outdoor context where gesturing 
occurred particularly while students were in the simplifying/structuring stage and 
during the mathematising stage of the modelling cycle (Jablonski, 2021). The different 
types and functions of the gestures that occurred during the 37 identified sequences are 
summarised in Figure 2.  

     
Figure 2: Type and function of the gestures. 

The overall occurrence of gesture types also confirms Jablonski’s (2021) previous 
findings of mainly iconic (27%) and deictic (62%) gestures used in the outdoor 
mathematics context, whereby deictic gestures, which contain both pointing (80%) and 
touching (20%) gestures, occur more than expected. The hypothesis that touching the 

27%

62%

11%

Types of Gestures

Iconic Deictic Metaphoric Beat

59%
16%

19%
5%

Functions of Gestures

Activating Structuring Manipulating Exploring
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real-world, physical object might be relevant in outdoor mathematics can be confirmed, 
however, it remains unclear in which situations and contexts that this gesturing occurs.  
Before moving to a detailed analysis of individual sequences, we will consider the 
functions of gestures. The results show that most gestures are used for activating spatial 
information (59%), followed by gestures for manipulating (19%), gestures for 
structuring (16%) and gestures for exploring (5%) spatial information. As in the 
previous category, we can confirm the hypothetical relevance of gestures-for-
manipulating through their occurrence in 19% of all sequences. Together with the 
deictic, touching gestures, we will focus on these gestures in more detail in the second 
part of the results presentation. 
The role of deictic gestures 
From the general overview, deictic gestures appear to play a major role while solving 
mathematics tasks with real-world, physical objects. Most deictic pointing gestures can 
be observed when participants are identifying relevant points, i.e. the pyramid’s apex, 
and mainly occur in relation to activities related to reality, i.e. simplifying and 
structuring. Still, about 20% of the analysed deictic gestures involve physically 
touching the real object as described in this sequence from the “Pyramid” task. As the 
participants searched for a way to identify the height of the pyramid by using its 
characteristics, one participant’s verbal proposal is accompanied by different deictic 
gestures (summarised in Table 3). 

Act of Speech Description of the Gesture Analysis of the Gesture 

We could 
measure this 

Student moves left hand down 
the arm of the pyramid and taps 

it.  

Deictic (both touching and 
pointing) indicating the arm 

of the pyramid as “this”. 

and knowing 
half of that  

Student points with the right 
hand along the edge of the base 

to the bottom right corner.  

Deictic (pointing) indicating 
the edge of the base as 

“that”. 

we could find 
that. 

Student points upwards with the 
right hand toward the middle of the 
pyramid. With the index finger of 
the left hand the student makes a 
sweeping point at the bottom area 
of the pyramid towards the middle 

of the base. 

Deictic (pointing) 
indicating the height of 
the pyramid as “that”. 

Table 3: Analysis of an act of speech with gestures. 
Only the combination of the participant’s act of speech, with the deictic gesture, makes 
his proposal – using the Theorem of Pythagoras to calculate the pyramid’s height with 
only lengths that can be measured precisely – understandable. Instead of using the 
verbal mathematical expressions for identification, the participant touches and points 
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while using the expressions, “this” and “that”. In particular, in the first part of the act 
of speech, we can observe the use of a touching deictic gesture when the participant 
refers to the arm of the pyramid. It seems like the participant wanted to highlight the 
actual physical appearance of this side length, which makes it easy to be measured 
precisely – in contrast to the height of the pyramid, which can only be imagined.      
The role of manipulating gestures 
Finally, we demonstrate the use of manipulating gestures in the following sequences 
related to the “Pyramid” task. The participants – we call them Kate and Paul – tried to 
figure out whether they could combine multiple pyramids into a rectangular prism 
using several in-the-air gestures to manipulate the object and situation. 

Kate:  If you put it in the middle [motions up and down with an open palm, thumb 
up] and flip this over [using both hands parallel to each other, palms open, 
motions flipping the shape 90 degrees to the left], does it not [using right 
index finger, traces the left, top and right side of a rectangle shape] follow 
a rectangular prism or am I way off? 

Paul:  It does not. Because that point [points towards the apex with right index 
finger] ends up down here [points towards the bottom left corner of the 
pyramid’s base with right index finger].  

Kate:  Down there [points towards apex and then gestures down to the left base 
with her right index finger] and then [gestures back towards the apex and 
then moves her index finger across to the left] it will cut right. 

Paul:  And the wide [points both hands, index fingers towards the sky, hands and 
arms close together. Gestures outwards with both hands] ends up there and 
you get this weird shape [Moves index fingers down and inwards at an 
angle, then down and outwards at an angle, mimicking the hourglass shape 
made by two pyramids stacked on top of each other, apex to apex] there. 

We observe a series of manipulating gestures in this sequence. The rotation of the 
pyramid in particular, is explored through several manipulating gestures. Even though 
this idea is no longer relevant for their modelling process, we can observe similar 
considerations in relation to the geometric task of the pyramid’s volume. In contrast, 
the “Hill” task does not provoke manipulating gestures. Therefore, the role of 
manipulating gestures may depend on the context of the actual task and does not only 
rely on the existence of a real-world, physical object outside the classroom. 
CONCLUSION AND OUTLOOK 
The analysis of gestures that occurred in two different outdoor mathematics tasks 
provide insight into the embodiment nature of working mathematically with real-world 
objects. First, we can observe the overall appearance of gestures and conclude that 
embodiment and gestures are particularly relevant for the work in “Reality” and the 
“Transfer from Reality to Mathematics”. With deictic gestures being the majority, it 
can be seen that not only pointing, but also touching gestures appear (cf. RQ1). 
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Hypothetically, this happens in situations where the students want to bring the focus to 
the actual existence of the object and the use of its real, touchable characteristics. With 
the modelling process becoming more complex, i.e. imagining an altered or enriched 
situation, manipulating gestures can be observed (cf. RQ2). In our analysis, these 
occurred primarily during the geometric task. Additional work, however, is required to 
confirm this and should also be compared to similar task formulations inside the 
classroom without real-world objects. 
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ENGAGING WITH ONLINE ELABORATED FEEDBACK AS A 
MEDIATION TOOL IN THE MATHEMATICAL 

ARGUMENTATION PROCESS 
Amal Kadan-Tabaja, Michal Yerushalmy 

University of Haifa 
 
Feedback may be more effective if students engage with its content. Almost no studies 
have examined the potential of online elaborated feedback to enhance students’ 
mathematical argumentation. We designed a set of tasks requiring argumentation that 
must be supported by constructing examples in an interactive diagram using automatic 
verbal characteristics suggested by the technological environment. We explored 
whether and how a 7th-grade student's engagement with the mediation tools supports 
her mathematical argumentation of claims on the topic of comparing fractions. Our 
data were derived from a task-based interview and automatic analyses that the 
technological environment provides. The results show that there was an improvement 
in the student's argumentation in response to the feedback process.  
INTRODUCTION 
Feedback is a term most often used to describe information provided by agents in 
response to submitted work. It is considered as one of the most powerful ways of 
supporting learning processes (Hattie and Timperley, 2007). Shute (2008) pointed out 
that elaborated feedback, which addresses students’ responses, particular errors, and 
examples, and provides guidance toward a correct answer, appears to enhance students' 
learning more than other types of feedback. Shute’s review indicated that presenting 
too much information may result in superficial learning and cognitive overload. 
Feedback can support learners effectively if it is part of a process in which learners 
play a central role in sense making and use comments to improve their work or learning 
strategies (Carless and Boud, 2018). We distinguish between two meanings of 
feedback. Feedback as an object, which refers to the contents of feedback itself (the 
information), and the feedback process, which describes the student's interactions with 
the task and the feedback information.  In this study, we used STEP (Seeing the Entire 
Picture) as a formative assessment environment. STEP tasks provide elaborated 
information presented as automatic verbal characteristics in the form of immediate 
feedback in response to the student’s dragging action in the interactive diagram (ID) 
(Harel and Yerushalmy, 2021). To help students become aware and reflect on the 
provided feedback report, the same characteristics appear as claims in the tasks 
designed for the activity.  
Mathematic argumentation is one of the meta-cognitive strategies, and it is defined 
as a process of drawing conclusions with the aim of demonstrating that a claim is true 
or false based on a set of relevant information. Argumentation has the potential to help 
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students modify their understanding and refute misconceptions (Oh and Jonassen, 
2007). Toulmin (1958) presented a model for analyzing arguments that consists of six 
statement types, each playing a different role in the argumentation process: the 
conclusion (C) is the statement that must be proven true or false; the data (D), which 
is relevant evidence for the claim; the warrant (W), which justifies the connection 
between the data and the conclusion (by appealing to a rule or a definition); the warrant 
is supported by the backing (B), which presents further evidence; the qualifier (Q), 
which qualifies the conclusion by expressing degrees of confidence; and the rebuttal 
(R), which potentially refutes the conclusion by stating the conditions under which it 
does not hold. Not all of these components must be explicitly verbalized in every 
argument. In our study, we used this model to identify the argumentation components 
in the student’s transcribed interview while the student engaged in the feedback 
process.  
Fractions are a central topic in the mathematical curriculum. Learning the concept of 
fractions poses a significant challenge, and it has been for a long time a focus of 
research of the mathematics education community. Students tend to develop 
misconceptions about fractions for the following reasons: (a) dealing with fractions as 
natural numbers, they compare fractions by looking at the values of the numerator and 
the denominator rather than considering the whole fraction, and assume that if the 
values of the numerator and the denominator are greater, the fraction is also greater 
than the other; (b) generalizing a given strategy to all fractions, for example, comparing 
fractions by comparing them with 1 is a strategy that students should use differently 
with fractions that are smaller or greater than one (Alacaci, 2014; Behr, Wachsmuth, 
Post, and Lesh, 1984). These misconceptions were the basis of argumentation claims 
that the student had to justify by constructing an example in the ID. 
The novelty of this study lies in the type of designed feedback process stemming from 
interaction with online elaborated information and from the request for mathematical 
argumentation to be provided by the student. To this end, we designed a set of tasks 
requiring argumentation that must be supported by constructing examples in an 
interactive diagram using automatic verbal characteristics suggested by STEP. We 
conducted an empirical study to explore how students engage with such feedback, and 
we sought to identify the argumentation components reflected in this engagement. Our 
main research question was: How is the engagement of the student with the online 
elaborated feedback reflected in the student’s examples and her mathematical 
argumentation?  
METHODOLOGICAL CONSIDERATIONS 
This study is part of a larger study in which we explore the use of online elaborated 
feedback by students and describes a small-scale experiment that enables qualitative 
analysis. One 7th-grade student worked on the tasks within the framework of a task-
based interview. The student had learned fractions according to the national curriculum 
in a regular classroom. She was presented with a sequence of tasks delivered on STEP.  
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The interactive diagram (Figure 1) that the student used to solve each task is based 
on a representation similar to that described in the Arnon, Nesher, and Nirenburg’s 
(2001) study. It displayed points in the coordinate system representing a fraction. The 
numerator was represented by the number that appears on the vertical axis, and the 
denominator by the number that appears on the horizontal axis. The student was asked 
to construct fractions by dragging the green and the red points only along the grey lines, 
where all the fractions reside for which the difference between the numerator and the 
denominator in absolute value is 1: fractions smaller than 1 on the lower line (labeled 
I) and fractions greater than 1 on the higher line (labeled II). Such fractions are given 
as an example of a fraction comparison strategy in the mathematics curriculum and 
books. The strategy requires the student to decide which fraction is greater depending 
on its distance from the 1 whole. This strategy is normally used in the case of fractions 
smaller than 1 and formulated as “the fraction that is closer to 1 is greater.” Some 
students have a misconception that this formulation applies to all fractions, including 
to those greater than 1. Throughout the activity, the ID shows automatically which 
fraction is closer to 1 (Figure 1**). 
The feedback that was reported automatically was generated in response to the 
dragging of the points in the ID. The characteristics were designed to reflect the ideas 
of the activity and the pedagogical mathematical goals of the task. Five characteristics, 
labeled 1-5, were included (Figure 1). They have the potential to be helpful in the 
student’s attempts to explain and argue that the construction meets the requirements of 
the task: mathematical (characteristics 1 and 4); visual representation (characteristic 
2); and the method for comparing two fractions (characteristics 3 and 5). If STEP 
identifies any characteristic in the example while the student performs a dragging 
action in the interactive diagram, it is highlighted in blue; otherwise, it is highlighted 
in grey. These characteristics were designed to reflect the curricular foci of the task 
and the basis for the student's engagement with the task, which may help students 
identify their misconceptions. The criteria for assessing changes between the examples 
in the course of the activity were based on a comparison of the automatically assessed 
characteristics, assuming that the change in the example space indicates changes in the 
student’s concept of comparing fractions. 
The flow of the activity. Each of the tasks 1-3 (Figure 1) contained the same four 
claims (labeled a-d), regarding which the student had to decide whether they are true, 
and support each true claim by constructing an example. In all tasks, claim d was true. 
The other claims reflected misconceptions stemming from the wrong generalization of 
the strategies for comparing fractions that the students had learned. Task 1, designed 
to reflect the initial conception, did not contain online elaborated feedback. Tasks 2 
and 3 included five sets of mathematical characteristics each, which were given as 
online elaborated feedback. To help the student engage with the online feedback 
process, she was asked to characterize her example using this set of characteristics. 
Task 2 was formulated as follows: “Choose which are the true claims and support every 
true claim by an example. Below the interactive diagram, five characteristics can help 
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you characterize the two fractions you have created. Check each characteristic that is 
present in your example before submitting it. Try to submit two fractions in a way that 
your submission should comply with as many characteristics as possible.” If the student 
chose the true claim, the maximum number of characteristics was 3 (characteristics 1, 
2, and 3). In task 3, the student was asked to submit examples that comply with as few 
characteristics as possible; the minimum number of characteristics was 2 
(characteristics 1 and 3).  
The representation line is a tool that student could choose whether to use (Figure 1*); 
it did not appear automatically. When the fractions were not equivalent, two distinct 
lines appeared, green and red; the line of the greater fraction was higher than that of 
the smaller fraction; the lines coincided when the fractions were equivalent. The use of 
the representation line could help the student connect it with the correctness of her 
answers. 
The	interactive	diagram	

 	

Online	elaborated	feedback	

1.	The	green	fraction	is	greater	than	the	red	one		

2.	The	green	line	higher	than	the	red	one		

3.	One	fraction	is	greater	than	1,	and	the	other	fraction	is	
smaller	than	1	

4.	You	chose	two	fractions	that	are	smaller	than	one		

5.	 The	 two	 fractions	 have	 equal	 numerators	 or	
denominators	

Claims	

		 a.	 The	 fraction	 that	 is	
closer	 to	 1	whole	 is	 always	 the	
greater	 fraction.	 (If	 you	 agree	
with	the	claim,	choose	the	green	
fraction	as	the	greater	fraction.)	

b.	 The	 fraction	 with	 the	
greater	 numerator	 and	
denominator	 is	 always	 the	
greater	 fraction.	 (If	 you	 agree	
with	the	claim,	choose	the	green	
fraction	as	the	greater	fraction.)	

c.	 The	 fractions	 are	
always	equal	in	this	case.	

d.	 It	 is	 possible	 to	 find	 a	
fraction	 with	 a	 smaller	
numerator	 and	 denominator	
that	 is	 greater	 than	 the	 other	
fraction.	 (If	 you	 agree	 with	 the	
claim,	choose	the	green	fraction	
as	the	greater	fraction.)	

Figure	1.	The	interactive	diagram,	online	elaborated	feedback,	and	claims.	
Data sources and analysis. The data were based on automatic information analysis by 
STEP, which we correlated with the segments of the student’s transcribed interview 
that we analyzed qualitatively. Using Toulmin’s model (1958), we sought indications 
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of a connection between the student’s engagement with the online feedback and the 
process of argumentation.  
FINDINGS 
After reading the instructions of task 1, the student chose Claim a (C), The fraction that 
is closer to 1 whole is always the greater fraction, and constructed the example 7/6>6/5 
(D) (Figure 2-a). The student declared that she was confident in her choice (Q), she did 
not look for other true claims. The student did not realize that her choice of the claim 
was incorrect and that her submission did not meet the requirement of the claim she 
chose (the green fraction was not the greater one). The example that the student chose 
shows that the strategy she used stems from incorrectly generalizing a rule in Claim a. 
The student went on to task 2 and again chose Claim a. To meet the requirement of the 
task, she tried to support her claim by constructing an example that has as many 
characteristics as possible, based on the elaborated feedback. She chose two fractions 
that are smaller than 1, activated the line representation, and compared the 
characteristics in the elaborated feedback with the positions of the lines (Figure 2-b). 

 Claim	a	  Claim	a  Claim	d	

	
The	green	
fraction	is	

closer	to	1	whole.	

	
The	green	fraction	
is	closer	to	1	

whole.	

	
The	red	fraction	
is	closer	to	1	

whole.	
Figure	2-a.	Submission	
of	task	1	

Figure	2-b.	Submission	of	
task	2 

Figure	2-c.	Submission	
of	task	3 

Below are some of the student's interactions with the feedback and her self-reflections: 
1  S:  (Dragging the two points and looking at the feedback characteristics) I see! 

When the green fraction is greater than the red one, the green line is higher 
than the red one. They (the characteristics 1 and 2 in the feedback) turn on 
and turn off together (means changing colors).  

2  I:  How do you know that the green fraction is greater?  
3  S:  It's written in characteristic 1, and I can see here (points to the statement 

that shows which fraction is closer to 1. The student chose 7/8>6/7). 
4  I:  Why did you choose these fractions? 
5 S:  Because this (points to characteristic 3) and this (points to characteristic 4) 

cannot turn on together (cannot be that both fractions are smaller than one, 
and at the same time one of them is greater than 1). I have to choose one of 
them. (The student ignored characteristic 5 in the feedback and submitted 
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her answer. The characteristics that were turned on in the feedback were 1, 
2, 4.) 

In line 1, the student realized that the connection between the representation lines and 
the value of the fraction provided her with a way to support Claim a (W). She chose an 
example that was suitable for the claim she thought was true and identified 
characteristics 1 and 2 in the feedback (D). In line 5, she realized that characteristic 3 
and 4 were contradictory. She based her justification of the claim on evidence that 
supported it, but did not try to find examples that could refute her claim. The conclusion 
followed from the data. Although the student believed that it was not possible to refute 
the claim, there is way to do so by suggesting fractions greater than 1.  
The student continued to task 3. She chose Claim a as true, read the characteristics 
trying to construct an example that would meet the task requirement of as few as 
possible characteristics, then dragged the points to 9/8>6/5. All the characteristics in 
the feedback were turned off. Below are some of the student's reactions to the 
elaborated feedback (Figure 2-c): 

1  S:  How it can be? The green fraction is closer to 1whole, but the characteristic 
1 was turned off. (She activated the line representation.) The red line is also 
higher than the green one! (She wrote in the notebook.) If I do a common 
denominator for both fractions 9x5/8x5=45/40 and 6x8/5x8=48/40. The red 
is greater!  

2  S:  (She drags the green fraction to 8/7, then drags the red one over the grey 
line I). I understand now (changes her choice to Claim d).  

3  I:  Understand what? 
4 S:  I put the green fraction to be always greater than 1 (on the grey line II) and 

the red to be always smaller than 1 (on the grey line I). In this case the green 
will never be smaller than the red one. I thought that the green should 
always be closer to 1 but when I drag the red one, look, it's not the case here 
(the fraction that is closer to 1 changes color). Claim a is not true.  

5  I:  Why did you choose Claim d? 
6  S:  Claim c is not true for sure; the fractions are equal only when the two points 

are together. If Claim d is true, then Claim b for sure is not true because 
they are contradictory (chose 3/2>17/18; the characteristics that were 
turned on in the feedback were 1, 2, 3). 

In line 1, the student constructed an example that supports her claim. She noticed that 
this example was refuted by the elaborated feedback characteristic (D). In line 1, the 
student calculated a common denominator for both fractions as an alternative strategy 
of comparing fractions (W) to check that the characteristic in the feedback was 
working. By this strategy, she discovered that her example was not correct (D), as the 
feedback showed, and refuted her claim, which made her decide that the Claim a was 
not true. The student tried another strategy to find the true claim: she used her previous 
knowledge about comparing fractions to 1 whole. This was the warrant (W), and the 
student tried to explain and investigate by dragging in the interactive diagram, 
simultaneously following the changes in the characteristics of the feedback (B) (lines 
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3-6). She chose Claim d as true (C). She could explain her argument by dragging the 
points and finding the relation between the examples (D), which were at the same time 
refuting the other claims (R). The conclusion regarding Claim d being true follows 
from the data that the feedback provided to the dragging action in the ID (Q). The 
student, however, did not mention specifically how a counterexample refuted the 
generalization in Claims a-c. 
DISCUSSION AND CONCLUSIONS 
The aim of this study was to examine the way the student engaged with online 
elaborated feedback on mathematical argumentation. One challenge was to help the 
student interact with the feedback information. To this end, we designed an activity 
based on a rationale for feedback and immediate linguistic mathematical characteristics 
offered by STEP, derived from argumentation requirements. The empirical results 
show that we could identify statements and student examples that were a response to 
the student's engagement with the feedback process. Through the feedback process the 
student changed her choice of true claims and examples. Mathematical argumentation 
was improved in response to engaging in the online feedback process. This 
improvement was apparent in the student's work and explanations based on the 
feedback process: she constructed examples as evidence or explanation for the 
requirement of the task and to the elaborated feedback that was part of it. The 
elaborated feedback helped her find the true claim; she refuted other claims by 
counterexamples, identified features that characterized her answers, compared 
characteristics, understood the relation between them, and connected them to other 
claims by way of a reasoning (for example, the connection between the comparison of 
the fractions and the representation line). The student used new strategies for 
comparing fractions to modify her choices (the representation line tool) and supported 
her argumentation by a warrant from her previous knowledge (the common 
denominator strategy). Engaging with the feedback process led the student to modify 
her concept and refute misconceptions. The feedback process served as an indicator 
that gave the student confidence with respect to the way she thought about and chose 
her claims.  
The findings are consistent with the literature, which reported a strong potential for 
online feedback in the learning process (Harel and Yerushalmy, 2021). This is 
especially true for the improvement of mathematical argumentation (Gaona and 
Menares, 2021). To engage the student with the feedback process, we designed an 
activity in STEP that provided special elaborated feedback that was part of the task 
requirements. The student's engagement with the feedback activated her ability to raise 
questions, construct supporting or refuting examples, to find explanations connected 
to her existing knowledge, and to compare arguments. The engagement with the online 
feedback process led to improvement in the student's mathematical 
argumentation. These findings can serve as a basis for further research in the field of 
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online elaborated feedback. The study was limited by one participant and should be 
reproduced with larger groups.  
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We present a study of a model for professional development of mathematics teachers, 
based on their participation in a collaborative problem solving in online discussion 
forums, in two roles. At the first stage of the study, 47 high-school mathematics 
teachers participated in the forums as students. At the second stage, they mediated 
forums as mentors. The first stage of the study showed gradual development of group 
synergy among the teachers-as-students. The second stage showed that the experience 
of group synergy gained by the teachers at the first stage has supported the 
development of their mathematical fluency in teaching.    
INTRODUCTION 
There is a broad consensus in the mathematics education community that mathematical 
reasoning in problem solving, critical thinking, and the ability to work collaboratively 
are the key components of students’ learning (OECD, 2019). This approach to 
students’ learning implies that teachers should develop knowledge and skills of 
mathematical communication with students in real time, including the ability to listen, 
interpret and respond to the student's reasoning, and conduct effective mathematical 
discussion in the learning process. The proficiency in these skills is referred to as 
mathematical fluency in teaching (MFT) (Ball et al., 2008). In addition, MFT assumes 
the teacher ability to evaluate alternative solutions, understand students' unfinished 
ideas, and identify sources of their mistakes.  
Studying the forms of teacher professional development (PD) that can contribute to the 
development of MFT is one of the priorities in the field of research on teaching 
mathematics (Hoover et al., 2016). Several studies have demonstrated the potential of 
PD models, in which teachers act as learners while tasting and developing the skills 
they would like to develop in students (e.g. Kramarski & Kohen, 2017). The current 
study makes one step further and examines a PD model based on teachers’ participation 
in collaborative problem solving in online discussion forums while assuming two roles. 
At the first stage, the teachers participate in the forums as students. At this stage we 
target the growth of group synergy (Clark, et al., 2014; Stahl, 2021), which is referred 
to as continuous interaction among problem solvers who monitor and develop each 
other 's problem-solving ideas. At the second stage, the same participants assume the 
role of leaders of problem-solving forums (PSF henceforth). This study aims at testing 



Keller, Koichu, Kohen 
 

 

3 - 20 PME 45 – 2022 
 

the following hypothesis: the development of group synergy among teachers in the 
process of their participation in collaborative problem solving in PSF contributes to the 
development of their MFT.   
THEORETICAL FRAMEWORK 
In the last decades, many studies explored knowledge and skills that mathematics 
teachers need to develop (Chapman, 2015). Mathematical fluency in teaching (MFT) 
has been identified as one of the most important teaching skills (Ball, et al., 2008; 
Hoover, et al., 2016). It is broadly agreed that for the development of the MFT, it is 
necessary for the teachers to deepen their mathematical knowledge, in order to be in 
position to quickly navigate among approaches to understanding and solving 
mathematical problems that students may have. One of the methods of deepening 
mathematical knowledge is systematic engagement in solving challenging 
mathematical problems (Polya, 1945). Additionally, experiencing problem solving by 
teachers is necessary in order to strengthen their pedagogical skills for better 
understanding how students think (Chapman, 2015).  
A number of PD models developed for deepening mathematical and pedagogical 
knowledge of teachers is described in the professional literature. For example, Koellner 
et al. (2007) described a PD model consisting of the following cycle: the teachers first 
solve mathematical problems, then analyse videotaped problem solving by school 
students who are given the same problems, and then discuss how they would use the 
problems in their classrooms.  Koellner et al. (2007) showed that this model has 
undeniable potential for strengthening the link between the mathematical knowledge 
for teaching and teaching practice. However, the study did not attend to the exchange 
of mathematical ideas among the teachers in the problem-solving process, as well as 
to the enactment of the accumulated knowledge with students in real time.  
A number of studies have demonstrated the potential of PD models, in which teachers 
act as learners, testing and developing skills that they would like to develop in learners 
(e.g., Kramarski & Kohen, 2017). The present study continues both of these directions: 
the development of mathematical knowledge of in-service teachers through problem 
solving and the testing of new teaching methods by teachers, on themselves as students. 
This article discusses the model of the PD of teachers in the process of their 
participation in the joint solution of mathematical problems in small groups in the role 
of students, with the subsequent transfer of the accumulated experience to teaching. 
According to many researchers, synchronous online forums are a conducive 
environment for successful group interaction due to more precise wording of 
arguments and a greater willingness of participants to express alternative views and 
critical ideas (e.g., Asterhan & Eisenmann, 2009; Stahl, 2021). For this reason, PSF 
were chosen as the environment in which two-stages discussions of mathematical 
problems took place in our study. 
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The question of the necessary conditions for productive collaborative work on tasks is 
broadly studied. In particular, Stahl (2021) studied interactions aimed at involving 
learners in "research participation" (Stahl, 2021, p. 493). In addition, the importance of 
interactions, in which learners attempt to understand each other thinking – so-called 
"other-monitoring" (Goos et all, 2002) has been pointed out. Over time, these types of 
interactions can lead to the emergence of group synergy. Interaction is considered a 
group synergy if it is a series of interrelated messages from different participants, in 
which they either continue and develop each other's ideas, or test the ideas expressed, 
based on theoretical knowledge and logical conclusions drawn from them. The result 
of such interaction is progress in understanding the problem and its solution, expressed 
in new ideas on the way to solving the problem or in the recognition of the fallacy of 
the proposed idea (Clark et al., 2014). Such cooperation presupposes the ability to 
delve into the mathematical ideas of colleagues in real time, quick reaction and the 
desire to reach mutual understanding about the ways of solving problems, that is, those 
qualities that determine MFT in communication with students and are the key to 
improving the mathematical education of teachers (Hoover, et al., 2016).     
This study answers the following questions: (1) How does group synergy develop in 
interactions among teachers during their continued involvement in PSF as problem 
solvers? (2) How is teachers' own experience of group synergy reflected in the MFT 
of when the teachers interact with students as PSF mentors? 
METHODOLOGY 
Participants and research progress 
The study was conducted as part of a PD program for mathematics teachers at the 
Faculty of Education in Science and Technology, Technion, Israel. The study involved 
47 high school teachers with an experience of 5 to 20 years. At the first stage of the 
study, as part of the course "Foundations of Geometry. Plane Transformations”, each 
teacher participated as a student in a group of 3-5 in six PSF meetings, mentored by 
the first author of this article. Each meeting was devoted to collaborative discussion 
and solving one challenging geometry problem. The second stage took place in the 
course "Methods of teaching mathematics", when each of the participants acted as a 
mentor (teacher) at two PSFs. The learners in these forums were students studying for 
B.Sc. in mathematics education. They also solved complex geometric problems. At 
this stage, the teachers were tasked with organizing and leading a discussion at the 
PSF. This article analyses the activities of one of the groups, consisting of 5 teachers. 
The group consisted of the same participants in all six PSF of the first stage. Then, the 
experience of one teacher from that group is tracked in his capacity of a PSF mentor. 
This group is quite representative of the other groups, as the data obtained for this 
group reflect similar learning processes.   
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PSF 
The technological platform for the PSF in this study was the social network WhatsApp. 
A WhatsApp group was opened for each group of teachers in which meetings took 
place. The duration of each meeting was about one and a half hours. Each online 
meeting approximately consisted of 180 messages with an average frequency of 5 
messages per minute. Most of the messages were text messages. Participants also 
posted photographs of drawings and, in some cases, resorted to short voice messages. 
Data and data analysis 
In the course of the study, 96 PSF protocols were obtained and analysed. Of these, 72 
forum protocols in which teachers acted as students (12 groups with a permanent 
membership) and 24 forum protocols in which teachers acted as mentors. When 
analysing the protocols, the unit of interaction was a message (post) sent by one of the 
participants. In order to answer the first question of the study, the protocols of the 
forums in which teachers acted as students were analysed. To assess the dynamics of 
group synergy, we have defined the concept of "synergetic chain", which is understood 
as a block of interrelated posts of various participants concerning the discussion of one 
mathematical issue. An example of a synergistic chain is the following episode of the 
forum during the discussion of a geometric problem: 

33 A.: I think BE = EC 
34  B.: This is true since they are chords from equal inscribed angles 
35  A.: And also, triangle EHC is isosceles 
36  C.: Yes, because in it the height coincides with the median 
37  B.: Means BHCE kite. How have I not seen this before? This will help us a lot. 

This episode refers to group synergy, as it contains several interrelated messages 
containing an element of monitoring (34, 36), the development of each other's ideas by 
the participants (37) and the progress of the group in understanding the task, since B. 
expresses his conclusions aloud, referring to the whole group (37). Each synergistic 
chain has its own length (the number of messages included in it). The length of the 
chain reflects the duration of the interaction between the participants. We use the 
average length of all synergy chains included in this forum as one of the characteristics 
of group synergy in it. In our study, this characteristic was named Syn1. So, in the 
given example, the length of the synergistic chain is 5. If four threads are found on the 
forum, containing respectively 5, 2, 7, 4 messages, then the Syn1 characteristic will 
receive the value Syn1 = 4.5, which shows the group's ability to long-term interaction. 
An additional characteristic Syn2 characterizes the share of group synergy among other 
interactions and is calculated as the ratio of the total number of messages included in a 
particular synergy chain and the number of messages in a given forum. So, if a forum 
containing 187 posts, contains 4 synergistic chains, 5, 2, 7 and 4 posts long, the Syn2 
characteristic is calculated as follows: Syn2 = (5 + 2 + 7 + 4) /187=0.096 (9.6%). 
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To answer the second question of the study, a qualitative analysis of the content of the 
messages that the teacher published in the PSF, in which he was a mentor, was carried 
out. The situation in which the group was at the moment of the mentor's intervention 
was characterized. Examples of characteristics attended to are as follows: lack of 
activity in the discussion, the development of a wrong idea, or presence of a right idea 
that escapes the attention of the students. Then we inductively deduced from the above 
analysis which qualities of the MFT the teacher showed in his intervention. Finally, the 
forums in which the teacher-mentor acted as a student were characterized in order to 
identify situations that could be the prototypes of this intervention. Examples follow. 
FINDINGS 
Below are graphs showing the change in the indicators of group synergy in the selected 
group in the process of its participation in six PSFs as learners. 
 

 
Figure 1. The development of group synergy (Syn1) in six forums  

 

Figure 2. The development of group synergy (Syn2) in six forums 
 
The graphs show an increase in the indicators of group synergy in this group, both in 
terms of the share of group synergy among the interactions of forum participants, and 
in terms of increasing the length of synergistic chains. In the last forum, group synergy 
becomes the main type of interaction, where 70% of messages are in synergy chains, 
that is, they are part of a brainstorming session. A similar pattern was observed in the 
other groups participating in the study.  
The analysis of the content of messages included in various synergistic chains led to 
the identification of different types of synergies.  For example, the above episode 
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demonstrates the complementarity of participants' mathematical ideas that propelled 
the group forward in solving the problem. As a result, together with other members of 
the group, everyone achieves more than he could achieve himself. Another type of 
group synergy refers to the case when one of the participants explains his idea, and 
other members of the group monitor it. Often, as a result of such a discussion, it turns 
out that the idea requires development or turns out to be incorrect. An example is the 
following snippet of the discussion: 

62 A.: I have proved the similarity of triangles in two corners. 
63 B.: What angles are equal? 
64 A.: There are two inscribed, resting on equal arcs 
65 C.: That's right, they are equal 
66 A.: More right angles. One inscribed at the diameter, and the second at the 

tangent point 
67 B.: Wait a minute, but, after all, we do not know whether the radius comes to 

the point of tangency. 
68 C.: It is definitely not a radius; it cannot go through the centre. 
69 A.: But then the angle is not right either. I think I was wrong. 

Group synergy also arises when a group makes a collective effort to explain ideas it 
finds to a straggler or misunderstood comrade. Often during such an explanation, 
shorter paths are found or details are clarified. The final stage of the work is 
characterized by a group via reflective discussion of the problem.  
The results of the analysis of messages, which supported the work of the PSF by teacher 
A. from the described group in the role of a mentor, illustrate the answer to the second 
question of the research. The following task was proposed for discussion in the forum:   
A circle of radius R is given (see drawing). BC is the diameter of the circle, AB is the 
tangent to the circle at point B, D is the midpoint of the segment AB. The ACB angle is 
β. It is required to express the ratio of the areas of triangles ADE and ABC using R 
and β. 

 
The following exchange of ideas took place between the students: 

21 M.: DE is the middle line of the triangle. 
22 N.: The figure shows that DE is equal to BD by the two-tangent theorem 
23 K.: Then β can be found. It is equal to 45 °. 

All messages were received within one minute. The teacher was required to understand 
and evaluate the statements made in real time. That is, to show MFT skills. He should 
have noticed that N.'s statement (22) is true but requires proof. And the assertion M. 
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(21) is true only in the case β = 45 ° and cannot be the basis for solving the problem in 
general. K.'s assertion (23) was based on trust in previous allegations, which could later 
lead the group in the wrong direction. After assessing the situation, the teacher had to 
make a decision about the usefulness and form of the intervention. He decided to 
intervene and sent a message: I don't fully understand why DE = DB? The success of 
the question from the point of view of organizing a mathematical discussion was 
proved by the subsequent reasoning of the students, during which they proved that DE 
is a tangent, but not necessarily a middle line. Between this episode and the episode 
described earlier, when the joint observation of A.'s statement (62) in the role of a 
student about the similarity of triangles led to an understanding of the fallacy of 
reasoning. It can be assumed that this experience was used by A. to stimulate discussion 
and monitoring of ideas while working as a mentor. Working in a group in the role of 
students, A. and his colleagues did not know whether the statement he proposed was 
true, and only a joint analysis led them to understand. In the role of a teacher, A. did 
not point out to the students that the ideas were correct or erroneous. Instead, he asked 
a specific question (similar to the way colleagues asked him why the angles he named 
were equal). Thus, with the help of a specific question, A. created a situation that 
entailed discussion and progress in understanding. One of the components of the MFT 
is the ability to conduct a mathematical discussion. In particular, it is necessary to 
involve students in the conversation, to push them to participate in the discussion. A. 
supported the discussion, using his own experience of participation in the PSF. For 
example, when there was a long pause at the beginning of the forum, A. stimulated the 
activity of the participants with the message: “Throw in ideas. The more ideas there 
are in the discussion, the more chances that some of them will lead to a solution”. A 
similar proposal was addressed to each other by members of group A. when they 
participated in the FOP as students. A.'s experience of participating in PSF as a student 
was also reflected in the fact that he supported and guided the discussion, using 
encouraging and guiding comments, which the instructor in his group encouraged the 
discussion. For example: “This is a great idea. You should discuss it "or" This is a good 
idea, but worth discussing if it is always correct. "  
CONCLUDING REMARKS 
Based on our findings, we concluded that PSFs are a conducive environment not only 
for collaborative learning, as shown in previous studies (Stahl, 2021), but also for the 
PD of teachers. Various forms of group synergy have been found to grow and develop 
with the continued participation of teachers in PSF as learners, demonstrating 
improvements in listening, critically analysing and developing others’ ideas in real 
time. Thus, teachers develop MFT skills, which are a necessary component of 
successful teaching of mathematics in the modern world (Ball et al., 2008; Chapman, 
2015). The experience of mathematical communication acquired in the forums was 
used in the work of teachers as mentors of the forums, where MFT manifested itself in 
the ability to delve into students' ideas in real time, interpret them, and quickly choose 
the reaction that was most useful for learning. This study responds to a request for the 
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need to study models of mathematics teacher PD that, on the one hand, will be relevant 
for teachers in terms of their work, and on the other hand, will correspond to the goals 
set for the mathematical education of teachers (Hoover, et al., 2016). The 
methodological contribution of this study is the quantitative method presented in this 
study for assessing group synergy in the joint solution of mathematical problems, 
which adds to methods of qualitative analysis developed in the past studies (Goos et 
al., 2002; Clark et al., 2014; Stahl, 2021). 
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DEFINITIONAL AMBIGUITY: A CASE OF CONTINUOUS 
FUNCTION 

Andrew Kercher, Anna Marie Bergman, Rina Zazkis 
Simon Fraser University 

 
Definitions are an integral aspect of mathematics. In particular, they form the 
backbone of deductive reasoning and facilitate precision in mathematical 
communication. However, when an agreed-upon definition is not established, its 
ability to serve these purposes can be called into question. While ambiguity can be 
productive, the existence of multiple non-equivalent definitions for the same term can 
make the truth value of certain mathematical statements unclear. In this study, we 
asked mathematics educators to determine the truth of a definitionally ambiguous 
mathematical claim. Based on their responses, we identified several factors that 
influenced the teachers’ choice of definitions. Finally, we consider the pedagogical 
implications of employing such a task in teacher preparation programs. 

INTRODUCTION 
In mathematics, definitions are paramount. As Edwards and Ward (2008) write, “the 
words of the formal definition embody the essence of and completely specify the 
concept being defined” (p. 223). Mathematics fixates on definitions for their 
importance in logical argumentation and proof. To make conclusive statements about 
mathematical objects, it is necessary that “we do not leave the meaning of a term to 
contextual interpretation; we declare our definition and expect there to be no variance 
in its interpretation in that particular work” (ibid., p. 224, emphasis in original). 
Despite the widely acknowledged significance of definitions in mathematics, different 
definitions often exist for the same term. Ideally, these definitions are equivalent and 
any one of them may be chosen as “the” definition from which the others follow as 
theorems (Winicki-Landman & Leikin, 2000). Sometimes, however, the same term has 
different definitions that do not encompass the same class of objects. This introduces 
ambiguity into mathematical tasks. For example, the recent work of Mirin et al. (2021) 
discusses two different definitions of function, both acceptable in the mathematics 
community, that lead to opposite conclusions when one must decide whether a given 
function is invertible. In this paper, we present multiple, mathematically acceptable 
definitions of continuous function that can likewise lead to ambiguity. We then present 
the results of a study in which we asked teachers to decide on the truth value of a 
statement concerning this term, including the considerations they attended to when 
making their decisions. 
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DEFINITIONS AND DEFINITIONAL AMBIGUITY IN MATHEMATICS 
On the importance of definitions and their features. 
Mathematicians and mathematics educators alike acknowledge the importance of 
definitions in teaching, learning, and exploring mathematics. One important feature of 
definitions is that they facilitate communication within a mathematical community; 
that is, they specify how a term is used in order to assure that interlocutors refer to the 
same concept when using that term (e.g., Borasi, 1992). Mathematical definitions are 
used to introduce new objects, to determine properties of what was defined and to 
assess the validity of statements related to the defined objects (Martín-Molina et. al, 
2018). As such, mathematical definitions serve as a basis for mathematical proofs (e.g., 
Weber, 2002). Importantly, mathematical definitions are also used to classify—to 
distinguish between what is or is not a particular entity (e.g., Zaslavsky & Shir, 2005). 
Within the disciplinary practice of mathematics, definitions are dynamic and adaptive 
and may undergo refinements in light of counterexamples and further developments 
(e.g., Martín-Molina et. al, 2018). However, in school, students are either presented 
with precisely worded existing definitions (e.g., Edwards & Ward, 2004) or work with 
mathematical notions in the absence of any provided definitions. To account for these 
two cases, drawing on the work of philosophers and lexicographers, Edwards and Ward 
(2004, 2008) distinguished between extracted definitions and stipulated definitions. 
Extracted definitions are deduced from the inspection of a body of evidence. Stipulated 
definitions are handed down to learners from a knowledgeable expert. This distinction 
is eloquently summarized by Edwards and Ward (2008) when they observe that 
“extracted definitions report usage while stipulated definitions create usage” (p. 224). 
According to Leikin and Winicki-Landman (2000), equivalent definitions generate the 
same set of objects that satisfy the definition. However, when one set of objects 
satisfied by Definition-A is a proper subset of objects satisfied by Definition-B, then 
the two definitions are consequent definitions. Other times, when the sets of objects 
generated by two definitions have a nonempty intersection, but neither is a proper 
subset of the other, Leikin and Winicki-Landman (ibid.) refer to the definitions as 
competing. 
Van Dormolen and Zaslavsky (2003) specify that a criterion of equivalence is 
necessary for equivalent definitions to be a fundamental part of a deductive system. 
That is, 

when one gives more than one formulation for the same concept, one must prove that they 
are equivalent. In practice this means that one has to choose one of the formulations as the 
definition and consider the other formulations as theorems that have to be proved. (p. 95). 

However, we find no explicit direction for how, in practice, non-equivalent definitions 
of the same concept are to be handled. When consequent or competing definitions exist 
for the same mathematical term, the truth value of statements related to that term may 
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become ambiguous. The focus of our study is on teachers’ mathematical decision-
making when faced with such ambiguity. 
On ambiguity and definitional ambiguity 
According to Byers (2007), “ambiguity involves a single situation or idea that is 
perceived in two self-consistent but mutually incompatible frames of reference” (p. 2). 
Byers considered ambiguity in mathematics as a source of creative development and 
argued against the popular perception that the logical structure of mathematics is 
definitive. Building on Byers’ definition but interpreting it in the context of teaching 
and learning mathematics, Foster (2011) argued that productive ambiguity is an 
essential component of learners’ engagement with mathematics. In particular, 
“ambiguity is necessary for ideas to move forward because it creates an instability in 
what is currently known that allows the formation of new knowledge” (p. 3). Foster 
also categorized different appearances of ambiguity. He distinguished between 
symbolic ambiguity, multiple-solution ambiguity, paradigmatic ambiguity, linguistic 
ambiguity and definitional ambiguity; the latter is of our interest in this study. 
Definitional ambiguity, according to Foster (2011), arises “where there is more than 
one way of interpreting the meaning of a mathematical term.” His example is the term 
“radius,” which may refer to a geometric object or its length. In these cases, whether 
the reference is to a geometric object (as in a construction) or its size (as in the task, 
find the radius of a circle with a circumference of 5𝜋 cm) is clear in context. However, 
there are also situations in which definitional ambiguity is the result of different but 
non-equivalent definitions. We wondered how teachers resolve such situations. This 
led to the following research question: What guides teachers’ decision making in cases 
of definitional ambiguity? 
Definitional ambiguity: the case of “continuous function” 
When searching for a definition of continuous function, either online or in calculus 
books, the most common results are definitions of continuity at a point or continuity 
on an interval. From these stipulated definitions, a possible extracted definition of a 
continuous function is “a function that is continuous everywhere.” However, the 
meaning of “everywhere” can be interpreted differently and depends on which 
stipulated definitions this definition is extracted from.  
Definition-1: A continuous function is a function that is continuous on all the points of 
the function domain. 
Definition-2: A continuous function is a function that is continuous on all the real 
numbers. 
We purposefully do not comment here on which definition we consider as correct. We 
do note that, using Definition-2, 𝑓(𝑥) 	= 	1/𝑥 is not a continuous function as there is 
a discontinuity at 𝑥 = 0. This interpretation corresponds to the naïve concept image of 
a continuous function that requires it to be drawn without lifting pen from paper. Using 
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Definition-1, 𝑓(𝑥)  is a continuous function as it is continuous at all points of its 
domain, which excludes 𝑥 = 0. Jayakody and Zazkis (2015) elaborated in detail on the 
inconsistent conclusions that can be reached by examining definitions of continuity in 
different sources. In particular, they noted inconsistency in referring to discontinuity at 
points where a function is not defined. 

THEORETICAL UNDERPINNING: CONDITIONAL CONSTRUALS 
Milewski et al. (2021) introduced the notion of conditional construals to describe 
teacher decision making in ambiguous situations that arose in mathematics classrooms. 
Conditional construals are described as “moments when teachers require additional 
context in order to judge whether a given teaching action is appropriate.” Milewski et 
al. (ibid.) used linguistic indicators, such as “it depends,” to identify instances of 
conditional construal. We note that, in these instances, the provided examples attended 
to teachers’ pedagogical decisions related to pedagogical scenarios. For example, in 
the exemplified responses, teachers conditioned their choices as depending on time 
constraints, the instructional sequence, or their familiarity with students.  
We extend the notion of conditional construal to cases where a mathematical decision 
depends on implicit mathematical assumptions. To illustrate, consider the following 
statement: In division of 13 by 5, the quotient is 2. Do you agree? Your decision 
depends on your definition of a quotient, which in turn depends on the kind of division 
you consider. The statement is true when the division is of whole numbers, which 
implies a whole number quotient and remainder. The statement is not true if the 
division is of rational numbers, and the definition of quotient is taken to be the result 
of that division. The conditional construal is mathematical in nature. One may argue 
that this conditional construal also requires pedagogical context—however, we note 
that conversations about both whole number and rational division might occur in the 
same pedagogical context: a middle school classroom. 

METHODS 
Participants in this study were prospective teachers in the last term of their teacher 
certification program and practicing teachers enrolled in a professional development 
course (𝑛 = 29, referred to as T-1 to T-29). They were asked to respond, in writing, to 
the claim that 𝑓(𝑥) = 1/𝑥 is a continuous function. This response required the teachers 
to indicate their evaluation of whether the claim is true or false; to provide a 
justification, indicating any sources that informed their decisions; and to provide any 
hypothetical arguments that might be used by someone who disagreed with their 
evaluation. These responses served as a starting point to initiate a subsequent classroom 
discussion on definitions in mathematics. 
Analysis of the written responses was conducted using the phases of reflexive thematic 
analysis. In particular, an inductive thematic analysis allowed for coding and theme 
development to be directed by the content of the data (Braun et al., 2019). In the first 
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phase of analysis, each member of the research team familiarized themselves with the 
data. That is, they read and re-read the teachers’ responses in order to become 
immersed in and intimately familiar with how they qualified both their justifications 
and any hypothetical disagreements. Then, each response was coded by multiple 
members of the research team to identify the conditional construals used as respondents 
conditioned their decisions. Initial codes were primarily semantic in that their creation 
was instigated by a teacher’s explicit language choice—for example, the use of 
linguistic markers for conditionality such as “it depends.” Later, these semantic codes 
were supplemented with latent codes that captured those instances in which conditional 
construals were implicit in the text (Braun et al., 2019). Members of the research team 
met regularly to discuss the generation and application of codes.  
Next, the research team identified collections of codes—and, in some cases, especially 
prevalent single codes—that might constitute themes. These preliminary themes were 
examined in light of their ability to both answer the research question and meaningfully 
describe the dataset. Throughout this process, the research team members collaborated 
to refine ambiguous themes, merge redundant themes, and otherwise ensure that each 
theme contributed to the narrative of the data. 

FINDINGS 
A total of 12 out of 29 respondents identified the claim as a true statement, whereas 14 
identified it as false. The final 3 respondents remarked that the claim could be 
interpreted as either true or false depending on additional assumptions made by the 
reader. Respondents’ conditional construals were primarily centered on choosing a 
domain over which the continuity of the function should be considered. This decision 
was sometimes, but not always, tied to their choice of definition. 
Choice of domain is dependent on the definition 
Most often, participants chose a domain by choosing one definition of continuous 
function over another. To make this choice, many participants first chose a definition 
for continuity at a point, from which they extracted a definition of continuous function; 
this extracted definition tended to inherit its domain from the chosen stipulated 
definition. The definition would then prompt them to attend to either the entire real line 
or only those points where 𝑓(𝑥)  is defined, in line with either Definition-2 or 
Definition-1 described above. Regardless of which definition they chose, respondents 
almost always acknowledged the alternative view as part of a hypothetical 
counterargument. For example, T-23 began her explanation of why the claim is false 
by “presuming that by continuous function we mean an everywhere continuous 
function.” She later acknowledged that another reader might come to the opposite 
conclusion if they do not consider continuity at 𝑥 = 0. 
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Choice of domain is dependent on mathematical convention 
When deciding on a domain, some participants attempted to align with what they 
perceived to be mathematical convention. For example, T-5 first presented a naïve 
conceptualization of continuity as a single unbroken line—but added that “we usually 
look at the domain (x-axis values) and or the range (y-axis values) of the function.” 
Consequently, T-5 argued that the claim was true because 𝑓(𝑥) could be drawn as a 
single unbroken curve on each half of its domain. Of note is the fact that participants 
who appealed to a standard mathematical consensus sometimes disagreed about what 
exactly that consensus is. T-24 argued that the claim was false unless one disregards 
the discontinuity at zero, but that “by convention we do not restrict the domain in this 
manner, unless explicatively stated.” T-25 made a similar assessment, adding that 
“since the domain in the claim is unspecified, it is assumed that we are talking about 
all real numbers.” However, when considering hypothetical counterarguments to his 
conclusion that the claim was true, T-2 explained that only “purists would argue that 
all points −∞ to ∞ should be shown to be continuous for a function to be continuous.” 
Choice of definition is dependent on personal preference 
Some respondents selected from possible stipulated definitions based off of an 
underlying personal belief of what constitutes a continuous function. For example, T-
11 examined multiple textbook definitions related to continuity. He admitted that he 
does not “like a definition of a continuous function that allows functions that are not 
continuous at all points,” and ultimately rejected the Definition-1 as “overly-
accepting.” In contrast, T-9 chose Definition-1 because “I don't believe it makes sense 
to consider properties of functions when they are not defined.” Finally, T-10 stated that 
“my understanding of a continuous function is that the function is continuous in its 
domain,” but that someone might disagree because, “from their perspective, a 
continuous function must be continuous everywhere.” 
Choice of definition is dependent on visual intuition 
Prevalent in responses to the claim were participants’ underlying intuitions about what 
a continuous function should look like; such as when T-2 described a continuous 
function as “a function that does not have any abrupt changes in value across its 
domain.” More often, participants described the naïve conceptualization of a 
continuous function as one that can be drawn without lifting one’s pencil—although 
they did not often hold this conceptualization themselves, and instead acknowledged it 
as a hypothetical argument someone else might employ. For example, both T-13 and 
T-15 concluded that the claim was true but recognized that a counterargument might 
stem from the perspective that “it is obvious to the eyes of the reader that the function 
is not ‘connected.’” 
T-13 noted that the naïve conceptualization of continuity is “often an instructional 
language used by teachers and online to try and help students decide whether a function 
is continuous or not.” Similarly, T-12 recognized that “the determination of continuity 
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by drawing without lifting your pencil is an informal, practical way to determine the 
continuity of a function.” Despite initially using this method herself, T-12 later used 
Definition-1 to argue that the claim is true. She found this to be “a more precise 
mathematical method which lends mathematical rigor to backing up the truth of the 
claim.” 

DISCUSSION AND IMPLICATIONS 
Definitions are a pillar of mathematics, yet the notion of definitional ambiguity has not 
yet received significant attention in mathematics education research. Lack of an 
agreed-upon, formal definition can lead to cases of definitional ambiguity. In this study 
we focused on the existence of non-equivalent definitions for continuous function that 
could be extracted from related stipulated definitions for continuity at a point. The 
following observation made by T-28 summarizes, in part, the pedagogical implications 
from our study: 

As we were discussing a lot about how there is no agreed upon definition for many math 
claims and that different definitions can come up depending on where you are located for 
your learning. I never thought about this before. I always thought math was the one thing 
that was the same everywhere. But I am now seeing that math definitions change over time 
and location. 

Participants reflected on their involvement with the task as an “eye-opening” 
experience, which, for some, changed their perceptions of mathematics. Several 
participants reported on their search for a “correct” definition, and their dissatisfaction 
with the ambiguity that they instead discovered. 
As noted in previous studies (Foster, 2011; Marmur & Zazkis, 2021), productive 
ambiguity can be used to foster learners’ knowledge and enrich classroom discussions. 
Involving teachers with cases of productive ambiguity, such as in the task described in 
this study, is a valuable pedagogical activity that can expand teachers’ knowledge as 
well as enrich their appreciation of mathematics as a discipline. It can be used not only 
as a prelude for clarifying definitions and the importance of definitions in mathematical 
activity, but also lead up to a discussion on the nature of mathematics as a human 
endeavor and on ambiguity as a driving force in mathematical creativity. 
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WHAT IS CONVINCING? – PRIMARY STUDENT TEACHERS 
UNDERSTANDING OF MATHEMATICAL ARGUMENTS 

Peter M. Klöpping 
University of Potsdam, Germany 

 
A guideline for a semi-structured interview was developed that aims at understanding 
primary teachers’ knowledge and conceptions towards the field of argumentation and 
reasoning mathematically. Apart from open questions, a repertory grid was 
implemented to evaluate students’ reasons and arguments. This approach aims at 
connecting the teachers’ evaluations of given students’ arguments with their 
knowledge and conceptions of argumentation. The data analysis of 14 German student 
teachers for primary education focuses on the question: “What makes a convincing 
argument?” The student teachers’ views of a convincing argument vary from 
mathematical correctness and rigour; understandable and clear statements to 
explanations and illustrations of mathematical phenomena within the argument. 
THE CONTEXT OF THE STUDY IN THE FIELD OF ARGUMENTATION  
Arguing, reasoning, conjecturing, and proving amongst others are essential activities 
in mathematics as a discipline and in mathematics in educational settings as they 
contribute to a strong foundation for understanding and learning mathematics. All of 
these activities describe ways of thinking mathematically and encountering 
mathematical problems. Fostering mathematical thinking in contrast to focus on mere 
calculation skills should therefore be one of the main aims in mathematics classrooms. 
In the last decades, these cognitive processes and their role have been widely examined 
in educational settings, which underpins further their importance for teaching and 
learning mathematics. Each one of these habits show broad fields in the research of 
mathematical education. Besides mathematical proofs, argumentations or reasons (or 
the processes leading to these products) as objects of research, understanding and 
explaining the cognitions, affects, and behaviors of the persons involved are some of 
the main aims of research in these areas. 
Regarding mathematical argumentation in school settings, the specifics of teachers’ 
role in argumentation and proof is still object of discussion. Nevertheless, there is 
enough evidence showing that teachers are playing a significant part in argumentative 
processes taking place in the classroom. Teachers show responsibility for managing 
students’ participation in an argument and in primary education especially, they initiate 
classroom argumentation. Educational settings that foster argumentative opportunities 
highly depend on the teachers. Consequently, examining teacher conceptions and their 
professional knowledge of argumentation is relevant to educational research. 
Following an exploratory case study, a guideline for a semi-structured interview was 
developed that aims at understanding primary teacher conceptions towards the field of 
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argumentation and reasoning mathematically. Apart from open questions in this 
direction, a repertory grid (Kelly, 1955) was implemented to gather criteria used by 
teachers to evaluate and discuss students’ reasons and arguments. The structure of the 
interviews aims to highlight the connection between the conception, the knowledge 
and the classroom practice carried out by the teachers in argumentative settings as one 
facet of this complex phenomenon (Klöpping & Kuzle, 2019). The presented data 
analysis focuses on an essential component of argumentation. More precisely, it will be 
examined what the interviewees believe to be a convincing argument. 
Therefore, the theoretical foundation of this study can be found in two different fields. 
On the one hand, teachers’ mental structures are of importance especially regarding 
professional knowledge and conceptions of mathematical argumentation. On the other 
hand, paying attention to mathematical arguments, their structures, and their quality is 
inevitable for the methodological design and analysis of the data. 
TEACHERS’ PROFESSIONAL KNOWLEDGE AND CONCEPTIONS  
When it comes to professional knowledge of mathematics teachers, there exist enough 
theoretical and empirical based models that adequately describe different facets of this 
construct. Under the assumption that the varying aspects of teachers’ professional 
knowledge are interdependent, Kuntze (2012) elaborated a pragmatic notion of 
professional knowledge where beliefs and convictions are included. This 
understanding of professional knowledge suits the purpose of this study because 
socio-mathematical norms (Yackel & Cobb, 1996), and more specifically the 
acceptance of mathematical arguments, don’t rely on either knowledge or beliefs 
alone. Rather than considering beliefs alone, an even broader structure like 
conceptions seems to be fruitful here. The term conception can be described as “a 
general notion or mental structure encompassing beliefs, meanings, concepts, 
propositions, rules, mental images, and preferences” (Philipp, 2007, p. 259). 
Related research has focused on teacher knowledge and beliefs in the domain of proof 
and proving, the teaching of conjecturing, and argumentation (e.g., Knuth, 2002). All 
of this research merely considers secondary and tertiary education showing a lack of 
recognizing the importance of teacher views for primary education. 
Investigating the role of primary teachers on argumentative processes in the 
mathematics classroom, the combination and interplay of mental structures, 
knowledge and conceptions, is key to understanding this complex field. 
ARGUMENTATION IN THE MATHEMATICS CLASSROOM 
Considering a mathematical conjecture whose validity is yet uncertain, two main 
aspects lay in the interest of mathematicians. Firstly, verifying the conjecture and 
therefore examine if it holds true. Secondly, explaining why the validity holds to 
further make sense of the statement and the mathematics behind it. Both aspects seize 
on two fundamental functions of mathematical proofs: the verification of a statement 
and its explanation (Hanna, 2000). Hence, a mathematical proof considers primarily 
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the validity of a statement. In the specific communication about this validity, both in 
dialogue with others and as an interior monologue, verification and explanation is 
expanded by the intention to convince somebody. 
Deductive proofs certainly convince in most mathematical discourses. Nevertheless, 
“pre-formal” types of proof exist such as “action proofs” or pragmatic proofs 
(Balacheff, 1988) which present convincing arguments as well, especially at the level 
of primary education. The communication process about the validity of a mathematical 
conjecture shows a strong argumentative nature and conviction can be reached even 
without “rigorous” proofs. This is seen primarily in communication and argumentation 
processes observed in mathematics classroom. As these processes depend highly on 
the interaction of the persons involved, the acceptance of valid arguments is yet to be 
discussed in classrooms (Krummheuer, 1995). The acceptance of an argumentation, 
and this includes proving, and the persuasive power of the used arguments depend on 
the social context, on the persons interacting with one another. Such 
socio-mathematical norms are constituted in the classrooms but depend on the 
interaction of students and teacher, especially at the primary level (Yackel & Cobb, 
1996). Representation, structure or correctness are therefore not the only factors of 
convincing proofs, arguments or reasons. The teacher’s view, their conception of 
argumentation and their knowledge, influences the socio-mathematical norm in the 
classroom and therefore the acceptance or refutation of an argument. 
Assuming an influential role of teachers in argumentative processes and specifically in 
the acceptance of an argument, raises the question what qualities or characteristics, 
according to teachers, an argument should have to be convincing in the classroom. The 
research question focuses on the teachers’ perspectives and investigates what a 
convincing argument consists of. 
METHODOLOGICAL CONSIDERATIONS AND DATA PROCESSING 
The socio-mathematical norm (Yackel & Cobb, 1996), reflected in the acceptance of 
mathematical arguments, is formed by a personal understanding, experience, and 
conception of argumentation, reasoning, and proving in mathematics. In order to cope 
with this complex field a qualitative approach was chosen. Because of this, an 
interview guide was developed and later on, re-structured, and expanded 
methodologically based on the experience of a previous case study on mathematical 
argumentation. As knowledge, beliefs and attitudes as cognitive structures are 
intertwined and interdependent (Kuntze, 2012; Philipp, 2007), the methodological 
expansion led to a search for an adequate approach which then ended in the 
psychological theory of personal constructs by Kelly (1955). From his theory, Kelly 
(1995) derived a research instrument to describe “his” personal constructs: the 
so-called Role Construct Repertory Test (REP-test or repertory grid). In a repertory 
grid, persons, objects or situations, so called elements, are evaluated using constructs. 
Via a linking mechanism elements and constructs are connected. Integrating Kelly’s 
ideas to established approaches of qualitative research and adapting them for research 
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on mathematics education doesn’t mean to reject other methods, it should be rather 
seen as a synergy. 
Structure of the interview and repertory grid 
Hence, the interview guide consists of two main parts. Starting with open questions 
about argumentation in mathematics as a discipline (e.g., “What is the object of 
argumentation in mathematics?”), the subjects is narrowed to argumentation in the 
mathematics classroom (e.g., “When should students start to work argumentation 
tasks?”). Further on, the interviewees are invited to talk about their own experience 
with reasoning tasks and classroom argumentation (e.g., “Please talk about a situation 
you experienced in your lessons in which students had to justify their answers.”). And 
lastly, the interviewees are asked to evaluate student explanations referring to the 
following mathematical statement on parity: For any positive integers a and b, if one of 
them is odd and the other summand is even then the sum a+b is an odd number. Healy 
and Hoyles (2000) followed a similar approach to explore students’ views on given 
arguments but as a quantitative study it missed the opportunity to explain how the 
students’ choices were made. 
Adapting Kelly’s theory (1955) for this particular study, it must be specified what the 
elements and what the constructs should be. Six student explanations and a self-written 
argument of the interviewed person comprise the elements of the grid. They are 
supplied and should show a broad variety. To reach this variety, Healy and Hoyles 
(2000) included in their questionnaire for instance three types of arguments: empirical 
arguments, narrative arguments, and algebraic arguments. Their theoretical framework 
is based on the taxonomy of proofs by Balacheff (1988) which can be applied to 
arguments and reasons as well. It distinguishes between naive empiricism, crucial 
experiment, generic example, thought experiment, and calculation on statements 
which fall into two categories: Pragmatic proofs and conceptual proofs (Balacheff, 
1988). The elements selected for the repertory grid in this study are based on these 
categories. To incorporate a broad variety of arguments, at least one element covers 
each category. As an example, Figure 1 illustrates two provided elements.  

 
Figure 1: Student explanations as elements of the grid 

 

Cosima’s explanation 
 

This is even: And this is an odd: 

    

    
 

   
 

  
  

 

Together it is odd because one is left alone. 

      
 

 

      
  

 

 

Ida’s explanation 
 

You can divide all even numbers by 2 and odd numbers 
not. So, 2 is not a divisor of both. 
 
But if you want to break up the result in 2 then both 
numbers must be divided by 2. That is why the sum is 
always odd. 
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The constructs can be understood as evaluation criteria consisting of two opposing 
poles, two contrasts. They are elicited using triads of the given arguments. With this 
triad, the participants are asked what two of these arguments have in common which 
differs from the third. These common characteristics are then employed as evaluation 
criteria. However, if possible constructs emerge already during the open question part 
of the interview they can be included as well. Finally, for each construct all 
explanations are evaluated on a five-point rating scale (see Figure 2). 

 
Figure 2: Fiona’s filled-out grid 

As the evaluation criteria vary from one interviewee to another, the participants are 
asked to explain their decisions during the evaluation, which in addition simplifies the 
analysis as it is less open for interpretation. 
Data sample 
14 German student teachers for primary education, all of whom having at least some 
teaching experiences in primary mathematics, were interviewed. The recorded 
interviews lasted between 45 and 90 minutes, were transcribed and analyzed using 
computer supported qualitative content analysis. The repertory grids were digitalized 
as well and underwent a separate analysis. Combining both findings from the open 
section of the interview and from the grids is a key idea in the methodological 
approach. 
WHAT IS CONVINCING? – RESULTS 
Central to the research question is the data regarding the interview question: “What 
makes a convincing argument?” Before presenting all results, Fiona’s and Greg’s cases 
are given as an example of the data analysis and interpretation. 
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Interviewer: In general, what makes a convincing argument? 
Fiona: First of all, others should be able to follow the thoughts, the persons to 

whom I’m presenting it. … So yes, I can take something from one topic and 
transfer it to a different topic. And it has to be logical, it has to make sense. 

Fiona’s remark on convincing arguments relates to the audience and depends therefore 
on the social context. What she means by “be able to follow the thoughts” is not further 
explained at this point. The other aspect in her understanding of convincing arguments 
refers to more abstract structures of an argument. A similar focus on the argument’s 
structure can be found in Greg’s answer: 

Greg: Well, I believe, an argument convinces in the way that it is, as we call it, 
falsifiable. In the sense that no counter argument exists. So, an 
argumentation is appropriate, if it is logically structured, so that the 
argumentation is completely logical. And against this logical structure no 
counter argument can be found. Then it is for me convincing. 

Later in the interview, when the interviewees are asked to evaluate the students’ 
arguments, the constructs of the grid can refer back to those statements. Fiona picks up 
the notion of “following the thoughts” in arguments and explains her rating: 

Fiona: Exactly, they all are totally easy to follow. For me, Hannah’s, Gina’s, 
Cosima’s and Anton’s reasons are all at 5. 

Interviewer: Why? 
Fiona: Because they are written with a lot of examples. In each given reason there 

is at least … one example. That makes it easy for me to follow. 

If the argument consists of “a lot of examples” it is with Fiona’s understanding “easy to 
follow” and fulfils one aspect of a convincing argument. During the evaluation with 
the grid she names this construct “comprehensible” whereas the contrasting pole is 
“more complex to comprehend” (see last row in Fiona’s repertory grid, Figure 2). 
Fiona further clarifies that her own argument is still “hard to follow” because little 
explanation is given. Here it seems that a convincing argument for Fiona should 
include not only examples but also explanations. 
Greg’s understanding of a convincing argument is illustrated quite well with the data 
from his grid (Figure 3). The construct “convincing” is rated almost identical to the 
criterion “completely logical (generalization)” which is not surprising as his previously 
answer confirms exactly this. Interestingly, “justified terms” has a very similar rating, 
indicating that for him the proper use of mathematical terms is part of a convincing 
argument with a logical structure. On the other hand, the representation of an 
argument, whether it is “visual” or “symbolic”, doesn’t in Greg’s understanding 
contribute to the conviction. 
If Fiona would present a convincing argument in a classroom situation, one can from 
the data in the grid assume that this argument most likely considers different 
representations, is abstract, gives an explanation, consists of deductions, exemplifies 
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its reason, and is “easy to follow” for the students. Distinctively, Greg would focus on 
the logical structure of an argument being general in nature and would justify the 
mathematical terms in use. 

Figure 3: Greg’s filled-out grid 
Looking at the other participants, they can be grouped to similar aspects of convincing 
arguments. Fiona and three other student teachers highlight the idea of 
comprehensibility, where an argument is convincing if the train of thought can be 
followed. A group of four participants show a close understanding to the former, but 
demand an explicit explanation and justification of the given argument. Greg and 
another student teacher focus on the logical structure and on a sound reasoning. This 
might be the closest perspective to a general understanding of proofs. Mathematical 
correctness, the use of mathematical “facts” and “rules” is dominant in a group of three 
interviewees. Finally, there is one person stating that a convincing argument needs to 
give an insight in and illustrate the mathematical phenomena at hand. 
FINAL THOUHGTS AND CONCLUSION 
The general remarks on a convincing argument include comprehensibility, logical 
structures, mathematically correctness and even illustrations of the mathematics within 
the argument. Nevertheless, there are different approaches in each of the participants’ 
answer. The analysis shows how the idea of a convincing argument is reflected in 
evaluating student explanations. More generally, it can be assumed that what is 
convincing differs, even if it is subtle, from teacher to teacher depending on their 
professional knowledge and conceptions of argumentation. 
Furthermore, the analysis is an example of how a repertory grid might enrich existing 
research approaches. In a semi-structured interview, teachers’ professional knowledge 
and conceptions can be explored but the repertory grid technique offers additional and 
helpful data to deepen the understanding of this complex field. 
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DOWN THE ROAD: TEACHER’S PERCEPTIONS AND UPTAKE 
OF PD AFTER SEVERAL YEARS 

Karen Koellner, Nanette Seago, Nicora Placa, Amanda Riske, David Carlson 
Arizona State University, WestEd & Hunter College 

 
This study captured middle and high school teachers’ perceptions of what they learned 
from professional development 3-4 years after participating in one of three NSF funded 
year-long professional development (PD) projects. We surveyed teachers (n=66) from 
three different PD projects on the types of content, pedagogy, and resources that they 
remembered learning and continue to use when teaching mathematics. Results indicate 
that teachers remember and use many aspects from PD experiences 3-4 years down 
the road especially those they find relevant to their current teaching position. Most 
residual learnings from PD also appear to be highly aligned with the goals and 
intentions of the PD developers and researchers and these learnings have evolved 
through colleague collaboration and other PD opportunities.  
INTRODUCTION 
One central challenge for the field of teacher professional development (PD) is how to 
design interventions that target teacher knowledge, while also maintaining a focus on 
instructional practice and student learning (Jacobs, Koellner, Seago, Garnier & Wang, 
2020). A number of researchers have worked to address this challenge and there is now 
a strong research base delineating critical design features of effective PD (e.g., Borko, 
Jacobs & Koellner, 2010). The consensus in the current PD discourse about features of 
effective PD include a focus on mathematics content, student learning of content, 
active learning opportunities for teachers, coherence, duration, and collective 
participation (Sztajn, Borko, & Smith, 2017).  Although some PD programs that adhere 
to design recommendations by the literature have produced encouraging results (e.g. 
Franke, Carpenter, Levi & Fennema, 2001), others have proven less successful (e.g. 
Jacob, Hill & Corey, 2017).  
It is not clear why there have been mixed results from rigorous empirical studies of PD 
incorporating these design recommendation that contradict conventional wisdom 
among the field. There are many reasons that potentially could account for these 
varying results such as: the content of the specific programs evaluated may have been 
inefficacious, fidelity to the materials or pedagogical practices may have deviated from 
the identified goals and practices, difficulties may have resulted from scaling the 
program to multiple sites with different facilitators, or issues may have arisen with the 
research design and methodology. An alternate perspective is most, if not all, of the 
impact studies that have been funded recently have been large-scale quantitative 
studies. Many have shown incremental change in teacher knowledge and practice one 
year following the intervention (Murata et al., 2012). This need for clarity may rest in 
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an often-ignored issue related to the time allowed for funded projects to study the 
impact of PD on teachers and students. Many large randomized controlled designed 
studies look at pre post data across one year and at most, use a post-post measure one 
year out. We hypothesize this is not enough time to measure PD impact. We argue that 
for teachers incorporate new ideas and then to plan, implement, reflect and modify 
instruction may require more time to be reflected in practice and in research results 
than the typical one-year that is often related to funding cycles.  
The Taking a Deep Dive (TaDD) research study examines the residual impacts of three 
different professional development models on teacher learning, specifically 3-4 years 
after the actual PD experiences. The project is conducting a rigorous cross case analysis 
across participants from the different projects across the US. This paper is focused on 
a survey that was given to participants in May 2019 which was 3-4 years after their PD 
experience. Although this study focuses on self-report survey data, findings contribute 
to the PD landscape of PD design and survey design. Findings identify indicators that 
seem to provide evidence of why some teachers might learn and implement more from 
a given PD compared to another (others). Our analysis also elucidates how a carefully 
designed survey focused on the constructs of content, resources, and pedagogy tell an 
important story related to the similarities and differences of the PD and some potential 
limitations.  
THEORETICAL FRAMEWORK 
PD models fall on a continuum from adaptive to specified (Borko, Koellner, Jacobs & 
Seago, 2011). On one end of the continuum are adaptive models, in which the learning 
goals and resources are derived from the local context and shared artefacts are 
generally from the classrooms of the participating teachers. In these models, the 
artefact is selected and sequenced by the facilitator and/or the participating teachers, 
and the related activities are based on general guidelines that take into account the 
perceived needs and interests of the group. On the other, specified models of PD 
typically incorporate published materials that specify in advance teacher learning goals 
and provide resources and guides to implement the PD. In video-based specified PD, 
the video clips are typically pre-selected and come from other teachers’ classrooms. 
The nature of what teachers take up and use across the continuum has the potential to 
shed light on factors that are associated with the teacher learning related to content and 
pedagogy.  This study examines three professional developments that fall on different 
parts of the continuum.  The goal is not to determine which types of PD are “best” 
because each has its affordances and challenges, but rather to better understand the 
variance of teacher uptake and use (in their classroom contexts) within and across these 
PD experiences. Understanding and unpacking variance among and between types of 
PD offers the potential to identify the factors that impact uptake and use from PD.  This 
paper examines how teachers’ self-reported uptake differs across PDs located at 
different points on the adaptive-specified continuum. Specifically, one is highly 
adaptive, one is highly specified, and one lands in the middle. We believe conducting 
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a cross-case comparison aids in helping us understand the factors associated with 
uptake related to content, pedagogy, and resources. 
OVERVIEW OF TaDD PROJECT  
This three-year impact study, Taking a Deep Dive (TaDD), collects qualitative data 
from three large U.S. National Science Foundation PD projects in order to use cross 
case analysis to further inform what teachers take up in their classrooms 3-4 years after 
the initial professional development experiences. We want to explore how certain PDs 
get applied in specific educational contexts in different geographical locations. This 
paper uses a comparative case analysis and focuses on the portion of the TaDD study 
that investigates self-reported learning related to pedagogy, content and resources 
taken up and used from the following three NSF PD projects one to two years after the 
project and funding ended. In the next section, we briefly describe the three different 
PD projects.  
Learning and Teaching Geometry (LTG) LTG is an efficacy study of the learning and 
teaching geometry professional development materials: Examining impact and 
context-based adaptations, sought to improve teacher’s own knowledge and 
instructional strategies in transformations-based geometry. This PD consists of 54 
hours of highly specified video-based PD grounded in modules of dynamic 
transformations-based geometry which is aligned with the Common Core State 
Standards in mathematics (CCSSM). Through video analysis, teachers work together 
to solve problems and further their knowledge in mathematics teaching in geometry. 
The PD allows teachers to better support students in their attempt to gain a deeper 
understanding of transformations-based geometry through activities like rate of change 
on a graph, scaling activities, and similarity tools to name a few.  LTG is a specified 
PD as the content and pedagogical goals of the PD are clearly articulated for each 
workshop.  
Collaborative research TRUmath and Lesson Study (LS) is a project that supports 
fundamental and sustainable improvement in high school mathematics teaching. LS is 
aimed to engage in design research to develop and implement a replicable model of 
teaching for a coherent, department-wide approach. In the PD, teachers collaboratively 
created focused and coherent lesson plans from their curriculum aimed at providing 
students the opportunity to gain a deep understanding of mathematics and the ability 
to make connections. The PD took a unique twist on lesson study by using the TruMath 
framework as a common observation tool that could guide teacher noticing and anchor 
discussions related to the lab lessons. The lab lessons are one teacher volunteers to 
teach a lesson and other participants in the LS observe quietly in the back of the 
classroom. The TruMath framework focused discussion and analysis of classroom 
interactions across five dimensions. Teacher teams identified a goal from one of the 
dimensions of the framework that they wanted to focus more deeply on. LS is an 
adaptive form of PD that utilized the TRU framework but allowed for teachers’ ideas 
to guide the workshops.  
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Visual Access to Mathematics: Professional development for teachers of English 
Learners (VAM).  The VAM PD, the focus PD of this paper, is a “60-hour blended, 
face to face and online course to build teachers’ knowledge of and self-efficacy about 
LRT strategies to strengthen English Learners (Els) problem solving and discourse in 
middle grades” (De Piper et al., 2021 p. 491). The goals and intentions of VAM were 
to cultivate in teachers the fluent use of representations, anticipation of students’ 
strategies, the ability to interpret and construct various mathematical solutions, and to 
reason with and across representations. Teachers learned how to strategically select 
and align VRs with their instructional goals, anticipate student thinking and 
misconceptions, and then implement lessons using these strategies in their classrooms. 
Once implemented they would share experiences and student work, and collaboratively 
and independently reflect on the teaching cycle in the VAM PD online workshops.  
VAM falls in the middle of the adaptive-specified framework as the face-to-face 
workshops had specified and intentional goals, and the online professional learning 
meetings were guided by the teachers using artefacts of practice to guide their 
discussions.  
METHODOLOGY AND METHODS 
Sixty-six participants took a 32-question survey (28 LTG, 25 VAM and 13 LS). 
Teachers also provided background information. All teachers held an undergraduate 
degree and 88% held a graduate degree, on average, but larger proportions of LTG 
(93%) and VAM (96%) teachers held graduate degrees compared to LS teachers (62%; 
t=3.29, p<.01). In addition, VAM teachers reported over 16 years of experience 
teaching, significantly more than LS and LTG teachers who reported approximately 10 
and 12 years, respectively (t=2.81, p<.05 and t=2.57, p<.05, respectively). On average, 
15% of teachers were currently teaching Geometry with no differences between 
groups. 
The survey included both closed and open-ended questions that asked participants to 
reflect on their PD experience and characterize their past and/or current use of the PD 
content, pedagogy and materials as well as the support they received to implement new 
content and instructional practices.  The survey included seven Likert scale questions. 
Participants responded to statements on a scale of 1-10, as well as eighteen follow up 
questions that allowed the participants to provide more details about their responses.  
We coded the 18 questions on the survey from all 66 participants. We created a coding 
manual starting with apriori codes. The apriori codes were aspects of effective 
professional development from the literature (e.g. analysing student thinking, specific 
content, and representations used), supporting diverse learners. We then included 
emergent codes that appeared frequently and appeared relevant to the programs. We 
began with three researchers coding one survey from each project. We came together 
to discuss codes, add codes to the manual, and reconcile differences. We then 
continued this process with seven surveys from each project to achieve inter-rater 
agreement at 91%. 
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Once all surveys were coded, we calculated the amount of time a participant mentioned 
each code in their survey responses. For each of the four domains, we identified and 
averaged the specific codes included within that domain. For instance, we identified 
four codes that were related to content; these codes included GCSL (general content 
student learning), GCTL (general content teacher learning), SCSL(specific content 
student learning), and SCTL(specific content teacher learning). SCSL would refer to a 
comment on the survey that indicated specific content (e.g. dilations) and discussed a 
focus on student learning. Then we identified three codes related to pedagogy; these 
codes include MS (multiple solution strategies), SSDL(student strategies for diverse 
learners), and ST (student thinking). We identified six codes that were related to 
resources; these codes included GR (general resources), RSDL (resource to support 
diverse learners), RTL (resource for teacher learning), SR (student resource), TSML 
(technology support math learning), and V (mention of video to support noticing). 
Lastly, we identified four codes related to support; these codes include C 
(collaboration), FI (facilitator impact), CS (coach support), and PS (principal support).  
Finally, percentages of comments were created from the four domain averages and 
percentages of comments of the individual codes within domains were calculated for a 
deeper understanding of teacher responses. 
ANALYSES 
To analyse the data, we used descriptive statistics, paired samples t-tests, and analyses 
of variance and covariance with pairwise comparisons using the Bonferroni test to 
identify and understand the differences and similarities between uptake by project (LS, 
LTG, VAM). To control for pre-existing differences, graduate degree and years of 
experience teaching were included as covariates in the analyses of covariance. 
Measures of teacher undergraduate and graduate degrees and currently teaching 
geometry were included in preliminary analyses but found to be non-significant and 
dropped from subsequent analyses.  
RESULTS 
To identify what teachers remembered from their PD experiences 3 to 4 years ago and 
what they have continued to use related to that PD, we analysed the average 
percentages of comments made by teachers. Table 1 presents the percentages of 
comments within domains and across projects and the results of the analyses of 
covariance adjusted for teacher years of experience teaching.  
Types of comments within projects. Within projects, paired samples comparisons 
within the LS group identified a significantly larger percent of comments focused on 
support compared to content (t=6.70, p<.001), pedagogy (t=4.76, p<.001), and 
resources (t=4.62, p<.01). While this group also commented more on resources than 
on content (t=3.38, p<.01), both LTG and VAM emphasized resources more than all 
other domains: content (t=2.86, p<.01 and t=14.21, p<.001, respectively), pedagogy 
(t=10.70, p<.001 and  t=17.89, p<.001, respectively), and support (t=4.14, p<.001 and 
t=12.82, p<.001, respectively). LTG and VAM also focused more on content (t=9.90, 
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p<.001 and t=3.80, p<.01, respectively) and support (t=8.29, p<.001 and t=9.48, 
p<.001, respectively) than on pedagogy. 
To summarize, although the domain resources was somewhat emphasized in the LS 
project, content and pedagogy were emphasized far less. The LTG project, a specified 
PD, had the largest percentage of comments that were distributed among the categories. 
The largest percentage was related to resources and then percentages were fairly evenly 
distributed between content and support, but less so for pedagogy. The VAM teachers 
mostly emphasized resources followed by support and content and pedagogy.  
Types of comments across projects. Comparing teacher comments across projects, 
results of the analyses of covariance identified distinct patterns of comments about PD 
experiences for each group (see Table 3). LS participants were significantly more likely 
to mention support and pedagogy compared to both the LTG (t=7.81, p<.001 and 
t=3.71, p<.01, respectively) and VAM participants (t=8.28, p<.001 and t=3.17, p<.01, 
respectively). Their comments included principal and coach support as well as 
colleague support.  Support was the domain qualitatively discussed most throughout 
the survey.  
LTG participants emphasized content significantly more than both LS (t=5.51, p<.001) 
and VAM participants (t=6.22, p<.001) and resources more than LS participants 
(t=4.35, p<.001). On the other hand, VAM participants mostly emphasized resources 
and did so significantly more than both LS (t=8.55, p<.001) and LTG participants 
(t=5.62, p<.001).  
 

Domains of 
teacher 
comments 

Lesson 
Study PD 
(LS, 
n=13) 

LTG PD 
Efficacy 
Study 
(LTG, 
n=28) 

Visual 
Access for 
ELLs in 
Math PD 
(VAM, 
n=25) F 

Pairwise 
comparisons 

Content 10% 29% 10% 25.76*** 

LTG>LS*** 

LTG>VAM*** 

Pedagogy  13% 3% 4% 7.34** 

LS>LTG** 

LS>VAM** 

Resources 23% 43% 65% 37.56*** 

LTG>LS*** 

VAM>LS*** 

VAM>LTG*** 

Support  54% 25% 21% 38.89*** 

LS>LTG*** 

LS>VAM*** 
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Total 100% 100% 100%   

Note. Results from ANCOVA adjusted for years of experience teaching.  
 **p < .01; ***p < .001. 

Table 1: Results of ANCOVA on percent of teacher comments across the four 
domain averages, by project (N=66) 

Results indicate that the teachers’ perceived uptake after 3-4 years was highly related 
to the goals and intentions of the PD projects. As the PD projects’ goals and intentions 
were identified at different points on the adaptive – specified continuum, differences 
were highlighted based on comments related to content, pedagogy, resources, and 
support. In some ways this is not surprising that the different PD programs had different 
emphases, and these were revealed in the clusters of codes related to content, pedagogy, 
use of resources, and support yet it provides promising evidence that PD learning held 
residual value.  
DISCUSSION  
This study reveals that the teachers that participated in the three NSF funded PDs, 3-4 
years before taking this survey, highlighted and wrote about the main goals and 
intentions of the PD that they attended. Although this may not be surprising that the 
teachers remember what the facilitator and PD developers intended, it shows promise 
that the PD’s yielded high residue of teacher learning 3-4 years after the PD workshops 
especially when the content and the pedagogy of the PD were relevant, useable, and 
transferrable across the daily lessons of the teachers.  
The LS teachers generally tended not to emphasize content, and when they did, they 
mostly discussed aspects of content that were generally related to teacher or student 
learning. In fact, they mentioned teacher learning more than VAM (t=3.06, p<.01) and 
student learning more than LTG (t=2.50, p<.05). When discussing pedagogy, most 
comments were related to working with diverse learners. If they were discussing a 
resource, they typically were discussing a specific resource, and did so more often than 
LTG (t=3.71, p<.001). Most likely, the specific resource they discussed was the TRU 
framework which was the centre piece of this project. LS teachers were significantly 
more likely to discuss specific resources. When talking about support, they mostly 
emphasized support from colleagues and more so than VAM (t=2.71, p<.05). Although 
only 21% of their comments were about coach support, this percentage was still 
significantly larger than for LTG (t=3.05, p<.05) and VAM (t=3.09, p<.01). 
The LTG project, the most specified PD, had the most distribution between the four 
categories. Resources, both general and specific, were provided to participants 
including rich tasks, videotapes and applets to support the implementation of 
transformations-based geometry in middle and high school classrooms. LTG teachers 
commented specifically on the geometry content they learned and used in their 
classrooms which is not surprising since the PD was specified and the content new to 
many participants.  
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The VAM PD, is also a specified PD but the specificity did not only lie in the content 
but in the strategies, specifically using representations, to support emergent bilinguals. 
The VAM teachers commented on resources more than the other areas - content, 
pedagogy and support, and commented on resources more than teachers in the LS and 
the LTG PDs. The LTG and VAM projects did not solicit support from principals and 
coaches and these categories of support were not mentioned often by either group, but 
they did discuss the support they received from their colleagues and from the 
facilitators during the PD experience.  
This study has a small sample size and results need to be taken with caution. The 
findings do provide some evidence that teachers remember and use aspects from a PD 
that they participated overtime and that there is residual knowledge that has endured. 
More research is needed to understand teacher learning over longer periods of time and 
perhaps to increase funding cycles for this to happen. Our next steps are to continue in 
this line of inquiry by conducting the cross case analyses from these projects. We will 
analyse how classroom practices related to the goals and intentions of the PD project 
are reflected in their teaching. We will conduct think aloud protocol interviews to 
understand teacher learning more fully and how this learning is evidenced in daily 
classroom practice through their voices. 
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ANALYSING PROCESSES OF TRANSFER IN LEARNING BASIC 
FRACTION CONCEPTS: A DIDACTICAL APPROACH TO 

TRANSFER 
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This paper reports selected findings from a study investigating processes of transfer in 
the development of basic fraction concepts. For this study transfer is conceptualised 
as a process based on the didactical model of Grundvorstellungen. This approach 
enables the analysis from both a normative and a descriptive perspective. Comparative 
interaction analyses of students working in dyads provide deep insight into the 
development of basic fraction concepts.  
INTRODUCTION 
Mathematical content is typically introduced by building on concrete experience with 
real-world activities that become progressively more abstract and symbolic (Scheiner, 
2016). Thus, the learning of fractions usually starts with the idea of sharing or dividing 
real-world objects or their depictions into equal parts. This is supposed to form the 
basis for understanding the general concept of a fraction as a part of a whole. Learning 
then usually proceeds by sharing and dividing various other objects and their depictions 
in multiple ways. By varying the objects, representations, and distributions the learners 
are supposed to abstract the elementary production activity for any fraction, that is 
dividing a whole into n equal parts and duplicating a part m times to get a fraction !" .  
This concept is then applied to various wholes, e.g. quantities (area, weight, length, 
money, etc.) and various iconic representations to extend the validity and applicability 
of this concept to a multitude of different situations (Behr et al, 1983; vom Hofe & 
Blum, 2016). Learning progressions like this are particularly based on processes of 
transfer in the sense that students are required throughout to transfer and connect their 
prior learning to new situations and applications and in this way extend and further 
develop their understanding of the concepts they are learning.  
From this didactical perspective mathematics learning requires transfer of concepts, 
procedures, and structures in predominantly three types of situation (Kollhoff, 2021):  

• Transfer between subject-related contexts and applications. 
• Transfer between different representations and modes of representation. 
• Transfer of concepts, procedures and structures to create, substantiate and 

justify mathematical connections. 
The study reported in this paper investigates such processes of transfer. Research has 
provided rich evidence that the development of fraction understanding is difficult in 
general, requiring conceptual changes and a broader understanding of number and 
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operation concepts (Gabriel et al., 2013). In particular, it can be highlighted that 
important obstacles in the learning process can be explained by a lack of transfer as 
well as negative and overzealous transfer that lead to misconceptions (e.g. “natural 
number bias, Ni & Zhou, 2005) as a consequence. However, very little is known about 
the underlying processes of concept development and to what extent these explanatory 
models for learning fractions apply to authentic classroom contexts.  
A main aim of this study was to investigate processes of transfer in authentic student 
interactions in class. For this reason, a didactical approach to transfer was developed 
that builds on the model of Grundvorstellungen (vom Hofe & Blum, 2016). The applied 
conceptualisation of transfer will be introduced in the next section. 
GRUNDVORSTELLUNGEN AND PROCESSES OF TRANSFER 
Research on transfer has historically and epistemologically been predominantly 
conducted in controlled teaching experiments to compare and evaluate the efficiency 
of instructional methods. The mathematical content of these teaching experiments is 
often restricted to procedural skills and techniques that can be applied algorithmically. 
Only recently (cf. Hohensee & Lobato, 2021) research on transfer in mathematics-
related contexts has focused more on semantically rich learning content, like the 
concept of proportionality (Lobato, 2012) or the empirical law of large numbers 
(Wagner, 2006) as well as investigating mathematics learning in school. Consequently, 
most theoretical perspectives on transfer are intended for application in research rather 
than teaching contexts und thus yield only limited guidance and directions for 
mathematics teaching and learning in school. In this respect, within the model of 
Grundvorstellungen (vom Hofe & Blum, 2016) transfer can be conceptualised in both 
didactical and empirical contexts.  
Grundvorstellungen: Normative and Descriptive Perspectives 
The concept of “Grundvorstellungen” (GVs) is deeply rooted in the German tradition 
of “Stoffdidaktik”. GVs as didactical categories formulate prototypical mental models 
of mathematical concepts and procedures, which are supposed to: (i) Give meaning to 
a mathematical concept or procedure through connecting it to familiar knowledge and 
experience, or mentally represented activities; (ii) help learners develop adequate 
mental representations of a mathematical concept or procedure; and (iii) support the 
application of a concept or procedure in subject-related contexts, e.g. modelling or 
problem solving  (vom Hofe & Blum, 2016). Thereby, GVs as normative categories 
characterise a mathematical concept or procedure and provide interpretations in 
various contexts (Kollhoff, 2021; Salle & Clüver, 2021).  
Based on this normative perspective GVs provide a framework to characterise and 
describe didactically intended processes of transfer with respect to (Kollhoff, 2021): 

• The conceptual core of a transfer, i.e. what concept, procedure or structure is 
supposed to be transferred? 
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• The required connections to be made between contexts, representations, 
modes of representation, or activities. 

• The expected difficulties, mistakes, and errors based on empirical results and 
didactical experience.  

Vom Hofe and Blum (2016) differentiate between two types of GVs: Primary and 
secondary GVs. Primary GVs are based on concrete activities with real-world objects. 
The corresponding concepts can thus be semi-isomorphically represented by real-
world activities and hence have a representational character. In contrast, secondary 
GVs are based on mathematical operations with symbolic objects. The constituents of 
the corresponding mathematical structures are not real-world activities but imagined 
activities with (abstract) mathematical objects and means of representing these objects 
(e.g. number line, terms, function graphs). Therefore, secondary GVs have a symbolic 
character. This differentiation accounts for the didactical progression from concrete 
activities with real world objects to activities with abstract representations in the 
development of mathematical concepts. 
The normative perspective of GVs is complemented by a descriptive perspective to 
reconstruct and analyse students’ thinking and investigate their individual 
conceptualisations of mathematical concepts and procedures. As descriptive categories 
GVs build on Bauersfeld’s (1988) theory of “domains of subjective experience” (DSE). 
This theory describes mathematics learning as a non-hierarchical, cumulative, and 
separated storing of an individual’s experience in correspondence to their situated 
connections. DSE accumulate everything an individual has experienced and processed 
as subjectively important. For this reason, DSE are not static entities but are subject to 
a dynamic development through activation in various situations. Since DSE are 
characterised by very specific elements, e.g. meanings, language, affordances for 
activities, available routines, etc., learning can be described as the development of new 
DSE or mental models respectively. From this perspective, knowledge is cognitively 
and emotionally inseparable from the learning situation. In new situations DSE 
compete for activation and the dominant DSE is decisive for the interpretation of the 
situation. Although DSE are not organised hierarchically they can be connected to each 
other through the construction of a new coordinating DSE and form a network of “self-
referential systems” (Bauersfeld, 1988). Transfer can thus be described as the process 
of connecting DSE and forming a new coordinative DSE. The dynamic nature of 
establishing these connections leads to the conceptualisation of transfer as a process 
(Kollhoff, 2021). 
With respect to the normatively formulated Grundvorstellungen and the intended 
processes of transfer, the descriptive analysis and reconstruction of students’ thinking 
regarding their explanatory models in use provide a ground for comparison to identify 
deviations. This enables detailed analyses of transfer processes from an empirical 
perspective on one hand, but also allows to consider specific measures of support for 
learning (in class). 
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The described approach to transfer is highly comparable to the Actor-Oriented Transfer 
(AOT) framework (Lobato, 2012) concerning the descriptive perspective. Like the 
AOT approach, it conceptualises transfer based on the learners’ individual and 
subjective generalisations and interpretations of the learning content in contrast to 
expert models to reconstruct and analyse the learners’ explanatory models in use. 
However, the Grundvorstellungen approach makes use of the expert models as 
normative guidelines that are applied in the construction of the learning materials and 
thus describe didactical intentions. This way, it extends the AOT framework by using 
expert models as a level of comparison, which therefore allows an evaluation of the 
normative models themselves.   
INVESTIGATING PROCESSES OF TRANSFER IN FRACTION LEARNING 
The study that is reported in this paper investigates processes of transfer in the 
progressive development of fraction understanding in an authentic classroom 
environment over the period of six weeks (Kollhoff, 2021). Within the limited frame 
of this paper, selected aspects of the study will be presented to illustrate the 
methodology and discuss selected results. 
Research Questions 
Among others, the main research questions were: (i) How do processes of transfer that 
are intended on a normative level project to the individual learning processes of the 
students? (ii) How are the students’ processes of transfer related to their development 
of individual conceptualisations of fractions? 
Methods 
The study was conducted in an introduction to fractional numbers in grade 5 over the 
period of six weeks. Based on the normative perspective of Grundvorstellungen a 
curriculum with learning materials has been carefully constructed along a series of 
intended processes of transfer. Framed by a pre- and post-test, three learning sessions 
in which the students worked in dyads (28 students in 14 dyads) were filmed to record 
their interaction with each other. The data collection was spread over the six weeks to 
enable the reconstruction of the students’ development in the progress of learning. In 
these sessions, the students worked on two initiating worked-out examples that were 
followed fade-out examples, in which the students had to reproduce the content on the 
worked-example. This was followed by a series of transfer problems that required 
transfer on various levels.  
The qualitative data was analysed in interaction analyses (Cobb & Bauersfeld, 1995) 
based on transcripts of the students’ interactions. The analyses primarily focused on 
the reconstruction and description of the individual students’ processes of transfer and 
their explanatory models in use (Kollhoff, 2021). The results of these analyses were 
then taken into a comparative analysis on three levels: (i) The relation of the 
reconstructed and the intended processes of transfer, (ii) the results of other 
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students/dyads, and (iii) processes of transfer in the context of different procedures and 
concepts over the period of the course. 
RESULTS: TRANSFER OF THE PRODUCTION PROCEDURE OF 
FRACTIONS 
The following samples illustrate the applied methodology as well as selected findings 
of the study. 
In the beginning of the session the students worked on two worked-out examples that 
explained the production of the fractions #$ and %$ illustrated with the division of a circle 
and a rectangle. In the fade-out examples the students were expected to reproduce the 
production procedure for &$ with a circle representation (“Explain how &$ is produced 
and use the circle for illustration.”). The intended processes of transfer were the 
application of the two production operators : 𝑛 and ∙ 𝑚 together with their illustrative 
meaning of dividing the whole into n parts and multiplying one part m times, which is 
represented by dividing the iconic representation into n equally sized parts and 
colouring m parts of the diagram. With respect to the development of 
Grundvorstellungen, this production process is prototypical for the production of any 
fraction and can be used as an illustrative model for the interpretation of fractions in 
various contexts.  
As a transfer problem the students are later required to transfer this production 
procedure to represent fractions on a line segment. This representational transfer 
requires an adaption of the illustrative activity, because in circles and rectangles 
fractions are represented as areas while they are represented as lengths on a line 
segment. This means that the line segment needs to be divided into parts of equal length 
while circles or rectangles are usually divided into parts that are congruent or rather 
have the same area. Didactically, the representation of fractions on a line segment 
constitutes a first step to representing fractions on a number line. 
Please note that the following transcripts are originally in German and have been 
translated into English. 
Bennet & Julius 

1 B: Ah, look here, you have to divide this [a circle] by eight ... you have to write 
divided by eight, because then you have one eighth, and then you have to 
multiply by six, then you have six eighths. 

2 J:  Minus six. 
3 B: Why minus six? You have to multiply by six. 
4 J: But when you divide … let’s say you divide a cake into eight parts of equal 

size and you want to have six of them, you have to do minus six, because 
otherwise you wouldn’t have them. 

5 B:  But you don’t know of what you have to do minus six. 
6 J: Hä? But you first divide it by eight and then you have to take six away – 

thus minus six. 
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7 B:  Yes, but we have to write it down in these steps. First, we divide by eight 
and get one eighth, then multiply one eighth by six, and get six eighths. 

In this episode Bennet and Julius discuss the production of &$. While Bennet transfers 
the procedure analogically to the new set of numbers and interprets the production 
operators with their illustrative meaning as intended (1), his partner Julius does not. In 
contrast to his partner, Julius interprets the production process in the frame of the real-
live activity of dividing a cake. He shares his partner’s interpretation of the first 
operator to divide the whole (the circle) into eight parts, but then interprets the second 
production operator with the activity of “taking away” six parts or pieces, respectively 
(2). He thus wants “to do minus 6, because otherwise you wouldn’t have them” (4). 
The interpretation of the second production operator as a minuend can be interpreted 
as a result of overzealously transferring the linguistic expression “divide by n and take 
m away”, which is often used to illustrate the production procedure in the context of 
sharing a concrete object like a pizza, or in this case a cake. The students are thereby 
expected to differentiate between the mathematical and the real-world expression, 
which is likely to be misunderstood. This creates a conflict between two DSE, the real-
world activity and the mathematical operation, that needs to be resolved by connecting 
the two DSE. Such a connection can probably only be established by reformulating and 
reframing the real-world activity without the idea of “taking parts away”. Bennet refers 
to this conflict by questioning “of what you have to do minus six” (5). As Julius does 
not deviate from his perspective (6), Bennet tries to convince him by referring to the 
worked-out examples as he explains, that they have to write down the production 
procedure “in these steps” (7). By “steps” he refers to the production operators as he 
highlights their individual function on an abstract level, that eliminates the notion of 
“taking away”.  
After the first episode that is discussed above, Bennet and Julius worked on further 
fade-out examples in which they explained the production procedure for three other 
fractions and illustrated them in circles and rectangles. The conflict appears not to be 
resolved, yet, but Julius trusts his partner’s explanations and seems to accept that he 
was wrong by interpreting the second operator as a minuend, although he shows no 
signs that he has understood the difference. In a later episode from the same learning 
session Bennet and Julius work on the representation of the fractions '( and #& on a line 
segment:  

1 J:  That’s easy. You just need to divide this [the line segment] in four and then 
take one part. And then divide in six and take five of them. 

2 B: Yes.  
3 J:  We first have to measure how long the line is. How long is it? […] 

Julius refers to this task as “easy” (1). By “easy” he might indicate that he 
spontaneously has a solution plan in mind. He then uses a similar expression of “taking 
away” to describe the function of the second production operator as he did before (1). 
In contrast to the first task, the students are not required to describe the production 
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process symbolically and are only asked to represent the fractions iconically on a given 
line segment. In this representational context Julius then correctly divides the line 
segment into four parts and colours one of them to represent '(. He also proceeds as 
intended with the representation of #&  and two other fractions. Since there is no 
calculation required in this task, the conflicted meanings of the second production 
operator remain hidden. Instead, the production operator is interpreted within the DSE 
of representing fractions iconically, in which it can be understood as colouring a 
specific number of parts. Julius’ repeated use of the expression “taking away” can be 
interpreted as a means of not having resolved the cognitive conflict. Instead, the 
activity of representing fractions iconically offers a third interpretation of the operator 
as colouring a specific number of parts. 
DISCUSSION 
The selected samples in this paper illustrate two major findings from the study. 
Concerning the first research question, the study shows that the intended processes of 
transfer project to the learning processes of the students, but in a highly individual and 
subjective way. The single sample of the dyad Bennet and Julius shows a strong 
divergence of intended and not intended processes of transfer even at the very 
beginning of the learning progression. This finding becomes even more apparent in the 
comparative analyses on multiple levels (Kollhoff, 2021). Compared to his partner, 
Bennet does make all intended connections more or less spontaneously without any 
apparent difficulties. In contrast, the case of Julius is representative of a second major 
finding of the study concerning the second research question: Numerical procedures 
and the activities that are supposed to represent them appear to be treated, stored, and 
developed as separated DSE. The example of Julius illustrates the need to coordinate 
the separated DSE in the construction of a coordinative DSE that requires an active 
construction by the learner. Comparisons to other dyads in the study describe the 
consequences if no such coordinative DSE is being constructed (Kollhoff, 2021). In 
these cases, the students tend to develop robust misconceptions that interfere with their 
further learning. These students appear to not fully understand the procedures and 
concepts and as a consequence rely mainly on the numerical procedures that they try 
to apply algorithmically and often incorrectly in various situations. In later stages, the 
dominance of the numeric procedures and the lack of illustrative understanding of them 
lead to errors that can be compared to findings of studies that investigate the “natural 
number bias” (Ni & Zhou, 2005).  
The conceptualisation of transfer as a process within the didactical model of 
Grundvorstellungen proved to be useful. The comparison of the normatively intended 
processes of transfer and the descriptive reconstruction of the students’ actual 
processes of transfer revealed patterns of deviation that have to be taken into account 
in the design and planning of learning environments and progressions. In particular, it 
has been described that the connection of numerical procedures and their illustrative 
representations have to be actively supported since they will often not be constructed 
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by the learners themselves. Furthermore, the findings point out specific difficulties of 
the representational models themselves (Kollhoff, 2021) that have to be accounted for 
in teaching fractions. 
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Making realistic assumptions is an important part of solving open modelling problems 
and also a potential source of errors. But little is known about the difficulties that result 
from the openness of modelling problems and how they can be addressed in 
interventions. Here, we focus on two central solution steps that are necessary for 
making assumptions: noticing the openness and estimating the missing quantities. In a 
qualitative study with four ninth graders, we asked students to solve a modelling 
problem after informing them about the openness of the problem. We identified 
barriers that expand the two-step model (e.g., trouble integrating assumptions into the 
model). In addition, informing students about the openness of the problem improved 
their solution to the problem at hand but did not help them solve subsequent problems. 
INTRODUCTION 
Mathematics can help people solve problems from every day or professional life. These 
problems typically do not contain all of the information required to obtain a solution. 
To replace missing values and simplify the situation, it is often necessary to make 
assumptions so that a mathematical model can be set up and used to solve the problem. 
Hence, specific skills (e.g., estimation skills) are needed, and mathematics classrooms 
should foster these skills to prepare students to apply their mathematical knowledge in 
order to solve real-world problems. Galbraith and Stillman (2001) highlighted the 
importance of making assumptions as a genuine but underrated aspect of successful 
modelling and stressed the need for systematic research in this area. This need was 
recently recalled (Schukajlow et al., 2021) and is addressed in the present study. We 
analyzed (1) the difficulties students experience when making assumptions to solve 
open modelling problems and (2) how information about the openness of the problem 
helps them overcome these difficulties. Our findings contribute to a better 
understanding of the process of making assumptions and the kinds of information that 
might help students overcome their difficulties with regard to making assumptions. 
THEORETICAL BACKROUND AND RESEARCH QUESTIONS 
Making assumptions 
Making an assumption means proposing that a statement is temporally true as a 
productive basis for subsequent activities (Djepaxhija et al., 2015). Assumptions are 
necessary to solve open problems because important aspects of the problem situation 
are not specified, and additional information is needed. Assumptions specify the 
missing information and help the problem solver find a solution under the restrictive 
conditions that come along with making assumptions. Two broad types of assumptions 
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can be distinguished: Non-numerical and numerical assumptions. Non-numerical 
assumptions refer to assumptions about situational conditions, whereas numerical 
assumptions refer to assumptions about missing quantities. Both types require realistic 
considerations and extra-mathematical knowledge, but in order to make numerical 
assumptions, estimation skills may also be necessary (Chang et al., 2020). Estimations, 
which are rough calculations or judgments, can refer to different objects, including 
measurements (e.g., estimating length, height, or weight) and numerosity (e.g., 
estimating the quantity of objects) (Hogan & Brezinski, 2003). A number of studies 
indicate that estimation skills are difficult for students to acquire, and students often 
fail to estimate measurements with the appropriate accuracy (Jones et al., 2012).  
Mathematical modelling competence and making assumptions 
Mathematical modelling refers to the use of mathematics to solve real-world problems 
(Niss et al., 2007). The key aspect of modelling is that a real-world problem must be 
converted into a mathematical model that allows mathematical procedures to be 
applied to solve the problem. The mathematical result needs to be interpreted and 
validated with regard to the initial real-world situation. Thus, modelling can be 
considered a cyclic process that begins and ends in reality and passes through the 
mathematical domain. In mathematics classrooms, modelling problems are used to 
foster students’ modelling competence. Figure 1 presents an example of a modelling 
problem.  

Figure 1: Modelling problem that requires assumptions to be made.  
A characteristic feature of modelling problems is their openness as they often do not 
include all of the necessary information. To solve open modelling problems, two 
different solution steps are necessary (Krawitz et al., 2018): First, students need to 
notice the openness of the problem, and second, they have to estimate the missing 
quantities. For example, in the Speaker problem (Figure 1), students need to notice that 
the diameter of the speaker has to be taken into account and replace the missing 
quantity with an estimate (e.g., about 5 cm because, in the picture, the diameter is about 
one fourth of the height). Prior modelling research has shown that many students have 
trouble understanding, structuring, and simplifying the information given in modelling 
problems (Krawitz et al., 2021). Some of these challenges might result from the 

Speaker 
Maria bought the Ultimate Ears BOOM 
Speaker for 149.95 €. It has 360° sound 
with deep and precise bass. The speaker is 
18.4 cm high.  
Maria looks for a box with a cover for her 
speaker. On the web, she found a 
beautiful box. It is 14 cm wide, 10 cm high, and 14 cm deep.  
Will the speaker fit in the box? 
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openness of modelling problems and the cognitive demands of making assumptions 
(Ärlebäck, 2009). An impressive body of research on word problems has demonstrated 
that students tend to neglect the realistic context of the problems, including the 
necessity of making assumptions, even if this leads to unrealistic responses 
(Verschaffel et al., 2000). In the Speaker problem, for example, an unrealistic response 
would be to ignore the fact that the diameter of the speaker has to be taken into account, 
calculate the diagonal of the box (𝑑 = #(14! + 14!) + 10! = 22.18), and conclude that 
the speaker fits because the speaker is shorter than the length of the diagonal. One 
potential reason for students’ unrealistic responses is that they fail to notice the 
openness of the problem (Krawitz et al., 2018). In several interventions, researchers 
have tried to help students notice the openness, for example, by informing the students 
that the problems are tricky and cannot be solved in a straightforward way or by adding 
pictures to the problems (Dewolf et al., 2013), with little to no success. Students’ 
restricted beliefs about word problems were found to be a reason for their difficulties 
(Djepaxhija et al., 2015). This finding indicates that the difficulties are persistent and 
hard to change. Initial indications for difficulties in noticing the openness of modelling 
problems came from a study conducted by Chang et al. (2020) where the failure to 
notice the openness was found to be a major barrier, whereas estimation skills seemed 
to play a minor role.  
PRESENT STUDY AND RESEARCH QUESTIONS 
The present study was conducted within the framework of the Open Modelling 
Problems in Self-Regulated Teaching (OModA) project, which is aimed at 
investigating cognitive, strategic, and affective conditions for the teaching and learning 
of open modelling problems. The research questions in the present study were: 
RQ 1: What difficulties do students experience with respect to making assumptions 
when they solve open modelling problems? 
RQ 2: How does providing information about the openness of the problems help 
students overcome these difficulties? 
METHOD 
Participants and Data Collection 
The sample involved four ninth graders (one female, all 16 years old) from two high-
track schools (German Gymnasium). The students participated voluntarily in the study. 
Three of the participants were high achievers in mathematics (excellent grades), and 
one of them was an average achiever (average grades). In the following, the 
participants are referred to with pseudonyms. One of the participants (Andreas) stated 
that he had prior experience with open modelling problems, whereas the others did not. 
We used a qualitative approach to gather information on the underlying reasons for 
students’ difficulties with open modelling problems and conducted individual sessions. 
The sessions consisted of three stages: problem solving, stimulated-recall interview, 
and semi-structured interview. In the problem-solving stage, participants were first 
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given an open modelling problem (Shortcut Route Problem, Table 1) without 
information about the openness of the problem, a subsequent problem (Speaker 
Problem, Figure 1) with information about the openness (“To solve the problem, you 
must estimate the diameter of the speaker”), and finally another problem without such 
information (Tree Problem, Table 1).  
Shortcut Route Problem: Mrs. Mai drives home on route B 47 
and is running late. Fortunately, there is little traffic on the 
streets at night. She will soon come to the junction where the 
Street named Querallee branches off to the left. From there it 
would be another 1.5 km on B47 straight ahead, and from the 
roundabout another 2 km after turning left on B11 until she is 
home. Is the drive through the residential area worth it for Mrs. 
Mai so that she can get home earlier? 
Tree Problem: Freshly planted trees are not yet rooted in the earth and 
need help attaching for the first few years. Support poles are often used 
to help. One end of the pole is hammered obliquely into the ground. A 
distance of 1.25 m from the tree is maintained so that the pole does not 
damage the roots of the fresh tree. The other end of the pole is tied to the 
tree with a rope at a height of 1.5 m. What is the length of the pole?	 

Table 1: Open modelling problems used in the study. 
A quantitative pilot study with 143 students revealed that students rarely make realistic 
assumptions when solving these open modelling problems (percentage of solutions 
with realistic assumptions: 4.1% (Abbreviation problem), 3.2% (Speaker problem), 
0.8% (Tree problem)). 
Data Analysis 
The video material was transcribed and sequenced. Sequences of the stimulated recall 
interviews were assigned to the related problem-solving sequences in order to collect 
more information about students’ assumption-making processes. The sequences were 
categorized using qualitative content analysis (Mayring, 2014). In the coding process, 
noticing the openness and making assumptions were used as the main categories, and 
subcategories were inductively identified. Thereby, different types of assumptions 
(situational assumptions, numerical assumptions), purposes of assumption-making 
(simplify the situation, estimate missing quantities, interpret the result), and difficulties 
that could be attributed to the openness (noticing the openness, recognizing the 
possibility and necessity of making assumptions, integrating assumptions into the 
mathematical model) were distinguished. For example, the sequence “What is the 
diameter of the speaker? I would say, about as large as my water bottle. […] Okay, it 
is about 7 cm.” Was paraphrased as “Estimated the length of the diameter of the 
speaker (7 cm),” and this was coded as a realistic numerical assumption.  
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FINDINGS 
We analyzed students’ difficulties that could be attributed to the openness of the 
problems. Table 2 gives an overview of the categories developed in the coding process. 
Difficulties with: Description 
Noticing the openness Not noticing the openness and consequently not 

making assumptions 
Recognizing that assumptions 
might need to be made  

Noticing the openness but not recognizing that 
making assumptions is a way to deal with it 

Recognizing the need to make 
assumptions 

Noticing the openness but thinking that it is not 
necessary to make assumptions 

Integrating assumptions into 
the mathematical model 

Not being able to set up an appropriate mathematical 
model that takes the missing quantities into account 

Table 2. Overview of the difficulties that were attributed to the openness of the 
problem. 

To answer the first research question, we analyzed students’ solution processes for the 
first open modelling problem (Shortcut Route problem). Two of the participants (Tabea 
and Niklas) did not make any assumptions. Both calculated the distance without taking 
into account the different speed limits for the routes. Tabea did not notice the openness 
of the problem, whereas Niklas commented that he thought about the speed limits in 
his solution process but thought they were not important for the solution. Andreas 
directly recognized the need to make assumptions in the Shortcut Route problem. He 
made situational assumptions in order to simplify the real-world situation (“under the 
assumption that the street is perpendicular to the junction”) and to specify his 
estimations (“because there are houses next to the road, the car has to look for 
pedestrians and cannot drive 100 km/h”). On this basis, he made realistic numerical 
assumptions about the speed limits (main road: 80 km/h; housing area: 30 km/h) and 
also defined situational requirements that did not need to be considered (“the speed 
while turning at the junction can be ignored”). Further, he used his assumptions to 
calculate the time that was needed to take the shortcut and to take the main road and 
completed the process by providing a realistic answer to the problem (“It is not worth 
it because of the speed limits”). In Christian’s solution process, it was not clear at what 
point he noticed the openness of the problem. Christian did not make any assumptions 
and calculated the distances of both routes without considering the different speed 
limits. But his answer to the problem shows that he was aware of the fact that he 
neglected to consider this aspect in his solution (“The way through the housing area 
would be shorter but not necessarily faster”). His way of dealing with the openness of 
the problem was to acknowledge that his answer might not be valid. For Christian, 
noticing the openness did not lead him to make assumptions. Thus, simply noticing the 
openness is not enough for students to also recognize the need to make assumptions.  
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To address the second research question, we analyzed students’ solution processes after 
they were given information about the openness of the problem (Speaker problem). We 
found that informing the students that a quantity was missing helped all participants in 
our study notice the openness. Two of four participants, Christian and Andreas, made 
assumptions about the missing quantity (here, the diameter of the speaker) and used 
their estimates to set up a mathematical model. One participant, Tabea, did not estimate 
the length of the diameter but took this quantity into account when interpreting her 
result (“It depends on the width of the speaker […] the maximum width would be 1.4 
cm. I think this is too narrow.”). Niklas also noticed that the diameter of the speaker 
was important but did not know how to use this information to solve the problem. 
Instead of estimating the diameter, he ended his solution process by simply guessing 
that the speaker would not fit into the box. His solution process exemplifies that 
integrating the missing quantities into a mathematical model can also be a barrier, in 
particular if the mathematical model becomes more complex when the additional 
information is included, as was the case for the Speaker problem.  
To find out if the information also helps students notice openness while solving 
additional open modelling problems, the participants were given a third open 
modelling problem (Tree problem) without any information about the openness of the 
problem. None of the four participants noticed the openness of the problem. All of 
them neglected the fact that an assumption had to be made about the additional length 
of the support pole needed to fasten it to the ground in order to obtain a realistic solution 
(see Christian’s solution in Figure 1). Consequently, the participants did not transfer 
their experience with the previous open modelling problem to the next one.  

 
Figure 1. Christian’s solution to the Tree problem. 

Interestingly, Andreas and Bettina assigned the best value to their unrealistic solution: 
Interviewer: Which of your solutions did you find the best? 
Andreas: Best means that it is correct. Therefore, I would say the last one [Tree problem]. 

Because this is the one that really is correct. With the other, you have a 
greater inaccuracy because of the estimation. 

In this excerpt, Andreas, who had previous experience with open modelling problems 
and was able to solve the Shortcut Route problem and the Speaker problem by making 



Krawitz, Kanefke, Schukajlow, Rakoczy 
 

PME 45 – 2022 3 - 65 
 

assumptions, states that he believes that his realistic solutions, which included 
assumptions, were less correct than his last unrealistic solution. He thinks the realistic 
solutions were less accurate due to estimation errors.  
SUMMARY AND DISCUSSION 
In line with previous research (Chang et al., 2020), noticing the openness of problems 
was revealed as a key difficulty. Further, noticing the openness did not automatically 
result in making assumptions. We identified three difficulties that prevented students 
from making assumptions after noticing the openness. First, making assumptions was 
not assumed to be necessary. Second, strategies or knowledge about how to deal with 
open problems were missing. Third, it was difficult to set up a mathematical model that 
took the missing quantities into account. Hence, our findings expand on the proposed 
two-step model for solving open modelling problems involving the steps of noticing 
the openness and estimating the missing quantities (Krawitz et al., 2018). These 
additional barriers should be taken into account in future studies investigating the role 
that making assumptions plays in mathematical modelling. 
Contrary to studies that have revealed students’ difficulties with estimation tasks (Jones 
et al., 2012), estimating the missing quantities did not hinder problem solving. Maybe 
the problems did not challenge our participants’ estimation skills, or perhaps they failed 
at earlier stages in their solution processes so that we could not detect these difficulties.  
Further, students’ difficulties with noticing the openness could be overcome by 
providing information. However, the information helped only for the problem at hand, 
but it did not help students notice the openness of subsequent problems. Similar to 
research findings on word problems (Dewolf et al., 2013), students’ difficulties with 
noticing the openness of a modelling problem seem to be persistent. Future studies 
should examine how the difficulties identified in the present study can be addressed in 
teaching methods. Students’ restricted beliefs about word problems, in particular, the 
belief that every problem has a single numerical answer, were also found in our data 
and may have prevented students from making assumptions (Djepaxhija et al., 2015).  
On a theoretical level, our study contributes to a better understanding of the process of 
solving open modelling problems and the challenges that are induced by the openness. 
Our findings provide a basis for developing teaching methods that address these 
difficulties in future research. A practical implication might be to provide more 
learning opportunities to deal with open problems in class so that students can acquire 
the knowledge and strategies that are necessary to deal with open modelling problems. 
Acknowledgments: This study was financially supported by the German Research 
Foundation (GZs: RA 1940/2-1 and SCHU 2629/5-1). 
REFERENCES 
Ärlebäck, J. B. (2009). On the use of realistic fermi problems for introducing mathematical 

modelling in school. The Mathematics Enthusiast, 6(3), 331–364. 
https://doi.org/10.1007/978-1-4419-0561-1_52   



Krawitz, Kanefke, Schukajlow, Rakoczy 
 

3 - 66 PME 45 – 2022 
 

Chang, Y.-P., Krawitz, J., Schukajlow, S., & Yang, K.-L. (2020). Comparing German and 
Taiwanese secondary school students' knowledge in solving mathematical modelling tasks 
requiring their assumptions. ZDM Mathematics Education, 52, 59–72. 
https://doi.org/10.1007/s11858-019-01090-4   

Dewolf, T., Van Dooren, W., Cimen, E., & Verschaffel, L. (2013). The impact of illustrations 
and warnings on solving mathematical word problems realistically. The Journal of 
Experimental Education, 82(1), 103–120. https://doi.org/10.1080/00220973.2012.745468  

Djepaxhija, B., Vos, P., & Fuglestad, A. (2015). Exploring grade 9 students’ assumption 
making when mathematizing. In K. Krainer & N. Vondrová (Eds.), Proceedings of the 
Ninth Congress of the European Society for Research in Mathematics Education (pp. 848–
854). ERME.   

Galbraith, P., & Stillman, G. (2001). Assumptions and Context: Pursuing their Role in 
Modelling Activity. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), 
Modelling and Mathematics Education (pp. 300–310). Woodhead Publishing. 
https://doi.org/10.1533/9780857099655.5.300   

Hogan, T. P., & Brezinski, K. L. (2003). Quantitative Estimation: One, Two, or Three 
Abilities? Mathematical Thinking and Learning, 5(4), 259–280. 
https://doi.org/10.1207/S15327833MTL0504_02   

Jones, M. G., Gardner, G. E., Taylor, A. R., Forrester, J. H., & Andre, T. (2012). Students' 
Accuracy of Measurement Estimation: Context, Units, and Logical Thinking. School 
Science and Mathematics, 112(3), 171–178. https://doi.org/10.1111/j.1949-
8594.2011.00130.x   

Krawitz, J., Chang, Y.-P., Yang, K.-L., & Schukajlow, S. (2021). The role of reading 
comprehension in mathematical modelling: Improving the construction of a real model and 
interest in Germany and Taiwan. Educational Studies in Mathematics, Online-
Vorveröffentlichung. https://doi.org/10.1007/s10649-021-10058-9   

Krawitz, J., Schukajlow, S., & Van Dooren, W. (2018). Unrealistic responses to realistic 
problems with missing information: what are important barriers? Educational Psychology, 
38(10), 1221–1238. https://doi.org/10.1080/01443410.2018.1502413   

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures 
and software solution. Beltz.   

Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-
W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education: the 
14th ICMI Study (pp. 1–32). Springer.   

Schukajlow, S., Kaiser, G., & Stillman, G. (2021). Modeling from a cognitive perspective: 
theoretical considerations and empirical contributions. Mathematical Thinking and 
Learning. https://doi.org/https://doi.org/10.1080/10986065.2021.2012631   

Verschaffel, L., Greer, B., & De Corte, E. (Eds.). (2000). Making sense of word problems. 
Lisse, The Netherlands: Swets & Zeitlinger. 



 3 - 67 
2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.). Proceedings of the 45th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 3, pp. 67-74). PME. 

SIMULATION-BASED LEARNING ENVIRONMENTS: DO THEY 
AFFECT LEARNERS’ RELEVANT INTERESTS? 

Stephanie Krona, Daniel Sommerhoffb, Maike Achtnera, Kathleen Stürmerc, Christof 
Weckerd, Matthias Siebecka, Stefan Ufera 

a LMU Munich, b IPN Kiel, c University of Tübingen, d University of Hildesheim 
 
The use of simulation-based learning environments to foster professional competences 
attracts more and more research. The role of participants’ interest for learning is quite 
undisputable also in this context. Recent research findings emphasize that interest may 
trigger the activation of professional knowledge during participation in a simulation. 
Using data from N = 81 pre-service teachers who participated in four simulations over 
one semester, this contribution investigates how characteristics of the simulation (role-
play vs. video) and participants’ perception of the simulation affect the development of 
participants’ interests. Results reveal that, beyond the perception of the simulation, 
development of participants’ interests is weakly related to simulation characteristics. 
INTRODUCTION 
Diagnosing students’ thinking is an important practice in teachers’ professional life. In 
teacher education, learning environments based on role-play- or video-based 
simulations are applied to link conceptual knowledge with procedural components 
(Marczynski et al., in press). As learners’ interests relevant in the simulation content 
can be seen as a “door-opener” for knowledge activation in such simulation-based 
learning environments (Kron et al., under review), the development of participants’ 
interest becomes a crucial issue. The presentation may play a role here: While highly 
interactive simulation designs may increase interest, they run at danger of putting 
cognitive demand on participants, reducing the positive effects of interactivity.  
Approximations of practice (AoPs) in pre-service teacher education 
Simulation-based learning environments are special forms of approximations of 
practice (AoPs, Grossman et al., 2009). AoPs are intended to trigger knowledge 
activation in authentic, yet controlled situations. For example by using simulations, 
real-life situations are reconstructed to provide learning experiences, which are less 
cognitive demanding than real classroom situations, and reduce disruptive factors 
(Grossman et al., 2009). Especially in teacher education, AoPs are recommended to 
foster pre-service teachers’ competences by allowing an application and extension of 
professional knowledge in authentic, yet not overwhelming situations (Codreanu et al., 
2020). These competences entail cognitive as well as affective components, such as 
learners’ interests (Heitzmann et al., 2019). As such, AoPs are discussed being 
effective tools for teacher training (Meletiou-Mavrotheris & Mavrou, 2013), for 
example to engage in the diagnosis of student thinking (Marczynski et al., in press). 
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For the design of AoPs as learning environments, two criteria are highlighted to be 
relevant for learning: (1) the AoPs should be perceived as being authentic and (2) they 
should allow the learners to immerse themselves into the simulated situation (Goeze et 
al., 2014). However, the design of such authentic and immersive simulations is often 
at danger of increasing the extraneous cognitive load, which may impede their 
effectiveness (Sweller, 2010). Whereas teacher education commonly uses video-based 
simulations (e.g., Seidel et al., 2011), medical education has focused on role-play 
simulations, with trained actors as simulated patients (e.g., Stegmann et al., 2012). 
While role-plays may offer more opportunities for interaction and may thus be 
perceived as more authentic and immersive, video-based simulations with pre-
structured options for action may lead to lower cognitive load during learning. 
Development of learners’ relevant interests in AoPs 
Pre-service teachers’ interest likely affect how they engage in such AoPs or other 
learning opportunities in university-based teacher education. Following Krapp (2002), 
interest is a relatively stable relation between a person and an object, reflecting the 
“tendency to occupy oneself with an object of interest” (intrinsic component, Krapp, 
2002). Besides this “intrinsic component”, interest also comprises a positive emotional 
relation to the object (Krapp, 2002), and ascribes a certain value to the object of interest 
(Schiefele et al., 1992). This person-object relation may change or develop whenever 
an individual encounters the object (Hidi & Renninger, 2006). An object of interest can 
be any entity from the individuals’ “life-space” (Krapp, 2002), such as a professional 
practice, or a field of study. Relevant interests of pre-service mathematics teachers 
may, for example, address mathematics education content, or professional practices 
such as diagnosing student thinking. 
Hidi and Renninger (2006) argue, that interest “as a motivational variable refers to the 
psychological state of engaging or the predisposition to reengage with particular 
classes of objects, events, or ideas over time”. Research distinguishes between 
individual interest and situational interest (Hidi, 1990). Whereas situational interest is 
a temporary experience in a specific moment (Hidi, 1990), that results from “[…] an 
interaction of learners’ and situational features” (Rach, 2021), individual interest refers 
to a relatively stable motivational trait. As such, situational interest has been found to 
enhance learning (Wade, 1992), whereas individual interest had positive effects on 
attention, recognition, and recall (Hidi & Renninger, 2006). 
Thus, diagnostically relevant interests may play an important role when engaging pre-
service teachers with AoPs on diagnosis, for example by playing the role of a “door-
opener” for the activation of professional knowledge: Kron et al. (under review) report 
that the relation between pre-service teachers’ professional knowledge and their 
performance in simulated one-on-one diagnostic interviews depended on their interest 
in mathematics education and diagnosis, This leads to the question how these interests 
may be developed in pre-service teacher education. Meaningful experiences in 
simulations may strengthen the person-object relation and lead to more intense interest 
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in contents of the simulation and the simulated activities. However, research about how 
such learning environments contribute to the development of interest, is scarce. 
Regarding this development, also Hidi and Renninger (2006) argue that experiences 
during a learning situation might trigger situational interest, if the learning 
environments are authentic and immersive, and “provide meaningful and personally 
involving activities”. Beyond authenticity and immersion, cognitive load has been 
found to affect learners’ situational interest negatively (Park et al., 2015). If sustained 
over time, situational interest may contribute to the development of individual interest 
(Hidi & Renninger, 2006). However, it is quite unclear how pre-service teachers’ 
interest develops during repeated participation in simulation-based learning 
environments beyond short term effects of the simulation. 
THE PRESENT STUDY 
Despite the increasing research focus on interest development and the use of AoPs in 
teacher education, research linking these two fields is scare. We investigate the 
development of pre-service teachers’ relevant situational interests during repeated 
participation in a simulation-based learning environment on diagnosis of student 
thinking. We compare role-play- and video-based presentation formats. Since role-play 
simulations may offer more opportunities for authentic and immersive experiences, but 
may also result in a higher cognitive load, we did not have specific hypotheses which 
presentation format would be more beneficial for interest development. We addressed 
the following questions:  
RQ1: Does the presentation format of a simulation-based learning environment affect 
participants’ relevant situational interests reported after the simulation? 
RQ2: How do participants’ initial individual interests and their perception of the 
simulation affect participants’ situational interests after the simulation? We expected 
that higher initial interest, as well as perceiving the simulation as authentic and 
immersive, would go along with higher interest after the simulation, whereas higher 
extraneous cognitive load would decrease interest.  
RQ3: Does the presentation format influence the development of situational interest 
over multiple simulations, after controlling for the perception of the simulation? 
METHOD 
To answer these questions, we used simulated diagnostic one-on-one interviews. Pre-
service secondary school mathematics teachers at a large university in Germany were 
randomly allocated to one of the two parallel presentation formats (role-play: 𝑁 = 39; 
video: 𝑁 = 42). During summer term 2021, every participant participated in four 
simulations with a constant presentation format (𝑁 = 324	interviews, in total). The 
simulations were embedded in a web-based interview system. Initial individual 
interests were assessed before the first simulation. During each simulation, participants 
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reported their perception of the AoP. We applied scales for situational interests directly 
at the end of each simulation session.  
Simulation 
Simulated diagnostic one-on-one interviews were developed (Marczynski et al., in 
press) as an AoP for mathematics teacher education. Pre-service teachers act in the role 
of a teacher, diagnosing the mathematical thinking of a 6th grader in the field of decimal 
fractions, by using a given set of diagnostic tasks. Four different student case profiles 
were constructed, with different profiles of mathematical understanding in the field of 
decimal fractions. Trained research assistants played the student role in the role-play 
format, while scripted videos of 6th graders were prepared for the video simulation. 
Whereas the participants of the role-play simulation interacted with the simulated 
student directly, participants of the video-version watched the provided videos. Each 
simulation contains four phases: (1) The participants got familiarized with the 
interview system, their role as the teacher, and reviewed the given set of diagnostic 
tasks (only first simulation). (2) The participants had 25 minutes time to interview the 
simulated student. They chose tasks from the given task-set, observed the student’s 
response, and posed probing questions (in the video-simulation they selected from a 
range of possible probing questions). (3) After the interview, they prepared a diagnostic 
report about the interviewed student’s mathematical thinking. (4) The simulation ended 
with a debriefing, providing informing about an expert’s diagnosis of the student. Each 
participant conducted four simulations, one every two weeks.  
Instruments 
Interest: To assess participants’ relevant interests, we adopted scales of Rotgans and 
Schmidt (2011), considering interest in mathematics education and interest in diagnosis 
to be relevant in the context of the simulation (three items per scale, five-point Likert 
scales from 0 = not true at all; 4 = very true for me; a!"#$.&' = .89;a'(")*+,(, = .76).  

Perception of the simulation: Participants’ perception of the simulation was assessed 
by established scales (e.g., Seidel et al., 2010) using three items for authenticity and 
four items for immersion on a five-point Likert scale (0 = not true at all; 4 = very true 
for me; a"-#$ = .88;	a(!!&., = .67). Extraneous cognitive load was assessed by 
three items (five-point Likert scale; 0 = very easy; 4 = very difficult; a&/#..0+"' = .75).  
Statistical analyses: All data were collected in log files by the web-based interview 
system. Due to the nested structure of the dataset (multiple simulations per participant), 
we used linear mixed models to estimate effects of the perception of the simulation, its 
presentation format, and repeated participation, on interest reports after each 
simulation. In a first step, only the effect of the presentation format was investigated. 
Then, participants’ initial reported interest and the perception of the simulation were 
included. Finally, we added the number of the simulation (0 = first – 3 = last) as a 
metric covariate and its interaction with the presentation format. We used planned 
contrasts of estimated marginal means to investigate our research questions. 
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RESULTS 
Average interest ratings after all four simulations were above the midpoint of the scale 
for mathematics education (M = 2.44, SD = 0.81) and diagnosis (M = 2.78, SD = 0.66). 
Interest in mathematics education: (RQ1) Participants reported significantly higher 
interest in mathematics education after the video (M = 2.61, SE = 0.11) than after the 
role-play simulation (M = 2.25, SE = 0.11; B = 0.36, p < .05). (RQ2) These interest 
ratings were positively influenced by perceived authenticity (B = 0.18, p < .001) and 
immersion (B = 0.15, p < .01), and negatively by extraneous cognitive load (B = -0.21, 
p < .001). Initial interest in mathematics education did not predict the interest reported 
after the simulations significantly (B = 0.04, p = .67). Controlling for effects of the 
perception of the simulation, the difference in interest between the presentation 
formats, averaged over four simulations, was not significant anymore (B = 0.20, 
p = .12). (RQ3) Controlling for those effects of perception, the difference between the 
presentation formats was significant in the first (Mrp = 2.32, SErp = 0.11, Mvi = 2.61, 
SEvi = 0.10; B = 0.29, p < .05), but not for the last simulation (Mrp = 2.35, SErp = 0.11, 
Mvi = 2.46, SEvi = 0.10; B = 0.11, p = .44) due to declining interest in video simulation. 
Interest in diagnosis: (RQ1) Participants did not report significantly different interest 
in diagnosis after the video simulation (M = 2.83, SE = 0.09) than after the role-play 
simulation (M = 2.73, SE = 0.09; B = 0.10, p = .42). (RQ2) These interest ratings were 
positively influenced by the perceived authenticity (B = 0.13, p < .01) and immersion 
(B = 0.11, p < .05), and negatively by extraneous cognitive load (B = -0.13, p < .01). 
Initial interest in diagnosis positively predicted the interest reported after the 
simulations (B = 0.42, p < .001). (RQ3) Controlling for the perception of the 
simulation, we observed a significant decline of interest ratings over the four 
simulations (B = -0.04, p < .05), which corresponds to a difference of B = 0.13 on the 
interest scale (0-4) over all four simulations. This decline did not differ significantly 
between the two presentation formats (B = -0.03, p = .36). 
DISCUSSION 
The aim of this contribution was to provide insights, how the presentation format of an 
AoP and the participants’ perception of that presentation format affect their situational 
interest and its development, considering two different objects of interest. We intended 
to disentangle effects of situational experiences and developments of interest over time. 
Pre-service teachers, who perceived the simulation as authentic and immersing, 
reported a higher level of interest directly after participation in the simulation (RQ2). 
These relations between authenticity and immersion and interest are in line with 
assumptions based on work by Hidi and Renninger (2006) on interest development. 
The negative relation of extraneous cognitive load and interest development confirmed 
results of Park et al. (2015). This highlights, that AoPs need to be designed in an 
authentic and immersing way, also considering potential sources of extraneous 



Kron, Sommerhoff, Achtner, Stürmer, Wecker, Siebeck, Ufer 
 

3 - 72 PME 45 – 2022 
 

cognitive load. In fact, these requirements may run contrary to each other, as described 
on our assumptions about the two presentation formats (see also Codreanu et al., 2020).  
While prior interest in diagnosis was substantially related to post-simulation interest in 
diagnosis, this was not the case for interest in mathematics education. Authentic 
encounters with the object of interest are assumed to contribute to interest development 
(Hidi & Renninger, 2006). Beyond lectures and exercise sessions, this was one of the 
first opportunities for the participants to apply their mathematics education knowledge 
in an authentic (though simulated) situation. These results may indicate, that 
participants re-evaluated their interest in mathematics education more strongly based 
on the situational perception of the AoP than their interest in diagnosis.  
Without consideration of other factors, the video simulation triggered more positive 
ratings of interest in mathematics education than the role-play simulation (RQ1). 
According to our assumptions, this indicates that potential advantages of the video 
simulation in terms of lower extraneous cognitive load may have exceeded advantages 
of the role-play simulation in terms of higher authenticity and immersion (Hidi & 
Renninger, 2006; Park et al., 2015). Indeed, these situational perceptions explained 
almost all differences between the presentation formats. For interest in diagnosis, no 
differences in post-simulation interest by presentation format occurred. One 
interpretation of this finding could be that the presentation format was neutral 
regarding the emergence of situational interest in diagnosis, but not so for situational 
interest in mathematics education. The more structured interaction format of the video 
simulation (e.g., selecting from provided probing questions, instead of asking questions 
freely) might have helped participants to apply their knowledge from mathematics 
education and to experience it as helpful and valuable. In line with the idea of AoPs 
(Grossman et al., 2009) this result points to the importance of finding an appropriate 
level of complexity when designing AoPs. 
Considering interest development under control of situational factors (RQ3), only one 
significant difference between the presentation formats occurred. The initially positive 
effect of the video-based simulation on interest in mathematics education vanished 
until the last simulation. This short-term effect may be due to the novelty of the video-
based simulation format, which is rarely used at the university under study. Firstly, this 
indicates that the presentation format mostly affected situational interest, but that these 
effects did not transfer to long-term development. Apart from this decline for the video 
format, interest in mathematics education was stable over four simulations. In light of 
other studies usually finding declining interest in repeated measures designs (e.g., 
Rotgans & Schmidt, 2011), we take this stability of interest in mathematics education 
in our study as an encouraging sign. As in other studies on interest, we find a general 
decline of interest in diagnosis over the four simulations. Explicating the value of 
diagnosing student thinking was briefly addressed in the simulation activities, but more 
directed interventions, such as explicitly experiencing the value of diagnosis to design 
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individual support, and reflecting on this value (Hulleman et al., 2010) might be 
necessary to develop pre-service teachers' interests in diagnostic activities. 
The role of interest as a “door-opener“ for deep learning in general (Hidi & Renninger, 
2006) as well as for knowledge activation in AoPs (Kron et al., under review) is 
undisputed. We contribute to understanding the emergence of situational interest 
during AoPs on the diagnosis students’ mathematical thinking. Systematic changes in 
situational interest over a longer time, under control of situational factors, can point 
towards possible developments of individual interest. Our findings indicate that current 
learning experiences shape participants’ interests, but that it is possible to identify 
developments over the course of a semester beyond these situational factors. It is 
crucial to disentangle pure novelty effects of new simulation formats from long-term 
developments of situational, and potentially also individual, interests. Further research 
should investigate effects of AoPs, but also explicit interventions regarding their 
potential to sustain and develop pre-service teachers’ relevant interests. 
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Although students’ argumentation is subject of high interest in mathematics 
educational research, specific studies on argumentation based on statistical data are 
still scarce, especially with a focus on young students at the beginning of primary 
school. Therefore, relatively little is known so far to what extent children starting 
school may already be able to engage in argumentation based on statistical data. 
Addressing this research need, evidence is reported from two empirical studies, which 
were conducted with N = 11 and N = 29 students during their first weeks in school. 
The results show that data-based argumentation is possible for many students from the 
beginning of primary school on, and provide insight into the broad spectrum of 
students’ data-based arguments. 

INTRODUCTION 
From the beginning of primary school on, fostering students’ argumentation is 
considered as an important aim of the mathematics classroom, which is reflected in 
several empirical studies (Sommerhoff et al., 2015), in a variety of literature promoting 
suggestions on how to foster students’ argumentation in the mathematics classroom 
(Stylianides et al., 2016), as well as in curricula of many countries (e.g. NCTM, 2000). 
Even if the importance of argumentation is also highlighted frequently in the context of 
statistics education (e.g. Ben-Zvi & Sharett-Amir, 2005), it appears that data-based 
argumentation received relatively little attention so far, in particular in the discourse on 
primary mathematics education. In prior studies (e.g. Krummenauer & Kuntze, 2018, 
2019), we have found that many older primary students were able to evaluate 
interpretations of data and to develop corresponding data-based arguments in different 
task contexts, including even relatively complex tasks which require considering 
statistical variation when developing data-based arguments. This raises the question, to 
what extent data-based argumentation is possible for younger students; in particular, 
what prerequisites related to data-based argumentation students have when starting 
school. 
Addressing this research need, this paper is focused on the extent to which primary 
students are able to develop data-based arguments in different task contexts at the 
beginning of their first year in school. The empirical evidence reflected on in this paper 
has been gathered in two studies, applying an innovative study design. The results 
presented in this paper substantiate that data-based argumentation is possible for many 



Krummenauer, Gutensohn, Aichele, Emhart, Kuntze 
 

3 - 76 PME 45 – 2022 
 

students, in appropriate task contexts, already at the beginning of primary school, and 
give insight into the spectrum of complexity in students’ data-based arguments.  
In the following, the theoretical background of the research reported in this paper is 
presented, and the research interest is specified. Subsequently, the methodological 
background and empirical evidence from two studies are reported. The results and 
implications of both studies are discussed in the concluding section. 

THEORETICAL BACKGROUND 
When students encounter statistical data in real-life contexts, these data often are 
accompanied by different and sometimes conflicting interpretations. For dealing with 
statistical data and related interpretations it is, therefore, crucial that students are able 
to evaluate whether or not interpretations of data indeed can be substantiated by the 
respective data, and that students are able to justify their position based on data. We 
refer to this by the term data-based argumentation, which is considered as a specific 
case of argumentation in which statistical data are used to convince others that certain 
statements are true or false (Krummenauer & Kuntze, 2019). As presented in detail in a 
research report at PME 42 (Krummenauer & Kuntze, 2018), key requirements of 
data-based argumentation can be described from a theoretical perspective building up 
on psychological theories on children’s scientific reasoning (e.g. Kuhn, 2011; Sodian 
et al., 1991; Zimmerman, 2007). In this perspective, interpretations of data have the 
status of hypotheses (in a broader sense, theories), while the statistical data these 
interpretations refer to represent the available evidence. When students develop 
data-based arguments, they are required to coordinate interpretations of data with the 
status of a theory and the statistical data with the status of evidence with each other, e.g. 
when evaluating whether interpretations are consistent with corresponding data or 
when basing own interpretations on data. In the literature, several strategies for 
coordinating theory and evidence (e.g. Zimmerman, 2007) are described, which are 
highly relevant for data-based argumentation: a fundamental strategy for coordinating 
theory and evidence is, for instance, to distinguish elements representing theory, such 
as claims or own beliefs, strictly from elements representing evidence (e.g. Kuhn, 
2011); another scientific reasoning strategy, which is particularly helpful for 
data-based argumentation, is to search intentionally for counter-evidence (e.g. Sodian 
et al., 1991), instead of primarily searching for supporting evidence. 
During the past decades, a large body of research on the development of scientific 
reasoning has emerged (Zimmerman, 2007). Several studies have shown that already 
children in kindergarten and primary school can be able to master tasks on 
coordinating theory and evidence (e.g. Koerber et al. 2005). However, at the same 
time, there is frequent evidence of insufficient strategies hindering the coordination of 
theory and evidence. For instance, Koerber and colleagues reported in the mentioned 
study that kindergarten children showed a tendency to be influenced by own 
assumptions when coordinating theory and evidence. Further, there are studies 
implying that young students tend to have difficulties to consider statistical variation 
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when coordinating theory and evidence (Masnick & Morris, 2008). In conclusion, the 
available studies on scientific reasoning imply that students at the beginning of 
primary school may already have some cognitive preconditions for data-based 
argumentation; at the same time, it needs to be expected that difficulties regarding the 
coordination of theory and evidence may cause difficulties in data-based 
argumentation.  
In empirical studies with older primary students specifically targeting on students’ 
data-based argumentation (e.g. Krummenauer & Kuntze, 2018, 2019), many 
participants were able to evaluate interpretations of data and to develop arguments 
based on the data for substantiating their evaluation; in the case of the study reported in 
Krummenauer and Kuntze (2018), this required students even to take into account 
statistical variation of the data. These studies also revealed that some students gave 
answers indicating specific difficulties, which appear to be interrelated with 
difficulties in students’ scientific reasoning; for instance, some students used only 
aspects of data for argumentation which were in line with their assumptions but did not 
consider disconfirming data (Krummenauer & Kuntze, 2019).  

RESEARCH INTEREST 
Building up on the research with older primary students, the studies reported on in this 
paper were conducted in order to investigate the extent to which data-based 
argumentation is possible already for primary students starting school. In particular, 
the research presented in this paper is targeted on the following research question:  
To what extent is it possible for students at the beginning of the first grade to evaluate 
data-related statements and to develop data-based arguments in order to justify their 
evaluation?  

STUDY I 
Design of the Study 
As there had been hardly any specific research on young primary students’ data-based 
argumentation so far, a first exploratory interview study has been conducted 
(Krummenauer et al., 2020). In preparation for this study, an interview design needed 
to be developed, which addresses the specific needs of young students. As it cannot be 
expected that children produce data-based arguments spontaneously, an elicitation 
method was developed, implemented in a one-to-one interview design. For that, a set 
of tasks had been adapted specifically to the needs of students at the beginning of 
primary school. In the interviews, the tasks were presented to the students one after 
another, following a highly standardised interview guideline. Each task consists of a 
data set (two examples are given in Figure 3) visualised by means of pictograms, in 
combination with corresponding statements expressing interpretations of the data (e.g. 
“Most students like chocolate ice cream” in case of the data set in part b) of Figure 3). 
In the interviews, the task context and the data as well as a statement to be evaluated 
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were presented to the students. Subsequently, the students were asked to evaluate the 
statements and to justify their evaluation, so that the students were required to develop 
data-based arguments. In this first study, N = 11 students (6 girls, 5 boys) were 
interviewed during their first weeks in school. There had been no prior intervention 
and the interviewer carefully avoided giving any examples or hints. The transcribed 
interview data were subjected to a dichotomous top-down coding in order to find out 
whether the students developed consistent data-based arguments in respondence to the 
tasks. To be rated as “consistent data-based argument”, answers had to contain a 
correct evaluation of the statement (e.g. “no, that’s not true”) and a reference to aspects 
of the data which allow to substantiate the given evaluation; sample answers fulfilling 
these criteria are presented below in detail. Answers not meeting these requirements 
were subjected to a further bottom-up analysis (overall inter-rater reliability: κ = .96) 
investigating types of students’ difficulties, which is reported in Krummenauer et al. 
(2020); in the present report, we deepen the analysis regarding the top-down analysis 
in order to gain deeper insight into the qualitative spectrum of students’ successful 
data-based arguments identified in the top-down analysis. 
Results 
Figure 1 gives an overview of the number of consistent data-based arguments for each 
student. All participants were able to develop at least one consistent data-based 
argument, and most of the students developed consistent data-based arguments in more 
than half of the tasks. In one case (S6), a student provided consistent data-based 
arguments for almost all 11 tasks. To give insight into the coding and into the spectrum 
of students’ successful answers, two sample answers differing in their complexity are 
discussed in the following, beginning with an example with relatively low complexity, 
but still fulfilling all above-mentioned criteria of data-based arguments. 

 

Figure 1: number of answers containing data-based arguments per student (cf. 
Krummenauer & Kuntze, 2020) 

The following transcript (translated from German) is related to a task, which is about a 
fictive competition in which the drivers of four cars meet once a week for a race. The 
diagram in part a) of Figure 3 displays the number of trophies won by each driver. The 
transcript starts after the interviewer had introduced the data set and its context. In (1), 
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the interviewer presents (by means of and in the name of a hand puppet) the statement 
which shall be evaluated based on the data. 

(1) hand puppet: If I would take part in the race, then I would take the red car, it looks the 
fastest. 

(2) student: But it isn’t. The green car is the fastest, because it has the most trophies. 

In (2), the student rejects the hand puppet’s statement (“But it isn’t”), i.e. the student 
gives a negative evaluation of the statement. The student then substantiates this 
evaluation by correcting the statement (“The green car is the fastest”) and connecting it 
with the term “because” to the number of trophies, i.e. aspects of the data which 
support the student’s evaluation of the hand puppet’s statement.   
The next sample answer refers to a – in terms of coordinating theory and evidence – 
more complex task, which is about a school excursion with two participating classes 
(“hedgehog class” and “mouse class”). During the excursion, each student was allowed 
to order one scoop of ice cream; the two data sets (part b) of Figure 3 represent the 
number of scoops of ice cream ordered in each class.  

a)     b)   

Figure 3: task examples (Krummenauer et al., 2020, p. 5; 7) 
The transcript starts after the task context was introduced. 

(1) hand puppet: In the hedgehog class are more children than in the mouse class. 
(2) interviewer: Is this true? 
(3) student: (agrees). 
(4) interviewer: How do you know that? 
(5) student: (points to the data in the diagram) look, here are two. Then here are two. 

Look, both are five, that is both five / So, this is two times five, this is two 
times five, this has one times two and this [the bar of chocolate scoops] has 
this height, but this here [the bar of melon scoops] is a bit higher.  

After the statement to be evaluated was presented in (1), the student indicates in (3) a 
positive evaluation of the statement. After the interviewer asked for a justification, the 
student substantiates the evaluation in (5) based on the data: the student identifies and 
matches bars with the same height in both data sets (bars with the height 2 and bars 
with the height 5) and shows that the remaining bar in the diagram of the hedgehog 
class is higher than the remaining bar in the diagram of the mouse class, so that more 
students need to be in the hedgehog class than in the mouse class. In comparison to the 
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first sample answer, this argument has a much higher complexity in terms of 
coordinating theory and evidence, as the student needs to relate the data for all sorts of 
ice cream to each other. This results in an argumentation with multiple steps, while 
developing an argument in the first example only requires to relate fewer elements of 
the data with the statement being evaluated. 

STUDY II 
Based on the first study, which had shown a relatively broad spectrum in students’ 
data-based argumentation – both in regard to the number of data-based arguments per 
student as well as in regard to the complexity of students’ arguments – a second study 
was conducted recently in order to investigate in more detail and with a larger sample 
size the qualitative spectrum of students’ data-based argumentation at the beginning of 
primary school. 
Design of the Study 
For this, the methodology of the first study was further developed. In order to make the 
full spectrum of students’ data-based argumentation visible, the set of tasks was 
systematically further developed in order to be able to provide a spectrum of tasks to 
students, differing in their complexity under the perspective of coordinating theory and 
evidence. The tasks were implemented in a similar interview design as in the first study 
and were administered to N = 29 primary students at the beginning of their first year in 
school, again without any prior intervention. In the following, we reflect in detail on 
the quantitative results related to three tasks, which provide further insight into the 
spectrum of students’ data-based argumentation at the beginning of primary school. 
The inter-rater reliability of the top-down coding conducted for this analysis is κ = .88. 
Results 
At first, we would like to put the focus on the task in part a) of Figure 3, which had the 
highest rate of successful answers in the study; 82.8% of the students were able to 
develop a consistent data-based argument in respondence to this task. The task is about 
the number of marbles of three children displayed in the diagram. The statement to be 
evaluated in this task by the students is “Jana has got three marbles”. Compared with 
the tasks presented above, the complexity in terms of coordinating theory and evidence 
is reduced, as the data which is needed for evaluating the claim can directly be taken 
from the diagram; no further steps, such as comparing different data sets, as required in 
the case of the task on ice scream scoops shown above, are necessary.  
The data set on ice cream scoops had also been used in the second study, combined 
with a modified statement (“in the mouse class, more children like chocolate ice cream 
than in the hedgehog class”). In contrast to the marble task, this task requires to 
compare data from two data sets in order to gain the relevant evidence for evaluating 
the statement. Empirically, the increased complexity is reflected in a lower success rate 
of 48.3%.  
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Beyond such tasks, we implemented further, more complex tasks in which 
coordinating theory and evidence does not only require to take into account and to 
compare several data points, but also to consider that the given data may vary to some 
extent. A sample task is shown in part b) of Figure 3. The task includes two diagrams 
displaying how many deers have been observed during the past five days in a forest 
(right diagram) and in a city park (left diagram). In the task context, the students had to 
evaluate the statement (claimed by a character of the context story) “If I really want to 
see a deer, I should go to the park“. As the data imply that the number of deers can 
change from day to day, and as the statement is about the future, the task requires 
students to take into account that the data may vary, which needs to be addressed when 
developing a corresponding data-based argument. In our study, several students 
compared the number of deers and argued, that it would be better to go to the forest as 
the number of deers in this diagram is higher; however, no student in the sample 
considered that the data may vary, which appears to be a challenging requirement for 
the participating students.  

 

Figure 3: sample tasks  

DISCUSSION AND CONCLUSIONS 
Both studies have shown that the participating school starters were in many cases able 
to evaluate given interpretations of data and to develop consistent arguments based on 
the data in order to substantiate their evaluation. Although the samples of the studies 
are clearly not representative, the qualitative and quantitative analyses revealed a broad 
spectrum of students’ data-based argumentation, both regarding the frequency as well 
as the complexity of their arguments. Against the background that both studies had 
been conducted without any prior intervention, it appears that young primary students 
have a high potential related to data-based argumentation, which should be addressed 
and fostered in the mathematics classroom during primary school (and beyond). As 
implied by research on children’s scientific reasoning (Masnick & Morris, 2008), the 
students showed difficulties in tasks which require considering statistical variation 
when developing data-based arguments. Fostering students in this regard, e.g. by 
providing learning opportunities which allow for experiences in dealing with statistical 
variation, may therefore be a promising approach for fostering students’ data-based 
argumentation, which is planned to be evaluated in an intervention study. 
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An eight-month-long intervention based on the idea of using a structural approach to 
addition and subtraction, and particularly bridging through ten, was implemented in 
Swedish Grade 1. A goal was that at the end of Grade 1, students would solve tasks 
like 15–7= using part-whole relations of numbers. In this paper, we report on learning 
outcomes from task-based interviews with intervention and control groups before, 
immediately after and one year after the intervention, to investigate long-term effects 
and whether students used a structural approach when solving tasks in Grade 2. 
Results show that students in the intervention group increased their learning outcomes 
the most and to a larger extent solved tasks in higher number ranges using a structural 
approach.  

INTRODUCTION 
A structural approach in arithmetic has been advocated by several scholars as means 
to facilitate students in developing powerful and sustainable ways of solving arithmetic 
problems (e.g., Cheng, 2012; Ellemor-Collins & Wright, 2009). It is, however, not only 
the way arithmetic is taught, but how the student experiences arithmetic tasks as 
structure based in part-whole relations, that is highlighted. For example, Ahlberg 
(1997) concludes from empirical research that “[w]hen children handle numbers by 
structuring they do not count on the number sequence in order to keep track of the 
numbers, but rather structure the numbers in the problem in parts and the whole in 
order to arrive at an answer” (p. 70). This way of seeing arithmetic learning and 
understanding challenges the view dominated by cognitive science (Baroody, 2016; 
Fuson, 1992) that young students learn addition and subtraction through acquisition of 
basic counting strategies, e.g., counting from the first addend, emphasizing counting 
as a primary arithmetic strategy. To bring clarity to the long-term effects of these 
differing approaches to arithmetic learning, we implemented an intervention program 
based on the idea of using a structural approach to addition and subtraction and 
particularly emphasizing part-whole relations and the ten-base unit in four Grade 1 
classes in Sweden during one school year. The research question we answer in this 
paper is: What are the effects of a structural teaching approach on students’ learning of 
addition and subtraction? 
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LEARNING ADDITION AND SUBTRACTION BRIDGING THROUGH TEN 
Experiencing numbers as part-whole relations is considered to be critical for 
development of arithmetic skills (Cheng, 2012; Resnick, 1983), since being aware of 
part-whole relations may allow students to make use of powerful strategies, such as 
decomposition (c=a+b), commutativity (a+b=b+a), and the complement principle 
(a+b=c then c–a=b), when solving addition and subtraction tasks (Zhou & Peverly, 
2005). Piaget (1952) states that “[a]dditive and multiplicative operations are already 
implied in numbers as such, since a number is an additive union of units, and one-one 
correspondence between two sets entails multiplication. The real problem, if we wish 
to reach the roots of these operations, is to discover how the child becomes aware, 
when he discovers that they exist within numerical compositions” (p. 161). Empirical 
research has however shown that this discovery of numbers’ part-whole relations and 
how to operate with them, especially when bridging through ten, is not easily done by 
young students. A substantial number of students frequently and successfully use 
counting strategies instead of retrieval-based strategies for simple addition (Hopkins, 
Russo, & Siegler, 2020). Furthermore, there are hardly any reports of students using 
for instance the “subtraction by addition” strategy (e.g., Heinze, Marschick, & 
Lipowsky, 2009; Selter, 2001), which is considered to be a powerful and sustainable 
way of completing arithmetic tasks, building on conceptual understanding of numbers’ 
part-whole relations. The scarce use of retrieval-based and structure-based strategies 
among students has been explained in terms of a lack of understanding of the 
underlying complement principle between addition and subtraction, i.e., if students do 
not understand that one part–part–whole combination refers both to the components of 
a subtraction problem a–b=c and to its complementary addition problem c+b=a, it 
hinders their discovery and use of the subtraction by addition strategy and other 
structure-based ways of reasoning (Torbeyns, De Smedt, Stassens, Ghesquière, & 
Verschaffel, 2009). In a study on three-digit addition and subtraction, Selter (2001) 
concluded that many students appear to be “blind” to the relations between given 
numbers in a task, and execute a stable pattern of methods and strategies, regardless of 
the task. Selter further suggests that students’ sense for number relations does not 
develop independently of instruction. Consequently, students should be encouraged to 
consider the nature of the problem type before trying to solve the problem. Young 
students’ ways of experiencing or “seeing” a task have also been shown in a recent 
study (Kullberg & Björklund, 2020) to be related to their developing arithmetic skills. 
Those who experienced numbers represented both as one set (e.g., a finger pattern of 
five fingers on one hand) and a composed set (e.g., composed of two and three fingers 
on different hands) were more likely to develop known number facts from a long-term 
perspective. Thus, there does seem to be more to solving arithmetic tasks in powerful 
ways than making use of certain strategies – it seems to include a way of experiencing 
the task and numbers in the task as relational.  
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THE INTERVENTION 
The intervention was built on findings from previous studies with 5-6-year-olds 
(Kullberg, Björklund, Brkovic, & Runesson Kempe, 2020) and on principles from 
phenomenography and its extension, variation theory (Marton, 2015). Results from 
these studies demonstrate that there are certain aspects that must be discerned to be 
able to experience and handle elementary arithmetic: modes of number representations, 
ordinality, cardinality, and part-whole relations (the latter has four subcategories: 
differentiating parts and whole, decomposing numbers, commutativity, and inverse 
relationship between addition and subtraction). The discernment of these critical 
aspects presupposes an experience of variation in the focused aspect against a 
background of invariance. A goal was that students would be able to structure numbers 
and solve tasks like 15–7= using part-whole relations and ten as a benchmark, at the 
end of Grade 1. Finger patterns, as a way to represent numbers, were used by teachers 
and students from the start, and played an important role in the intervention to show 
numbers and part-whole relations. The teachers were told to avoid single unit counting 
in their teaching. Throughout the intervention, the teachers elicited parts and wholes of 
number relations. Aspects assumed to be critical for student learning, identified from 
Interview 1 and previous research, that were elicited in activities were: 1) Seeing 
numbers (seeing finger patterns or an amount of objects without counting), 2) 
Understanding the ordinal and cardinal aspect of numbers, 3) Experiencing that 
numbers can be partitioned, 4) Understanding that numbers can be represented in 
different ways (e.g., by different finger patterns), 5) Experiencing place value, 6) 
Experiencing operations as part-whole relations, 7) Experiencing commutativity in 
addition, but seeing that it is not true for subtraction, 8) Experiencing the complement 
principle (a+b=c, c–a=b), 9) Seeing 10 as a benchmark in an operation, 10) Seeing 
parts in parts, 11) Experiencing counting “up to ten” or “down to ten” when solving a 
subtraction task bridging through ten (e.g., 13–5= could be solved as 5+5+3=13, or 13–
3–2=8). Ten activities were enacted several times in each class during the eight-month-
long intervention and were video recorded, so it was possible to analyze whether the 
aspects were elicited in the activities. Two of the activities are described briefly to 
exemplify features of the intervention. The activity “Partition numbers”, into two and 
three parts in many different ways, was a key activity, since this was seen as 
foundational for being able to solve addition and subtraction tasks bridging ten.  

 

Figure 1: The same number (12), partitioned into two and three parts, was made 
possible to experience simultaneously by means of numerals and finger patterns. 
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Hence, in order to subtract 12–7=, students need to be able to partition one part (7) into 
two smaller parts (2 and 5) in order to bridge 10. Figure 1 shows how students (in pairs) 
work with partitioning 12 into two and three parts (with numerals and with pictures of 
finger patterns), in different ways on the same assignment. This makes it possible for 
the students to experience how the same number (invariant) can be partitioned 
differently (parts varied). Another activity “Subtraction bridging through ten using the 
15-snake” involved discussions about tasks bridging ten, 13–8= and 13–5= (as well as 
a task not bridging ten, 13–2=), and the part-whole relations illustrated on the board 
using ten as a benchmark. Based on discussions of how the students solved the tasks, 
primarily two different ways (“up to ten” and “down to ten”) of bridging ten were made 
possible to experience (13–8= as 8+2+3=13 and 13–3–5=5), where the subtrahend (8) 
and the difference (5) were shown as composed/decomposed units at different places 
(varied) on the 15-snake on the board, although the task remained invariant. 

 

Figure 2: The subtrahend in 13–8=, was made possible to perceive as 13–3–5=. 

METHOD 
Four experienced teachers from three different schools and their students participated 
in the Intervention group. The teachers met three researchers every other week during 
a period of eight months to plan, analyze and revise lessons in the intervention. The 
teachers enacted the collaboratively planned lessons in their classes and video recorded 
them. Three experienced teachers from two other schools and their students were part 
of the Control group. One of the researchers met with the teachers from the Control 
group (six times) and video recordings from their teaching were collected and 
discussed at meetings in their schools. The participating teachers and the legal 
guardians of the students had signed a written consent for participation. In this paper, 
results of analysis of 363 video-recorded interviews, from three points in time (before, 
immediately after, and one year after the intervention), conducted individually with 
each student are reported (Intervention group N=86, Control group N=35). Each 
interview lasted for 20-30 minutes. The interview tasks were a mix of orally presented 
story problems (8+5=, 15–7=, 6+_=13, 24–_=15, e.g., A baker baked 24 buns, and left 
the buns on a tray. When he came back there were only 15 buns left. How many buns 
were missing?) and tasks with numerals (11=5+_, 6+_=13, 16+_=23, 14–_=6). Follow-
up questions were posed to the students on all tasks, e.g., “How do you know it is x 
[the answer]?” and “Please show me what you did when you solved the task?”. The 
interview tasks were coded in two ways: for correct and incorrect answers and 
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according to the strategy used (structure or single unit counting). For example, we 
coded it as single unit counting when a student counted backwards: “15–7, fourteen, 
thirteen, twelve…”. It was coded as structure when a student used larger parts (than 
ones) of number to arrive at an answer, saying e.g., “I have 15 and take away 7, then I 
have 3, because I thought about the 10 there, then I have 3 left and 5 from the other [5 
in 15], and then I take 5+3”.  

RESULTS 
The Intervention and Control groups showed similar results on eight tasks on addition 
and subtraction bridging through ten before the intervention started (Interview 1). In 
order to test the effectiveness of the intervention, we conducted mixed ANOVA 
analysis, with Interview occasion (Interview 1, Interview 2, Interview 3) as within- and 
Group (Intervention-Control) as between-group factor. The interaction (Figure 3) 
between Group and Interview occasion was significant (F(2,239) = 4.579, p=.011) 
showing that the profile of change in results was different for control and intervention 
groups, i.e. that the Intervention group results over time increased more than those of 
the Control group. This suggests that the intervention had a positive effect on the results 
of the Intervention group.  

 
Figure 3: The average number of correctly solved tasks for Intervention and Control 

groups across three interview occasions. 
Figure 4 shows the percentage of students with correct answers from Interview 3 on 
ten items for the Intervention and Control groups. We see a small difference in 
percentage of correct answers between the groups on 8+5= and 15–7=, two 
straightforward tasks in a lower number range that were used in all three interviews. 
However, when the number range increases, more pronounced differences between the 
Intervention and Control group are visible. The largest differences are found on the 
subtraction tasks, 32–25= and 83–7=, solved by 51% and 73% of the students in the 
Intervention group, compared to 31% and 49% of the Control group. We also find large 
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differences on the addition tasks 15+17= and 28+44=, and items with a large 
subtrahend, 204–193= and 132–78=. 

 

Figure 4: Percentage correct answers on orally presented story problem tasks (first 
five items) and tasks with numerals (last five items) in Interview 3. 

Figure 5 shows how students solved 83–7=. It was coded as structure if a student was 
able to partition 7 into two parts to solve the task (83–3=80, 80–4=76). We found that 
more than 60% of the students in the Intervention group used structure to solve the task 
and ended up with the correct answer, compared to about 30% in the Control group. 

 

Figure 5: How students in Intervention and Control groups solved 83–7, using 
structure or single unit counting in Interview 3. Not possible to code=No code.  

There were also students who tried to structure the task but did not end up with a correct 
answer as their first answer, or not at all (Figure 5, Incorrect structure). For example, 
Mia (Intervention group) first answered “66”, but when explaining how she solved the 
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task she changed her mind. “I had 83 and then I took away 3, and then I had only 80 
left, then I took away 4, and then I saw that it was, no, 76”. Hence, she was able to 
partition 7 but did not get the ten right from the start. Students from both groups 
counted in single units backwards to solve the task, 9% from the Intervention group 
and 17% from the Control group, and succeeded in solving the task. However, 20% of 
the students in the Control group used single unit counting and failed to solve the task. 
This is most likely due to difficulties counting seven steps backwards and at the same 
time keeping track of the counting sequence.  

DISCUSSION 
Our research question concerned what effects a structural teaching approach can have 
on students’ learning of addition and subtraction. We suggest that the improvement in 
results on student learning outcomes for the Intervention group in Grade 1, and on more 
difficult tasks in Grade 2, is most likely an effect of the intervention. Students in the 
Intervention group were taught to structure numbers, and used this knowledge to solve 
tasks, in higher number ranges also. When encountering a higher number range, 
students in the intervention group seemed to be able to generalize what they had learned 
about (e.g., number relations, decomposition of numbers and using ten as a benchmark) 
in a lower number range. Although more students in the Control group (89%) were 
able to solve 15–7= compared to the Intervention group (83%), more students in the 
Intervention group (72%) were able to solve 83–7= compared to the Control group 
(49%). We also find a greater span of strategies used in the Control group than in the 
Intervention group, where a majority of the students used structure. We find it striking 
that almost 40% (20% incorrect) of the students in the Control group used single unit 
counting for solving a task like 83–7= in Grade 2. Students using single unit counting 
most likely do not experience numbers in the same way as students who are able to use 
structure to arrive at the answer. The results of our intervention suggest that learning 
to experience numbers as structural relations from the start seems to be helpful. Our 
findings support previous studies suggesting that a structural approach is beneficial for 
student learning (Ellemor-Collins & Wright, 2009; Venkat, Askew, Watson, & Mason, 
2019). In addition, our findings indicate that counting as an arithmetic strategy may 
hinder students’ ability to solve tasks in a higher number range (cf. Cheng, 2012; 
Hopkins et al., 2020). Further research is needed to investigate how students’ ways of 
solving arithmetic tasks affect future learning. 
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Learning support is a key aspect of the teaching profession. In particular, promoting 
mathematics-related learning is a goal when mathematics teachers respond to 
students’ questions or comments during their work on tasks. “Helping” learners in this 
sense should be (A) adaptive to the learner’s needs and (B) carry the potential to elicit 
further learning - both core aspects of learning support informed by a teacher’s 
noticing in the interaction with the learner. Pre-service teachers’ noticing in this area 
can be assumed to be still under development and there is hence a need of empirical 
studies investigating the learning support they suggest to provide. Consequently, this 
paper presents results from a vignette-based study with n=116 pre-service teachers, 
providing insight into their difficulties and also perspectives for improvement.  
INTRODUCTION 
Mathematics teachers should be able to help learners in building mathematical 
knowledge and in using such knowledge for solving tasks. “Help” in this sense can be 
described as individual learning support (e.g. Krammer, 2009; cf. Schnebel, 2013). A 
reaction to the learner should at least (A) take into account the specific individual needs 
of the learner (i.e., adaptiveness aspect of learning support) and (B) carry the potential 
of facilitating and/or eliciting further individual learning (i.e., progress aspect of 
learning support). Providing individual learning support hence requires mathematics 
teachers to analyse the learner’s mathematical thinking in order to identify potential 
individual difficulties, in order to find stimuli for further learning and understanding in 
an adaptive way and to communicate them to the learner. Such analysing (Dreher & 
Kuntze, 2015) can be understood in the framework of teacher noticing (Amador et al., 
2021; Choy, 2014; Fernández, & Choy, 2020) as a knowledge-based reasoning process 
(Sherin et al., 2011; Berliner, 1991; Dreher & Kuntze, 2015). Accordingly, the teacher 
has to notice possible difficulties in the student’s understanding, such as incomplete 
conceptual knowledge, for instance, and to identify a reaction which can support the 
individual learner to build up or strengthen the mathematical knowledge needed. For 
this complex and multi-step process, professional knowledge (Shulman, 1986; Kuntze, 
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2012, cf. Kuntze, Dreher, & Friesen, 2015) is needed, including content knowledge 
(CK) and pedagogical content knowledge (PCK).   
All in all, being able to provide effective individual learning support in classroom 
situations can be seen as a key aspect of mathematics teacher expertise. The 
requirements of adaptiveness and (content-specific) progress as introduced above show 
that the particular classroom situation plays a key role – also for research which aims 
at finding out about how competent teachers are in providing individual learning 
support. Vignette-based research can help to investigate such situation-specific 
noticing and to respond to a need of empirical studies in this area. In particular, 
evidence about pre-service teachers’ analysis and their ability of providing adequate 
learning support is highly relevant, in order to find out about professional development 
needs and to describe pre-service teachers’ growth empirically.  
Consequently, this paper focuses on whether and how pre-service teachers can provide 
learning support in a learning situation in the context of divisibility, which is a content 
area from the pre-service teachers’ training in a university course. Through the lens of 
the pre-service teachers’ noticing, i.e. analysis and their suggested learning support, 
the results can also give insight into how they conceive of “help” to learners. 
THEORETICAL BACKGROUND 
There is a large consensus that mathematics teachers’ reactions to learners’ questions 
or comments should support them in their further learning (e.g. Krammer, 2009; 
Schnebel, 2013), such reactions should hence respond adaptively to learners’ needs 
and provide them with stimuli for their further construction of mathematical knowledge 
and understanding. Research about teachers’ noticing and analysis (e.g. Sherin, Jacobs, 
& Philipp, 2011; Amador et al., 2021; Choy, 2014; Fernández, & Choy, 2020; Dreher 
& Kuntze, 2015; cf. Kersting et al., 2012) has focused continuously on aspects of 
mathematics teacher expertise related to these requirements: in such research, the 
teachers’ situation-adaptive knowledge-based reasoning and decision-making related 
to possible situated reactions is typically in the focus. Methodologically, related 
empirical studies mostly use representations of practice (Buchbinder & Kuntze, 2018), 
i.e. vignettes (Skilling & Stylianides, 2020; Kuntze et al., in press), for eliciting the 
teachers’ noticing. Beyond a situated scope, there are studies which describe ways of 
inferring from teachers’ situated noticing to more general aspects of their expertise 
(e.g. Kersting et al., 2012; Friesen & Kuntze, 2016).  
For successful noticing, teachers need to draw on their professional knowledge 
(Shulman, 1986); their instruction-related views, which are also considered as 
components of their professional knowledge (Kuntze, 2012), can interfere in this 
process. For providing adaptive learning support, both CK and PCK is needed in order 
to mathematically analyse requirements of a task, a learner’s thinking, and possibilities 
to provide learning support (Vondrová & Žalská, 2013). In the noticing process, 
teachers can draw on professional knowledge components from different levels of 
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situatedness (Dreher & Kuntze, 2015; Kuntze, 2012). Figure 1 gives a model-like 
overview of noticing related to providing learning support in the sense of the 
framework introduced above. In an analysis cycle as described in Kuntze and Friesen 
(2018), the task requirements, the learner’s thinking (Fernández et al., 2018), and 
potential difficulties or needs of the learner have to be analysed against the background 
of the teacher’s professional knowledge and situation-related observations. Based on 
this analysis cycle and again drawing on professional knowledge, possible reaction(s) 
have to be identified and a reaction which corresponds to an optimal adaptive learning 
support (Hardy et al., 2019) has to be chosen.  

 
Figure 1: Model-like overview of noticing related to providing learning support. 

Teachers’ views related to “helping learners” i.e. to forms of learning support are 
assumed to influence this process and its results. When a learner struggles with finding 
a correct solution to a problem, learning support may consist of directly providing 
information such as the task solution, parts of it or a standard solution algorithm or 
rule, so that the learner can learn from this solution, rule or algorithm. However, 
learning support may also take the form of feedback, for example telling the learner 
that her/his reasoning is not correct or providing a counter-example, with or without 
indicating a further pathway for a correct solution. Moreover, rather procedural 
learning support can focus on stimuli to the learner for discovering a correct solution 
on her/his own, such as encouraging the learner to try out specific strategies or to 
challenge and check her/his thoughts on her/his own by using example values. A 
teacher’s preference for such different forms of learning support may indicate this 
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teacher’s views about learning support. For pre-service teachers in particular, such 
views may influence in which direction they develop their professional knowledge and 
instruction-related experience further (cf. e.g. Kuntze, 2012). In conclusion, 
mathematics teachers’ views can be reflected in their noticing and analysis of vignettes. 
RESEARCH INTEREST AND RESEARCH QUESTIONS 
In particular for pre-service mathematics teachers – who are in the process of their 
professional development – relatively little is known from vignette-based empirical 
studies about how they provide learning support and to which extent they encounter 
obstacles when having to “help” learners, such as lacking CK. Such vignette-based 
research can not only indicate potential pre-service teachers’ professional development 
needs, but also inform vignette use in pre-service teacher education and related 
evaluation research. This corresponds also to the aims of the Erasmus+ project 
coReflect@maths (“Digital Support for Teachers’ Collaborative Reflection on 
Mathematics Classroom Situations”, www.coreflect.eu).  
For this reason, this study aims at analysing pre-service teachers’ answers to a vignette 
in the content area of divisibility with respect of the following research questions: 
(1) To what extent are pre-service teachers able to provide learning support in a 
vignette-based setting showing a fictitious situation in the content area of divisibility?  
(2) What role does their content knowledge (CK) play in this context? 
(3) In which form do they suggest to provide learning support and is it possible to infer 
to their conceptions of “helping learners” from the findings? 
DESIGN AND METHODS 
In order to answer the research questions introduced above, a vignette-based 
questionnaire was designed by the team of co-authors of this paper, using 
representations of practice (Buchbinder & Kuntze, 2018). For the vignettes, the style 
of concept cartoons (Samková, 2020) was chosen, in order to be able to present 
different learners’ thoughts and to implement a variety of learning support 
requirements. The instrument focused on problems from the content area of divisibility, 
in line with the learning content of the target group. In this way, it could be assured 
that beyond their prior CK, all pre-service teachers had been given a set of 
opportunities for CK-related learning in the topic area of divisibility beforehand. One 
of the vignettes in concept cartoon style is shown in Figure 2. The research instrument 
with this vignette was administered to n=116 pre-service teachers preparing to teach at 
primary schools (18% male, all in their first year of studying mathematics) enrolled at 
a University of Education in southern Germany.  
This study is part of a larger set of empirical studies carried out in the framework of 
the Erasmus+ project coReflect@maths. In the case of the results reported here, more 
analyses will be carried out in the future on the base of more data, also from groups of 
Spanish and Czech pre-service teachers who had worked with vignettes from the 
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questionnaire as well, in the framework of an international research approach in 
coReflect@maths. 
 
 
 
 
 
 
 
 

Figure 2: Vignette in the style of a concept cartoon (translated). 
The participating pre-service teachers were first asked to analyse the thinking of the 
persons in the cartoon (Fig. 2). Then, they were asked to think of a reaction: The key 
vignette question for the analysis corresponding to the research aims of this paper was 
“How could you help the student teachers (1) to correct their answers or (2) to improve 
their argumentation?”. In this way, the questions required analysing the vignette 
learners’ thinking and providing the vignette learners with adaptive individual learning 
support.  
The vignette in Figure 2 contains two answers with a mistake (Adele, Ben) and two 
answers that can be interpreted as incomplete (Celest, David) in the sense that the 
corresponding argumentations can be improved. As the above-mentioned question 
requires that “help” should be provided to all persons represented in the vignette, the 
learning support (A) should fit to the needs of the respective person (adaptiveness 
aspect of learning support) and the (B) “help” should lead further on the content level 
(progress aspect of learning support). Consequently, a top-down coding (cf. Mayring, 
2015) was applied according to these two aspects: For each vignette person, 

• code (A) describes whether there is an adaptive content-specific connection 
of the answer with the given vignette person’s comment (dysfunctional 
attempts of adaptive connections with an observable aim of connecting to the 
cartoon character’s thinking were coded as such, e.g. in case of 
mathematically inadequate connections or (partial) misinterpretations of the 
cartoon characters’ thinking),  

• code (B) describes whether the content of the answer could somehow advance 
the vignette person’s learning or understanding.  

Additionally, the form of suggested learning support was coded in a bottom-up 
approach (cf. Mayring, 2015), in which a set of different categories emerged, which 
will be reported together with the respective frequencies in the results section.  
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RESULTS 
Figures 1 and 2 display results of the coding introduced above and the relative 
frequencies of the respective categories. Research question (1) focuses on the extent to 
which the 116 pre-service teachers were able to provide learning support to the four 
vignette persons. The results indicate  
that a considerable number of pre-  
service teachers struggled with CK   
difficulties, which inhibited both the  
adaptiveness (code A) and progress  
 
 
 
 
 
 
 
 
aspect (code B) of the individual  
learning support they suggested.   
For research question (2), there is   
more than half of the answers with   
evidence of CK difficulties, except   
for answers to David with a lower   
frequency of CK difficulty codes.  
Research question (3) concentrates   
on forms of suggested learning   
support. In particular the results   
shown in Figure 5 indicate that the   
pre-service teachers mainly chose   
forms of presenting or providing   
information, even if incorrect.   
Only in around 10% of the cases, procedural help, emphasising a comparably more 
active role of the learner, was suggested. The large majority of answers falls into 
categories that reflect a conception of “help” that consists in providing information 
about rules, standard solutions, or feedback in the form of counter-examples. 
DISCUSSION AND CONCLUSIONS 
Even if the evidence should be interpreted with care, given that the sample is not 
representative for German pre-service teachers, the research questions could be 
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answered and provide insight into the participants’ noticing and professional 
knowledge, especially as far as CK-related needs for professional development are 
concerned. More than half of the answers to the cartoon characters Adele, Ben and 
Carla were marked by CK deficits, so that the ability of providing learning support 
appears in need of improvement for many pre-service teachers.  
As far as forms of learning support are concerned, the data shows a predominance of 
telling the learners about rules (including attempts with evidence of mathematical, i.e. 
CK deficits) or standard solutions and algorithms. This might be a consequence of the 
pre-service teachers still being in a learning process related to divisibility contents, 
possibly leading them to rather focus on evaluating the vignette persons’ thinking and 
on newly learned rules and standard procedures. The evidence however also might 
reflect the pre-service teachers’ conceptions of “helping learners” through the lens of 
their noticing: For many of them, “help” might rather consist in directly providing 
information or hints related to procedures than in stimulating the learner’s thinking and 
activities in the direction of learner-centred experience and reasoning. This differs from 
conceptions of learning support in literature (e.g. Schnebel, 2013; cf. Krammer, 2009). 
In this sense, the results also point to needs in the development of pre-service teachers’ 
instruction-related views (cf. Kuntze, 2012). Future further analysis also of additional 
data from Spanish and Czech pre-service teachers promises further insight here, also 
on a cross-cultural level.  
As far as methodological approaches are concerned, the study highlights the potential 
of vignettes to elicit mathematics teachers’ noticing: On a situation and content-
specific level, pre-service teachers’ analysis of learners’ thinking and decision-making 
related to learning support can be made accessible to research and evaluation by teacher 
educators by asking the pre-service teachers to comment on vignettes. In line with the 
potential of vignette-based formats for pre- and in-service mathematics teacher 
professional development, the project coReflect@maths will further focus on 
corresponding research and development needs. 
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UNDERSTANDING THE ,AUXILIARY TASK’ CONCEPTUALLY – 
DISCRETE VERSUS CONTINUOUS CARDINAL OBJECTS 

Taha Ertuğrul Kuzu 
TU Dortmund University, Germany 

 
For conceptually understanding the ,Auxiliary Task’, learners have to understand the 
compensation process. Yet, since the strategy is highly complex compared to other 
mental calculation strategies, an important question is how the conceptual 
understanding of the strategy can be fostered and for this purpose, ordinal as well as 
cardinal learning environments were developed and evaluated in a design-based-study 
(which is part of the mixed-methods MaG-Project). Prior analyzes showed that 
especially the cardinal learning environment leads to more thorough conceptual 
discourses. In this paper, qualitative insights into the use of specific forms of cardinal 
representation – discrete versus continuous – and its interpretations by four 
11-year-old German primary school learners’ will be given. 
STARTING POINTS AND THEORETICAL BACKGROUNDS  
The ,Auxiliary Task’ and its relevance as a mental calculation strategy 
In the last decades, there has been a shift in the perception of the importance of mental 
calculation strategies: Mental calculation strategies are not seen as mere pre-steps for 
the full algorithms anymore but have an important role in the emergence of flexible 
calculation processes (Heinze, Marschick & Lipowsky 2009). At the same time, a 
problem of over-emphasizing specific mental calculation strategies is visible: Students 
tend to use the HundredsTensUnits(HTU)-strategy, where they calculate in an order 
being structured by the hundreds, tens and units of the first and the second number, or 
the Stepwise-strategy, where they calculate by dividing the second number into 
hundreds, tens and units (see Selter 2001). Different and more complex mental 
calculation strategies like the ,Auxiliary Task’ are mostly not activated by learners. 
The ,Auxiliary Task’ differs from the HTU- and Stepwise-strategy insofar as that 
learners have to utilize compensation rules and have to see specific numerical 
properties before using the strategy, leading to a so-called ,analytical noticing’ 
(Threlfall 2002): When calculating 332 – 118 for example, learners using the 
,Auxiliary Task’ have to recognize the proximity of the 118 to 120, thus modifying the 
second number by rounding it up to 120 through adding + 2 and compensating the 
modification at the interim result by adding back what was taken away too much (+ 2) 
(see figure 1). 
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Figure 1: The ,Auxiliary Task’ as sequenced task and non-numbered line (Kuzu 2021). 
Thus, the ,Auxilary Task’ is complex in terms of processing and mental noticing since 
the learners have to see the option to modify and compensate, but it also mediates a 
crucially different view on numbers: They have to be perceived as flexible, 
modificable objects, where one is allowed to change them, if every modification is 
compensated (equally) by adding the modification amount to the (interim) result – a 
different view on numbers which is fostering (pre-)algebraic aspects like the 
perception of indeterminant, flexible parameters (see Kuzu & Nührenbörger 2021).  
Cardinal versus ordinal ways of teaching the ,Auxiliary Task’ 
From a didactical standpoint, the teaching of the ,Auxiliary Task’ thus seems to be of 
high relevance in the transition from primary to secondary school, but there is a need 
for explorative research especially concerning the design-related question on how to 
teach the ,Auxiliary Task’ conceptually (see ibid.): In most learning environments, the 
conceptual understanding is fostered by using ordinal representations (f.e. through the 
use of non-numbered lines, see figure 1) and only very few learning environments do 
utilize cardinal means of representation, although conceptual aspects – like the 
compensation process – can be represented through cardinal manipulatives in a more 
meaning-related way, for example when taking-away and putting-back an equal 
amount of objects (see Britt & Irwin 2011). This leads to a specific, design-related 
research gap: The development and evaluation of a learning environment utilizing a 
cardinal representation of the ,Auxiliary Task’. Prior analyzes conducted in Kuzu & 
Nührenbörger (2021) indicate specific hurdles on the conceptual as well as linguistic 
level: Interpreting and explaining a cardinally represented compensational process is 
highly complex due to the sequence of steps, which have to be visualized in a coherent, 
intuitive and relational way, but it is worthwhile to do so since interestingly, the 
cardinal representation led to more and thorough conceptual discourses. In 
comparison, the ordinal representation led to a faster transition to procedural 
discourses (with non-viable notions not being discussed as much as with the cardinal 
representation) (see ibid.). What is yet unclear is the effect of using different cardinal 
representations of the ,Auxiliary Task’ – discrete versus continuous – since both forms 
of representing a cardinal amount are of relevance in primary school (see Greer 1992). 
This is the research question to be focussed in this paper: How do learners interpret 
discrete versus continous ways of cardinally representing conceptual facets of the 
,Auxiliary Task’ in the context of the designed learning environment? 
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METHODS OF THE LEARNING-PROCESS STUDY  
Research context and data corpus of the study. The research question was pursued 
in a design-based-study (see Prediger, Gravemeijer & Confrey 2015) that was part of 
the larger mixed-methods project MaG. The aim of the study was to develop a learning 
environment fostering the conceptual understanding of the ,Auxiliary Task’ for all four 
arithmetics and to generate local theories about the effects of the design principles and 
design elements by analyzing students’ learning processes (see ibid.). In groups of 2-3 
learners and with an iterative research design, a learning environment consisting of two 
60 minutes sessions was developed and conducted. The data corpus consisted of n = 18 
learners from age 11-14 and at the end of the second iteration, a total of 520 minutes of 
video material was cumulated (the learners being analyzed in this paper were 11 years 
old). The use of a continuous cardinal representation was a design element of the 
learning-environment from the first iteration, whereas the discrete representation was 
an adaption made for the second iteration.  
Methods for qualitative data analysis. The transcripts were analyzed with respect to 
students’ epistemological processes when interpreting and explaining the ,Auxiliary 
Task’ with cardinal manipulatives and representation. For this purpose, two analytical 
steps were followed: In the first step, a turn-by-turn interpretative analysis was 
conducted, in which the researcher analyzed students’ utterances and interactions 
being based on the research questions of the study. These analyzes were discussed in 
teams of researchers and the main aim was to get carfully reflected insights into 
students’ processes of interpretation (Schütte, Friesen & Jung 2019). In a second, 
complementary step, an epistemological analysis was conducted for deepening the 
analysis in specific transcript sections with so-called epistemological triangles 
(Steinbring 2006). In this paper, mainly the turn-by-turn analyzes will be focussed and 
sign-related utterances will be interpreted verbally without depicting the full 
epistemological triangles. 
The design of the learning environment. The learning environment was designed 
based on two design principles: 1. Fostering of a conceptual understanding through a 
content-and-language-integrated approach preceding procedural calculation and the 2. 
Fostering of generalization processes through demanding verbal explanations. For the 
research question of this paper, especially the first design principle is of relevance 
since the use of different cardinal representations for fostering the conceptual 
understanding is focussed (see figure 2).  
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Figure 2: The continuous-cardinal representation from iteration 1 (left side) versus the 

discrete-cardinal representation from iteration 2 (right side). 
On the left side of figure 2, a mainly continuous cardinal representation with continous 
tens and hundreds and discrete ones being based on Oehl (1962) is visible. The 
representation focussed the rounding-up of the second number and three colors were 
used: Blue for the task, red for the added number and grey for taking away the 
rounded-up number. On the right side, a discrete cardinal form of representation, 
where tens, hundreds and ones are discretely depicted, is visible and was used with a 
similar color coding (red for the task, a black rectangle for the added number and grey 
for taking away the rounded-up number). The cardinal objects in both variants are 
visible in an iconized form on the worksheet, but they were also available in form of 
manipulatives and for discussing the meaning of the ,Auxiliary Task’, an enactive 
approach with manipulatives was the first step to re-understand the fictive student 
Max’ use of the ,Auxiliary Task’. 
EMPIRICAL INSIGHTS INTO STUDENTS’ INTERPRETATIONS 
Sequence 1: Insights into the interpretation of the continous cardinal material 
The students S1 and S2 try to explain the ,Auxiliary Task’ for the task 135 – 18 with 
continuous cardinal objects. The task sheet with the iconic representation of Max’ 
procedure (see figure 2) is laid visibily on the table. They have available the continious 
cardinal material consisting of a hundreds-square, tens-lines and ones-dots. 

2  I Okay, sorry- let’s put it on the table again as it was earlier so that it looks as 
in Max’ picture [the Interviewer had nudged the objects by mistake]. 

3  S1 Yes [puts two ones-dots on the right side of 
the second tens-stripe] 

4 I And then, and the we have learned not to 
relocate the material [smiling]. Yes, like that, 
thank you. 

5  S1: Two he takes on it. But then he takes away 



Kuzu 
 

PME 45 – 2022 3 - 103 
 

these two [pointing at the two red dots]. And the twenty, he takes away 
also.  

6 I:  Aha. 
[Turn 7-13: Organizational discourse. Continuation in Turn 14.] 
14 S2 So, he also takes away these two? [pointing at the last two blue dots] 
15 S1 No. He has, one, these are five. Then he has seven [pointing at the five blue 

dots first and then on the two red dots]. And then, when he as eighteen, plus 
two makes twenty. Then he takes away the twenty. And then it is ten minus 
two I believe. 

From Turn 3 to 19, the learners S1 and S2 try to interpret the continuous cardinal 
material. In Turn 3, they put it on the table as it was depicted on the task sheet (see 
figure 2). After that, in Turn 5, a first individual interpretation of the cardinal material 
becoms visible: S1 interprets the two blue-tens lines with the two red dots on it, as 
visible on the picture in Turn 5 (the grey box being not visible very good), as twenty, 
where “two he takes on it… then takes away these two. And the twenty, he takes away 
also”. It seems that she infers a double-subtraction process, a non-related tie between 
the two red ones-dots and the two blue tens-lines since she uses a paratactic structure in 
her sentence and verbalizes the sequence with the language means “then” and “and”, 
indicating non-related processes instead of interpreting the two red dots (the rounding 
amount) as an integral part of the twenty (18 + 2 = 20), the rounded-up number. S2 
seems to be irritated and asks in Turn 14, if he (possibly the fictive student Max from 
the task) also takes away the red ones-dots. S1 at first neglects the presumption from 
S2 in Turn 15 and hints at the total number of dots on the table (five blue dots and two 
red dots), but after that she gives a similar answer to her explanation from Turn 5: That 
it is eighteen plus two, which makes twenty to take away, and then ten minus two. 
Especially the last part of her utterance, with the emphasis of a last following step 
(“and then”), where she describes the taking-away of another two (10 – 2) beside of the 
two being taken away within the twenty, shows again a double-subtractional notion. 
From an epistemological perspective, the mathematical signs being interpreted here 
are mainly the continuous cardinal representation on the task sheet, the objects on the 
table and the numerical representation. Especially the objects on the table are discussed 
and interpreted in a mathematically non-viable way, but S1s interpretation seems to be 
rooted in the ambiguity being related to the material-design: The placement of two 
ones-dots on a continuous tens-line seems not self-explanatory and leads to a 
perturbation (irritation): Instead of interpreting the two red ones-dots as part of the 
twenty, thus as being part of the whole of the second number, a distinct interpretation 
of the ones-dots and tens-lines becomes fostered. 
Sequence 2: Insights into the interpretation of the discrete cardinal material 
The students S3 and S4 try to explain the way the ,Auxiliary Task’ is used for 
calculating the task 165 – 38 with the given discrete cardinal material. While doing so, 
they try to explain the ,Auxiliary Task’ (which was demonstrated by the fictive student 
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Max, see figure 2). They have ones-dots, stripes of tens-dots and squares of 
hundreds-dots (consisting of ten stripes of tens-dots). The iconic representation of 
Max’ procedure (see figure 2) is visibly beside the amount on the table. 

21 I Which number did you now put on the table? 
22 S3 Ehm these [points at the amount on the table]  
23 S4 165 [puts the laste ones-dots to the discrete 

amount] 
24 S3 Yes.  
25 I Okay, very good. So, what does Max do now? How does he proceed? 
26 S3 38 plus 2 [takes stripe of tens into his hand] 
27 S4 That is 40. Well- I’ll just make it like this, plus two [puts two ones-dots on 

the right side of the hundreds-dots]- although, more like under it [indicates 
to put the ones-dots beside the other ones-dots under the amount] 

28 S3 Let’s just do the result. 
29 S4 Well okay. Then it is 40. 
30 S3 And then 40 minus [has four stripes of tens-dots in his hand and holds them 

next to the stripes of tens-dots on the table] five [looks at the five ones-dots] 
now this comes away [takes away four of the stripes of tens-dots and 
pushes the ones up right under the hundreds-dots] Plus… these two [puts 
two ones to the ones under the 165] that makes hundred- [5 seconds] 117. 

In sequence 2, a similar interactional process to sequence 1 is visible: The learners S3 
and S4 discuss the meaning of the ,Auxiliary Task’ with cardinal means, but S3 and S4 
discuss a discrete representation here (see figure 2). Being asked what they put down 
on the table in Turn 21 by the Interviewer, S3 deictically points at the cardinal 
representation of 165, which S4 verbalizes and finalizes in Turn 22 by putting down 
the last ones-dots. In Turn 26 then, after being asked what the fictive student Max may 
have thought in Turn 25 by the Interviewer, S3 and S4 begin to verbalize their 
interpretation: S3 verbalizes the numerical task (38 plus 2) but at the same time takes 
stripes of tens-dots into his hands. S4 then finishes S3s task in Turn 27 by saying “that 
is 40”, but more importantly, S4 here also adds two ones-dots on the right side of the 
material on the table, an action matching the rounding amount of “plus two” in the task 
(38 + 2). The numerical utterance thus is accompanied by the analoguous enactive 
action of putting down the matching number of discrete cardinal material. From Turn 
28 to 30 then, especially in Turn 30, S3 shows again enactively, what he seems to have 
meant in Turn 26: By holding four stripes of tens-dots, which he took into his hand 
already in Turn 26, beside of four stripes of tens-dots already on the table, he indicates 
first, how many stripes have to be taken away (minus 40), and then takes away these. 
After that, he pushes the ones-dots up so that there is no gap, whereafter he finalizes his 
calculation. 
From an epistemological viewpoint, the mathematical signs being interpreted here 
seem less ambiguous when compared to the signs from sequence 1: The ones-dots and 
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stripes of tens-dots as well as squares of hundreds-dots are interpreted by S3 and S4 in 
a more coherent and relational way, visible by the utterances being accompanied by 
parallel and matching enactive action (see Turn 27 and 30). It seems that S3s and S4s 
interpretation does not differ from the task as S1s interpretation in sequence 1: The two 
ones being put down on the table in Turn 26 and 27 are not taken away twice but once. 
The extra ones-dots thus seem to be interpreted by the learners as part of a viable 
compensative thinking being analoguous to the cardinal and numerical representation 
on the task sheet. Generally, the learners seem not to be perturbed through the cardinal 
material and representation if compared to the interaction in sequence 1. 
DISCUSSION OF RESULTS AND LIMITATIONS 
With regard of the research question of this paper, the analysis of both sequences 
shows an important difference in the interpretation of the ,Auxiliary Task’ with 
discrete versus continuous cardinal material: The continuous cardinal objects seem to 
be ambiguous in terms of their meaning since putting two dots onto the continuous 
tens-line leads to a non-relational, non-integral interpretion of the rounding amount 
(+2) and the rounded-up number (18 + 2 = 20), resulting in a non-viable interpretation 
of the ,Auxiliary Task’ as a double-subtraction. In contrast, with the discrete 
continuous material, the rounding amount and the rounded-up number seem to be 
interpreted in a more integral way by verbalizing the compensation process more 
directly in an unequivocal way and by accompanying it with analoguous enactive 
actions (see sequence 2). This hypothesis can be verified by broadening the analysis to 
all n = 18 learners: The learners from iteration 2, where the discrete cardinal material 
was used, seem to understand the compensation process more viably than the learners 
from iteration 1, where a lot of sign-related irritations could be reconstructed in the 
qualitative analyzes. An important local theory for designing a learning environment, 
which is utilizing a cardinal approach to explaining the ,Auxiliary Task’, thus is that 
the use of discrete material may lead to a more relational, more viable interpretation of 
the compensation process due to lesser sign-related ambiguities. For the continuous 
material, at least a redesign of the double layered objects with hidden versus visible 
elements seems to be necessary, for example by using shortened tens-lines, where the 
ones-dots are not on the line, hiding a part beneath it, but beside it, but then another 
ambiguity would occurs: Tens-lines with a shorter and a “normal” length. This leads to 
the conclusion that the use of discrete objects seems to be more adequate for explaining 
the ,Auxiliary Task’ with cardinal means. 
What the analyzes do not show is if a discrete representation is better than a continuous 
representation generally: The insights are local, meaning they are closely connected to 
the designed learning-environment about the ,Auxiliary Task’. 
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STUDENTS WORKING ON MODELS; AN ON-GOING 
EXPERIMENTATION IN MATHEMATICS AND CHEMISTRY 

Jean-Baptiste Lagrange 
Laboratoire de Didactique André Revuz. University of Paris, France. 

 
This paper focuses on modelling at upper secondary level. The objective is to give 
students an understanding of mathematical concepts and methods in close 
relationship to a domain of reality, as well as to give them insight into the 
contribution of models of different kinds. This has led to the development of a 
framework for modeling activities based on the Mathematical Working Spaces 
theory. The questions at stake concern the operationality of this framework. To what 
teaching situations can it lead? How do students work in these situations? We 
examine these questions through an on-going experimentation on models of acid-
base transformations.  
APPROACHES TO MODELING IN MATHEMATICS EDUCATION AND 
SCIENCE DIDACTICS 
Beginning in the 2000s, interest in involving real-world contexts has grown in 
mathematics education. The ICMI 14 study (Bloom 2002) kicked off a lively stream 
of research and focused on mathematics as an important activity in society. This 
stream seems to us marked by two lines of force, problem solving and the modeling 
cycle as a theorization of the modeling activity. Many authors indeed characterize 
modeling activities as solving authentic problems, but the activities they propose 
focus more on the solution to a contextualized problem than on models. For example, 
in Blum and Ferri (2009), the task involves a lighthouse of a given height and 
students have to find a value for the visibility distance that is valid specifically for 
that height. The authors identify steps in students’ problem solving consistent with 
the modeling cycle, but these steps lead to the solution rather than to a model. 
Overall, the modeling cycle remains close to a classical resolution scheme where the 
problem and the solution are expressed at the extra-mathematical level and solving is 
done at the mathematical level. The cycle specifies steps and transitions and this 
allows, among other things, the interpretation of students' trajectories in their 
complexity. Nevertheless, the "real" and the "mathematical" remain two levels 
insufficiently intertwined to account for how working on a model articulates 
mathematics and real-world objects and phenomena (Czocher 2018).  
In experimental science didactics, the main concern is the relationship between an 
"empirical referent" (Sanchez 2008) made up of objects and phenomena as they are 
perceived and spontaneously mobilized by the students, and a "scientific referent" 
consisting of theoretical elements. By appropriating a model, the students can relate 
these two referents and thus progress both in their perception of everyday objects and 
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phenomena and in their understanding of scientific concepts. Nevertheless, the 
mathematical aspects of the model are generally not questioned as such, and science 
didactics privileges models where these aspects are minor for fear of complexity. 
Thus, dominant approaches in mathematics education emphasize problem solving 
rather than working on models, and science didactics favors appropriation of a model 
while leaving aside mathematical aspects. Drawing on science didactics, we aim to 
engage students in explicit work on models, but we also want to include mathematics 
in this work. The experimentation we are carrying out starts from a laboratory 
technique taught in the chapter about acid-base reactions of the chemistry course in 
the non-vocational upper secondary stream in France. Students often describe this 
technique as “a cooking recipe”, since mathematical methods are used, but not 
explained with reference to acid-base reaction models. The purpose of the 
experimentation is then to look for ways to make students study models both in their 
chemical and mathematical aspects and get a better understanding of these aspects.  
APPROACH AND FRAMEWORK 
Lagrange et al. (forthcoming) distinguish between modelling and mathematization of 
a domain. While mathematization is global in scope, modeling aims to account for 
certain aspects of the domain in order to understand it, even partially, and to act on it. 
A corollary is that there is not a single model: several models are as many ways to 
approach a reality. Modeling thus has a subjective and social dimension: all models 
can be useful, but each one must be discussed and confronted with others. In each 
model, the contribution of mathematics results from a specific mathematical work, in 
collaboration with experts in the field, in order to make the model more intelligible 
and facilitate its use. Thus, there is not a real model on one side and a mathematical 
model on the other side, but a plurality of models, each with a specific implication of 
mathematics into the same domain of reality. We consider students’ activity in 
modelling as a work of appropriation of two or more models, and as a work of 
uncovering relationships between models, in order both to get better insight into the 
domain and to progress in the mathematical concepts used; for instance Lagrange 
(2018) proposed to consider four models of a suspension bridge for a high school 
teaching project, one based on a study of tensions, a second one on arithmetical 
relationships, a third one being a computer simulation, and finally a fourth model 
based on notions in real analysis (functions, integration, etc.).  
Modelling implies collaboration between experts with different viewpoints (Lagrange 
et al. forthcoming) and that is why the above approach has led to organizing students’ 
work in a "jigsaw classroom". The work starts from a question. For the present study, 
the question will be about how a model of the reaction justifies the laboratory 
technique. There are four phases: (1) Presentation of the question and work on 
prerequisite concepts (2) Expert groups: each group works on a model from a specific 
viewpoint (3) Jigsaw groups: each group gathers experts from each expert group and 
progress in understanding the models (4) Whole class discussion and conclusion by 
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the teacher.  
Regarding the notion of work in educational settings, we refer to the theory of 
Mathematical Working Spaces (MWS). According to Kuzniak et al. (2016), a MWS 
is an abstract space that is organized to support mathematical work in an educational 
setting1. The theory of MWS distinguishes three levels: 

• A reference working space (WS) is a space in which somebody educated in a 
specific domain is expected to do the work in this domain. 

• A suitable WS helps manage the work for beginners in a teaching project.  
• A personal WS is particular to individuals. 

As Menares-Espinoza and Vivier (forthcoming) explain, beginners approach a new 
domain with their prior knowledge and cognitive processes. Teaching must design 
tasks to help students' personal WSs evolve towards the reference level and this 
requires designing suitable WSs. Here a reference WS is what allows for scientific 
thinking about the laboratory technique. Models on which this thinking can be based 
are described below. This paper focuses on suitable WSs, both a priori with reference 
to models of the reaction and a posteriori from student observation, leaving for 
further research a study of personal WSs.  
The research question follows. RQ: What are the suitable WSs that provide a 
conceptual basis for a mathematical-chemical approach of acid-base reaction models? 
How do they predict students’ behavior and cognitive processes?  
MODELS, WORKING SPACES AND TASKS 

  
Table 1: The laboratory technique. Empirical procedure and tangent method. 

The laboratory technique we start with is titration, i.e. the use of a solution of known 
concentration (titrant) to determine the unknown concentration of another solution 
(analyte). The titrant is added from a graduated buret to a known quantity of analyte. 
In case of an acid-base reaction, the analyte is an acidic solution, characterized by a 
preponderance of oxonium ions and the titrant is a basic solution characterized by a 
preponderance of hydroxides ions. During the titration, the oxoniums and the 
hydroxides react and then the pH (minus the decimal logarithm of the concentration 

 

1	Because	 of	 limited	 space,	 we	 do	 not	 insist	 on	 the	 three	 dimensions	 that	 structure	 a	 MWS:	 semiotic,	
instrumental	and	discursive.	However	they	are	important	in	the	domain	of	modelling,	ensuring	that	mathematics	
are	not	simply	considered	as	a	"language".		
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in oxonium) of the mixture increases and a table of values (volume added, pH) is 
obtained (Table 1 on the left). The experimental curve is a sigmoid whose inflection 
point (called neutralization point) corresponds to a volume added for which the 
mixture is neutral, i.e. has equal concentration in oxoniums and hydroxides 
corresponding to pH 7. The position of the neutralization point allows to know the 
quantity of hydroxides added and consequently the concentration in oxoniums of the 
analyte. A geometrical technique (method of tangents) is used to determine this 
position. It is based on the quasi-symmetry of the experimental curve with respect to 
the inflection point (Table 1 on the right). As said before, no theoretical justification 
in chemistry and mathematics is given to students. The underlying model of the 
reaction is the evolution of the pH based on empirical observation, increasing and 
almost symmetrical with regard to the neutralization point. This is Model 1.  

Titrant: 8 ml acid, oxinium concentration 0.0125 mole/liter. 
Analyte: base, hydroxide concentration 0.01 mole/liter. 

Oxinium concentration for x ml base< 10: 

 
pH for x ml base < 10: 
f(x)= - log(10-x)+log(8+x)+2 
 
Hydroxide concentration for x ml base> 10: 

 
pH for x ml base> 10: 
f(x)= log(x-10) – log(8+x) + 12  

Table 2: Mathematical function based on assumption: mixture contains only one type 
of ions. 

Model 2 is another model in which the titration curve is obtained by the calculation of 
a mathematical function (Table 2). It is based on a simplifying assumption: hydroxide 
and oxonium ions neutralize so that the mixture contains only one of the two types of 
ions. This assumption allows to obtain a function whose curve is coherent with the 
empirical curve, except in the vicinity of the neutralization point where the function 
tends towards infinity. This is a consequence of a phenomenon called partial 
dissociation of water, that contradicts the assumption: acidic solutions contain 
hydroxides and basic solutions contain oxoniums, but this is negligible except in the 
vicinity of the neutralization point. Because tangents are drawn at a distance from the 
neutralization point, the model is a basis for a mathematical work to justify the 
method. Mathematics also allows to question the simplifying assumption, and thus 
students working on the models should progress both in chemistry and mathematics.  
In accordance with the RQ, the experimentation aimed to build and evaluate suitable 
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WSs thanks to which students could recognize Model 1 and 2 as the foundations of 
the titration technique, and compare the two models. These WSs are designed for the 
two group phases (expert groups and jigsaw groups). There are three expert groups. 
Students in group Ea should become experts in Model 1, students in Eb should 
become experts of the mathematical component of Model 2 and students Ec should 
develop an expertise in quantifying the evolution of concentrations throughout the 
titration. WSEa, WSEb and WSEc are suitable WS, each representing the respective 
expertise targeted in each group and WSJ is the suitable WS pour the Jigsaw groups. 
A presentation of the WSs and associated tasks follows, summarized in Table 3. 

WSEa:  
Acid, base, neutralization (visual),  
pH (reading), measure, proportion, 
curve (experimental), tangents (visual). 

Task Ea: Appropriate a simulation 
software. Simulate for given data. Operate 
the tangent method for varied positions and 
compare accuracy. 

WSEb:  
Functions (symbolic), curve, tangents 
(software), decimal logarithms. 

Task Eb: Study the function f (Table 1); 
growth, limits. Trace the curve and tangents 
at abscissas 10-x and 10+x for varied values 
of x ; observe the mid-lines. 

WSEc:  
Ions, concentration, neutralization, pH. 
Volumes, ratios, formula. 

Task Ec: Calculate hydroxides and oxynium 
concentration for varied added volume. 
Calculate pH for these values and draw curve. 

WSJ:  
Idem Ec + symbolic calculations 

Task J: Compare curves (Tasks Ea, Eb,Ec). 
Show how f (Task Eb) models the pH as a 
function of the added volume. 
Justify the tangent method. 

Table 3: Suitable working spaces and tasks in the group works. 
WSEa is suitable to work on Model 1 and thus includes elements of chemistry (ions, 
pH, concentration, etc.) but also of mathematics (measurements, curve, tangents, 
ratios, etc.) We choose to have Ea students work on computer software simulating 
titrations. The purpose of the software is to help systematize and reflect on the 
method: students must enter the data of a given titration; they obtain a curve 
simulating the empirical curve, they can choose points to perform the tangent method 
and observe the accuracy of the method (Task Ea). 
WSEb is the space for a complete mathematical study of the Model 2 function. The 
signs, the theoretical frame of reference as well as the use of a software for functions 
belong to high school calculus, with the exception of decimal logarithms and the 
piece-wise function which are unfamiliar. Task Eb is a study of properties of the 
function. It is classical in the form, but the function is unusual. 
WSEc is the space for students to numerically compute concentrations along the 
titration, using the assumption of complete neutralization. The elements of chemistry 
are the same as in Model 1, but they must be systematically quantified; pH formulas 
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must be used. From a mathematical point of view it is an arithmetic space. Task Ec 
requires students to have a good mastering of chemistry notions, as well as ratios and 
unit conversion. The calculation of the concentration must take into account the 
quantity of ions, but also the increase of the volume along the titration. 
WSJ correspond to the jigsaw groups in Phase 3. This is the space for students to 
understand Model 2, make the connection to the assumption that the mixture contains 
only one type of ions and make sense of the tangent method at a symbolic level.  
Task J should lead students to perform a computation similar to Task EC, but at a 
symbolic level as in Table 2, and to justify that two parallel tangents, one on each 
branch, are nearly symmetrical with regard to the neutralization point. 
IMPLEMENTATION AND ANALYSIS 
In the context of the pandemic in 2020, the experimentation was carried out in the 
form of a "lock-down online jigsaw classroom", i.e. the six participants were 
physically separated, communicating on a platform that allowed either all students to 
be gathered together (Phases 1 and 4) or split into groups (three groups of two in 
Phases 2, and two groups of three in Phase 3). The students were of average level, 
some more proficient in mathematics, other more in experimental sciences. They had 
previously performed titrations on real solutions. The platform allowed the recording 
of exchanges and productions. This data was completed by a e-mail survey. In the 
analysis of the data we leave aside the aspects related to the online work, underlining 
only that even online, the jigsaw classroom kept its potential for collaborative work.  
This is the analysis of the group work phases (about one hour each). Table 4 presents 
extracts of the reports made by the three experts groups (Ea, Eb, Ec, Phase 2) and the 
two jigsaw groups (J1, J2, Phase 3). Ea appropriated the simulation software after 
having difficulty understanding menus and data needed. They were able to use the 
tangent method for several values and compare the accuracy. Eb’s study of the 
function remained partial as the log decimal function was unfamiliar. As shown in 
their report they were also not comfortable with a piece-wise function. They noted an 
undefinitness, but did not mention infinite limits that would have shown 
inconsistency with the experimental curve. Pseudo-symmetry and use of parallel 
tangents for the position of the center were discussed. Ec was comfortable with the 
chemistry concepts and the various calculations, but had difficulty taking into 
account the variation in the volume of the solution. They made the connection with 
the titration curve. Overall, Ea and Ec’s work can be seen as fitting in the suitable 
WSEa and WSEc after initial difficulties. This is not the case for Eb. The students 
were not comfortable with the function of Model 2, which is different from routine 
functions they had been trained with. They were able to draw curves and tangents 
thanks to the software. It was consistent with WSEc only for the use of software. 

Group Ea 
 

We used a software to enter the data, and we got curves for 
concentration and pH . We saw clearly the turning point that makes it 
go from acidic to basic. We used the tangent method to get the pH. 
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Group Eb 
 

We had two functions, one for x<10 and the other for x>10, but it was 
the same function. The two functions are not defined in 10. 
We drew the curves with GeoGebra. The pH curve, was symmetrical 
with regard to the neutralization point. We placed the points A and B 
according to the given abscissas then we traced the tangents and the mid 
line on the computer to find the neutralization point. 

Group Ec 
 

We calculated the quantity of oxoniums for each added volume. Then 
we applied the formula m/V after converting the volume into liters to 
get the concentrations, and the formula -log(Ca) for the pH values. We 
did similar calculations for the hydroxides after neutralization. We saw 
that values increased and that it looked like the empirical curve. 

Groups J J1 We observed that when we apply the formulas of group Eb, we 
obtain the data found by group C. We can therefore deduce that the 
curve representing pH are related to the function of group Eb. 
We calculated the derivatives to get the slopes of the tangents. When 
the difference between these is close to 0, we get more accurate results.  
J2 We had to develop a formula that actually calculates everything at 
once. We made calculations like Ec did but with a variable x and we got 
the function of group Eb for the acidic part. 

Table 4: Extracts of reports of students' group work. 
Both J groups observed that the curves obtained by the three experts groups were 
similar. Group Eb’s remark (the two functions are not defined in 10) did not lead 
students to observe a discrepancy between models near neutralization. Group J1 
concluded that the similarity of curves is sufficient evidence that f is a model of pH 
evolution. They started a study of the slope of the tangents with regard to the 
accuracy of the method, using the derivative of f with difficulty. Group J2 looked for 
a an analytic proof that f is a model and succeeded only for the acid part. The 
behaviors in both groups show students’ partial appropriation of WSJ, the suitable 
working space that should provide mastery of Model 2. One shortcoming is that 
students' symbolic calculation skills taught in math class were poorly enacted. 
Another shortcoming is that they were not able to recognize a discrepancy between 
the models. In Phase 4, after the J groups reported on their work, the teacher 
emphasized the use symbolic computation and the discrepancy between models near 
neutralization, which he explained by the dissociation of water. Answers to post-
questions by email showed that these points were partially understood by students. 
CONCLUSION AND PERSPECTIVES FOR RESEARCH 
The suitable WSs prepared for this experimentation allowed the students some 
appropriation of the models both in their chemical and mathematical dimensions. A 
critical look highlights achievements and gaps. WSEa did not help students 
distinguish Model 1 from Model 2. WSEb was too demanding in symbolic 
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calculation. WSEc seemed appropriate, with students Ec completing the task and 
contributing to the work in Phase 3. WSJ was affected by Ea and Eb’s shortcomings.  
Another implementation was then carried out in 2021 with a variation of the tasks. In 
Task Ea the simulation was a computer program that the students could read and 
interpret. In all tasks it was asked to get values of the pH (Tasks Ea and Ec) or of the 
function (Task Eb) very close to the neutralization point. The discrepancy between 
values obtained by Ea on one side and by Eb and Ec on the other side brought a 
discussion in groups J. The students did not reach a consensus. Some students 
emphasized the validity of the model underlying the computer program and its 
conformity with empirical observations, and others maintained that Model 2 was 
more reliable, stressing the inaccuracy of empirical observations compared to 
mathematics. These results may be somewhat surprising and unsatisfaying but they 
confirm the interest of this situation and provide insights for further experimentation. 
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Judgments are part of teachers’ daily practice and crucial for students’ educational 

careers. Previous evidence indicated that judgments are informed by various criteria. 

But how pre-service teachers (PSTs) judge student solutions and how these judgments 

are structured are still open questions. In two studies we shed light on the construct. 

First, we investigated PSTs’ judgements of an exemplary student solution regarding 

the applied categories (n1=110). Based on the results, we then constructed items and 

investigated the structure of the construct by applying EFA and CFA (n2a=168, n2b= 

209). The results revealed the following judgment dimensions: understanding, solution 

quality, presentation of procedure, and motivation. In addition to evidence on the 

structure of the construct, we gained an instrument to measure PSTs’ judgments. 

INTRODUCTION 

When planning lessons and making daily decisions regarding instruction, teachers rely 

on their diagnostic judgment of students’ knowledge and potential. Diagnostic 

judgment informs not only the assessment of students’ performances, but also their 

grades and transition recommendations and is therefore crucial for students’ academic 

development (Zhu et al., 2018) and their educational careers (Fischbach et al., 2013). 

Thus, teachers’ diagnostic judgment plays an important role and must be given special 

attention during teacher education (Ready & Wright, 2011). Judging student solutions 

against the background of learning goals, such as gaining conceptual and procedural 

knowledge, is crucial in all school subjects. Especially in mathematics, teachers often 

struggle with judging the variety of student solutions as tasks allow for multiple 

solution pathways (Durking et al., 2017). During teacher education, emphasis is thus 

put on pre-service teachers’ (PSTs) judgments with respect to identifying the potential 

in students’ solutions. Up to now, some evidence on how PSTs notice students’ 

mathematical thinking as a pre-requisite of their judgments (Crespo, 2000; Talanquer 

et al., 2015; Baldinger, 2020) exists. Also, Loibl et al. (2020) contributed a framework 

focussing on the cognitive processes underlying diagnostic judgments. So far, no 

studies examined what teacher diagnostic judgments of student solutions are actually 

based on and how they are structured. Particularly, we are interested in exploring 

whether a content-related perspective is taken or, rather, a generic viewpoint.  

In our first study, we utilized an open response instrument to assess the variety of 

criteria PSTs used to judge an exemplary student solution and reconstructed judgment 

criteria by content analysis. In our second study, we developed items based on the 
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aforementioned results that were assumed to represent the criteria. We then equipped 

the student solution with these rating scales and assessed two different groups of PSTs 

to examine the dimensional structure of PSTs’ diagnostic judgments.  

THEORETICAL FRAMEWORK 

As indicated by social cognitive (dual process) models (Grawonski & Creighton, 2013, 

Loibl et al., 2020), judgments can arise from automatic and spontaneous or from 

controlled and reflected strategies of processing information. In many countries, 

educational standards postulate competencies that students should acquire and thus can 

serve as a normative framework against which teachers judge student solutions. For 

the learning of mathematics, gaining conceptual and procedural knowledge is 

important (Goldin, 2018). Students need to acquire procedural knowledge, thus 

knowledge about how procedures, algorithms, or methods are to be applied, as well as 

conceptual knowledge, in the sense of a content-related understanding of essential 

concepts and procedures and their interrelationships (Rittle-Johnson & Schneider, 

2015). Thus, mathematics teachers are requested to assess students’ products with 

regard to the extent to which procedures were applied appropriately and correctly to 

the tasks and whether conceptual knowledge has been acquired.  

Previous research on PSTs’ judgments of students’ products revealed that PSTs use 

three strategies when judging students’ products: mathematical reasoning, pedagogical 

(content) reasoning, and reasoning through self-comparison (Baldinger, 2020). 

Furthermore, judgments are often restricted to describing students’ work instead of 

sense making of students’ ideas (Talanquer et al., 2015), merely evaluating instead of 

interpreting, and not building inferences on students thinking (Crespo, 2000). Also, 

studies showed that students’ errors resulting from a lack of conceptual understanding 

were interpreted by PSTs as lacking procedural understanding (Son, 2013). As a 

consequence, PSTs tended to directly respond to students’ utterances or to correct their 

mistakes instead of asking questions to reveal their mathematical thinking (Cai et al., 

2021). However, findings from intervention studies imply that learning opportunities 

can strengthen PSTs’ judgments towards a more detailed investigation of students’ 

thinking (Monson et al., 2018).  

In sum, previous studies revealed that PSTs seem to focus on content-related aspects, 

but base their judgement on rather surface characteristics as describing students’ 

solution instead of drawing on deep structure characteristics such as student 

understanding. That is, the evidence provides insights into the variety of judgment 

criteria and suggests a multidimensional structure of the construct. Against that 

background our study was guided by the following aims and research question. 

AIMS AND RESEARCH QUESTION 

To investigate the dimensions of PSTs’ diagnostic judgments of student solutions we 

combined a qualitative and a quantitative approach. We first approached possible 

dimensions inductively (study 1). Based on these findings, we then constructed scales 
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and checked the dimensionality of the construct (study 2). Particularly, we pursued the 

following research questions: RQ1: What judgment criteria can be detected from PSTs’ 

diagnostic judgments of an exemplary student solution? RQ2: What dimensions 

structure PSTs’ diagnostic judgments of an exemplary student solution?  

METHODOLOGY 

To reveal the variety of judgment criteria, in study 1 we used an exemplary student 

solution of a probability task (see Figure 1) that allows for a diagnostic judgment with 

different focuses and by using different categories.  

 

Figure 1. Task and student solution. 

The task was submitted to a sample of n1 = 110 PSTs of a primary teacher education 

program, who attended a lecture on probability and stochastics.  

The PSTs were asked to judge the result as well as the solution process and to justify 

their judgments. The open response data were analyzed by means of a step-wise 

inductive approach. First, the data-set was split into three subsets. One researcher 

analyzed one subset to identify a first set of categories that the PSTs used to rationalize 

their judgments. The research group then intensively discussed the categories. Second, 

code labels, definitions and examples were applied and revised through three rounds 

of coding and recoding, to identify the coding scheme that fits the data best (Kuckartz 

& Rädiker, 2019). Four categories of criteria were finally derived to code the whole 

dataset by two researchers. One sentence or more sentences with consistent meaning 

served as idea units and were coded to one category, if possible, or several categories, 

wherever necessary.  

As a next step, items were constructed by extracting the most typical statements of 

each category. In study 2, we then combined the constructed items with a six-point 

response scale (from completely agree to completely disagree) to rate the student 

solution and submitted it to n2a = 168 PSTs of two universities, enrolled in a master’s 

Task

There are 5 balls in a box. Four balls are red, one ball is black. 
Sarah pulls two balls out of the box with her eyes closed. What is 
the likelihood that Sarah will pull out the black ball?

Student solution

Student solution to be judged 
Translation of the solution:

10-6=4

thus 4/10=40%

You get the

black ball 

with 40%.

Dimension Item example

Conceptual understanding The student has grasped the problem.

The solution indicates that he has understood the problem well.

Qualitiy of solution approach      The student has cleverly solved the task.

The solution is a smart one. 

Presenation of procedure The student should have structured the solution better.

The students' solution does not show how he proceeded.

Motivation The student has made an effort to understand the task.

The student tried to solve the task. 
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program and who previously attended a lecture of probabilities and stochastics. To 

analyze the dimensional structure of the items, we first conducted an exploratory factor 

analysis (EFA) and, second, cross-checked the structure by applying confirmatory 

factor analyses (CFA). As factor loadings implied to add items, we constructed 

additional items based on the findings gained in study 1, and repeated the data analysis. 

The revised itemset was submitted to another sample of n2b = 209 PSTs at the end of 

their bachelor teacher education program to validate the gained dimensionality. Again, 

CFA was carried out to analyze the structure of the construct. Quality of model fit was 

investigated by interpreting common fit indices (Hu & Bentler, 1999). Thereby, 

McDonalds 𝜔 was estimated as indicator for reliability (Hayes & Coutts, 2020).  

RESULTS 

The analysis of the open response data (RQ of study 1) revealed four categories PSTs 

used when judging the student solution. They pursued a focus on understanding, 

procedure, presentation, or motivation. PSTs with a focus on understanding usually 

emphasized that the student was able or not able to grasp the problem correctly (e.g. 

“student’s solution shows that he or she understood the problem well”). PSTs who 

showed a focus on procedure pointed to details of how the student proceeded in either 

a correct or incorrect way or in a complete or incomplete way (e.g., “calculates 

correctly, converts to fractions, and gives correct percentages”). A focus on 

presentation was coded for judgments based on how the solution process was 

presented, arguing that the student created a picture of the problem, or wrote down a 

solution path and an answer or did not (e.g., “solution is not clearly arranged”). When 

PSTs recognized merely the student’s effort to solve the problem, we coded it as focus 

on motivation (e.g., considering that he or she has a solution, and strained him- or 

herself). The four categories were thus coded regardless whether the PSTs pursued a 

deficit- or strength-based perspective. 

In study 2, the EFA of the items constructed based on the most typical statements of 

each category indicated a three-dimensional model, that was proved by CFA against a 

four-dimensional structure (presentation and procedure modeled as two different 

factors in the second model, AIC = 5411,88, BIC = 5546,21, X² = 111.88, df = 47, p = 

.00; CFI = .89; RMSEA = .09 [.07 ; .11]; SRMR = .08). The results revealed a three-

dimensional model as more appropriate than a four-dimensional model (AIC = 

3812,44, BIC = 3909,28, X² = 37.25, df = 23, p = .03; CFI = .96; RMSEA = .06 [.02 ; 

.09]; SRMR = .06). Hence, presentation and procedure were building one factor which 

we labeled presentation of procedure, showing a high reliability (McDonalds 𝜔 = .80), 

in addition to the factors understanding (McDonalds 𝜔  = .78) and motivation 

(McDonalds 𝜔 = .79).  

Each factor was presented by items with substantial loadings higher than .57. However, 

a closer look at item quality and loadings led to a revision of the dimension 

understanding. Two of the items of the dimension rather addressed the quality of the 

student’s solution, e.g., “the solution is a smart one”, with high loading on the factor. 
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Consequently, we added items based on the data gained by study 1 to test whether an 

additional dimension needs to be modelled.  

Again, we conducted a CFA with an additional data set that revealed a four- 

dimensional model (see table 1) to fit the data best (see table 1). Understanding and 

quality of solution were building two different factors in addition to the factors 

presentation of procedure and motivation (X² = 86.10, df = 48, p < .01; CFI = .97; 

RMSEA = .06 [.04 ; .08]; SRMR = .05). The model fit was considered good. That is, 

the four dimensions each showed high reliability (McDonalds 𝜔 between .85 and .97). 

Also, they were represented by three items with a loading higher than .55. 

The factors correlate moderately with each other (from r = .21, p < .01 to r = 59, p < 

.01), except for understanding and quality of solution with a high correlation (r = .82, 

p < .01). Nevertheless, the CFA confirmed a four-dimensional model as more 

appropriate than a three-dimensional model (∆CFI = .14).  

Dimensions Items 

Understanding 
𝜔 = .97 

The student’s solution shows that he or she understood the 

problem well. 

The student’s solution indicates that he or she delved the 

problem. 

The student grasped the problem. 

Quality of 

solution  

𝜔 = .94 

The student carefully considered the solution. 

The student solution is smart. 

The student skilfully solved the problem. 

Presentation of 

procedure  

𝜔 = .85  

The student should have structured the solution better.  

The student should have chosen a different notation. 

The student solution does not show how he or she 

proceeded. 

Motivation  

𝜔 = .90 
The student tried hard to understand the task.                                                              

The student strained to solve the task. 

The student gave thought to find a solution. 

Table 1: Dimensions of PSTs’ diagnostic judgment. 

DISCUSSION AND CONCLUSION 

In two studies, we shed light on the “black box” of PSTs’ diagnostic judgments when 

confronted with an exemplary student solution – which will later be an important part 

of their daily practice. First, we could show that they pursued a focus on understanding, 

procedure, presentation or motivation. The results are in line with previous research, 

indicating the relevance of content-related aspects (Baldinger, 2020). However, some 

PSTs restricted their judgements to rather generic aspects when elaborating on how the 

solution was presented (Talanquer et al., 2015) or merely acknowledging motivational 
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aspects such as the effort the student made. Thus, the diagnostic judgment criteria PSTs 

applied are of different quality with respect to fostering students’ learning.  

In the second study, we used the results of the qualitative study to further explore the 

dimensions of the construct. The results confirmed a multi-dimensional factor 

structure. Beyond the results of previous studies that identified content-related 

dimensions, our studies revealed that students’ motivation as a generic dimension 

needs also to be considered as representing PSTs’ judgments. Our results further 

revealed that the focus on procedure and on presenting the solution formed one 

dimension, in line with previous evidence on PSTs’ judgments, showing that PSTs who 

focus on procedure take a rather descriptive than an interpretative view, not building 

inferences on students’ thinking (Crespo, 2000). Furthermore, we discovered that the 

factor quality of solution needs to be considered in addition to the factor understanding. 

The factors presentation of procedure and motivation indicate a more surface view on 

student solutions as it was implicated by prior research (Talanquer et al., 2015). In 

contrast, the two content-related factors of understanding and quality of solution 

indicate a rather deep structure view, meeting the requirement to build inferences on 

students thinking (Rittle-Johnson & Schneider, 2015).   

Our study on the one hand contributes to the field of teacher education by 

understanding the diagnostic judgment criteria PSTs use and how the construct is 

structured. On the other hand, we gained a standardized instrument to measure 

diagnostic judgment criteria PSTs apply when they judge an exemplary student 

solution. So far, we could conduct an additional study to test whether the identified 

diagnostic judgment dimensions fit the judgment of a student solving an arithmetic 

solution, proving the independency of the dimensions from the concrete task used. As 

a next step, starting from the study of Monson et al. (2020) who could show that PST 

learning opportunities can contribute to a stronger focus on students’ thinking, we will 

apply the instrument to examine whether and what learning opportunities can affect a 

shift from focusing on surface to deep structure and content-related characteristics.  
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INTEGERS 
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This article describes an example of research-informed teaching to help students to 
understand the operations with integers. The approach used is that of Inquiry and 
Embodied cognition in outdoor context, with the help of sagittal axis. The activity 
involved 15, eight grades (aged 13/14), students from a middle school in Trieste, Italy. 
The results were tested by proposing to the same students’ different types of exercises 
and problems. 73% have obtained positive results with 72% of which very good. 
Finally, we investigated through Mentimeter the students’ appreciation of the outdoor 
activity. 100% of students found the activity fun and helpful. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Learning outside the classroom essentially can be defined as use of resources out of 
the classroom to achieve the goals and objectives of learning (Knapp, 2010; Smith & 
Walkington, 2020). Recently there has been an increased interest in the development 
of outdoor and adventure education programmes (Fägerstam & Samuelsson, 2012). 
The constant focus on textbooks and formal mathematical practice might invoke a view 
among students that mathematics is abstract, distanced and only useful in a in 
classroom context. Existing research on outdoor learning in mathematics indicates 
positive affective outcomes and possible academic benefits from learning mathematics 
in an out-of-school context (Daher & Baya’a, 2012; Moffett, 2011). Moreover, outdoor 
environments, are real-life contexts enabling children to internalise, transfer and apply 
mathematical ideas and provides direct experience, the students need to be active in 
the learning process (Moffett, 2011). It lends itself to the Inquiry-based mathematics 
education, a student-centred form of teaching whose guiding principle is that the 
students are supposed to work in ways like how professional mathematicians work 
(Artigue & Blomhøj, 2013; Dorier & Maass, 2014): they must observe phenomena, 
ask questions, look for mathematical and scientific ways of answer these questions, 
interpret, and evaluate their solutions, and communicate and discuss their solutions 
effectively. Cooperative learning gives the opportunity to discuss and reason with 
others and justify one’s mathematical thoughts on how to solve different mathematical 
problems. Cooperative outdoor learning in mathematics gives the possibility to observe 
that a task at hand can be solved in more than one way and that more than one “right” 
solution to the problem may exist. The sensorimotor experiences arising from the 
environment also play a paramount role in learning (Wilson, 2002).  
Embodied cognition is described as a bodily sense of knowing, expressed through 
physical movement and sensory exploration with environments (Merleau-Ponty, 2002; 
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Varela et al., 1991). There is complexity in the processes that may be involved in the 
development of embodied cognition as “knowledge depends on being in a world that 
is inseparable from our bodies, our language, our social history” (Varela et al., 1991, 
p. 173). According to Glenberg (2010) perception and how memory works is affected 
by how people move their bodies. The role of gestures as semiotic tools, contributing 
to deeper understanding of mathematical concepts (Arzarello et al., 2009). 
Fluidity with integer operations marks a transition from arithmetic to abstract algebra. 
They do not correspond to any of the pre-existing cognitive structures and destabilize 
the perceptions - established since elementary school - of students on numbers and 
operations. It is difficult for them to perceive that -27 is less than -1 or that addition 
can cause a reduction, while subtraction can cause an increase. Moreover, negative 
numbers are conceptually difficult because students spend much less time learning 
them. Not being able to attribute natural objects or quantities to them, they try to recall 
the rules that do not guarantee the validity of their results (Vlassis, 2002; Bofferding, 
2014; Badarudin & Khalid, 2008). The key to a successful method is not to let them 
memorize a bunch of rules before they understand. Instead, students' understanding can 
be enhanced by using images or manipulating tools, to enable them to translate 
concepts into images. Additionally, giving students the opportunity to explore multiple 
representations of a particular mathematical concept can strengthen their conceptual 
understanding. 
Numbers are closely related to space both in action and in thought. A now classic 
finding is the “spatial numerical association of response codes (SNARC) effect”: 
among literate individuals from cultures who read from left to right, smaller numbers 
induce dispositions to act in the left space and larger numbers in the right space. 
Negative integers also induce spatial arrangements, although the task requires 
influence whether they are “left” of zero, in line with their relative numerical 
magnitude, or mixed with positive integers based on their absolute value. Spatial 
arrangements can also play a role in more complex tasks: mental arithmetic, for 
example, induces systematic arrangements to respond spatially, with addition-bias 
responses to the right and subtraction bias responses to the left (Knops at al. 2009; 
Marghetis & Youngstrom, 2014). Anelli at al. (2014) found a significant “congruency 
effect” where subjects performed more correct addition operations when moving 
horizontally rightward (the inferred orientation for addition in cultures that read left to 
right). Citing earlier work on bodily movement and mathematical processes, these 
researchers offer more “evidence about the influence of active body movements on the 
calculation processes of additions and subtractions,” evidence which reveals, “…the 
direction of body motion can influence not only number magnitude in a number 
generation task, but also the more complex process of calculations that leads to a 
numerical magnitude” (2014, p. 4). 
Typically, negative numbers are interpreted as a continuation of a horizontal number 
line, or number sequence, where numbers to the left of zero are negative and numbers 
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to the right of zero are positive. Sometimes, they can mimic vertical number lines for 
example, a temperature gauge. Additionally, the meaning of the minus sign, the symbol 
most fundamental to integers, is ambiguous. Common meanings include the meaning 
of an operation (take away), a value (negative), and “the opposite of,” and learners 
often apply multiple meanings during manipulation (Lamb et al., 2012). 
Little attention has been given to the arrangements along the sagittal axis, which runs 
from behind the body forward. Things ahead can be seen, heard, touched; the things 
behind it are much more difficult to access. Furthermore, the sagittal axis is associated 
with another abstract domain: Time. Recent studies have shown that negative numbers 
are spontaneously associated with the space behind the body and positive numbers with 
the space in front. These spatial arrangements were evident only when the task 
involved both the positive and negative numbers. Whole reasoning, therefore, is not 
entirely abstract, but induces systematic dispositions to action (Marghetis & 
Youngstrom, 2014). 
The purpose of this article is twofold: it is intended to show how an outdoor activity 
should be presented with a view to the Embodiment, the Inquiry and with the use of 
sagittal axis; to test, as first exploratory study, whether an hour and a half of outdoor 
activity was enough for the students to understand concepts and if the activity was 
appreciated by them. The study involved 15 students, eight grades (aged 13/14) 8 boys 
and 7 girls, from a middle school in Trieste, Italy. 
THE METHODOLOGY 
In the first part we describe those steps that led students to the discovery of properties 
regarding the addition and subtraction with integers. The approach used is that of 
Inquiry and Embodied cognition in an outdoor context. The activity takes place in the 
“Classroom under the sky” https://www.youtube.com/watch?v=lGJbz_d7OUs&t=80s 
(for another example see Lepellere & Gasparo 2021). The environment is already 
welcoming in itself: a small pond right on the edge of a laurel grove, an open lawn that 
converges to the maple tree in the centre of the space, under which a blackboard and 
seats for students are placed. The students can also make use of portable shelves, to 
support books and notebooks.  The activity middle school in Trieste, Italy. The results 
were tested by proposing, to the same 15 students, just after an hour and half of outdoor 
activity 72 exercises on operations and five different problems. Finally, we investigated 
through Mentimeter the students’ appreciation of the outdoor activity. 
THE ACTIVITY 
The straight line of numbers is represented by the stairs, the increasing direction to the 
right is not as intuitive as climbing the steps (positive numbers) or descending them 
(negative numbers). After having identified the zero point on the landing, we start by 
drawing positive and negative numbers on the wall next to the stairs. To further help 
visualization and memory, it is possible to paint negative numbers in red and positive 
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numbers in blue, placing the relative sign in front of them. The students take their 
chosen position on the various stairs, after which we introduce some rules. 

           
Figure 1: Stairs real and imaginary. 

We invite students to discover the first oddity: how is it possible that by subtracting 
two numbers we get a larger number? I point out that subtracting means making a 
difference, so we invite students to calculate the difference between the +2 step and -4 
step, that is, let’s see how many steps we must do to go down from +2 to -4. We 
discover that there are 6! So, +2 - (-4) = + 6. Now we establish another rule that we 
have to do with the starting position that a student must take. Upon departure, a student 
stands in a neutral position, towards the teacher or fellow who gives the commands. 
Then he or she behaves like this: to add something they must turn upwards (positive 
numbers) and to subtract they must turn downwards. In Figure 1 on the right, we see 
the first student who passes from -3 to -2: he is turned upwards in the addition 
operation: -3 + (+1) = -2. The second stays in neutral position on 0, the third drops 
from +2 to +1, i.e., it is turned down in the subtraction position +2 - (+1) = +1. The 
fourth is neutral on +3 and wait instructions. It is time for the second rule: in front of a 
number there are two signs, one for the operation and one that indicates whether the 
number is positive or negative. If the number following the first is positive, we move 
forward and if the number is negative, we move backwards. We invite the students to 
move like fleas, amplifying the gesture with a jump. During the first calculations we 
often see some pupils simulating these jumps with their fingers in the notebook. 

             
Figure 2: From step +2, we can get to step -4 with two methods. 

Together we discover that starting from step +2, we can get to step -4 with two 
methods: turn left (-) and go forward (+) doing +2 - (+6) = -4 (Figure 2 on the left) or 
turn right (+) and go back (-) doing +2 + (-6) = -4 (Figure 2 on the right). At this point 
a series of games began: a team assigns an operation to the opponents who must solve 
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problems such as -2 - (- 3). Then we ask how, starting from -1, we can get to +4. They 
start with simpler procedure; they turn left and go forward by 5. Then the students also 
discover the other system: they turn right, down, and go up to shrimp back by -5. The 
variations to the game are many: it is left to the students to find some. The whole 
outdoor activity lasted an hour and a half. 
THE TEST 
The next day and without any prior notice, students were offered a challenging test 
consisting of 72 operations to perform and 5 problems to set and solve. The operations 
were of type: −20 + 15 =⊡; 12 + (−16) =⊡; −4 +⊡= 10; −7 +⊡= −2; ⊡
+(−3) = 7; ⊡+13 = −5 and so on in such a way as to cover all possibilities. 
Moreover, we give them the following 5 problems involving a vertical schema as 
temperature and sea level, horizontal schema as movement and timeline and finally a 
neutral schema as loans. Problem 1. Temperature: Lara looks at the thermometer: the 
temperature is -2. In the afternoon, however, the temperature rises by 11 degrees. What 
temperature do we have now? Write down the operation you did. Problem 2. 
Movement: Cristian walks 20 meters ahead and then returns 14 meters back. Where is 
he in relation to the starting point? Write down the operation you did. Problem 3. Sea 
level: Sofia is in a submarine with her friend Matteo. They are 150 meters below sea 
level! If the submarine rises 100 meters, what level is it now? Write down the operation 
you did. Problem 4. Timeline: Luca was a prominent Roman emperor, before 
reincarnating as a student of the Caprin. He was born in 510 BC. In the twentieth 
reincarnation he became a swallow, which died in 220 AD. How many years has he 
lived in these 20 reincarnations? Write down the operation you did. Problem 5. Loans: 
Isabel and Giada go to buy a sweatshirt from Scarface. Giada has 15 euros with her, 
but the sweatshirt costs 23. How much money does Isabel have to lend her for the 
purchase? In other words, how much money does Giada owe? Do you have to put + or 
- in front of the number? Write down the operation you did. 
In Table 1. we show the results obtained. The 15 students numbered from 1 to 15 are 
placed in the column. The scores obtained from the operations are represented in the 
column “Operation Scores”. One point has been assigned to each operation. The scores 
on the problems are reported from the third to the eighth column: 1 if it was correct 
and 0.5 if it was formulated correctly but the operation was wrongly made. The 
“Difficulty” column also shows the difficulty perceived by the students of the test (0 
easy to 5 very difficult) and in the subsequent ones the preference between the schemes 
used (0 dislike 3 like very much), horizontal, vertical, scaled or the use of the rules. 
The last 2 columns contain the total score and the grade (in tenths) achieved by each 
individual student. The last row of the table contains the arithmetic means of the 
various results. 
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Table 1: Results. 

Immediately it is noted that only 3 out of 15 students obtained an insufficient total 
grade of which only one very negative (6/7 stands for 6.75 and so on). The first 
temperature problem, which is also what students must do most in real life, was solved 
correctly by all students, following the movement and sea level problem. The timeline 
exercise had an additional difficulty related to intrinsic knowledge of the subject and 
therefore less skill was expected. More unexpected is the result on the problem about 
loan and would need further study. The test was perceived as not very difficult even if 
4 students did not answer to the question about it. As for the use of the schemes, the 
scale scheme (10 students gave preference grade 3), was appreciated more than the 
scheme in the horizontal (5 students gave preference grade 3) and vertical (3 students 
they gave preference grade 3). Finally, the use of the rules received some appreciation 
(6 students gave preference grade 3). Cases of non-response were not taken into 
consideration in the calculation of the mean. 
Mentimeter was used to test student appreciation of the activity. First, they were asked 
to write the first 5 words that came to mind when thinking about the outdoor activity. 
Figure 3a shows the results. The words funny combined with fun, nice, beautiful are 
the most used. But understanding-related words such as interesting, simple, focus, ease, 
easy, and intelligence were also highly rated. We find the words numbers, scales, 
errors, comparison too. When asked to indicate on a scale from 0 to 5 (0 not at all and 
5 very much) how much they liked the activity 6 students gave score 5, 5 students score 
4 and 1 score 3, scores 0, 1 and 2 are not been voted on (Figure 3b.).  

Operation Difficulty (1-5)
Scores 1 2 3 4 5 Orizzontal Vertical Stairs Rules TOTAL SCORE

Total Score 72 1 1 1 1 1 77
1 33 1 1 1 1 0 3 2 1 2 3 37 5-
2 46 1 1 1 1 1 2 1 3 51 6/7
3 12 1 0,5 0 0 0 13,5 3
4 35 1 0 0 0,5 0,5 3 3 2 3 1 37 5-
5 71 1 1 0,5 0 0 3 3 0 2 3 73,5 9/10
6 60 1 1 1 0,5 1 3 2 2 3 3 64,5 8/9
7 61 1 1 1 1 1 3 3 3 0 66 8/9
8 66 1 1 1 1 1 2,5 0 2 1 2 71 9+
9 57 1 1 1 0 0 2,5 1 1 3 0 63 8
10 55 1 1 1 0,5 0 2 1 0 3 0 58,5 7/8
11 66 1 1 1 1 1 1 3 3 3 3 71 9+
12 72 1 1 1 1 1 1 1 2 3 77 10
13 72 1 1 1 1 1 1 3 3 3 3 77 10
14 66 1 1 0,5 1 1 2 1 0 0 3 70,5 9
15 41 1 1 0,5 0 0,5 0 0 3 0 44 6-

Avarage 54 1 0,9 0,8 0,7 0,6 2,2 1,8 1,5 2,5 1,9 54,1 7

Problems Preference Schemas or Rules (1-3)
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Figure 2: Mentimeter results. 

It was also asked to indicate from 0 (not at all) to 5 (a lot) how much the activity on 
the stairs was of help compared to the study in class on the blackboard and the 
notebook. Here, too, 11 out of 13 young people who replied said that the activity was 
very helpful. Finally, it was asked whether by carrying out this activity the student was 
able to discover some rules on his own. 6 students voted yes and 7 no. 
CONCLUSIONS 
The lack of cognitive prerequisites based on personal experience, sensory deprivation, 
the lack of direct experiences are elements of risk that we detect in today's young 
people and that lead them to have difficulties even when they need to analyse, deduce, 
abstract. The term “educate” derives from the Latin ex ducere, “to lead out”, in the 
sense of trying to get the best out of each student but it can also be interpreted as “to 
lead out” from the classroom. Here, movement can represent a stimulus to learning if 
practiced in serenity and even more in an open environment (Moss, 2009). Covid-19 
launches a challenge to schools today in a strong crisis and that of outdoor schools is a 
real way that connects students with reality, nature, dexterity, art and a new 
responsibility towards creation, others, themselves. The reduction of opportunities for 
socialization has led to various psychological disorders in adolescents: panic attacks 
and anxiety. It should therefore come as no surprise that fun and socializing activities 
are of interest and approval. The survey carried out anonymously at the end of the 
outdoor lesson shows that 100% of students found the activity fun. Several used terms 
such as “beautiful, joy, happiness”. After only an hour and a half of outdoor lessons 
most of the students obtained a very high score in a demanding test consisting of 72 
operations of different types and 5 problems. This is a first investigative intervention 
that will lay the foundations for future experimental work. 
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We focused on both prospective teachers’ (PTs) confidence about their knowledge 
preparation and the extent of their knowledge of the specific topic of fraction division. 
The results revealed how these PTs’ confidence may or may not be supported by their 
knowledge preparation for teaching fraction division, a concept they would be 
expected to teach as part of the country's curriculum standards. The results also 
illustrated the importance of specifying knowledge components in mathematics in 
order to help build or support PTs’ confidence for classroom instruction. 
Accumulated research findings in past decades have led to the understanding that 
teachers’ knowing mathematics for teaching is essential to effective classroom 
instruction (e.g., Li & Howe, 2021; Li & Kaiser, 2011).  Corresponding efforts have 
also been reflected in teacher preparation programs that call for more emphasis on 
prospective teachers’ learning of mathematics for teaching (CBMS, 2012; Li, Ma & 
Pang, 2008; Li, Pang, Zhang & Song, 2020).  Such efforts can presumably increase the 
quality of teacher preparation and prospective teachers' confidence and ultimate 
success in their future teaching careers.  However, previous studies (Li & Kulm, 2008; 
Li & Smith, 2007) revealed a wide gap between sampled prospective middle school 
teachers’ high confidence and their limited mathematics knowledge needed for 
teaching fraction division in the U.S.. Much remains to be learned about the extent of 
knowledge in mathematics and pedagogy that prospective teachers have and what else 
they may need to know for building or supporting their confidence. As part of a large 
research study of elementary school teachers’ mathematical preparation, this paper 
focused on a group of PTs’ confidence and knowledge of mathematics and pedagogy 
on the topic of fraction division in South Korea. 
The topic of fraction division is difficult in school mathematics not only for students 
(Li, 2008), but also for prospective teachers (Li & Kulm, 2008; Simon, 1993). 
Mathematically, fraction division can be presented as an algorithmic procedure that 
can be easily taught and learned as “invert and multiply.”  However, the topic is 
conceptually rich and difficult, as its meaning requires explanation through 
connections with other mathematical knowledge, various representations, or real world 
contexts (Greer, 1992; Li, 2008).  The selection of the topic of fraction division, as a 
special case, can provide a rich context for exploring possible depth and limitations in 
prospective teachers’ knowledge in mathematics and pedagogy.  Specifically, this 
study focused on the following two research questions: 
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(1) What is the confidence of prospective elementary school teachers regarding 
their knowledge preparation for teaching? 

(2) What is the extent of prospective elementary school teachers’ knowledge in 
mathematics and pedagogy for teaching fraction division? 

CONCEPTUAL FRAMEWORK 
To be able to help students learn mathematics with understanding, teachers need to 
have mathematics conceptual knowledge for teaching (MCKT; Li et al., 2020). By 
MCKT we mean topic-based conceptual knowledge packages that are needed for 
understanding, explaining, as well as teaching specific mathematics content topics 
with connections. It can be specified as containing the following three topic-based 
knowledge components that can and should be acquired by mathematics teachers: 

(a) Having knowledge and skills directly associated with a specific content topic;  
(b) Being able to connect and justify the main points of a content topic, and to 

place it in wider contexts;  
(c) Knowing and being able to use various representations for teaching the 

content topic, and being able to teach the relations between them. 
Clearly, specific MCKT varies from one content topic to another. The task of 
specifying MCKT is needed but enormous for different content topics. Nevertheless, 
teachers’ acquisition of MCKT would enable them to develop a profound 
understanding of mathematics content topics they teach as termed by Ma (1999). Given 
the dramatic variations across mathematical content topics, we focus on the MCKT 
that teachers would need to have for teaching fraction division. 
The conceptual complexity of the topic of fraction division is evidenced in a number 
of studies that documented relevant difficulties prospective and practicing teachers 
have experienced (e.g., Borko et al., 1992; Simon, 1993; Tirosh, 2000).  Although both 
prospective and practicing teachers can perform the computation for fraction division, 
it is difficult for teachers, at least in the United States, to explain the computation of 
fraction division conceptually with appropriate representations or connections with 
other mathematical knowledge (Ma, 1999; Simon, 1993).  Teachers’ knowledge of 
fraction division is often limited to the invert-and-multiply procedure, which restricts 
teachers’ ability to provide a conceptual explanation of the procedure in classrooms 
(e.g., Borko et al., 1992).  Because the meaning of division alone is not easy for 
prospective teachers (e.g., Simon, 1993), fraction division is even more difficult (Li & 
Kulm, 2008; Ma, 1999).  The findings from previous studies help provide specifics of 
these three components of MCKT as follows: 

(a) Having knowledge and skills about fraction division, including conceptual 
and procedural knowledge (e.g., Borko et al., 1992), and solving problems 
involving fraction division (e.g., Greer, 1992).   
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(b) Mathematical connections and justifications of main points related to fraction 
division, including fraction concept; addition, subtraction, and multiplication 
of fractions (e.g., Ma, 1999; Tirosh, 2000).   

(c) Representational variations and connections for teaching fraction division 
such as explaining the computational procedure for “division of fraction” with 
different representations (e.g., Li & Huang, 2008; Li & Kulm, 2008). 

The specifications of these three components of knowledge provided a framework for 
the current study and served as a guideline for selecting items to examine the extent of 
PTs’ knowledge and specific difficulties with fraction division. 
METHODOLOGY 
Subjects 
The participants were prospective elementary school teachers sampled from four 
national universities that offer 4-year B.A. or B.Sc. teacher preparation programs in 
South Korea.  They had already taken the required mathematics courses and were 
completing the mathematics methods course at the time of their participation in this 
study.  A total of 221 responses were collected and used for analyses and reporting, 
with 135 (61%) of responses from juniors, 86 (39%) responses from seniors. 
Instruments and data collection 
A survey was developed for this study, containing two main parts with three items for 
Part 1 and seven items for Part 2. Part 1 contains items on elementary teachers’ 
knowledge of mathematics curriculum and their confidence in their readiness for 
teaching. Part 2 has seven main items that assess elementary teachers’ three knowledge 
components of MCKT on the topic of fraction division. Most items were taken from 
previous studies (Li, Ma, & Pang, 2008; Li & Smith, 2007), with some items adapted 
from school mathematics textbooks and others’ studies (e.g., Tirosh, 2000). Given the 
limited page space, only three items (note: each item containing two questions) from 
Part 2 and PTs’ responses to these items are included for analyses to provide a glimpse 
of sampled PTs’ confidence and MCKT. 
The survey was administrated at regular class time by instructors in four institutions. 
Participants were notified that the survey was for research purposes only and should 
be completed anonymously. 
Data analysis 
Both quantitative and qualitative methods were used in analysing and reporting the 
participants' responses. Specifically, responses to the items in Part 1 were directly 
recorded and summarized to calculate the frequencies and percentages of participants’ 
choices for each category.  To analyse participants’ solutions to the items in Part 2, 
specific rubrics were first developed for coding each item, and subsequently, the 
participants’ responses were coded and analysed to examine their solutions/answers. 
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RESULTS AND DISCUSSION 
In general, the results showed interesting relationships between PTs’ confidence and 
their mathematical preparation for teaching fraction division, which illustrates the 
importance of specifying knowledge components in mathematical preparation in order 
to help build or support PTs’ confidence for classroom instruction. 
For PT’s confidence, the results from the survey indicated that (1) participating PTs in 
South Korea did not know well about their national curriculum standards in general; 
(2) the majority of these PTs were confident in the knowledge preparation they 
received for future teaching careers; but (3) they knew very well about the topic 
placement of “multiplication and division of fractions” in mathematics curriculum. The 
results suggested that these PTs tend not to feel over confident. 
For specific knowledge components of MCKT, these PTs’ performance revealed that 
their mathematical preparation was sound in the content topic itself, especially in the 
procedural and pedagogical aspects, and relatively weak conceptually in connecting 
the content topic with other topics mathematically. The seemingly mixed results in 
their responses actually suggest that these PTs’ confidence was built upon or supported 
by what they know that can and should be specified in concrete terms or knowledge 
components.  The following sections are organized to present more detailed findings 
corresponding to the two research questions. 
Prospective teachers’ confidence in elementary school mathematics 
The following items are from Part 1 of the survey to illustrate PTs’ confidence of their 
knowledge preparation needed for teaching, as related to fraction division. 
For item 1: How would you rate yourself in terms of the degree of your understanding 
of the National Mathematics Standards?  On a scale of four choices (High; Proficient; 
Limited; Low), 55% and 9% of the participants chose "Limited" and "Low", 
respectively.  Relatively small percentages of the prospective teachers felt to have high 
(8%) or proficient (29%) understanding of their national mathematics standards. 
For item 2-(2): Choose the response that best describes whether elementary school 
students have been taught the topic – Multiplication and division of fractions.  On a 
scale of five choices (Mostly taught before grade 5; Mostly taught during grades 5-6; 
Not yet taught or just introduced during grades 5-6; Not included in the National 
Mathematics Standards; Not sure), 93% participants indicated that the topic is “mostly 
taught during grades 5-6" (a correct choice), and most of the remaining (5%) chose the 
first response ("Mostly taught before grade 5", a partially correct choice if only fraction 
multiplication is considered).  The results, in contrast to the participants’ response to 
item 1, suggested that these PTs know very well about the content topic placement in 
mathematics curriculum, although the majority did not feel confident in knowing about 
their national mathematics standards. 
For item 3-(2): Considering your training and experience in both mathematics and 
instruction, how ready do you feel you are to teach the topic of “Number – 
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Representing and explaining computations with fractions using words, numbers, or 
models?”  On a scale of three (Very ready; Ready; Not ready), 67% of the participants 
thought they were "ready", while 7% chose “very ready,” and 25% “not ready.”  The 
results indicated that the majority of these PTs were confident in their preparation for 
teaching fraction computations, including fraction division.  There was also a large 
percentage of PTs who are not confident. The diversity in responses suggested the need 
of learning more about their confidence and possible connections with their knowledge 
preparation. 
Taking together, PTs’ responses to the Part 1 suggested that these PTs in South Korea 
tend not to feel over confident, although they actually knew very well about some 
specifics. In fact, the results are consistent with what has been reported about in-service 
mathematics teachers in East Asian countries (Mullis, Martin, Gonzalez, & 
Chrostowski, 2004) and PTs in China (Li, Zhang & Song, 2019).  The consistency in 
the general response pattern between PTs in the current study and elementary teachers 
in other studies suggested that culture likely plays an important role in expressing 
confidence by teachers in East Asia including South Korea. 
The extent of prospective elementary school teachers’ preparation in MCKT for 
teaching fraction division 
These PTs’ responses to Part 2 allowed a closer look at the participants’ three 
knowledge components of MCKT, especially on the topic of fraction division.  Results 
indicated that these PTs do very well on items related to fraction division computation 
and problem solving (MCKT knowledge component 1).  For example, for the problem 
“Say whether  is greater than or less than  without solving. Explain your 

reasoning.”, 96% of these PTs answered the problem correctly (i.e., the first numerical 
expression is greater than the second one). The most common explanation is that 2/3 
is smaller than 3/4. Some showed why 2/3 is smaller than 3/4 by comparing these 
fractions with 1 (i.e., 1– 1/3 vs 1– 1/4), converting them to equivalent fractions with 
the same denominator (i.e., 8/12 and 9/12), or drawing a picture to represent 2/3 and ¾ 
for comparison, etc. About 26% mentioned, “If the divisor is the smaller, the result of 
the division (or quotient) is bigger.” About 5% who got the correct answer changed the 
division of the given numerical expressions into multiplication and mentioned that 3/2 
is greater than 4/3, implying “the greater the multiplier, the larger the product.” 
Moreover, these PTs also had great performance in solving multi-step word problems 
that involve fraction division. For example, 93% participants solved the following 
problem correctly. 

Johnny’s Pizza Express sells several different flavour large-size pizzas. One day, it sold 24 
pepperoni pizzas. The number of plain cheese pizzas sold on that day was 3/4 of the number 
of pepperoni pizzas sold, and 2/3 of the number of deluxe pizzas sold. How many deluxe 
pizzas did the pizza express sell on that day?  

3
2

11
9
÷

4
3

11
9
÷
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Specifically, 70% used a multi-step computation method to get the answer (e.g., 

), about 6% used a combined computation 
method (e.g., 24 x ¾ ÷ 2/3 =27), 5% adopted an algebraic approach to set up and solve 
an equation for solution, 6% provided a correct answer with no explanation, 5% 
provided simple explanation without variables (e.g., 3/4 of 24 is 18, 2/3 of Deluxe is 
18, so (the answer is) 27), and about 1% (2 respondents) provided something else. The 
remaining PTs either did incorrectly (15, 7%) or provided no answer at all (1 PT). 
For the knowledge component 2 of MCKT, PTs were asked to explain “the meaning 
of fraction division, and how fraction division relates to other content topics” that aims 
to assess their knowledge of fraction division and ability of connecting and justifying 
possible association between fraction division and other content topics. The results 
suggested that 41% provided correct explanations to the first sub-question. the most 
common explanation was the measurement interpretation of fraction division (39%), 
followed by partitive interpretation (29%). In addition, more than 10% of sampled PTs 
were able to provide other meanings of fraction division such as the inverse of 
multiplication (10%) or determination of a unit rate (15%). Note that 28% of the PTs 
were able to explain the meanings of fraction division in two ways or more. Among 
the incorrect answers (46%), the most common explanation (32%) was to describe the 
meaning of fraction division as division with fraction (i.e., division with the divisor 
and/or the dividend as fractions). About 13% provided no answer or simply stated “I 
don’t know”. For the second sub-question, about 69% were able to relate fraction 
division to other content topics. The most common content topic related to was fraction 
multiplication mainly because the multiplicative inverse of the divisor is used in 
fraction division. Note that both measurement interpretation and partitive 
interpretations used in answering the first sub-question are related to the meaning of 
division and more than 29% of the PTs were able to provide these interpretations. In 
contrast, only 15% of the PTs related fraction division to whole number division and 
13% related it to the division of decimal numbers. About 8% PTs failed to provide a 
correct explanation, and 22% provided no answer or simply stated “I don’t know”. 
There were several items used to assess PTs’ knowledge component 3 of MCKT. As 
an example, PTs were asked to explain how to explain/teach given computations of 
fraction division. In particular, the problem of “How would you explain to your 

students why ?; Why ?” (adapted from Tirosh, 2000) was included 

in the survey. For the first fraction division (i.e., explaining why 2/3 ÷ 2 = 1/3?), 99% 
provided valid explanations for dividing a fraction by a whole number (i.e., 2/3 ÷ 2 = 
1/3). The dominant explanation (>54%) used drawing to show that if you equally 
divide 2/3 into 2 pieces, you get 1/3. Other respondents (11%) used the meaning of 
division or fraction without drawing. Some respondents (5%) used the common 
denominator and others (5%) used an algorithmic approach (i.e., dividing a number 
equals to multiplying its reciprocal). About 11% of these PTs provided valid 

3
12

3
2

=÷ 4
6
1

3
2
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explanations in two or more ways. In doing so, drawing was often used as a basic 
approach. For the second fraction division (i.e., explaining why 2/3 ÷ 1/6 =4?), 97% 
provided valid explanations and the dominant explanation was based on drawing to 
show the meaning of measurement division. Even though the drawings were different 
from explaining the first fraction division, the main idea was to display how many 1/6s 
are included in 2/3 (or 4/6). Additionally, 19% of these PTs explained the meaning of 
the measurement division in words or numerical expressions without drawing. 15% of 
these respondents used an algorithmic approach of using the inverse number. About 
10% of these PTs were able to provide two or more kinds of explanations. Again, 
drawing was the most prevalent approach included. 
The results from these PTs’ responses on MCKT items revealed their strengths in many 
aspects of MCKT, as specified in the framework.  However, PTs’ strengths across these 
aspects varied to a certain degree.  It appeared that these PTs have solid performance 
on items related to fraction division computation itself, especially in the procedural 
aspect and pedagogical explanation, but relatively weak conceptually in connecting the 
content topic with other topics mathematically. 
CONCLUSION 
The findings from this study helped shed a light on the relationships between these 
PTs’ confidence and their mathematical preparation for teaching fraction division. 
Specifically, these PTs didn’t feel over-confident about their understanding of national 
mathematics standards, but they knew very well about the curriculum placement of 
selected content topics. They also had better confidence in terms of their readiness to 
teach elementary school mathematics. Such confidence was likely supported by their 
solid knowledge and skill directly associated with fraction division, a knowledge 
component that is also typically required for school students. At the same time, their 
relatively weak performance on items that are conceptually demanding in mathematics 
likely failed to support their confidence in readiness for teaching. Such knowledge 
differentiations, as specified in the MCKT framework, help provide an important and 
feasible lens for us to know the strength and weakness of teachers’ knowledge. For the 
case of South Korea in this paper, the results suggested that PTs likely gain much more 
on mathematics and mathematical pedagogy, and certain limits on connections of 
mathematical ideas through their program studies. In turn, such results helped illustrate 
what teacher preparation programs need to do more in mathematical preparation in 
order to help build or support PTs’ confidence for classroom instruction. 
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The potential of tasks to stimulate students’ mathematical thinking and the adequate 
use of this potential in instruction are prominent indicators for instructional quality. 
Since the assessment of a task’s potential depends on the aims of instruction, it may be 
argued that corresponding perspectives vary between cultural contexts. However, so 
far, this has not been systematically investigated in cross-cultural comparisons. In this 
study, we investigate whether Western (German; N=17) and East Asian (Taiwanese; 
N=19) professors of mathematics education have different perspectives on the 
potential of word problems for students’ learning and the use of this potential in 
instruction by means of vignettes from a cross-cultural research project. We illustrate 
how differences reflect cultural aspects of mathematics instruction. 
THEORETICAL BACKGROUND 
The potential of tasks for students’ mathematical learning and the use of this potential 
in teaching (the potential of tasks and its use) have been shown to be crucial factors for 
students’ learning. Across cultures, there is a consensus that competent teachers are 
able to identify tasks with high learning potential, and, in addition, implement them in 
a way that uses this potential (e.g., Stein & Lane, 1996). However, it is well known that 
Western and East Asian perspectives on mathematics teaching and learning are 
different in many aspects (Leung, 2001). Hence, it is questionable whether research 
focusing on the evaluation of a task’s potential and its use can be cross-culturally valid 
(Clarke, 2013) and it is thus important in our inter-cultural research community to seek 
corresponding evidence. Consequently, this research report investigates how 
professors of mathematics education (experts) from Taiwan and Germany 
(representing an East Asian and a Western perspective) evaluate the potential of tasks 
and its use in instructional situations. We focus on a very common kind of task that is 
used in mathematics instruction across grades and cultures: word problems with links 
to real-life situations. 
Word problems, their learning potential and use in Germany and Taiwan 
Generally, mathematical tasks are considered to have a high potential for students’ 
learning, if they are focused on the instructional content, aligned with the teaching 
aims, and suited to stimulate students to work mathematically. Word problems, in 
particular, often have features that are considered to promote learning, such as their 
potential to provoke multiple solutions or require explanations (Stein & Lane, 1996).  
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However, word problems are used with many different functions (e.g., Verschaffel et 
al., 2020). For example, word problems can be used to practice mathematical 
procedures, to discover new mathematical concepts, or to engage in mathematical 
modeling. Hence, it is an interesting question whether a certain word problem’s 
potential for supporting students’ learning may be evaluated differently. As it is known 
that the use of word problems varies between cultural contexts (e.g., Chang et al., 
2020), this question is especially relevant for cross-cultural comparative research.  
Mathematics teaching in Germany and Taiwan has typically different priorities such as 
meaningful learning vs. high procedural fluency (Leung, 2001), which may impact the 
perspective on word problems and their potential for learning. The German curriculum 
is literacy-oriented and clearly stands in a Western tradition. Engaging in mathematical 
modeling processes is hence an important practice (Chang et al., 2020). There is a 
focus on using real-life situations to encourage students to draw on their 
world-knowledge to understand them and validate solutions against the situation 
(Verschaffel et al., 2020). In Taiwan, word problems are used with a strong focus on 
the application of foundational knowledge and procedures (Chang et al., 2020; Pratt et 
al., 1999). Consequently, Taiwanese students were consistently found to outperform 
Western students in comparative studies where word problems were used for 
assessment, benefiting from a sound knowledge base and flexible use of procedures, 
that may result from high perseverance in studying (Leung, 2001). 
Based on these differences, it can be assumed that there may be different perspectives 
in Germany and Taiwan on what constitutes a high potential of word problems for 
students’ mathematical learning, and, consequently, how this potential should be used 
in mathematics instruction. Particularly, there are indications that word problems with 
real-life contexts are used with different aims in Germany and Taiwan: While in 
Taiwan such problems are primarily seen as opportunities to apply mathematical 
concepts and procedures to deepen mathematical understanding, in Germany they are 
seen as opportunities to learn mathematical modeling as a specific practice.  
Eliciting culture-specific norms using of vignettes 
To elicit and contrast perspectives on teaching quality across cultures, we follow 
approaches that use classroom vignettes to assess professional noticing (Dreher et al., 
2021). Professional noticing with respect to teaching is described as a process of 
attending to aspects of classroom situations that are relevant for instructional quality 
(selective attention) and interpreting them by drawing on corresponding professional 
knowledge and other resources (knowledge-based reasoning) (Sherin, 2007). 
Typically, instruments to assess noticing use text- or video-based vignettes as 
representations of practice. A common “operational trick” in these approaches is to 
design or select vignettes in which something happens that does not meet the 
expectations of “good” teaching, i.e., they include a breach of a norm regarding some 
aspect of instructional quality (Dreher et al., 2021). The vignettes are shown together 
with a prompt to evaluate the depicted classroom situation and to give reasons for the 
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evaluation. A person’s reaction to the critical incident serves then as the indicator for 
the noticing; the reasoning can be used to infer what knowledge and beliefs guided the 
noticing process. 
Up to now, such vignettes have mainly been used to assess noticing. One could, 
however, also use them to investigate whether the noticing of experts from different 
cultures reflects differing norms regarding aspects of instructional quality. To do so, 
one would need vignettes that potentially show breaks of culture-specific norms. 
However, in comparative studies, such culturally sensitive instruments are usually 
avoided as much as possible in order not to jeopardize the comparability of the results. 
This does not solve the problem that seeking the highest possible comparability may be 
detrimental to the validity of the instruments precisely when conceptions of 
instructional quality differ across cultures (Clarke, 2013). To the best of our 
knowledge, this has not been systematically investigated for the instructional quality 
regarding task potential and its use, as the corresponding instruments were lacking. 
RESEARCH QUESTIONS 
Against this background, we ask: Do mathematics education experts from Taiwan and 
Germany have different perspectives on the potential of word problems and its use as 
represented in vignettes authored in Germany or Taiwan? 
CONTEXT AND METHODS OF THE STUDY 
The reported study is part of the binational research project “Teacher noticing in 
Taiwan and Germany” (TaiGer Noticing) aiming at investigating the role of 
culture-specific norms regarding aspects of instructional quality. To this end, we 
developed a set of text vignettes reflecting potentially culture-specific norms regarding 
aspects of instructional quality (Dreher et al., 2021). Due to the prominent role of tasks 
in mathematics teaching, one of these aspects is the potential of tasks and its use. To 
validate whether the developed vignettes reflect indeed norms regarding this aspect in 
the respective countries, all vignettes were evaluated by experts in Germany and 
Taiwan. This report uses the responses regarding two of the vignettes (task2, task4). 
Vignette task2 was developed in Germany and vignette task4 in Taiwan. Both included 
a breach of a norm from the perspective of the authoring national team members. Due 
to the sophisticated method of a concurrent vignette development process in the 
research project (Dreher et al., 2021), we could ensure that the resulting vignettes 
represent classroom situations that may occur in secondary mathematics education of 
both countries (ecological validity). 
Instruments 
The two vignettes have a similar structure: First, a task that is considered to have a high 
potential for mathematical learning from the perspective of the authoring national team 
is presented. Second, a classroom situation is described (approx. 230 words of a 
fictitious transcript). 
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In detail, vignette tasks2 builds on a task “cliff-jumping” (topic of quadratic functions, 
Figure 1, left). It requires students to understand a real-life situation (presented as 
graphically supported text), make an educated guess about the solution based on the 
real-life context, and determine the solution with the help of a given mathematical 
model. The German authors saw the potential of the task for learning especially in its 
clear focus on the known difficulties of students to understand and interpret the 
connection between the real-life situation and mathematical models. They would 
expect teachers to use the educated guesses or the given visual representation to 
validate mathematical solutions and support students’ modeling processes.  
Vignette task4 builds on a task “student camp” (topic of systems of linear equations, 
Figure 1, right). It requires students to understand a real-life situation (presented as 
text) and set up a system of linear equations to determine the solution. The Taiwanese 
authors saw a specific potential for students’ learning of this tasks, as it is suited to 
discuss pros and cons of different possibilities to assign variables: Assigning x and y to 
be the numbers of groups of students leads, for example, to a simpler calculation than 
assigning x and y the numbers of students in congruence to the unknowns in the word 
problem. The Taiwan team members would hence expect the teacher to discuss how 
different ways of variable assignment lead to systems of equations with different 
characteristics so that students acquire abilities to use different strategies flexibly for 
effective solutions. 

 
Figure 1: Task “cliff-jumping” (vignette task2, Germany); Task “student camp” 

(vignette task4, Taiwan). 
The classroom situations represented by the vignettes task2 and task4 were designed to 
depict non-optimal use of the potentials of the tasks from the perspective of the 
authoring team (breach of a norm). In the vignette task2, the teacher works in an 
interactive manner with the students but makes no advantage of the task’s potential to 
focus on mathematical modeling processes. In the vignette task4, the teacher presents 
two different ways of assigning variables (x, y groups of students; x, y numbers of 
students) and labels the first one as resulting in a simpler calculation, but does not use 
the potential of the task to discuss the pros and cons of the different ways of assigning 
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variables. During the development of the vignettes, the team members from Germany 
as well as the members from Taiwan already experienced that seeing the specific tasks’ 
learning potentials and, subsequently, their non-optimal use can be difficult for the 
members of the other culture.  
Sample and procedures 
Participants were recruited from professors of mathematics education who were active 
in mathematics education research and in preparing future secondary mathematics 
teachers. As we aimed for a sample of 15 experts in each country and assumed a 
participation rate of at least 50%, in Germany, a random sample of 30 professors out of 
the full list of persons meeting these criteria was contacted. In Taiwan, these criteria 
yielded a list of only 32 professors and thus all of them were contacted. In total, a 
sample of n1 = 19 Taiwanese professors (6 female, 13 male) from 10 universities and a 
sample of n2 = 17 German professors (7 female, 10 male) from 13 universities worked 
on the vignettes (completion rates were TW 59%, GER 56%). To capture the experts’ 
perspectives on the tasks’ potentials and their use, the experts were given the following 
open-ended prompt: “Please evaluate the teacher’s use of the task in this situation and 
give reasons for your answer.” 
Both vignettes were administered to experts in both countries online in their native 
language (German resp. Chinese). Responses were translated into English as the 
common language within the research team and analyzed with respect to two main 
aspects: 1) Did the experts evaluate the teachers’ use of task as inadequate? And if so: 
2) What were their reasons? We coded whether the experts saw a breach of the same 
norm as the authors. In addition, we expected that experts may see further reasons why 
the task implementation can be criticized, so we extracted further reasons inductively 
from the answers. More than one reason could be assigned to an answer. 
RESULTS 
In this research report, we summarize the coding as follows (Table 1): First, we give 
the number of expert responses showing no negative evaluation of the classroom 
situation depicted in the vignette (no breach). We count the number of responses where 
experts saw the intended breach of a norm. In the remaining responses, the experts only 
gave other reasons for their negative evaluation. To answer our research question, we 
focus here on the perspectives of the majority of experts in each culture on the given 
vignettes. With this approach, we highlight what can be considered a norm within each 
culture (perspective shared by a majority). 

 N Task2 Task4 
No 

breach 
Intended breach of a 

norm 
Only other 

reasons 
No 

breach 
Intended breach of a 

norm 
Only other 

reasons 
GER experts 17 4 9 4 2 4 11 
TW experts 19 2 3 14 1 11 7 

Table 1: Summary of Coding. 
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We present these findings for each vignette, highlight the differences, and illustrate 
them with sample answers, as far as this is possible within the space limits of this 
report. Regarding vignette task2, the majority of the German experts saw the breach of 
a norm as intended and evaluated the vignette negatively as the teacher did not make 
optimal use of the opportunity to focus on modeling processes (see GER1_8). In the 
Taiwanese sample, only 3 out of the 19 experts saw the intended breach of a norm. 
Some German experts, as well as Taiwanese experts, criticized the dealing with the 
algebraic demands or the appropriateness of the task implementation in respect to 
practical concerns, for example, whether the classroom discussion should better be 
complemented by written notes. Unlike any German expert, six experts from Taiwan 
were concerned about the structure of the teaching sequence from a content 
perspective, for example, whether it is appropriate to mix up questions of quadratic 
functions and quadratic equations or whether the teacher managed to focus on flexible 
use of different solution strategies (see TW27).  

GER1_8: T focuses obviously on solving the quadratic equation, while the modeling 
aspects contained in the task are hardly or not at all addressed. The 
following questions are therefore not clarified: - Mark in the illustration 
what is to be calculated. - How did you come up with your educated 
guesses? Can the illustration be used to justify which educated guess is 
particularly realistic? - Why is the approach of S1 correct? - What is 
described by the solution -4? What is the difference between the real-life 
situation and the descriptive function?  

TW27: [...] The key message that the problem was to solve a quadratic equation 
with one variable and that there is not only one solution strategy was not 
delivered. 

Regarding the vignette task4, the majority of the Taiwanese experts saw the breach of a 
norm as intended and criticized that the teacher did not make optimal use of the 
opportunity to discuss the pros and cons of variable assignment (see TW28). In the 
German sample, only 4 out of the 17 experts saw the intended breach of a norm. As 
other reasons for a negative evaluation, Taiwanese experts, as well as German experts, 
mentioned that the teacher does not build enough on students’ thinking or that s/he 
works out relevant steps instead of the students. Unlike the Taiwanese experts, 8 
German experts saw a lack of focus on the equivalence of the two systems of equations 
that resulted from different variable assignments (see GER2_13). As above, we found 
hence a kind of reasoning within the German responses that we did not see in the 
Taiwanese responses. 

TW28: 1. The last line of teacher T’s statements ran too fast. It was obvious that 
some students expressed their preference for the second method, the 
teacher insisted that everyone uniformly learned the first method, and the 
lesson immediately progressed to solving the problem without spending 
time on discussing how to choose “groups” to set the unknowns. 2. Some 
students preferred the second method, maybe because they could only set 
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the unknowns based on what the problem asked. Although the first method 
was easy to solve, the students did not know how to choose which variables 
in the problem were appropriate to set the unknowns. The teacher must 
spend time discussing with the students how to set the unknowns rather 
than skipping and proceeding to solve the system of equations. 

GER2_13 The teacher discusses the two models exclusively under the aspect of 
computational simplicity. The central phenomenon of equivalent modeling 
of a situation and the interesting insight that both models are algebraically 
identical is not addressed. In addition, the problem arises that the two 
systems do not emerge through one of the usual ways of transposing an 
equation, but through substitution. This is obscured by the identical naming 
[note: the teacher uses x, y in both systems of equations with different 
meanings] and is not discussed further.  

DISCUSSION 
This study shows that despite the international consensus regarding the relevance of 
tasks’ potential for mathematical learning and its use, the specific understanding may 
differ between cultures. First, our symmetric approach of designing vignettes within 
the national research teams in Germany and Taiwan differs significantly from typical 
approaches in cross-cultural research, as it is aimed at culturally sensitive vignettes. 
The presented study on two such vignettes with a sample of experts from each country 
explored whether the vignettes reflected indeed different culture-specific norms (and 
not only the particular view of the authors). By means of two vignettes focusing on 
word problems, we showed that perspectives of German and Taiwanese experts are 
different, but a) within each culture in line with the expectations of the research team 
members. Moreover, b) the differences in reasoning between the German and 
Taiwanese experts are in line with described cultural differences: In the case of task2, 
the concerns exclusively found in Taiwan resonate with the focus of East Asian 
mathematics education on the mathematical content and the product-oriented 
perspective on establishing flexible solving strategies. In the case of task 4, the unique 
German reasoning referred to a perceived potential of the task for the aim of a 
meaningful understanding of relations between different mathematical models of a 
situation rather than its potential to apply specific strategies of variable assignment. 
The study also has some limitations. First, a study based on two vignettes regarding 
word problems in secondary algebra is, of course, not generalizable, but may rather 
serve as a proof of existence for cultural differences that call for further research. 
However, the overarching research project TaiGer Noticing could also uncover 
culture-specific norms of responding to students’ thinking between Taiwan and 
Germany. Second, the brevity of this report allows only a first analysis based on the 
distinction between answers that reflect the intended breaches of norms and other 
reasons. An in-depth analysis of professional knowledge and other resources that shape 
the experts’ evaluation is still missing and could substantiate our findings.  
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Despite these limitations, the study shows that the understanding of the potential of a 
task for mathematical learning and its adequate use may be inflicted by cultural 
differences. To illustrate possible consequences for research: If we would have used 
our data for assessing the noticing of the experts (note: the data was not collected for 
this purpose), the German experts would have largely missed the noticing target of 
task4, what was easy for their colleagues from Taiwan to notice, and, at the same time, 
the Taiwanese experts would have been outperformed by the German experts on task2. 
It should be discussed how these findings can inform future comparative studies, for 
example, of instructional quality or teacher noticing, where researchers always face the 
challenge of balancing the validity of instruments within cultures and their 
comparability across cultures. 
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The paper analyses the developing discourse of high school students on transitions 
between different representations of linear and quadratic functions. Using a 
commognitive perspective, we conducted an exploratory study on how routines and 
sense-making could support students in recognizing different visual mediators as 
possible realizations of the same function. Results support the hypothesis that fostering 
students’ production of narratives on multiple visual mediators could provide an 
important entry point to mathematical discourse. 
INTRODUCTION 
Research in mathematics education has highlighted that considering different 
representations as being “the same” mathematical object is central in learning 
mathematics, but it is also one of the most challenging learning achievements for 
students, especially in the case of functions (Sfard, 2008; Nachlieli & Tabach, 2012). 
This difficulty seems connected with the strong procedural emphasis through which 
function representations are usually introduced at school (e.g., Thompson & Carlson, 
2017). The paper intends to contribute to this line of research by adopting the 
commognitive lens (Sfard, 2008). Recently, the discursive approach has been widely 
adopted in mathematics education and, especially, in studies focusing on both physical 
and digital representations of functions (e.g., Antonini et al., 2020). In particular, 
Baccaglini-Frank (2021) has highlighted how the students’ concern of making sense to 
scholar procedures triggers a wider participation into the mathematical discourse. 
Building on this finding, we present an exploratory case study involving three dyads of 
high school students that were interviewed while they were trying to match different 
representations of the same function. The fine-grained analyses of students’ discourse 
we have conducted show that the dyad who succeeded in making all the transitions 
between the proposed representations is the one that was more engaged in an attempt to 
making sense of the procedures. 
THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 
According to the theory of commognition (Sfard, 2008), learning mathematics is the 
process of changing one’s mathematical discourse. Lavie and colleagues (2019) 
describe this process in terms of routinization of students’ actions. In particular, 
students in a given task situation model their present actions, which constitute the 
implemented procedure, on what they learnt and did in the past, and it results in 
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patterns of actions called routines. The past situations that are identified as acceptable 
and which allow them to act in the new task situation are called precedents. 
Taking this perspective, a mathematical object is the signifier together with its 
realizations (Sfard, 2008). For example, a Cartesian graph and an algebraic expression 
can be two different realizations of the same function. Experts are able to make 
transitions between them, that is, to construct a mathematical discourse about the 
Cartesian graph and to translate it into a mathematical discourse about the algebraic 
expression. Differently, for students entering mathematical discourse on functions 
these are not initially realizations of a same signifier, but they play the role of visual 
mediators. Visual mediators are objects of symbolic, iconic, gestural nature to which 
we refer in mathematical discourse to mediate the communication about discursive 
objects (Nachlieli & Tabach, 2012). The evolution of students’ discourse towards 
experts’ discourse is the main objective underlying teaching and learning processes. 
This evolution can be grasped through the identification of students’ attempt of 
sense-making, revealed by their production of “consistent, comprehensive and 
cohesive” narratives (Baccaglini-Frank, 2021, p. 295). 
The following two research questions led our investigation: a) Do the students succeed 
in addressing certain given visual mediators as possible realizations of the same 
signifier? b) If so, how do they make transitions between the different realizations of 
the functions in focus? 
METHODOLOGY 
The case study involves a convenience sample of three dyads of students who took part 
in an interview as volunteers. The students attended the third year (age 16-17) at a 
vocational high school for “economics and commerce”. A specific teaching sequence 
was implemented in their class by the regular math teacher, who introduced functions 
through the use of interactive dynamic mediators (Antonini et al., 2020). At the end of 
this teaching sequence, a researcher, who had never met the students before, conducted 
a task-based interview (Goldin, 2000) with the three dyads. The data collected consists 
of video recordings, showing what the students write, their gestures and nonverbal 
expressions. For this study, we focus on a task in which three lists of different 
realizations of functions are presented: list A is made up of Cartesian graphs, list B of 
algebraic expressions, and list C of input-output machines. The dyads are asked to 
match as many items as possible from the three lists.  
The regular math teacher was also interviewed for gaining further information about 
the implementation of the teaching sequence on functions and it emerges that students 
repeatedly interacted with different realizations of parabola and line. In light of that, 
for this paper we select from the task the realizations of a parabola (#1 in Fig.1) and a 
line (#2 in Fig.1), since we expected that all dyads could succeed in making the three 
expected associations by moving among the given realizations. In particular, the 
transition between realizations belonging to list A and list B could be made 
recognizing A1 as a realization of a parabola with vertical axis of symmetry, whose 
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algebraic expression contains x squared, while A2 as a realization of a line, whose 
algebraic expression is linear. Therefore, students could manipulate the algebraic 
expressions with calculation or work with translations in the Cartesian plane. Another 
possible way consists of choosing a point that belongs to the graph in list A and 
verifying that its coordinates satisfy the algebraic expression in list B. To make the 
transition from realizations belonging to list C and list B, a variable 1’s value could be 
selected from a specific entry of a table (list C) and then assigned to the x in an 
algebraic expression (list B). The value obtained for y from the calculation should be 
equal to the variable 2’s value from the same row of the table; this should be done for 
each row. Finally, to make the transition between realizations belonging to list C and 
list A, students could verify that each point, whose coordinates are pairs of values of 
the form (variable 1, variable 2), taken from the same row of a table (list C) belongs to 
the Cartesian graph (list A). 

 
Figure 1: Expected triplets of realizations of parabola and line. 

How the analyses were conducted 
Data were analysed passing through two rounds of analysis of the students’ discourse. 
The first round is aimed at identifying the associations between different realizations 
made by the three dyads, whose pseudonyms are Sara-Nico, Ida-Lisa, Tina-Lena. We 
developed an analytical tool that is a flowchart showing which associations are actually 
addressed in the dyad’s discourse. For example, starting from an empty flowchart 
composed by the correct triplets of labels for each function (i.e., An, Bn, Cn in Fig.1), 
when a dyad’s discourse focuses both on a certain Cartesian graph (list A) and on a 
certain algebraic expression (list B) we coloured the corresponding labels and added an 
arrow between them (Fig. 2). This phase addresses the first research question, by 
looking for emergent recurrent patterns or evident differences among the dyads.  
The second round of analysis is aimed at identifying the features of each dyad’s 
discourse that are useful for answering the second research question. We adapted the 
analytic scheme developed by Baccaglini-Frank (2021), by specializing the focus 
according to the specific task the dyads were solving. We concentrated on the 
following aspects: objects in focus (What is the conversation about? Which 
realizations of the same signifier are used?); routine, as a pair of task (What is the 
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association in focus?) and procedure (Are the students able to identify a precedent? Is 
this to perform a procedure?); sense-making (Are there signs that the participants were 
concerned with the consistency, comprehensiveness, and cohesiveness of their 
narratives?). Since space is constrained, we have only reported on the questions 
guiding the analysis (in brackets); all the details are available in (Baccaglini-Frank, 
2021, p. 299). 
CASE ANALYSIS 
This section reports on the analysis carried on through the use of flowchart, and the 
analysis of students’ discourse that describes some transitions prompted by the task. 
Instances of associations of visual mediators in students’ discourse 
For constructing the flowchart, we considered all the excerpts of the interviews in 
which the students associate different visual mediators from the given lists.  

 
Figure 2: The ABC flowchart of the three dyads with respect to the two functions. 

Looking at the ABC flowchart (Fig. 2), involving a parabola (#1) and a line (#2), we 
can notice both instances of complete associations of the triplets and instances of 
partial associations. In particular, the transition between the realization of functions as 
graphs (list A) and as algebraic expressions (list B) is made by all three dyads, while 
the association with the realization of functions as input-output machines (list C) is 
carried out only by one dyad. Moreover, the arrows show that in the case of parabola 
the graph seems to be the realization that takes on a special role for Sara and Nico, 
since all the associations pass through it in their discourse. Whereas in the case of line, 
this dyad associates all visual mediators of the triplet, suggesting they perceive them as 
different realizations of the same signifier. We further investigate this point in the next 
section. 
Focusing on some transitions: a description of the dyads’ discourse 
By analysing students’ mathematical discourse in more detail, we can describe how the 
transitions between the different realizations of the functions in focus occur. The 
starting approach to the given task is similar for all the dyads, who look at list A and 
choose the parabola or the line, that are described as familiar graphs (“So, let’s start 
from this one that is simple [they look at A3]”). So, the task they are solving consists in 
looking for a suitable algebraic expression for a certain Cartesian graph. Moreover, the 
students’ discourse shows how the visual mediators from list A (objects in focus) are 
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not just unrealized symbols for them. For example, focusing on the first function (#1 in 
Fig. 1), the signifier parabola is explicitly mentioned at the very beginning of each 
interview (“If meanwhile we look for this function [they point at A1]” “Ok, parabola 
function”) and it is then addressed many other times throughout the interview.  
All the dyads succeed in identifying a precedent which prompts different procedures. 
For example, in the case of parabola, the Cartesian graph plays the role of precedent 
identifying classroom experiences involving quadratic expressions containing a term 
in the form ax2 (“Like…squared is a parabola”). The same happens in the case of linear 
function (“It is a line [...] so, without x squared”; “It is a line because x is not squared”). 
One of the prompted procedures involves translations of elementary functions within 
the Cartesian plane. The most telling example is provided by Sara and Nico’s discourse 
about the parabola: “We know that x minus one squared was…if it was x squared, it 
went through the origin and it is a parabola like this [gesture in Fig. 3a]”; “it should be 
moved to the right”. We observe their use of past tense verbs, suggesting that they are 
guided by precedent identifiers that are external features of the algebraic expression 
and of the graph they see, which in return prescribe specific actions in the given task 
situation. A different procedure can be observed in Ida and Lisa’s discourse. After B3 
has been identified as a possible match for A1, they mention a “solving procedure” 
suggesting their intention of making some calculation on the algebraic expression 
(“Then I can try to solve the…the function, the equation, that one, and then see if there 
are some points that could fit”). Then, the students manipulate B3, reaching the form 
“y=x2-2x-1” (Fig.3b), and go back and forth among A1 and B3 to check the association 
(“I try doing…I mean, I replace x with a number that, eventually, we can see on the 
parabola, but a bit…[they look at A3]”), thus repeatedly changing the objects in focus.  
The procedure of manipulating the algebraic expression is applied also in the case of 
linear function. For example, for making the transition between A3 and B6, Tina and 
Lena focus on the visual mediator B6 and manipulate the expression to reach the form 
y–32=95x: 

Lena:  “But, wait… It goes that way, it becomes minus thirty-two [see the gesture 
on Fig. 3c], plus thirty-two, anyway it should intersect, right? Because it 
passes through... I mean... it touches the y-axis at thirty-two [points at (0, 
32) on the graph].” 

This form seems to be more familiar to the students and it plays the role of precedent 
identifier that tells them to enact the procedure of finding the intersection point of the 
line with the y-axis. The procedure seems to combine the use of translation of 
elementary functions, suggested by the gesture of moving 32 leftwards, and the 
associations of pairs of values with points on the Cartesian graph. However, Tina and 
Lena check only one value, that is (0, 32). Their effort goes in the direction of 
remembering the sought-after procedure for checking the association (“The slope…the 
slope of the line with respect to y, mmm x…Which was…I don't remember”), rather 
than producing consistent, comprehensive, or cohesive narratives. 
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Figure 3: Visual mediators in students’ discourse: Sara (a), Ida (b), and Lena (c). 

Till now we reported on similarities in the three dyads’ discourse, showing how the 
students exploit routines involving a specific realization in order to address another 
realization. However, for the transitions from and towards realizations within the list C 
things are slightly different. The flowchart (Fig. 2) shows that only one dyad’s 
discourse involves the items of list C. We now analyse Sara and Nico’s discourse about 
the line to deeper investigate how the transition between the realizations is operated. 
Here is the corresponding excerpt which starts right after the students have identified 
the pair A3-B6, thanks to considerations on the algebraic expression that are quite 
similar to those made by all the other dyads (“It is linear, so a line should fit well”). 

1 Nico But, if we wanted to be meticulous  
2 Sara We check 
3  Interv.  Eh, if you wanted to check better, how could you better check? 
4  Nico It should be this [he points at x in B6]  
5  Sara We put an x-value and we check [...] We give zero to the x [Fig. 4a] and it 

turns out thirty-two [Fig. 4b] 

 
Figure 4: Gestures performed by Sara and Nico during the interview. 

Differently from the other dyads, Sara and Nico seem to be concerned with making 
sense of the accuracy of the match A3-B6. Indeed, Nico suggests “to be meticulous” 
[line 1] and Sara supports this idea, proposing a new task, also endorsed by the 
interviewer [line 3], which consists in checking some pairs of values. The procedure of 
assigning input values to the x-variable and finding the corresponding outputs [line 5] 
seems to be a precedent identifier of the realization of functions as input-output 
machines, which were presented during math lessons. For the sake of brevity we do not 
report the entire excerpt, but the dyad continues assigning many other values to the 
x-variable. Thanks to this procedure they endorse the proposed association A3-B6. 
Overall, Sara and Nico’s discourse shows that they recognize the outcome of the 
input-output procedure as related to their new task (sense-making). The following 
excerpt demonstrates how they complete the triplet of realizations. 
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6  Nico Here, for example, we gave twenty and we know that the intersection 
would be at sixty-eight, I mean the quantity  

7 Sara Shall we look for twenty and sixty-eight? [...] Zero thirty-two [Fig. 4c], 
sorry!  

8 Nico Zero thirty-two, that’s true! [enthusiastic tone] 
9   Sara Twenty-five sixty-seven, we’re already there [points at A3] 
10  Nico  That’s true, well done! 
11  Sara  Minus ten and fourteen, here we are [gesture on Fig. 4d] 
12  Nico  Yes, yes 
13  Sara It should be this [the pen is on B6] 
14  Nico Let’s go [writes down A3 next to C5]. That’s all right! 

The procedure carried out by Sara and Nico to verify the chosen relation A3-B6 allows 
them to make the new transition towards the realization in list C [line 7]. Indeed, they 
decide to solve a new task, that consists in comparing the pairs of values previously 
calculated [line 6] with the ones given in the tables of list C [line 7]. In this way, they 
indirectly associate B6 and C5 by constructively using the outcome of their procedure. 
The pair (0, 32) is recognized as a useful outcome to be reinvested in the new task 
[lines 7-8], demonstrating the dyad is developing consistent narratives on different 
realizations of lines (sense-making). Finally, we also find instances of the association 
A3-C5 in the students’ discourse because they check the other values in table C5 with 
the corresponding points in the graph A3. At this stage, they complete the triplet [line 
14] and fully answer to the task given at the beginning of the interview. 
CONCLUDING REMARKS 
Although the limited number of students that were interviewed and the narrow focus 
on two specific functions, we can draw some promising conclusions that could 
represent the starting point for further research.  
Analyses reveal that all the dyads succeed in associating a graph with an algebraic 
expression of the same function, through the use of several routines that are activated 
by a specific realization for recognizing another one. In doing this, a common signifier 
(“parabola” and “line”, respectively) is explicitly mentioned as the main object in 
focus that allows the dyads to identify a precedent which prompts different procedures 
for making the transition. Most of the expected transitions are actually made by the 
students, except for the visual mediators of list C that are less addressed in the dyads’ 
discourse, suggesting that tables are not recognized as realizations of functions by all 
the dyads. This is quite surprising, because the teacher claimed that the discourse on 
functions was established in the class starting from input-output machines as possible 
realizations. In this scenario, the analysis of Sara and Nico’s discourse provides an 
interpretation of this emerging finding. Nico's concern of making sense to the 
procedures that were established in the class brought the dyads to produce an 
intermediate realization that bridges the gap between the Cartesian graph and the 



Lisarelli, Macchioni, Miragliotta 
 

3 - 154 PME 45 – 2022 
 

unrealized numbers of the given table. Despite the routine of constructing input-output 
machines seems to be shared by all students, during the interview it is only exploited 
by Sara and Nico in their search for sense-making. In other words, in their attempt to 
make sense of the procedures they come to recognize the visual mediator of list C as a 
realization of the same function realized by the already associated graph and algebraic 
expression. 
Our findings are in line with the strand of research that considers routines as windows 
onto students’ learning (Lavie et al., 2019) and, especially, support the hypothesis that 
the necessity of making sense to scholar procedures triggers students’ engagement into 
a mathematical discourse closer to the experts’ one (Baccaglini-Frank, 2021). 
Moreover, the task designed for the interview revealed to be valuable for fostering 
students’ production of meaningful narratives on different realizations of the same 
signifier, as demonstrated by the dyads’ rich discourse. Although the learning path of 
these students may still be long, discourse about the transitions between different 
realizations might constitute a step towards experts’ mathematical discourse and, in 
general, a form of participation in this discourse. 
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STUDENT INTIMIDATION  
IN THE MATHEMATICS CLASSROOM  

Mariam Makramalla 
NewGiza University 

 
This study adopts the Contextual System Model as it utilises the “Draw your 
mathematics classroom” test as a methodology to explore student intimidation in the 
mathematics classroom. As part of a larger investigation, the study included thirty 
participants, aged 5-7, who attended three different schools located in rural Cairo. 
Mathematics students were asked to create drawings in response to the 
aforementioned prompt. The drawings were qualitatively analysed according to the 
criteria of the toolkit in conjunction with a follow up semi structured student group 
interview. Findings indicated student intimidation in classrooms, a process that 
seemed to be perceived by students as constructive disciplinary practice. The study 
suggests tackling deep rooted questions of agency and perceived teacher authority.   
INTRODUCTION  
In their work with children, Shumba (2013) presented different forms of emotional 
abuse that take place in classrooms as teachers mal-interpret their authority as 
educators. Younghusband (2010) also elaborated on different forms of abuse that 
happen by teachers in classrooms worldwide. Younghusband (2010) discussed 
physical, verbal, administrative and system abuse as ways to intimidate students, 
thereby rendering them as easier to govern in the classroom. In the interest of exploring 
the context of rural Cairo, this study focuses on early learners’ experiences in the 
mathematics classroom. Details of the study are presented in the next sections.  
LITERATURE REVIEW 
This section outlines the literature stance about student intimidation in the classroom at 
early learning stages as resulting from a distorted teacher-student power dynamic. The 
impact of student intimidation on the mathematics classroom is then presented. The 
Contextual System Model is also presented as a theoretical framework for this study. 
Student intimidation in the classroom  
Sansanwal (2019) conceptualises three types of teacher-student relationships that are 
particular to the early years, namely: warm teacher-child relationships, conflicting 
teacher-child relationships and dependent teacher-child relationships. The former 
builds on concepts of the attachment theory (Bowlby, 1982) and presents itself as a 
relationship where the child feels safe to trust the teacher and where retrospectively 
this trust is not abused. The latter two represent relationships, where either one or both 
parties express mutual anger (conflicting teacher child relationship) or where one party 
takes advantage of its superiority, thereby creating an imbalanced sense of child 
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attachment (dependent teacher child relationship). The latter two types of 
relationships, when experienced at early learning stages result in a distorted image of 
teacher authority, leading to a potential classroom experience of student intimidation.  
The impact of student intimidation on the mathematics classroom 
According to scholarship (Stylianides & Stylianides, 2014), the mathematics 
classroom needs to be a space where students are engaging in problem solving 
activities. This process of problem solving entails a series of steps starting from 
identifying the problem all the way through finding different routes that are 
underpinned by mathematical concepts to analyse and offer alternative solutions in 
response to the framed problem statement (Baars, Leopold & Paas, 2018). In order for 
this process to happen, the teacher needs to be able to step back to a facilitator role, 
thereby enabling the student to assume authority and ownership over the problem at 
hand. A recent study conducted in the Egyptian context revealed how a distorted image 
of teacher authority might result in a tightly controlled mathematics classroom 
experience, where students barely navigate their way through the procedures provided 
by the teacher and hence are crippled to act as problem solvers (Makramalla, 2021). 
THEORETICAL FRAMEWORK: THE CONTEXTUAL SYSTEM MODEL 
In his attempts to unpack how children form patterns of relatedness and interactions, 
Pianta (1999) coined the contextual system model. The model brings together two 
contextual units; namely the child-family unit and the child-school unit. For the scope 
of this paper, I focus on the latter. Pianta (1999) presents the school as a complex 
integrated system that a child navigates already at early stages. This complex system 
includes multiple strands such as peer relations, teacher relations, school coordinator 
relations, school policy and infrastructure and so on. In an attempt, to navigate their 
identity within the complex multi-stranded school system, the child at early stages of 
their learning, looks up to the teacher as the compass for navigation (Figure 1).  

 
Figure 1: Multi-stranded Navigation System. 

Figure 1 shows how the child struggles to navigate between the different strands of the 
complex schooling system, which is a sub-system of the wider societal system. 
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According to Pianta (1999), at the early learning stages, the child cannot be held 
responsible for balancing this multiplicity of relations and therefore, the quality of the 
interactions that the student has with the school as a system needs to be fostered by the 
teacher. In other words, it becomes the teacher’s responsibility to aid the student as 
s/he navigates their role, identity, and agency in relating to the different players of the 
school system. At the early stages, the teacher frames the student’s sense of relation to 
key players in the schooling unit in ways that align with the teacher’s own beliefs and 
practices about their own relation to students. As the teacher directs the student to 
navigate their way in this complex system, this navigation according to Dewey (2013) 
translates into how the learner navigates the wider complex system of society.  
RESEARCH DESIGN 
In this section, I utilise the drawing toolkit as a methodology for exploring 
subconscious student perceptions of the teacher-student relationship. The double 
stranded data collection protocol, which utilises semi-structured group interviews as a 
build-up on the student drawing activity is also presented along with the context and 
the selected sample for the study. Finally, the analytical framework for correlating the 
student drawing analysis to form relevant subsequent interview questions is presented.    
Analytical Framework: Conceptualising student drawing filters as a toolkit 
In their study, Thomas, Pederson and Finson (2017) have identified the act of drawing 
as a suitable tool for uncovering how students subconsciously related to their teachers 
as authority figures. According to the authors (Thomas et.al., 2017), the act of drawing 
lowers the guards in students’ minds and accordingly more accurate data can be 
extracted in terms of how they relate to their teachers. Figure 2 presents a student 
drawing that has been depicted by a primary stage student in Sweden.  

 
Figure : Student Drawings in previous studies (Picker & Berry, 2000). 

As evident from Figure 2, the student drew themself as very small compared to teacher 
size. Also, the student has depicted the teacher as holding a threatening tool. These two 
features have been conceptualised along with other features as part of a drawing filter 
analysis toolkit, which in turn acts as an analytical framework to check-mark student 
drawings for the purpose of uncovering indicators of student intimidation in the 
classroom (Picker & Berry, 2000; Thomas et al., 2017). Based on the drawing analysis, 
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a sub-sequent semi-structured student group interview took place to triangulate the 
findings of the drawings. For the case of the drawing depicted in Figure 2, for example, 
the subsequent interview revealed that there was no physical threatening tool in the 
classroom. The student has expressed their sense of intimidation by mentally depicting 
the classroom in this way. The analysis of the subsequent semi-structured group 
interview utilises the same filtration tool to complement the analysis of the drawings.  
Framing the Research Question 
The current study utilises children’s drawings as tools to uncover how students relate 
to their mathematics teacher as an authority figure in the classroom. The study aims to 
answer the following question: How do student drawings inform us about student 
intimidation in the mathematics classroom for early learners in rural Cairo? 
METHODOLOGY 
This section outlines the context of the study, followed by the data collection protocol 
and the analytical framework, which has been adjusted to fit the scope of this study.  
Context of the study 
As part of a larger study (Makramalla, 2021) that investigated student perceptions of 
schooling, a group of thirty students, aged five to seven, of mixed genders were asked 
to respond to the prompt: Draw your mathematics classroom. The students were not 
offered additional elaborations of the prompt and were not assisted during the act of 
drawing. This took place at a summer school that brought together students from three 
different schools within the same district of rural Cairo. The idea was to capture data 
from different sources within the same context for triangulation purposes (Yin, 2011). 
Prior to the study, consent was attained of the summer school leadership and of the 
students’ legal guardians. Additionally, a semi-structured group interview took place. 
Students were at ease throughout the entire data collection process.  
Data Collection Protocol 
The data was collected over four stages. Firstly, students were provided drawing tools 
along with a drawing prompt. Secondly, the drawings were filtered in accordance with 
the reduced analytical framework, presented below. Thirdly, based on this preliminary 
filtration, a semi-structured group interview re-emphasised the rationale behind the 
some drawing features that were depicted by the students and which corresponded to 
the filtration features. Finally, students were rewarded for their participation.   
Analytical Framework  
A previous study (Makramalla, 2016) has conceptualised a sequential double filtration 
analytical framework in conjunction to the prompt: Draw your mathematics classroom. 
The framework was designed with the target of exploring indicators for student 
intimidation in the mathematics classroom. This study utilises this framework as an 
underpinning analytical tool for assessing the student drawings and interviews. For the 
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scope of this exploration, two particular filtration features will be emphasised, namely 
drawing dimensions and symbols indicating physical abuse (such as a cane or the like).  
FINDINGS: STUDENT DRAWINGS 
As already mentioned, for the scope of this paper, I present the analysis of the drawings 
and subsequent student interviews as mapped against two main features:  

• Dimensions; i.e. depicted student size reference to depicted teacher size 
• Symbols of physical abuse in the classroom  

Figure 3 presents a sample student drawing that depicts the teacher holding a cane and 
the students depicted in distorted dimensions reference to teacher size.   

 
Figure 3: Sample of student drawings. 

As evident from Figure 3, the students depicted herself as much smaller in size 
compared to the teacher and she also depicted the teacher as holding a cane. Traces of 
distorted dimensions, similar to the one in this example, were evident in 63% of the 
student drawings. A cane was depicted in 82% of student drawings.  
When asked, during the follow up group interview, whether the teacher was maybe 
utilising the cane as a pointer, students clearly responded that the cane was used “to 
beat up the student that gave wrong answers”. Students were asked whether they 
thought that being beaten would help them to find the right answer, to which student 
responded that it was “the teacher’s role to discipline those who gave wrong answers”. 
Students finally indicated that the teacher was the main player in the classroom, that 
s/he “knew better” and that therefore they “needed to follow the instructions as given”. 
Students seemed to have a sense of inferiority and threat as they think of their 
mathematics classroom. This mental depiction would naturally result in a deprivation 
from developing problem solving skills as will be further discussed in the next section.  
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CONCLUSION 
As already noted, the contextual system model acts as a theoretical framework for 
discussing the findings of this study. According to this framework, at stages of child 
early development, the teacher sets the pace for how the child ought to relate to their 
teacher as an authority figure. The findings of this study show how the student relates 
to teachers as oppressive and intimidating authority figures. The findings also show 
that this abuse of teacher authority is normalised to the extent that students consider it 
to be best practice. In line with the contextual system model lens, it seems to be that 
teachers set this tone in terms of classroom power dynamics early on, which in turn 
could result in a lifelong distorted perception of authority, which replicates itself at 
each level of the authority dissemination ladder (Herrera & Torres, 2006).  
Violence in the classroom as a form of student discipline. 
Given the worldwide attention to violence in the classroom (Pinheiro, 2006), it is not 
surprising to find indicators of physical violence, expressed through student drawings. 
Despite the advancement of pedagogical practice, different forms of violence 
(Younghusband, 2010) are still manifested in different cultures as part of the daily 
classroom routine. The more alarming reality is that students identify with violence as 
being a form of “discipline”, claiming that the teacher would be doing it with the best 
interest of the student in mind. This distorted image of discipline seems to be 
penetrating students’ minds, making them unaware of the harm being enforced on 
them and making them relate positively to their abusers. Scholars (Solomon & Sekayi, 
2010) have studied reproductive cycles of teachers acting in ways that they themselves 
experienced as learners. Teachers are often unaware of the harm they are causing as in 
their minds; they relate to their own teachers as role models. In other words, there is a 
danger that teachers might not even be aware that they are harming the students and 
might even themselves believe that this practice was in the best interest of the students. 
Violence as normalised practice in the mathematics classroom.  
Building on findings from a previous study (Makramalla, 2021) conducted in a 
different Egyptian context, it seems that the student relation to the mathematics teacher 
as an autocratic authority figure has often been normalised in classroom practice to the 
extent that students would have no negative connotation to this authoritarian 
relationship but would instead consider it to be normal.  
In their study of abuser-abusee relationship, scholars often refer to this as the 
Stockholm Syndrome (Fabrique, Romano, Vecchi & Van Hasselt, 2007). In alignment 
with the contextual system model, where the teacher sets the pace for how the student 
would relate to authority figures, the Stockhom Syndrome refers to the status, where 
the victim develops emotions of trust and affection towards the abuser. Building on 
this understanding, it becomes clearer, why students relate positively to the teacher 
holding a cane. This presents a potential explanation of why the presence of violence 
instruments in the classrooms is normalised as part of the classroom infrastructure.  
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Drawing as a vehicle to unveil mathematics classroom power dynamics  
In response to the research question, this study aligns itself with previous studies in 
mathematics education scholarship (Makramalla, 2021; Picker & Berry, 2000) in 
confirming the power of the arts to act as a filtration tool for identifying student 
perceptions. The wider focus group discussion that resulted from the drawing activity 
would have been very difficult to trigger, if the students were not prompted by a 
drawing or a similar form of self expression first. Both the drawings and the 
subsequent conversation in the group confirm a distorted power balance that is instilled 
by the teacher as a trusted authority figure in early years of learning. Based on the 
contextual system model, this study also shows how this distorted mental image of 
mathematics teacher authority becomes normalised.  
Particularly focusing on mathematics instruction, this distorted image of classroom 
power dynamics prevents the process of creativity and problem solving as students 
perceive themselves as inferior, uncapable to solve problems without the guidance of a 
dominant authority figure. This mentality blocks the sense of autonomy at an early 
stage, thereby creating learners that can very well recall procedures but that would find 
it very hard to analyse problems or create solutions.  
IMPLICATIONS 
This study aligns itself with previous studies in scholarship as it presents the dominant 
case of normalised violence in the classroom. Despite the advancements in pedagogy, 
worldwide mathematics students are still intimidated by their teachers. Implications of 
this study call for awareness raising, policy formations and training of teachers, in 
order to re-envision the creative dimension of the mathematics classroom that is 
impossible to foster in an atmosphere where intimidation is normalised.  
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This study suggests eight different dimensions through which products of teachers’ 
applied mathematics problem posing (AMPP) can be modified to achieve different 
pedagogical goals: authenticity, correctness, compactness, mathematical diversity, 
multiple data representations, answer format, generalization, and students’ agency 
and decision making. The dimensions were identified from a qualitative multiple-case 
study using variation theory as a theoretical framework. We compared items and 
versions of secondary teachers’ AMPP products during professional development 
(PD). The resulting model informs teacher educators and researchers in planning and 
implementing AMPP in teacher PD, can serve as a basis for an assessment model of 
AMPP product, and enhance teachers’ learning in task design environments. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Modern teachers are expected to choose and design their instructional resources (Jones 
& Pepin, 2016; Remillard & Heck, 2014). Pepin et al. (2015) claimed that adapting, 
assimilating, and designing mathematical tasks improve teachers’ pedagogical 
knowledge for teaching mathematics. However, a recent literature review on teachers-
as-designers found that while studies on the potential of teacher-designed resources for 
student learning in mathematics education are common, studies that focus on teacher 
learning are almost absent (Pepin, 2018). We address this lacuna by situating our study 
in the context of teacher professional development, where the design of reality-related 
and applied mathematics problems for achieving various pedagogical goals is the 
primary vehicle for teacher learning. 
Teachers’ task design for students in mathematics education can take the form of 
problem-posing (PP, Cai & Hwanºg, 2020; Koichu, 2020). Per Koichu, PP of teachers 
includes reformulation and generation of new tasks to advance students’ problem-
solving performance (Koichu & Kontorovich, 2013; Koichu, 2020). Our 
conceptualization of PP as an activity for teachers is close to Koichu. In our study, PP 
of in-service teachers is an authentic mathematical activity that arises from teachers’ 
pedagogical need to develop students’ mathematical competencies through applying 
mathematics to realistic situations (c.f. Gravemeijer, 1999) and from a corresponding 
aspiration to develop teachers’ design capacity (Brown, 2009). We focus on teachers’ 
applied mathematics problem posing (AMPP) products and perceive variations in 
designed tasks as indicators of teachers’ learning (Brown, 2009; Pepin, 2018). 
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Theoretical foundations for dimensions of applied mathematics problem posing 
Maaß (2010) developed a classification scheme for modeling tasks (i.e., tasks applying 
mathematics to realistic, open problems) based on existing theory (e.g. Blum, 2002). 
This scheme reflected different features of modeling tasks, offering guidance in the 
task design and selection processes for specific aims and predefined objectives and 
target groups. The model incorporated nine classifications. Among them, three are 
generic (applicable for different types of tasks): openness; cognitive demand (e.g. 
mathematical reasoning); mathematical content (topic, level). Six classifications are 
pertinent to modeling tasks: the focus of modeling activity (all modeling cycle or part 
of it); data (excessive or lacking data); nature of the relationship to reality 
(authenticity); situation (e.g. personal, scientific); type of model (descriptive or 
normative); type of representation (e.g. textual or pictorial). The classification 
developed by Maaß (2010) was used to characterize modeling tasks developed by 
educational specialists for a particular target group of students. Specifically, these tasks 
were not intended to be modified. We used Maaß’s (2010) classification as an initial 
framework for characterizing dimensions through which teachers may modify their 
AMPP products to achieve different pedagogical goals. To identify more dimensions 
of variations in the context of AMPP, we applied variation theory (Lo & Marton, 2012).  
Variation theory and research question  
Variation theory relies on the premise that learning is always directed at something 
(phenomenon, skills, or certain aspects of reality) and conceptualized as a qualitative 
shift in the way of perceiving this “something” (Marton & Booth, 2013). To see or 
experience an object of learning in a certain way requires the learner to be aware of its 
specific aspects and discern these aspects simultaneously. Lo and Marton (2012) 
emphasize that awareness is stimulated by experiencing difference (variation) between 
two values as a contrast. When we become aware of a value by contrasting it with 
another value (e.g., large vs small), the value is separated from the object of learning, 
and a dimension of variation is realized (e.g., size). Then, the object is perceived with 
its value (feature) and its dimension of variation, and the learner can focus on the value 
alone, naming it and even changing it (Lo & Marton, 2012). Our study is focused on 
teachers’ AMPP products as the objects of learning. We use variation theory as a 
methodological tool to discern the dimensions of variations within these products to 
discuss further their relationships with pursuing different pedagogical goals. 
Therefore, our research question is: Across which dimensions do secondary teachers’ 
AMPP products vary? 
METHODOLOGY 
This paper derived its data from the first year of a three-year PD program in which 
secondary school teachers designed applied mathematics tasks. The PD was conducted 
as a community of practice (Hodges & Cady, 2013) in which teachers, teacher 
educators, and researchers collaborate to achieve specific goals (Cooper & Koichu, 
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2021). Addressing Israeli students relatively low achievement in OECD’s Programme 
for International Student Assessment (PISA; OECD, 2019), the project’s overarching 
goal was to improve students’ mathematical competencies by applying mathematics to 
realistic situations. We identified that one barrier for students’ success is teachers’ 
unpreparedness to use AM tasks even if they are provided with them. We hypothesized 
that through designing their own AM materials, teachers would (a) develop their 
capacity to use mathematics knowledge and skills in real-life challenges;  (b) gain 
ownership over the materials they develop and an inner motivation to implement them 
in their classrooms (Brown, 2009; Koichu, 2020).  
There were three cycles of AMPP development in the PD, each constituted of PP initial 
design, receiving feedback from the PD community, redesigning, classroom testing, 
and final revisions. In the first year, eight experienced teachers participated, each from 
a different school in Israel, with teaching experience ranging from 5 to 25 years. The 
teachers reported they never engaged in composing tasks independently and used only 
textbook problems or tasks found online in their classrooms. Five more participants in 
the community were three experienced teachers serving as community leaders (one of 
them the first author of this paper), a mathematics education researcher (the second 
author), and an assistant researcher. The leading team did not have any formal 
experience in AMPP and therefore perceived themselves as part of the learning 
community – as facilitators and not as instructors.  
Data collection and analysis 
The data comprises 22 AMPP products composed by teachers, each including multiple 
drafts generated throughout PD community sessions (see examples in Figures 1, 2). In 
addition, we collected teachers self-reported considerations on their problem-posing 
attempts. We used variation theory to compare different task items within individual 
tasks and across different tasks made by different teachers. Since our goal was to 
identify the dimensions of variation (Lo & Marton, 2012), whenever we identify a case 
of dissimilarity between two items, we categorized it as a potential dimension of 
variation upon mutual agreement between the authors. If this dissimilarity repeated 
itself throughout the data, we established it as a prominent dimension of variation. 
Teachers’ reports during community meetings regarding their considerations and 
pedagogical goals they sought to achieve through a particular design decision were 
used as complementary data. This process is exemplified by the two tasks (Figures 1, 
2) that manifest diversity across all the identified dimensions. 

Shira is preparing for a 24-hour annual school trip. She is taking her cellphone, which has 
several applications, each consuming different battery life in milliampere-hour (mA∙h), as 
shown in the table. The capacity of her phone battery is 3000 mA∙h. 

1. What percentage of the battery will Shira consume if she hears music for one hour? 
2. Shira played a game for five minutes, used Instagram for 20 minutes, and listened to 

music for two hours. What percentage of battery did she have left? 
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Figure 1: Rona’s task (in italics: text added to a revised version after receiving 
community feedback). 

A jewelry store owner wants to redesign an 8-meter-wide square ceiling in her store. She received 
several alternative designs from the architect, each combining glass panels (blue) and plaster 
(brown) with aluminium beams (black) between them. 

   
A1. The store owner would like to 
have as much area under the glass 
roof to provide natural light as 
possible to save energy. She would 
also like to reduce the overall length 
of the beams to save their cost. 
Which of these designs (a-d) would 
you recommend her to choose? 
A2. The store owner asked the 
architect to relocate the middle 
beam in designs (c) and (d) to 
minimize the cost of the beams. Is 
that possible? Justify your answer. 

B1. Calculate the total area of glass panels, plasterboards, 
and beams length in the project (a). 
B2. In the architect’s second sketch of the store’s ceiling, 
four aluminium beams from the corners are connected at a 
single point M, which appears three meters from the left side 
and one meter from the upper side. Sketch the design using 
the grid (e) and calculate the areas of glass and plaster panels 
as well as the total length of the beams. 
B3. In design (e), are there any other places that point M can 
be repositioned so that the total area of the glass and 
plasterboard panels will be equal? 
B4. The store owner chooses which model is cheaper, (c) or 
(d). Which of the following will affect her decision? 
(i) The cost of a glass board per square meter. 

3. Shira wants to use all the applications listed in the table during the trip. Suggest a 
reasonable usage that will leave Shira with 10% battery life at the end of her trip.  

4. At 8:00 p.m., Shira’s mother called her. How long can they chat so that Shira’s phone 
will have 8% of the battery charge after the call? Assuming there were 30% of the 
battery left at that time. 

5. The graph below presents Shira’s battery charge in mA∙h during the trip. Write down the 
applications in the order she used them. 

6. The pie-chart below presents the distribution of Shira’s application use in percentage. 
What is the probability that Shira will be playing a game when her mother calls? 

Application mA∙h 

 
 

WhatsApp 300 

Instagram 400 

Music player 450 

Phone calls 500 

Gaming 600 
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 A3. If the side of the square ceiling 
was x meters long and the length of 
the middle beam was y meters, what 
was the ratio between the glass area 
and the plaster area? 

(ii) The cost of a plasterboard per square meter. 
(iii) The cost of an aluminium beam per meter. 

Figure 2: Suha’s task. A – an initial task, B – task after reflection and redesign . 
RESULTS – THE DIMENSIONS OF TASK VARIATION 
We present the task variation dimensions found in products of teachers’ AMPP and 
illustrate them with the analysis of problems composed by the teachers Rona and Suha.  
Rona’s task was developed while preparing for her annual school trip. She realized 
how worried her students were about their cell phones having enough battery power. 
Her task is thus based on a relevant topic for her students. The mathematics it entails 
(capacity word problems) arises naturally, and Israeli textbooks do not contain such an 
up-to-date context. These considerations were widespread in teachers’ tasks. Thus, the 
first dimension is authenticity. This dimension is divided threefold and refers to the 
extent to which the context of the problem is (a) relevant, appealing, and motivating 
for students; (b) nonartificial, and (c) original and not overused in textbooks.   
Many teachers’ tasks, especially early drafts, contained mathematical mistakes, 
missing data, or excessive prerequisite students’ mathematical knowledge. For 
example, item 4 in Rona’s task is unsolvable without the text added in the revised 
version, and Suha’s A2 necessitates knowledge in calculus that her target students do 
not yet possess. These items illustrate the dimension of correctness – the requirement 
of the task to be solvable without out-of-scope mathematical knowledge, where given 
information befits the real-life context. 
Comparing Rona’s items 3 and 4, one can see that they both demand almost similar 
reasoning and calculations. This phenomenon was commonly observed in our data: 
different items invited repeated enactment of the same mathematical procedures. Thus, 
we identified the compactness dimension – the extent to which each item stimulates 
non-repeating mathematical procedure(s) and processes. Note that, unlike correctness, 
compactness is not as crucial and, in some cases, repetition is even worthwhile.  
We found that teachers in our study tended to incorporate several and usually distinct 
mathematical topics in a single task. For instance, Rona’s task combines percentages, 
capacity word problems (items 1-3), the notion of slope (item 5), and probability (item 
6). Suha’s task mainly concerns geometric concepts and includes an optimization 
problem (A2) and the concept of ratio (A3). We, therefore, identified the mathematical 
diversity dimension, which captures the extent to which different and distinct 
mathematical sub-domains are combined in the same task. 
Some teachers’ tasks included different kinds of data representation, summoning 
opportunities for transformations between them. In Rona’s task, the added items (4) 
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and (5) diversify the repertoire of data representations to include a graph and a pie 
chart. Suha’s item B2 exemplifies a request to transform data from one form to another 
(text to diagram). We call this dimension multiple data representations.   
The teachers in our study have included items of different formats in their tasks: single 
vs multiple correct answer(s) (as Rona’s items 1 vs 3), open-ended items (Suha’s A1) 
vs multiple-choice items, (Suha’s B4). The teachers intended their students to solve by 
applying exact calculation (B1) aside from evaluating quantities (B4). We identified it 
as the answer format dimension.  
One can see that Rona’s Items 1 and 2 are calculations of specific cases, and item 3 
generalizes them. Suha’s A3 is about producing a generalization formula, and B3 and 
B4 strive at generalizing which features of the ceiling design impact its cost. These 
items helped us identify the generalization dimension that indicates to what extent 
students are requested to formulate a general statement or concept, obtained by 
inference from specific cases.  
Both teachers present a need for calculations and mathematical reasoning by 
positioning students as consultants in decision-making. Suha is recruiting student 
mathematical efforts to help a jewelry retailer choose an economical ceiling design for 
her store (item A1). Rona asks students to help Shira plan a reasonable usage of her 
cellphone battery (item 1-3). However, Suha’s item B1 requests calculations 
supporting no apparent decision. These differences led us to identify a dimension of 
students’ agency and decision-making. 
DISCUSSION  
The research question of our study was: Across which dimensions do secondary 
teachers’ AMPP products vary? We identified eight dimensions through which 
products of teachers’ applied mathematics problem posing (AMPP) can be modified to 
achieve different pedagogical goals: authenticity, correctness, compactness, 
mathematical diversity, multiple data representations, answer format, generalization, 
and students’ agency and decision making. We exemplified each dimension based on 
two tasks composed by teachers, each with initial and final versions. Six of the 
identified dimensions are close to characteristics of modeling problems (see the 
classification of Maaß, 2010). However, since our model stemmed from products of 
teachers’ and not educational specialists like Maaß’s (2010) classification, it brings 
force dimensions such as correctness, compactness, and students’ agency and decision 
making. As for dimensions corresponding to some of Maaß’s classifications, they stress 
different meanings and aims. For instance, Maaß’s mathematical content class 
corresponds to our mathematical diversity dimension. However, while Maaß’s model 
only states the mathematical content involved, we stress combining different 
mathematical topics in the same task.  
Our dimensions of variation enrich the theory of teachers as designers by suggesting 
specific considerations teachers can make to compose or adjust mathematical problems 
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to fulfil various pedagogical goals. Of the dimensions, correctness is the only one that 
is a sine qua non – we cannot afford a final AMPP product that is incorrect. Other 
dimensions are less compulsory - variation is allowed and even advantageous. For 
instance, not all tasks or items must have multiple data representations. However, those 
who have it may be pedagogically richer, containing more opportunities for students 
to benefit from their engagement in the task. Rona’s task does not have items that vary 
along the generalization dimension (as in Suha’s A3 and B4); this observation can 
inform her design, suggesting a direction for adding a generalization item. 
Adding variation along one dimension may well be at the expense of another 
dimension. For instance, the added items in Rona’s task (items 5 and 6) vary the data 
representation and the mathematical diversity dimensions. However, it also demands 
more working time (hazarding the correctness dimension) and reduces students’ 
agency in decision making (the answers requested support no decision). So, when a 
teacher-designer varies a task along one dimension, she should also observe the other 
dimensions maintained in balance, seeing any change as a potential tradeoff. 
Our eightfold dimension model could also be used to assess teachers’ design products 
and capabilities (Brown, 2009). These dimensions can constitute a standard for 
designers to serve for evaluation. For instance, if one strives to present mathematics as 
a unified, powerful toolkit for problem solving, tasks blending various mathematical 
topics around the same real-life context with multiple data representations may serve 
her pedagogical goal. By setting the mathematical diversity and multiple data 
representation dimensions as essential aspects of task design, one could evaluate 
teachers’ products to the extent these dimensions are enacted.   
Although the perplexity entailed, we deliberately decided to include an initial version 
for each teacher’s task. The changes from the initial tasks to the final versions were 
made by Rona and Suha themselves after receiving feedback from the PD community. 
Behind each change lies a realization about a particular shortcoming in the initial 
design to achieve some pedagogical goals. For instance, during a few PD sessions, 
Suha gradually realized that A1 was too complex for her students to solve because it 
was overloaded with geometric concepts unknown to them (e.g. area preservation, 
adding auxiliary constructions). She understood she could break down A1 into a 
gradual sequence of items (B1-4). Her capacity to modify the task along the 
correctness dimension instigated mathematical and didactical insights for her to learn. 
We hope that our eight-dimension model would help teachers learn more profoundly 
from processes of iteratively designing tasks. It may help them recognize dimensions 
across which their items can be composed and modified. 
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We present the implementation and analysis of a study and research path (SRP) in 
Statistics for business administration students. An SRP is an instructional proposal 
developed within the Anthropological Theory of the Didactic based on the inquiry of 
open questions. Our analysis focuses on the in-process evolution of the SRP, as well 
as the qualitative a posteriori analysis of its implementation. The results help describe 
interesting instructional devices for their design and management and identify some 
critical challenges that explain the difficulties of their dissemination in university 
education. We emphasize the need for educational research to focus on the conditions 
and constraints that enable and hinder the existence of project-based learning 
activities in current educational systems. 
INTRODUCTION 
Statistics is a branch of applied mathematics that is undergoing a significant evolution 
in the last 30 years. During the 1990s, it has started to be defined as data science and 
the emphasis began to be put on the importance of the empirical data and the context 
they come from. Wild and Pfannkuch (1999) point out the need for data, their 
visualisation and the reasoning within the statistical context. Such a shift in the 
professional area of statistics, followed by substantial technological developments 
enabling the collection, treatment and analysis of a big amount of data, posed a 
challenge to the education system as well. The teaching of statistics tends to or at least 
should tend to follow the recent changes in scholarly knowledge. However, the 
initiatives and reforms of education take time and do not follow the developments in 
the professional areas instantly.  
As one way of adapting the teaching of an area to its professional evolution, Knoll 
(2014) detects the emergence of the Project Method as an instructional approach for 
the training of architects in the 16th century in Italy. During the centuries, teaching 
methods with similar ideas grew and were reshaped, for today to still be adapted and 
used in education at all levels and around the world. Nowadays, the most common 
expression for the successor of the Project Method is project-based learning (PjBL) 
(Harmer, 2014). In statistics, Batanero et al. (2013) suggest implementing such an 
instructional approach to connect the mathematical concepts and the statistics 
environment, therefore developing a “statistical sense” of the students. 
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Related to the PjBL movement, we are here considering a proposal coming from the 
Anthropological Theory of the Didactic (ATD) based on the continued inquiry of 
problematic questions, named study and research path (SRP) (Chevallard, 2015). We 
can consider SRPs as a broad instructional format that encompasses PjBL and provides 
a methodological framework for its design and analysis. In the case of statistics, 
literature on the PjBL commonly focuses on the students’ learning and perceptions 
towards statistics before and after the project implementation, while the SRP approach 
puts a strong emphasis as well on the questioning of the statistical activities that are 
taught, the planning of the learning process and especially the in-process observations 
and analyses (Markulin et al., 2021a). In this paper, we will illustrate this through an 
implementation of an SRP in statistics for business administration at the university. 
THEORETICAL FRAMEWORK 
Throughout the past 15 years, the ATD yielded a line of research to study the conditions 
needed for a change from the prevailing pedagogical paradigm of visiting works 
towards the one of questioning the world. In the former paradigm, the syllabi are 
usually a list of themes, topics or disciplines to learn, without necessarily knowing their 
raison d’être. The latter paradigm considers knowledge as a tool to question the world 
and elaborate answers to the questions raised. To analyse the conditions for 
transitioning to the new paradigm, the ATD proposes to design, implement, analyse 
and develop a new instructional proposal, the SRP. This proposal considers open 
questions as the central activity of the teaching and learning processes. An initial 
question generates an arborescence of derived questions to be answered by the students 
under the direction of a teacher or a team of teachers. In the pursuit of elaborating the 
answers to the questions, different research activities will appear (searching for 
information, collecting data, comparing the information collected, producing partial 
answers, etc.), as well as study activities to understand, acquire and put into practice 
the new knowledge and analysis tools (Chevallard, 2015). 
Until now, several applications of different SRPs have been implemented in university 
education for students in engineering, chemistry, medical sciences, economics and 
business administration (Bosch, 2018; Lucas, 2015; Markulin et al., 2021b, Parra & 
Otero, 2017; among others). Those implementations vary in duration and moment in 
the course when they take part in. They share however some crucial aspects that, taken 
together, specify them among other PjBL proposals. First, the fact that students work 
in teams and that teams collaborate to address the same problematic question: the 
SRP’s generating question. Second, the use of particular instructional strategies and 
tools, such as maps of questions and answers, the elaboration of intermediate reports, 
the search for new information and data and their corresponding study, and the 
presentation or defence of the final answer (Barquero et al., 2021). Finally, the use of 
a specific methodology – the didactic engineering (see below) – that provides a general 
framework to design the SRP in relation to the global structure of the course.  
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We will describe the implementation of such an SRP and its analysis through the 
teachers’ observations and the students’ answers to a questionnaire and semi-structured 
interviews. Our focus will be on the integration of the SRP in the global Statistics 
course organisation and the interaction between both. 
THE SRP IMPLEMENTATION 
In the academic year 2020/21, we implemented an SRP in a 6 ECTS Statistics course 
for second-year business administration students. It was the third year to implement an 
SRP to that particular course by two researchers in mathematics education who had the 
teaching responsibility. The Statistics course has a duration of one semester and is 
organised in two parts that are intertwined: the traditional part combining lectures with 
case studies, and the SRP-project part that mainly occurs during the last three weeks.  
The course syllabus consists of describing datasets with descriptive statistics and 
graphs, relationships between variables, models of distributions, inference, and 
hypothesis testing. All statistical analyses are performed with R Commander, a basic 
graphical user interface for the statistical program R. The first part of the course is a 
mixture of theory and genuine practice. It is organised in bi-weekly terms centred in 
case studies to yield some descriptive statistics of the data given, introduce models of 
distribution, inference analysis and hypothesis testing. Each case is based on a different 
dataset being analysed using different statistical tools. These tools are progressively 
introduced according to the analysis needs. 
The 2020/21 implementation of the SRP started by posing an initial question coming 
from an association that proposed an exploration of the city residents’ consumer 
behaviour and their intention to participate in the set-up of a cooperative 
supermarket. The project was proposed at the beginning of the semester and was 
retaken in the middle of it for an intermediate report on the city’s different districts 
using official statistics. This first step was to help organise the survey’s implementation 
and to check the quality of the sample afterwards. This study was elaborated using 
Excel, the software that students were quite familiar with. The activity turned out to be 
quite challenging, especially because it coincided with a switch to a completely online 
modality of the classes due to the COVID19 situation.  
Later, the partial exam took place and the bi-weekly cases continued with different 
topics. During this period, students could collect the answers to a survey elaborated 
specifically to answer the association’s demands. When approaching the end of the 
classes and data were collected, three weeks (6-7 sessions) were left only for the project 
work. In this last project period, students were asked to submit two more intermediate 
reports, one on the analysis of the sample (the survey dataset) and the other one on the 
preliminary results of the analysis of the consumer behaviour of the respondents. All 
three intermediate reports (one about the official city statistics and the two just 
mentioned) obtained detailed feedback from the teachers for students to continue their 
work. During the online classes, interactions and discussions with the teachers mostly 
occurred on the students’ demand and were rarely forced by the teachers. Even though 
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there were two available teachers to address students’ questions, not all the project 
work could have been finished only during the official session time slots. With the 
online modality of the course, the students got used to the online work rhythm, and that 
also facilitated a more flexible and approachable way for the student team members to 
meet and continue the work “out of the class”. 
Students were required to present their answers to the association during the last 
session of the course. The exposition of the presentations was attended by the whole 
student group and a three-member jury formed by one of the statistics teachers and two 
teachers from different school departments (marketing, accounting, ethics, quantitative 
methods) that were not familiar with the project topic. A more thorough description of 
the 2020/21 implementation can be found in Markulin et al. (in press). 
RESEARCH QUESTIONS AND METHODOLOGY 
Our research focuses on the role of SRPs as instructional facilitators of the shift 
between the pedagogical paradigm of visiting works towards the one of questioning 
the world. This contribution’s specific research questions are: 

RQ1: What elements of the course organisation facilitated the implementation 
of the SRP? Which ones hindered it? What other constraints appeared? 
RQ2: How can the identified constraints be related to the paradigm of visiting 
works prevailing in university education and what consequences can be drawn 
towards the general dissemination of PjBL proposals?  

To develop some answers to the posed research questions, we considered the 
implemented SRP as a case study and rely on qualitative research as part of the didactic 
engineering (DE) methodology (Barquero & Bosch, 2015). For the a posteriori 
analysis, the DE last phase, the source of our data are the naturalistic observations of 
the statistics teachers (who are also researchers in mathematics education), as well as 
semi-structured interviews to a small sample of students, and a questionnaire passed to 
the students after the course. The interviews were done with 5 students from different 
groups and having different Statistics final grades, while the questionnaire was 
anonymously answered by a sample of 71 students up to 113. The interviews and the 
survey addressed all the parts of the SRP and its relation to the course organisation: 
interest of the generating question; data collection process; clarity of the project aim; 
survey composition; availability of statistical tools; classes organisation (online and 
synchronous); students’ teamwork; final presentation of results; calendar and duration 
of the project; relationship with the case studies; etc. Our hypotheses were: 
H1. Generating question and project aim. The fact that the association representatives 
formulated the generating question and students had to present the final results in front 
of a jury brought realism to the project. However, the initial question did not seem to 
be considered real enough by the students during the analyses.  
H2. Project survey and data collection. Social networks provided students with 
facilities to collect data, despite their reduced mobility due to the COVID19 situation. 
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However, exploiting the data to get interesting answers to the questions raised required 
more time and students’ investment. 
H3. Integration of the SRP in the Statistics course. The classes previous to the project 
provided tools and knowledge for the project work. They also prepared students to use 
inquiry strategies and resources, like data collecting and cleaning, raising questions, 
summarising results, etc. that are part of the “statistical sense” (Batanero et al., 2013). 
H4. SRP organisation and management. Even if the SRP took place during the last 
three weeks, some learning resources, like teamwork and report writing, were 
introduced in the previous case study sessions. The schedule of the project (at the 
beginning, middle and end of the course) gave visibility to the SRP all along the course, 
even if the global time devoted to the data analysis seemed too short. 
RESULTS AND DISCUSSION 
In the following paragraphs, we present the interviews and questionnaire results 
associated with the different hypotheses (students from the interviews are denoted as 
S1, S2, S3, S4 and S5). 
H1. The students confirmed our impression that the project’s initial question was 
clearly posed. However, unlike the teachers’ observation of the students’ detachment 
from the core issue, they considered themselves well immersed in the matter. S2: “The 
question is well-posed and is exploited because the whole project was based on that 
question…later we started to understand, we saw examples, the advantages from there 
to continue, we started to integrate and understood what the association was pursuing”; 
S3: “I was not considering it [the initial question] during the project but in the end, our 
final presentation, it was then when we focused everything on what the association 
needed”. Regarding the teachers doubt whether they guided the students’ analyses too 
much, and unintentionally making an open problem too academic, the questionnaire 
students answered resulted with a mean of 2.5 on a scale from 1 to 5 as an answer to 
the question: “The teachers guided us too much: (1 being not at all, 5 being too much)”. 
About the final presentations, they were mostly proud moments for the students where 
they could present and defend their results in front of their colleagues as well as the 
evaluating jury. S1: “In our case, we did not have to elaborate much the presentation. 
It was a subject that we already had so well established and so integrated that in the 
end, it came out on its own.”; S4: “I liked it. I think the presentation could have been a 
little longer, maybe there was a lot of information and it had to be reduced. But overall, 
it was good.” Moreover, according to the questionnaire, the students seemed to 
appreciate the assessment by a jury. As an answer to the question “I think it is important 
that there are external evaluators for the final presentation (1 being totally disagree, 5 
being totally agree)” the mean of the answers was 3,8 and the median a 4. 
H2. About the data collection, the process went indeed without major issues, probably 
thanks to the fact that the respondents could have been of all age and social groups 
(unlike some previous projects that demanded specific respondents’ characteristics) 
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S1: “It is true about the COVID19 issues, but nowadays, with the social networks and 
the level of expansion, I think we reached the same people as we would have without 
the COVID19 issues”. Moreover, some students suggested simplifying the survey to 
improve the project results. S5: “A simpler and easier to answer survey would have 
gotten the most reliable results for sure”. However, the questionnaire gave us a mean 
of 2.8 and a median of 3 on a scale from 1 to 5, a quite symmetric distribution, as an 
answer to the question “The data collection was easier than I expected: (1 being totally 
disagree, 5 being totally agree)” which is satisfying since it shows that data collection 
is a part of statistical work that is not trivial but can be simplified if the survey is well 
composed and the target respondents are not a very reduced group of people. In what 
concerns the lack of students’ engagement with the survey’s richness, S4 mentioned 
the responsibility they felt for the project, but also that it was not shared by all the 
teams: “If all our colleagues from the group really thought they had a responsibility, it 
could have made a difference in the form of how the project was to be developed. At 
least it was what I expected.” 
H3. The combination of theory, case studies and a project in a Statistics course has 
shown as engaging but at the same time providing a steady base for the application of 
learnt skills as well as acquiring some new ones along the way of analysis of the real-
world data. S1: “It was nice to learn a bit about the tools like R that are widely used in 
companies and at universities, as well as the theory. Everything has its application”; 
S3: “Maybe I learnt some things that I ended up not using for the project, but as more 
as we learnt the more we could apply, and it helped us explain more things eventually”; 
S5: “I think that I learned to do it while doing the reports because it was a progressive 
thing with the cases. For the project later, we had the basics to start with”. 
H4. The students appreciated the teamwork. S1: “In the end, no matter how much you 
want to, you will have to work in a team at some point or another. This is why it is very 
important that you adapt to different ways of doing things”; S3: “I think that last year, 
in the first year of the degree, I did not have the same ability to communicate in a group 
as I have now”; S4: “I think it has to be done as a group, first of all, because in statistics 
many topics are touched upon. There are many questions and some of us is going to be 
better in certain problems while the other team members will be more skilled with 
another type of analysis.” In what concerns the intermediate reports, even if they had 
a tight schedule, the students confirmed that they helped them focus their analyses. S1: 
“Handling the deliveries...we were there for a month, almost every week...we were on 
top of everything. And the feedback from the teachers was more or less fast. Sometimes 
we expected more, but it was not a must, either.”; S3: “In the end, we had a hard time 
grasping what you wanted to get from us. Then, in the end, the last reports, we saw 
much more what you wanted and it was  easier for us.” Finally, the calendar of the 
project was mainly well organised and did not disrupt the flow of the theory classes 
and the case studies but was reminding the students that the big project is to be kept 
alive in their consciousness and they could think about the project ideas while learning 
the theory. S5: “I think it was good that at the end it was more squished in time because 
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you were working on it quite regularly and you did not lose the hang of things, you 
knew what was going on. Maybe the only thing I would say is there was a void between 
the project presentation by the company and the first report, so I remember some people 
saying: Oh, what was this association like? What is happening with that?” 
All in all, the general impression the students stated, which was satisfying for the 
teachers as well, is that they appreciated the connection of a university course to a real 
company and found it useful for their future professional and personal experiences. S1: 
“I think it is a way that helped us to do a little bit of market research, which in the short 
term will be something we will have to do when we are working.” 
CONCLUSIONS 
Concerning RQ1 (facilitators and constraints in the implementation of the SRP), if we 
only focus on the SRP, the presented experimentation did not add substantial elements 
to the existing investigations. We corroborate the students’ difficulties in raising 
questions and taking them “seriously” (Hypothesis 2), as well as searching for 
validation tools outside the teachers’ approval or feedback. We also confirm the need 
to base SRPs on the study of real generating questions to ensure that it is the question 
that leads the inquiry and not the knowledge tools needed to elaborate an answer 
(Barquero et al., 2021).  However, if we consider the SRP together with the course 
implementation, the experimentation reinforces the interaction between both teaching 
strategies. The students’ ease in searching and cleaning data, preparing summaries, 
working in teams, elaborating written reports and defending their results in oral 
presentations can be explained by the inclusion of these activities repeatedly since the 
very beginning of the course. They cannot be learned in a three-week activity. 
About RQ2 (constraints related to the paradigm of visiting works and consequences 
for PjBL proposals), the main lesson we can draw affects the unit of analysis that is 
considered by research on project-based teaching. Our experience illustrates how the 
structuring of the course cannot be considered – from a design nor a research 
perspective – as separated from the project. An SRP is not a longer activity the teacher 
includes at the end of the course, as an “application” of some previously visited works 
of knowledge. On the contrary, it is part of a course globally designed to provide 
students with practical competencies in dealing with data and, therefore, culminates 
with the study of a real managerial question requiring its approach through data 
collection and analysis. We consider that research on PjBL would gain in delimiting 
broad units of analysis that include the courses where the projects are implemented, 
instead of detaching them from the PjBL strategy. Probably, many of the constraints 
hindering the dissemination of PjBL instructional proposals do not come from the 
proposals themselves but from the global teaching activity that integrates them.    
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Following a first research cycle of student understanding of the relation between 
Riemann sums and double integrals, we proposed a model (genetic decomposition) of 
how students may construct their understanding of these notions. Didactical materials 
were designed and implemented in the classroom to help students do the proposed 
constructions. This is a report of a second research cycle in which the effectiveness of 
these materials was studied. The same interview instrument was used in both cycles. 
Interviews’ responses from eleven students who did not use the materials and eleven 
who did were analyzed. Results show that students using the proposed materials and a 
collaborative didactical strategy, constructed a deeper understanding of the intended 
relation than those attending a lecture-based course. 
INTRODUCTION 
Multivariable calculus is of great importance in mathematics and its applications. In 
particular, research on integral multivariable calculus is sparse (Martínez-Planell & 
Trigueros, 2021). Student understanding of the relation between Riemann sums and 
double integral was studied in Martínez-Planell and Trigueros (2020). This study 
produced a model (genetic decomposition) of how students may construct knowledge 
about basic aspects of this relation. The model led to the design of didactic activities to 
help students do the proposed mental constructions. This is a report of students’ 
construction found after students had used these activities in class.  
LITERATURE REVIEW 
McGee and Martínez-Planell (2014) proposed a specific semiotic chain to help 
students understand double and triple integrals and their relations to Riemann sums. To 
describe the semiotic chain, we use an example of an integral in rectangular 
coordinates: Essentially, given a symbolic, tabular, or verbal (as a density) 
representation  of a function defined on a rectangle (e.g., 𝑓(𝑥, 𝑦) = 𝑥! + 𝑦  on 
[0,2] × [1,2]), and given a partition into a small number of sub-rectangles with a 
chosen point in each sub-rectangle (e.g., ∆𝑥 = 1, ∆𝑦 = "

!
, and the point closest to the 

origin) students were first asked to draw in space the collection of prisms resulting 
from the corresponding Riemann sum (e.g., Figure 1); to give a numeric representation 
of the Riemann sum as an expanded sum (e.g., 𝑓(0,1)(1) 0"

!
1 + 𝑓(1,1)(1) 0"

!
1 +

𝑓(0,1.5)(1) 0"
!
1 + 𝑓(1,1.5)(1)("

!
)); to write a symbolic representation in expanded 
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form (e.g., 𝑓(𝑥", 𝑦")∆𝑥∆𝑦 + 𝑓(𝑥!, 𝑦")∆𝑥∆𝑦 + 𝑓(𝑥", 𝑦!)∆𝑥∆𝑦 + 𝑓(𝑥!, 𝑦!)∆𝑥∆𝑦); as 
well as a symbolic representation using sigma notation (e.g., ∑ ∑ (𝑥#

! +!
#$"

!
%$"

𝑦%)∆𝑥∆𝑦); they were also asked to generalize the Riemann sum approximation to a 
limit of Riemann sums (e.g., lim

&.(→*
∑ ∑ (𝑥#

! + 𝑦%)∆𝑥∆𝑦(
#$"

&
%$" ); and finally to express 

and compute the limit as an iterated integral and the double integral (e.g., ∫ ∫ (𝑥! +!
+

!
"

𝑦)𝑑𝑥𝑑𝑦). The same semiotic chain was used when introducing double integrals in 
rectangular and polar coordinates, and triple integrals in rectangular, cylindrical, and 
spherical coordinates. McGee and Martínez-Planell (2014) found that students who 
used this semiotic chain throughout a semester seemed to show a deeper understanding 
of Riemann sums and their relations to double integrals than students in a lecture-based 
course who did not use those special activities. 

 
Figure 1: Sample geometric representation of a Riemann sum. 

Although Sealy (2014) studied integrals of one-variable functions, her work influenced 
our treatment of the integral calculus as it may be extended to the case of multivariable 
functions. She proposed a framework for characterizing student understanding of 
Riemann sums and definite integrals, consisting of five “layers”. Interpreting these 
layers in the context of double integrals resulted in an “orienting pre-layer,” in which 
students would attend to the individual meanings of 𝑓(𝑥# , 𝑦%), ∆𝑥, ∆𝑦, and ∆𝑥∆𝑦; a 
“product layer” where students are to make sense of the product 𝑓(𝑥# , 𝑦#)∆𝑥∆𝑦 where 
𝑓(𝑥, 𝑦) could be given as a density; a “sum layer” to help students to make sense of 
∑ ∑ 𝑓(𝑥#&

%$"
(
#$" , 𝑦#)∆𝑥∆𝑦, and both a “limit layer” and a “function layer” which we are 

not considering in this study.  
In another of the few publications dealing with the multivariable integral calculus, 
Jones and Dorko (2015) studied how students generalize from their one-variable 
function integral conceptions to construct their multivariable integral ideas. They 
observed that ideas generalized from the “area under a curve” conception seem to be 
favored by students, that none of the ten interviewed students showed an understanding 
based on the Riemann integral, and that the understandings shown by students 
suggested they struggled with setting up and using integrals in contextual situations. 
These authors suggest that it may be necessary for instructors to help students pay 
careful attention to the conceptual aspects of the Riemann sum and the Riemann 
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integral during multiple integral instruction. Our proposed genetic decomposition and 
didactical activities follow this suggestion by implementing Martínez-Planell and 
McGee’s (2014) semiotic chain while keeping Sealy’s observations. The present study 
was designed to test the effectiveness of this approach complemented by the use of 
APOS Theory (Arnon et al., 2014). 
THEORETICAL FRAMEWORK 
The study used APOS theory (Arnon et al., 2014), the same theoretical framework 
used in the study of Martínez-Planell and Trigueros (2020). In APOS Theory, an 
Action is a mathematical transformation that is perceived as external. It could be the 
rigid application of an explicitly available or memorized procedure. As the individual 
repeats and reflects on an Action, it might be interiorized into a Process. A Process is 
perceived as internal and allows the individual to omit steps and anticipate results. 
Different Processes may be coordinated or reversed. When the individual is able to 
think of a Process as an entity in itself and is able to apply or imagine applying Actions 
on the Process, then one says that the Process has been encapsulated into an Object. A 
Schema is a coherent collection of Actions, Processes, Objects and other previously 
constructed Schema. We will not make explicit use of Schemas in this study. 
An important methodological component in APOS is a genetic decomposition (GD). 
This is a model of how an individual may construct a specific mathematical notion. It is 
expressed in terms of the structures (Action, Process, Object, Schema) and 
mechanisms (interiorization, encapsulation, coordination, …) of the theory. The 
following is the portion of the genetic decomposition for integrals of two-variable 
functions that was tested in the first research cycle (Martínez-Planell & Trigueros, 
2020) and that was again used for this second research cycle. Due to space limitation, 
we only present two of the four parts of the GD in detail. The whole GD is available in 
Martínez-Planell and Trigueros (2020). We must stress that the genetic decomposition 
we use in this study is only part of a more comprehensive genetic decomposition of 
multivariable integrals. Note that it responds to the ideas of McGee et al. (2014) and 
Sealey (2014). 
1. Recognition of rectangle and function (details omitted) 
2. Forming one term of a Riemann sum 
Given a function of two variables, a rectangle in its domain, and a point in the 
rectangle, the student does the Action of evaluating the function at the given point and 
multiplying it by the length, ∆𝑥, and width ∆𝑦, of the rectangle to form a product of the 
form 𝑓(𝑎, 𝑏)∆𝑥∆𝑦. Students do the Action of interpreting the factor ∆𝑥∆𝑦 as the area 
of the rectangle. These Actions are interiorized into a Process which can be 
coordinated with conversion Processes between different representations of function, 
rectangle, and given point, into a Process whereby the product can be interpreted as the 
volume of a rectangular prism in space. This Process makes it possible for students to 
recognize the product’s units when functions 𝑓(𝑥, 𝑦) are given as rates (densities in the 
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tasks for this study). This part of the GD describes constructions needed to give 
meaning to the separate factors 𝑓(𝑎, 𝑏), ∆𝑥, ∆𝑦, ∆𝑥∆𝑦 and construct the meaning of 
𝑓(𝑎, 𝑏)∆𝑥∆𝑦. 
3. Forming a partition and corresponding Riemann sum 
Given two small specific positive integers (not in symbolic form, but actual numbers), 
𝑛 and 𝑚, the Action of subdividing given intervals [𝑎, 𝑏] and [𝑐, 𝑑] into subintervals 
of equal length ∆𝑥 = ,-.

(
 and width ∆𝑦 = /-0

&
 both numerically and geometrically is 

done, in order to obtain a subdivision of the rectangle [𝑎, 𝑏] × [𝑐, 𝑑]. These Actions are 
interiorized into a Process of subdivision of rectangles so that the student can imagine 
how, for any given positive integers, 𝑛 and 𝑚, the respective subdivisions of [𝑎, 𝑏] and 
[𝑐, 𝑑]  give rise to a subdivision of the rectangle [𝑎, 𝑏] × [𝑐, 𝑑]  without having to 
explicitly do so for any other specific values of 𝑛 and 𝑚. Given a continuous function 
𝑓 defined on the rectangle, the Action of choosing a prescribed point (𝑥# , 𝑦%) on each 
sub-rectangle of the given partition and producing the products 𝑓(𝑥# , 𝑦%)∆𝑥∆𝑦, the 
Actions of forming the corresponding sum of the products, and the Actions of 
interpreting this sum geometrically (as a collection of rectangular prisms in space), 
numerically (as a sum of numbers), symbolically as an extended sum, symbolically 
using sigma notation, and verbally (interpreting the products in terms of its units) may 
be interiorized into a Process that enables imagining forming such sums of products in 
different representations for the collection of sub-rectangles of any given partitioned 
rectangle. 
4. Recognition of underestimate, overestimate, and exact value (details omitted)  
METHODOLOGY 
We designed didactical activities based on the GD. They were used in a section of an 
introductory multivariable calculus course as part of the ACE didactical strategy 
(Activities worked in small groups of students, Class discussion, and Exercises for the 
home). This section will be called the “APOS” section. The experience took place in a 
university in Iran where the course was taught by one of the researchers. Eleven 
students were chosen for semi-structured interviews so that three were considered 
“above average”, five “average”, and three “below average” as chosen by the 
professor, based on their course grades. Another eleven students were similarly chosen 
from another section of the same course. This “regular” section was taught through 
lectures. Both sections used the same textbook, but in the regular one, students did not 
use the specially designed activities, and it was taught by a different experienced 
professor. The regular section students were chosen so that their course grades were as 
comparable as possible to those of the students in the APOS section. Each interview 
lasted approximately one hour. The interviews were audio and video recorded, 
transcribed, translated to English, analysed individually, and discussed as a group.  
Differences in opinion were negotiated. Student responses were also graded for their 
mathematical correctness from 0 to 2 points: 0 being mostly incorrect, 1 partially 
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correct, and 2 correct. This was used as an aid to look for patterns. However, the 
individual and group analysis concentrated on trying to ascertain the mental structures 
(Actions, Processes, Objects) evidenced by students in regards to the GD. 
The interview instrument had nine questions; they all considered a function defined 
over a rectangle and a partition consisting of only the rectangle itself (Figure 1, left): 
(1) Represent the domain of 𝑓 in the figure; (2) Let 𝑔(𝑥, 𝑦) = 𝑥! + 𝑦 be a function 
with domain restricted to the set with 0 ≤ 𝑥 ≤ 2, 1 ≤ 𝑦 ≤ 2. Represent the domain of 
the function in a given 3D coordinate system; (3) Given Figure 1 and if ∆𝑥 = 2, ∆𝑦 =
1, interpret graphically 𝑓(0,1)∆𝑥∆𝑦; (4) Compare 𝑓(0,1)∆𝑥∆𝑦 to the double integral 
over the rectangle -an underestimate-; (5) Compare 𝑓(2,2)∆𝑥∆𝑦 to the double integral 
over the rectangle -an overestimate-; (6) Does there exist a point (𝑎, 𝑏) for the function 
in Figure 1 such that 𝑓(𝑎, 𝑏)∆𝑥∆𝑦 is equal to ?; (7) Let ∆𝑥 = 1, ∆𝑦 = "

!
, 

and 𝐷 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 2,1 ≤ 𝑦 ≤ 2}. Consider the Riemann sum 𝑓(0,1)∆𝑥∆𝑦	 +
	𝑓	(0,1.5)∆𝑥∆𝑦	 + 	𝑓	(1,1)∆𝑥∆𝑦	 + 	𝑓	(1,1.5)∆𝑥∆ of the integral . What 

does that Riemann sum represent geometrically and how does its value compare with
?; (8) Interpret one term of a Riemann sum and a double integral in a given 

contextual situation; (9) Explain the relation between Riemann sums and double 
integrals. 
RESULTS 
The following table summarizes the results of the graded interview questionnaire of 
students in the APOS and regular sections. It suggests that there was a fundamental 
difference in the way students in those sections were able to do the constructions 
proposed in the GD, and thus in their understanding of the relation between Riemann 
sums and double integrals. Note that the percentage obtained by APOS section 
students is much higher in all the questions of the instrument. Also, although we don’t 
have space to include details, six students from the APOS section showed all of the 
constructions in the GD so they seemed to have constructed a Process conception of 
the relation between Riemann sums and double integrals. Two other students only 
missed constructions in the contextual situation of problem 8. Only one student from 
the regular section constructed or seemed close to constructing a Process conception. 

Prob./
Sect.	

1	
geo	
dom	

2	
symb	
dom	

3	
undr	

4	
undr	

	

5	
over	

	

6	
exact	

7	
four-	
term	

8	
thin	
plate	

9	

	 Total	

APOS	 95%	 95%	 80%	 82%	 80%	 68%	 77%	 45%	 82%	 80%	
Reg.	 18%	 36%	 30%	 18%	 27%	 14%	 14%	 7%	 11%	 19%	

Table 1: Question by question percentages of APOS and regular section students. 
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We only have space to show a few examples comparing the typical response of 
students in APOS and regular sections. For example, consider the drawings in Figure 2 
interpreting graphically 𝑓(0,1)∆𝑥∆𝑦 as produced by students A6 of the APOS section 
(left) and student R4 of the regular section (right). 

	 	

Figure 2: Drawings of one term of a Riemann sum by A6 (left) and R4 (right). 
The response of R4 is similar to those of students from the first research cycle 
(Martínez-Planell & Trigueros, 2020), who had not used the GD-based activities. 

I: What does it represent graphically? 
R4: I think it shows the area of a small piece of the surface 𝑓(𝑥, 𝑦) at 𝑓(0,1) on the 

surface, umm it’s the area of a square, sorry not a square because ∆𝑥 and 
∆𝑦 aren’t equal to each other, so the area of a small rectangle at 𝑓(0,1) on 
the surface. 

I: If we consider a unit, for example centimeters, which will be the unit of 𝑓(0,1)∆𝑥∆𝑦? 
R4: Umm, its unit will be centimeters cubic, umm so 𝑓(0,1)∆𝑥∆𝑦 doesn’t show the area 

umm it shows the volume. 
I: Can you show this volume? 
R4: I don’t know which volume it shows exactly umm but it shows a volume. 

The drawing by student A6 of the APOS section depicting the four-term Riemann sum 
in question 7 appears in Figure 1 (right), and that of regular section students R3 in 
Figure 3 (left) and R4 in Figure 3 (right). These last two students considered the 
rectangular prisms shared the same base. It is noteworthy that R4 produced his drawing 
just after the interviewer explained to him the graphical interpretation of 𝑓(0,1)∆𝑥∆.  

	 	
Figure 3: Drawings of a four-term Riemann sum by R3 (left) and R4 (right). 
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I: Before you solve this question, let me explain you about 𝑓(0,1)∆𝑥∆𝑦 in question 4 [the 
interviewer went on to produce a drawing and explain in detail] … Now use 
this idea to solve question 7. 

R4: To use this idea in question 7, we have four terms, umm the first one is a box in the 
region 𝐷, umm its height is 𝑓(0,1). The second term is again a box but 
higher than the previous box because its height is 𝑓(0,1.5) which is more 
than 𝑓(0,1) [Figure 3, right]. 

I: In this question we have ∆𝑥 = 1 and ∆𝑦 = !
"
, you should use these values in your 

answer. As I just explained you, we had ∆𝑥 = 2  and ∆𝑦 = 1  in the 
question 4 but here they are different.  

R4: I don’t know how to use the given delta 𝑥 and delta 𝑦, umm what are their roles here? 
In the two boxes that I have already drawn the bases are rectangles with 
sides 2 and 1, but how can I change them to 1 and !

"
? umm sorry I don’t 

know. 

The above discussion suggests that an instructor’s explanation and drawing may not 
suffice to help students’ construct the “pre-orienting” and “product” layers of Sealey 
(2014). Students would need to reflect on activities where they give sense to the 
quantities 𝑓(𝑎, 𝑏), ∆𝑥 , ∆𝑦 , ∆𝑥∆𝑦 , and 𝑓(𝑎, 𝑏)∆𝑥∆𝑦  that appear in Riemann sums. 
Perhaps more telling than the previous examples is the typical response for the 
question which asked students to explain the relation between Riemann sums and 
double integrals. We include the responses of student A3 from the APOS section and 
regular section students R3, R4. 

A3: If we consider our context as the volume under the surface, then each of the terms of 
the Riemann sum is the volume of a prism and the Riemann sum itself is the 
sum of the volumes, umm if we have many sub-rectangles inside the 
domain 𝐷, then we have also many prisms and so their sum will approach 
to the exact volume under the surface, therefore if the number of 
rectangular prisms goes to infinity, umm like limit, the answer of the sum 
of the volumes will be the volume under the surface, I mean this is the 
relation between the Riemann sum and the double integral 

R3: I remember the limit of sum is equal to integral but I can’t justify it, umm I don’t 
know how to see this relation geometrically.   

R4: … about integration I can’t find any relation, umm but I just remember in the single 
variable calculus course we learned that the limit of sum was equal to 
integral and it was like the sum of many areas of rectangles was equal to the 
area under the surface, umm but here the context of the function of two 
variables and we are working with volumes and I don’t know how to 
generalize the ideas of area, I mean integral, to volume, I mean double 
integral. 



Martínez-Planell, Trigueros, Borji 
 

3 - 186 PME 45 – 2022 
 

DISCUSSION AND SUMMARY 
The research cycle in Martínez-Planell and Trigueros (2020) together with the present 
study show how cycles of research in APOS can be used to progressively improve 
student understanding of important mathematical ideas, in this case, the relation 
between Riemann sums and double integrals. A genetic decomposition serves as an 
initial hypothesis that is tested with student interviews, refined with the resulting data, 
used as a basis to design didactic activities, and then, after using the activities in a new 
didactical intervention, can serve as a renewed initial hypothesis. The present study 
shows evidence of APOS section students’ improved understanding. In the first 
research cycle students had not used didactic activities based on the genetic 
decomposition, just like students in this cycle’s regular section. In this research cycle, 
comparison with the regular section shows the advantages of collaborative work and 
the use of APOS based activities. There is much that is left to be done. In this cycle we 
found that the activity sets have to be improved to better account for contextual 
situations. Future research cycles need to test for resulting improvement in student 
applications of integration in contextual situations and for other portions of the GD not 
included in this article, like the portion dealing with the double integral as a limit, 
double integrals in non-rectangular domains and in polar coordinates, and triple 
integrals in rectangular, cylindrical, and spherical coordinates. 
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LESSON STUDY IN INITIAL TEACHER EDUCATION: DRAWING 
CONCLUSIONS FROM TWO PORTUGUESE EXPERIENCES 

Micaela Martins, João Pedro da Ponte, Joana Mata-Pereira 
Instituto de Educação, Universidade de Lisboa 

 
This research aims to understand which situations created opportunities for 
prospective Mathematics teachers to develop their knowledge. Following a design-
based research with two cycles, data was collected through participant observation, 
document collection, and individual interviews. The results show that establishing a 
focus on prospective teachers’ learning created opportunities to develop their 
knowledge through discussing empirical articles, teaching the planned lessons, and 
reflecting on students’ learning.  
INTRODUCTION 
Initial Teacher Education (ITE) must provide opportunities for prospective teachers 
(PTs) to develop knowledge about how to foster their students’ learning. However, a 
big problem identified by PTs is “putting both theory and content into practice” (Chen 
& Zhang, 2019, p. 568). Lesson study, which is a collaborative and reflexive 
professional development process focused on students’ learning, has shown benefits in 
ITE. This process encourages PTs to prepare lessons in detail and discuss their ideas, and 
allows them to enact what they planned, and to reflect on their practice. However, a better 
understanding is needed about how to structure lesson study, maintaining its efficacy and 
integrity, to create opportunities for the PTs to develop their knowledge being able to 
locate theory into practice (Ponte, 2017). Bjuland and Mosvold (2015) point out that is 
particularly important to pose “a research question targeting the student teachers’ own 
learning” (p. 89). Thus, this research is based on establishing a focus for the lesson study 
regarding the PTs’ learning. It pays particular attention to the opportunities created for 
PTs to develop their knowledge, in two Portuguese universities, answering the research 
question: Which situations created opportunities for the development of PTs’ knowledge? 
THEORETICAL FRAMEWORK 
The PTs face several challenges in locating into the teaching practice what they learn 
in the ITE courses, raising a theory-practice gap (e.g., Bjuland & Mosvold, 2015; Chen 
& Zhang, 2019; Ni Shuilleabhain & Bjuland, 2019). For instance, a big challenge is 
related to planning and teaching lessons where “emphasis was placed on the use of 
cognitively demanding tasks … the encouragement of productive interactions … and 
the importance of listening respectfully to students’ reasoning” (Stein et al., 2008, p. 
316). Its core is the exploratory activities in which students are involved, based on 
demanding tasks as starting points for whole-class discussions. These exploratory 
lessons are usually structured in three phases: first, the teacher proposes a task; then, 
the students work autonomously in small groups; and, finally, the teacher selects some 
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students’ strategies to discuss with the class, fostering their justifications, and does a 
final summary of the main ideas. However, selecting tasks that allow students to work 
autonomously, and fostering productive interactions in the classroom is not simple for 
PTs. They usually lack proper knowledge about what can happen during the lesson and 
“are regularly surprised by what students say and do, and therefore often do not know 
how to respond to students in the midst of a discussion” (Stein et al., 2008, p. 321). 
To bridge this gap, it is important the PTs have school-based field experiences so they 
can learn “how to teach, and … experience the difficulty of teaching” (Chen & Zhang, 
2019, p. 551). Usually, ITE includes field experiences where the PTs put into practice 
their ideas and enact the lessons, under the mentorship of an experienced teacher. 
However, since they are developing knowledge about students and teaching practice, 
it is a challenge to plan and orchestrate lessons to foster students’ learning (Bjuland & 
Mosvold, 2015). Thus, ITE has a responsibility of creating opportunities for PTs to 
develop their knowledge, based on field experiences and reflection on those 
experiences (Chen & Zhang, 2019; Ni Shuilleabhain & Bjuland, 2019).  
Lesson study is a professional development process that aims to improve teaching and 
learning through planning, teaching, and reflecting on students’ learning, through a 
collaborative work of a group of teachers. They start by identifying an issue in students’ 
learning (e.g., a common difficulty) and study the related curriculum and research 
results, defining a learning goal. Then, they plan a research lesson, selecting, solving, 
and adapting tasks to be suitable to the lesson, anticipating students’ strategies and 
difficulties, and preparing their interventions (e.g., questions to pose). After, a teacher 
teaches the lesson, and the others observe gathering notes to reflect on students’ 
learning. By a deep exploration of different aspects related to students’ learning, this 
reflexive environment allows the PTs to discuss their ideas about teaching practice, 
promoting the development of their knowledge through field experiences (Ni 
Shuilleabhain & Bjuland, 2019; Ponte, 2017). 
Still, integrating lesson study in ITE demands adaptations, considering the settings of 
each university. The process tends to be simplified, which may compromise its unique 
characteristics and benefits. But, without adaptations, it is not possible to carry it out 
because of the specifies of each program and the aims of preparing PTs (Ponte, 2017). 
There are several experiences of lesson study in ITE, with different contexts and 
designs, using diverse theoretical frameworks (see Ponte, 2017). These lesson studies 
usually have aims concerning professional or didactical aspects, as the development of 
PTs’ knowledge or their reflective practice. However, “such aims are not indicated in 
an explicit way in most studies” (Ponte, 2017, pp. 173-174). In addition, the lesson 
studies usually focus on the planning phase, on the reflection phase, or both, which 
establishes the main activities during the process (Ponte, 2017). But these foci seem to 
emerge by the required adaptations of integrating lesson study in each specific ITE 
program or seems to be a choice of teachers educators. For instance, in Chen and 
Zhang’s (2019) study, “lesson planning … is a central focus in learning how to teach” 
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(p. 550). The authors structured the lesson study in two courses and asked the PTs to 
plan a lesson based on the knowledge they developed by being taught about “the 
process of lesson planning, the frame of a lesson plan, and the specific guiding of each 
aspects” (p. 556), to teach that lesson for their colleagues, through microteaching.  
Although the focus of a lesson study is students’ learning, it must happen under the 
development of teachers’ knowledge (Lewis et al., 2019). So, it is important not only 
to define a learning goal regarding students, but also to establish a broad long-term 
goal for the teaching and learning process, focused on the PTs’ learning. For Bjuland 
and Mosvold (2015), “identifying a research focus for the students teachers’ own 
learning” (p. 88) is an important element of lesson study in ITE. This is an idea also 
shared by Lewis et al. (2019) for in-service teachers: “[the research theme] helps 
reconnect educators with the goals that are really vital to them” (p. 21). Therefore, by 
investigating a certain aspect of their own learning, PTs can guide the lesson planning to 
the research focus and think of it as “an empirical investigation of their own teaching and 
learning” (Ni Shuilleabhain & Bjuland, 2019, p. 3). Thus, it seems to be important to 
define two main dimensions of goals for lesson study in ITE. The first dimension is related 
to the definition of a learning goal for the research lesson, regarding students’ learning. It 
can be related to a usual difficulty they have on a specific topic, or it can be focused on 
fostering their skills as reasoning processes. The other dimension concerns a broad long-
term goal which implies an establishment of a lesson study focus regarding PTs’ learning, 
to foster the students’ learning based on the development of PTs’ knowledge.  
METHODOLOGY 
This research follows a qualitative approach as a design-based research (Cobb et al, 
2016) with two design cycles, in two Portuguese universities. It aims to provide 
insights on how teacher educators can create opportunities to promote the development 
of PTs’ knowledge, establishing a focus for lesson studies regarding PTs’ learning. So, 
the interventions were structured on lesson study experiences with a particular focus 
on creating opportunities for the PTs to develop their knowledge. At the end of Cycle 
I, a retrospective analysis was done considering the data collected, similar empirical 
studies, and confronting with theoretical perspectives.  
In each university, the participants were secondary school Mathematics PTs supervised 
by a teacher educator who accepted to carry out the lesson study. They observed several 
lessons taught by experienced teachers, at the field practice. The facilitator role was 
shared by teacher educators and the first author (also as researcher). In Cycle I, Mónica 
and Olívia, planned a first lesson for Olívia to teach, and then both planned a second 
lesson that both taught to different classes. Sílvia, Lila and Maria, in Cycle II, planned 
and taught three lessons each, in different classes. 
Data collection includes participant observation by the researcher (with researcher’s 
journal and audio recordings), document collection (lesson plans and written 
reflections), and individual interviews at the beginning and at end of the lesson studies. 
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All the necessary permissions were requested, and the names are all pseudonyms.  
The data analysis is organized as thematic episodes from the two lesson study 
experiences. First, it is presented the focus of the lesson study regarding the PTs’ 
learning, describing how it was established. Then, it is discussed the lesson planning 
work, having as background the established lesson study focus regarding PTs’ learning. 
Finally, considering the PTs’ reflections, it is pointed out what can be improved for the 
next lesson study experiences and what knowledge the PTs developed.  
TWO LESSON STUDY EXPERIENCES IN TEACHER EDUCATION 
Cycle I 
Establishing a lesson study focus regarding PTs’ learning. To prepare the intervention, 
the researcher and the teacher educator met to define the aspects to explore and to 
organize the sessions attending to the field practice agenda. Considering that 
exploratory lessons usually raise challenges for the PTs, the teacher educator suggested 
exploring this teaching approach. Therefore, the facilitators proposed the analysis of 
the curriculum, and the analysis of an article regarding a teacher’s learning about 
exploratory lessons. During the discussion of the article (Session 2), Mónica and Olívia 
showed a superficial understanding of exploratory lessons: 

Olívia: The students’ previous knowledge is important. It’s forwarding to a reflection.  
Mónica: Instead of the teacher being the main guide of the lesson, he guides the students 

to… he is no longer the main figure in the lesson, the students are.  

Additionally, they drew the first lesson plan describing what should happen in the 
lesson and did not plan moments for students to work autonomously on the proposed 
task or to share and discuss their mathematical ideas: 

Four students will be selected randomly. It will be explained that each one will have to 
build a cube. … As soon as they finish it, the selected students will have to go back to their 
places. The task will the solved by the whole class. (Mónica and Olívia’s first lesson plan) 

Thus, the lesson study focused on exploratory lessons’ structure and purposes to 
promote the development of PTs’ knowledge about it, based on discussions on 
empirical articles and careful lesson planning work for the research lesson.  
Planning a lesson based on the lesson study focus. The facilitators wanted to promote 
the development of PTs’ knowledge about planning exploratory lessons. Since the task 
proposed is the starting point in an exploratory lesson, they suggested the PTs select 
different tasks to critically analyze their strengths and weaknesses. They aimed the PTs 
to be able to design questions that allow several solving strategies to foster students to 
share and to justify their ideas during the whole-class discussion. By analysing the 
tasks, the PTs showed their concern about students’ motivation: 

Does this motivate the students? … there are things that we see right away they don’t care 
about. And there are others they are interested in. (Mónica, Session 4) 
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So, they investigated their students’ interests and sociocultural contexts, to design an 
interesting task for them, developing their knowledge about the students.  
The facilitators also suggested discussing another article about aspects that should be 
considered when planning an exploratory lesson. After the discussion, the PTs 
reformulated their lesson plan structure, organizing it in the three moments of an 
exploratory lesson and using the scheme proposed which involved tasks and learning 
activities, expected duration, students’ activities and possible difficulties, teachers’ 
answers and aspects to pay attention, and goals and assessment. Also, the PTs paid 
attention to some aspects disregarded on the first lesson plan, as students’ difficulties, 
as well as the preparation of teachers’ interventions to foster the students’ justifications. 
So, the discussion of the article seemed to influence the PTs’ lesson plans and, 
consequently, the development of their knowledge about planning exploratory lessons. 
Reflecting on the lesson study experience. At the end of the lesson study, Mónica 
stressed out in the final interview that “we should have better prepared the 
communication part … For example, in a specific [students’] question, what will be 
the keyword to use to help them? … We had only written ‘the teacher must guide 
to…’”. The teacher educator also mentioned that the whole-class discussion needed to 
be better prepared and added that “[the reflection phase] should take longer … it should 
be more systematic”. Thus, the retrospective analysis arose two main issues to be 
considered in the next lesson study: promoting a careful preparation of whole-class 
discussions and creating more opportunities for the PT to reflect on students’ learning.  
Notwithstanding, Mónica highlighted she learned “to handle everything, … whether it 
is an exploratory lesson or not, I think [I’ve learned] the teaching approach for each 
lesson.”. Also, Olívia said she developed their knowledge about “The planning part … 
I used to plan as running text and it was very confusing... and there were many pages! 
And so, in a table, it became more succinct”. So, for these PTs, knowledge about 
teaching approaches and lesson planning was developed during the lesson study. 
Cycle II 
Establishing a lesson study focus regarding PTs’ learning. To prepare the intervention, 
the researcher conducted interviews with the PTs and shared the principal ideas with 
the teacher educator, as well as some issues that arose from the previous experience. 
Thus, the lesson study was structured considering the PTs’ themes for the Final Report, 
namely to foster students’ reasoning processes and classroom communication and the 
two main issues pointed out in the previous lesson study. 
To promote a careful preparation of whole-class discussion, the facilitators asked the 
PTs to prepare their interventions considering as starting point a detailed anticipation 
of students’ strategies and difficulties. Then, they suggested design tasks that allow 
students work autonomously in small groups, using different solving strategies and 
several representations, to foster their reasoning processes and explanations during the 
whole-class discussion. To create opportunities to reflect on students’ learning, the 
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facilitators proposed pre-lesson and post-lesson reflection guides, focusing on PTs’ 
themes for the Final Report. They also proposed an additional written reflection, based 
on lesson video recordings, for the PTs reflect on students’ learning and look for 
strategies for improving their practice. They also encouraged them to plan three lessons 
each, to be taught, so they could improve their practice based on their reflections.  
Thus, the lesson study focused on foster students’ reasoning processes and classroom 
communication, to promote the development of PTs’ knowledge about it, based on 
reflections developed before and after the lessons to improve their teaching practice.  
Planning a lesson based on the lesson study focus. Encouraging the PTs to plan three 
lessons each created lesson study microcycles: plan the lesson based on a pre-lesson 
reflection guide, teach the lesson, discuss the lesson based on the post-lesson reflection 
guide, write a reflection considering the students’ learning during the lesson to look for 
strategies for improving their practice, and repeat the process for the next lesson.  
The PTs began to select tasks more suited to the learning goals and to adapt them to 
foster students’ reasoning processes and communication, namely during the whole 
class discussions. They also began to prepare their interventions to support students in 
the whole-class discussion, challenging them to confront their mathematical ideas with 
their colleagues, without validating their reasonings. For example, in her first lesson 
plan, Lila proposed a task with a quadratic function for students to determine the 
maximum value. If they have difficulties, Lila would “ask them to search on their 
notebook how to calculate the parabola’s vertex”, giving them the procedure. In her 
third lesson plan, in a similar situation, she wrote “I will suggest them to sketch the 
situation”, promoting different representations to foster students’ justifications.  
The written reflections also seemed to have contributed significantly to the 
development of PTs’ knowledge, as we can read on Maria’s third written reflection: 

These moments [of discussion] are often scarce … there may be a tendency of the teacher 
to explain … we must try to make the students express orally what they thought. 

When they reflected on specific lesson moments and wrote it down, confronting with 
what was planned, the PTs tried to realize what happened and its influence on students’ 
learning, drawing conclusions to improve their practice. So, these microcycles seemed 
to influence the development of the PTs’ knowledge, namely about lesson planning.  
Reflecting on the lesson study experience. In the final interviews, the PTs pointed out 
the biggest problem of being involved in a lesson study experience is managing the 
time with the field practice. Maria also added that “even when I read some articles 
about lesson study, I didn’t realize it. Knowing the process is very different than 
carrying it out”. For her, it would be important having other lesson study experiences 
or attend conferences about it. Notwithstanding, they valued the reflections they made, 
before and after the lessons, as Maria wrote in her first written reflection:  

This reflective process that I must do, to justify myself to other people and to explain why 
I took those options, makes me go to the lesson with much more appropriate activities. 
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Focusing on students’ reasoning processes and classroom communication, made the 
PTs rethink aspects as the tasks to foster the students’ justifications as well as how to 
challenge the students to foster classroom communication. In particular, Lila 
highlighted in her written reflection that “during the whole-class discussion, the 
anticipation of the different students’ solving strategies … allowed me to be better 
prepared and to support students more easily”. Maria and Sílvia also valued the 
anticipation of students’ work, pointed out the benefits of having the opportunity of 
redoing it, as Sílvia said in the final interview: 

I began not realizing what difficulties students might have. For the second lesson plan, 
[anticipating students’ difficulties] became easier because I had already taught a lesson.  

For these PTs, knowledge about students and lesson planning was developed during 
the lesson study microcycles, based on the systematic improving on anticipation work 
and considering their pre and post-reflections on students’ learning.  
CONCLUSION 
Through this research, some conclusions emerged about carrying out lesson study in 
ITE, namely situations that created opportunities for PTs to develop their knowledge.  
Discuss empirical articles. In Cycle I, the diagnosis of the PTs’ lack of knowledge 
about exploratory lessons emerged by the discussions on an article, which became the 
focus regarding PTs’ learning. Those discussions led these PTs to carefully select and 
adapt tasks to the lesson and to rethink how to plan this kind of lesson.  
Teaching the lessons planned. Teaching the lessons led the PTs to put into practice 
their planning and to observe students’ work. In particular, the microcycles (Cycle II) 
created opportunities for the PTs to develop knowledge about students’ difficulties.  
Reflecting on students’ learning. These experiences allowed the PTs to reflect on the 
lessons taught based on students’ learning rather than a simple description of what 
happened. In Cycle II, they were able to identify what should be improved in the next 
lessons plans, namely the preparation of whole-class discussions. In Cycle II, 
considering their themes to write down their reflections on students’ work gave them 
further data on students’ learning. Additionally, in this cycle, the regular moments of 
reflection encouraged the PTs to redefine strategies to improve their practice. 
The results show that planning, teaching, and reflecting on a lesson are important 
opportunities for the PTs to develop their knowledge. Nonetheless, the cooperating 
teachers were not able to attend the sessions, which was a limitation of this research. 
Results also show that a lesson study cycle, for itself, does not give an immediate effect 
on the PTs’ knowledge. Thus, the development of PTs’ knowledge may benefit from 
more than one lesson study cycle, enhanced by the discussions and its reflexive nature. 
In Cycle II, the PTs benefited from the reflection guides, as it incited them to justify 
their choices for the lesson considering students’ learning, and led them to view their 
formative process as an empirical investigation of their own teaching and learning.  
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The adaptations on lesson studies were made having in mind the ultimate goal: foster 
the students’ learning by developing PTs’ knowledge. Establishing a lesson study focus 
regarding PTs’ learning was important to structure the process considering these PTs’ 
lack of knowledge and their wills to foster students’ learning. So, it can help the teacher 
educators to focus the lesson study activities, by being established at the beginning of 
the lesson study, considering some identified PTs’ lack of knowledge or an issue they 
want to develop. This lesson study focus can be related to a specific Mathematical 
content topic, or it can be drawn by aspects related to the teaching practice (e.g., 
selecting appropriate tasks, planning lessons, orchestrating students’ ideas, fostering 
students' reasoning processes, or even improving teaching through technologies).  
This research provides insights on how lesson study may be carried out. The lesson 
studies were prepared aiming to locate the theory of the university modules in the 
practice of planning, teaching, and reflecting on students’ learning. Despite the 
significant differences, the specificities of each experience provide insights on how 
teacher educators can create opportunities to promote the development of PTs’ 
knowledge, establishing a focus regarding their learning.  
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One hundred fourteen US students were surveyed to test a model of the relationships 
among motivational variables resulting from students’ first experiences as they 
transitioned from middle school to high school, and math achievement. Key malleable 
factors impacting motivation and achievement included perceived supportiveness of 
respondents’ teacher and peers. Longitudinal Path Analysis revealed that teacher 
support can impact students’ beliefs about the supportiveness of their peers, but that 
these social factors are mediated through students developing personal interest in 
mathematics to ultimately impact achievement. 
INTRODUCTION 
Mathematics engagement has been characterized as the attention, interest, investment, 
and effort students expend in the process of learning mathematical content (Marks, 
2000). Psychologically, engagement is associated with a sense of belonging in the 
social functioning of the classroom, as well as the behavioral, emotional, and cognitive 
characteristics of one’s mathematical thought and actions. Research shows that 
different aspects of engagement interact with each other.When all aspects of 
engagement are at optimal levels, students tend to expend more effort (behavioral 
engagement), enjoy their experiences more (affective engagement), employ more 
efficient and effective study and problem-solving strategies (cognitive engagement), 
and both help and receive help from their peers (social engagement) (Middleton, Jansen 
& Goldin, 2017). Because of this complexity, however, it is still somewhat of a mystery 
how each of these aspects of engagement contributes to achievement, separately and 
in conjunction. Not all students who are engaged highly in each or all of these facets 
achieve at optimal levels, and some students who may lack in one form of engagement 
may utilize other forms to compensate and achieve (Skilling et al., 2016). 
The purpose of this study is to examine aspects of engagement longitudinally, 
modeling the longer-term effects of these variables on each other—i.e., on “growth” 
of mathematics engagement in a course, and their mutual influence on achievement. 
As part of this model, we are also especially concerned with the perceived 
supportiveness of the teacher, and the perceived supportiveness of peers. These factors 
are hypothesized to contribute to classroom climate in such a manner that students’ 
engagement may be impacted positively. 
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Teacher Support and Student Engagement in High School Mathematics 
Recent views about engagement from the motivation literature, as well as from emotion 
research and teacher education hold that engagement is largely a function of the context 
within which students learn (Strati, et al., 2017). In mathematics classrooms, the 
teacher can influence norms of interacting that enhance students’ sense of belonging, 
as well as their cognitive and affective engagement with the mathematics. This is 
accomplished through the instructional support a teacher provides such as the selection 
and orchestration of mathematics tasks, scaffolding discussions, and providing 
assistance and feedback. Strati, et al., term this type of support to be instrumental in 
that it is directly associated with the mathematics content and its experiencing.   
When students perceive that their teacher is supportive in this manner, they also tend 
to report greater efficacy and effort, lower anxiety, and  greater intrinsic motivation in 
math. These motivational effects in turn, appear to directly effect achievement and 
ongoing commitment to schooling (Klem & Connell, 2004). 
In short, when teachers are perceived as helpful, providing feedback, and caring with 
fair, respectful treatment of their students, students seem to respond positively, engage 
deeper cognitively, emotionally, and behaviorally, and achieve better as a 
consequence. 
Peer Support and Student Engagement in High School Mathematics 
Like teacher support, peer social support has been shown to impact students’ beliefs 
about and patterns of engagement in mathematics. In a highly cited report, Mata, et al,, 
(2012) studied the perceived peer support as reported by 1,719 Portuguese students, 
from fifth-to-twelfth grade and their interest and enjoyment of the subject, and with 
their perceived competence in mathematics--a construct nearly identical to 
mathematical self-efficacy. Across those grade bands, they found that peer social 
support, measured by items such as “In math class students want me to do my best in 
math work,” was positively associated with their perceived competence, interest and 
enjoyment in mathematics, and notably, the perceived support of the teacher. These 
results along with others (Froiland & Davison, 2016) show that peers influences their 
friends’ interest in mathematics and through that, their mathematics achievement (see 
also Ahmed, et al., 2010). 
Variables Making Up Student Engagement 
There is considerable evidence that peer support and teacher support together create a 
learning environment that facilitates the development of self-regulation strategies, 
positive mathematical self-efficacy, and personal interest in mathematics (Cleary, et 
al., 2017; Hidi and Renninger, 2006). fThis robust self-efficacy and personal interest 
in mathematics, in part, influences achievement positively.  
The remainder of this manuscript will describe a longitudinal study examining the 
relationships among social engagement domains--teacher and student support—and 
student engagement factors in the cognitive and affective domains including 
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mathematics self-efficacy, interest/enjoyment in mathematics, and mathematics self-
regulation.  
METHOD 
Participants 
One hundred fourteen students assented and received parental consent to participate in 
the study during the 2018-2019 academic year. All students were drawn from schools 
in a large urban school district in the Southwest US. 47 percent of the students 
identified as male, 53% identified as female. 82% of the students identified as 
Hispanic/Latinx, 18% identified as Caucasian/White, 5% identified as 
Black/African/African American, 4% identified as American Indian/Alaska Native, 
3% identified as Asian or Asian-American. sAll students were enrolled in a 
mathematics course designated as “first-year high school mathematics,” focused on 
traditional Algebra 1 content. 
Instrument 
The Long-Term Engagement Survey consists of items that assess many aspects of 
student engagement. A full description of the psychometric properties of this 
instrument can be found in (Zhang, et al., 2019). 
Four scales were utilized as indicators of mathematics motivation: (1) math personal 
interest (comprised of thirteen 7-point Likert scale items, 𝛼 = 0.91).		(2) mathematics 
self-regulation, (comprised of thirteen 7-point Likert scale items, 𝛼 = 0.84;	and (3) 
mathematics self-efficacy, i.e., the extent to which students feel capable of doing math 
(comprised of eighteen 7-point Likert scale items 𝛼 = 0.87).  
A teacher support scale consisted of 12 Likert items assessing instrumental and 
emotional support, and care. Example items included “My math teacher tries to 
understand how I see things before suggesting a new strategy” (instrumental support), 
and “My math teacher recognizes us for trying hard” (emotional support). 
The student support scale consisted of 7 Likert items assessing belonging and 
classmates’ interest and caring. Example items included “My classmates in my math 
class care about how well I learn.” Reliability of the teacher and peer support scales 
were high (Teacher Support 𝛼 = 0.95, Student Support  𝛼 = 0.84). 
The Achievement Measure consisted of the state-mandated, multiple-choice, high 
school mathematics proficiency examination, administered at or near the end of the 
Spring Semester, 2019. The measure covered content from the traditional High School 
Curriculum through second year Algebra. 
Procedure 
The Long-Term Engagement Survey was administered twice in the students’ first-year 
high school mathematics course: Once near the beginning of the course to assess 
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students’ incoming sense of engagement, peer and teacher support, and once near the 
end of course, but prior to state-level achievement testing.  

 
Figure 1: Hypothesized relationships among teacher and student support, 

mathematics engagement, and achievement over time. 
RESULTS 
Our model of the relationships and flow of effect of engagement factors maps the 
hypothesized influence of students’ perceptions of their earlier experiences in 
mathematics with variables labeled with subscript 1, on their later experiences, labeled 
with subscript 2 (see Figure 1). The flow of time in Figure 1 is from left to right, with 
prior beliefs impacting subsequent beliefs. Achievement is hypothesized to be 
dependent primarily on engagement as it is manifest at the end of the year, just prior to 
the state-level assessment being administered (see Davis, 1985). Teacher and peer 
support are hypothesized to be reciprocal effects in both time periods (e.g., Klem & 
Connell, 2004), and engagement variables are hypothesized to influence each other and 
are therefore modeled as covariates. 
Longitudinal Path analysis was performed with the proposed model defining the 
regression paths. With the relatively small ratio of sample size to parameters being 
estimated, this facilitates model convergence at the price of lost sensitivity. With the 
excellent reliability and factor structure of our instrument, we assess this to be an 
acceptable tradeoff. All models were estimated in MPlus Version 8 (Muthen & 
Muthen, 2017). 
Table 1 shows the standardized regression coefficients for the hypothesized path 
model. Figure 2 illustrates the significant paths for the model, with coefficient 
estimates and their respective standard errors.  
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 Dependent Variables 
 Fall 2018 Spring 2019 
Independent 
Variables 

Teach 
Supp 1 

Peer 
Supp 1 

Pers 
Int 1 

Self 
Reg 1 

Self-Eff 
1 

Teach 
Supp 2 

Peer 
Supp 2 

Pers 
Int 2 

Self 
Reg 2 

Self 
Eff 2 

Ach 

Teach Supp 1 
 0.96* 0.23* 0.11 0.06      

 

Peer Supp 1 
  0.21 0.29* 0.07      

 

Pers Interest 1 
       0.58* -0.05 0.04 

 

Self Reg 1   0.38*     -0.06 0.41* -0.03 
 

Self-Eff 1 
  0.20* 0.22*    -0.16 -0.12 0.28* 

 

Teach 
Supp 2 0.63* -0.16     0.50* 0.02 0.08 0.09 

 

Peer Supp 2 0.23* 0.32*      0.47* 0.34* 0.21* 
 

Pers Interest 2           6.56* 
Self Reg 2 

       0.15*   
-3.70 

Self Eff 2 
       0.10* 0.10*  

-8.94 

*Significant p<0.05. 
Table 1: Standardized Regression Coefficients for Hypothesized Paths. 

With regards to the impact of students incoming feelings of math engagement on their 
feelings at the end of the year, we can see significant direct effects of Personal Interest, 
Math Self-Regulation, and Math Self-efficacy on their respective counterparts at the 
end of the year. Within each time point, these variables are strongly correlated, but 
across time, they appear to primarily impact within-variable change. 

 
Figure 2: Final Path Model showing significant paths. 

The impact of perceived Teacher Support and Peer Support shows strong evidence of 
mediation effects. The regression coefficients between Teacher Support and Peer 
Support at each time are very high. At the beginning of the Fall semester, teacher 
support showed a moderate impact on Personal Interest and Math Self-efficacy, with 
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non-significant relationships for Self-Regulation. For its part, Peer Support in the Fall 
Semester appeared to impact Self-Regulation primarily. With the strong relationship 
between Peer and Teacher Support, it is unclear exactly how direct these paths may be.  
Likewise in the Spring of 2019, we find a strong relationship between feelings of Peer 
and Teacher Support. But in Spring, 2019, it is apparent that Teacher Support is 
mediated through Peer Support. Peer Support shows strong relationships with Personal 
Interest and Self-Regulation, with a moderate relationship with Self-Efficacy. 
Finally, with respect to mathematics Achievement, Personal Interest in Mathematics 
appears to be the strongest impact, of the measured variables. This is consistent with 
prior research showing that Personal Interest in mathematics is among the most 
influential determinants of math Achievement. 
The model tested showed excellent fit (see Hu & Bentler, 1999). The Chi-square to 
degrees of freedom ratio was 1.49. CFI was estimated at 0.98, and TLI was estimated 
at 0.95. RMSEA was a bit high for this analysis at 0.066. However, this measure 
becomes inflated at lower degrees of freedom. When the standardized coefficients are 
assessed, the SRMSR is within acceptable limits at 0.049. 
DISCUSSION 
Taken together, results indicate that teacher and peer support are mutually impactful in 
the high school classroom, interacting with each other to create a classroom climate 
that can be facilitative or obstructive to the development of productive mathematics 
engagement. The impact of these variables are mediated in a number of ways as 
students negotiate the first year of high school, but Peer Support especially appears to 
become more important over time as a potential determinant of mathematics 
engagement.  
Achievement as an outcome in freshman mathematics is impacted in a highly complex 
manner by these interacting facets of the classroom climate. Evidence from this study 
supports earlier reports that as students transition into the comprehensive high school, 
their attention to peers, their status, and the social aspects of schooling become more 
important than the perceived influence of the teacher (Reindl et al., 2015). Our results 
suggest that teacher support can impact students’ beliefs about the supportiveness of 
their peers, but that these social factors are mediated through students developing 
personal interest in mathematics to ultimately impact achievement. 
At this time in students’ lives, it appears that math Self-efficacy appears to mediate 
teacher support, influencing subsequent mathematics achievement as well as interest. 
The current study adds to our understanding of how these incoming beliefs play out as 
the new norms of high school mathematics are introduced and reinforced in students’ 
first year. Yu & Singh (2018) suggest that positive interactions among teacher and 
students influence students building stronger beliefs about their cognitive capability 
(i.e., self-efficacy), and enhancing their personal interest in the subject matter. This 
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increase in efficacy in turn further reinforces interest, which directly supports their 
achievement in mathematics.  
Some caveats must be stated about the interpretation of these results. First, we modeled 
the variables in this study as measured variables, not as latent variables. This was for 
practical reasons due to low sample size relative to the number of parameters we 
estimated in the model. Inevitably due to this lack of power, some of the hypothesized 
paths may not have been detected, constituting Type II errors. Second, the sample itself 
is unique, reflecting urban classrooms in large public high schools in the Southwest 
US and may not reflect the motivation or classroom culture evidenced in other regions.  
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NUMBER STRUCTURE IN LEARNER WORKBOOKS 
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This paper reports on the extent to which different representational modes in current 

learner workbooks conceptually signal the structuring of number (especially base-ten 

thinking) which research shows to be vital for learners to shift from counting to 

calculating strategies. Tasks contained in two learner workbooks currently used in 

Grade 1 classrooms across South Africa, i.e. DBE and Bala Wande, were contrasted 

in light of the conceptual signalling contained in the representations used. Analysis of 

these workbooks showed that the Bala Wande workbooks had more explicit conceptual 

signalling for working with number structure, which helps to address the wide-spread 

use of counting strategies that underpin poor learner attainment on the ground.  

INTRODUCTION  

Children usually start solving simple additive problems by counting in ones and also 

develop more sophisticated calculation strategies that are not based on counting, like 

near-doubles (e.g. 6 + 7 = double 6 + 1) or bridging through ten (e.g. 6 + 7 = 6 + 4 + 3 

or 13 – 7 = 13 – 3 – 4). Developing calculation strategies builds on learners’ facility 

with structuring number, which can be described as the skilful organisation of numbers 

using number relationships, number patterns and various combinations and partitions 

of numbers (Wright et al., 2006; 2009). Developing learners’ facility with structuring 

number can be supported through the use of structured representations, that is, 

representations that can be ‘read’ as embodying a certain mathematical structure, like 

base-ten or doubles (Venkat, Askew, Watson & Mason, 2019). The importance of 

structuring number for enacting calculation strategies, and the access to structuring 

provided by structured representations, underlies this investigation into the nature of 

representations used in learner workbooks.   

The enquiry reported on here is set in a context where an over-emphasis on counting 

in ones and an over-reliance on the use of concrete/unstructured materials hampers 

progression from counting to calculating strategies (Hoadley, 2012). Empirical 

research shows widespread use of unstructured representations of number (e.g. 

counters) in South African Foundation Phase classrooms (Grades 1 to 3, i.e. 6-9 year 

old) by teachers and learners (Ensor et al., 2009), the result of which is the confining 

of learners to counting-based strategies, which are inefficient and error-prone when 

working beyond the 1-10 number range.  

NUMBER STRUCTURE AND BASE-TEN THINKING 

A key form of number structure that children learn in the early grades is the base-ten 

structure arising from our use of the base-ten decimal number system and positional 

notation (Cobb & Wheatley, 1988). Activities that build learners’ awareness of base-
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ten include learning the bonds of ten (e.g. 6 and 4, 8 and 2), adding and subtracting 10 

to/from any number (35 + 10, 62 – 10), and flexibly splitting numbers into tens and 

ones (i.e. seeing 64 as 60 + 4 and as 30 + 30 + 4).  

Base-ten thinking is a term related to structuring that stems from the body of work 

developed by proponents of RME. According to Wright and colleagues (2012), 

Freudenthal believed that “to make any progress in mathematics children must be 

inducted into base-ten thinking, developing a skilful habit of organizing numbers and 

calculations into 1s, 10s and 100s.” (p.16). Freudenthal further argued that children 

need to skilfully structure numbers and calculations using base-ten thinking in order 

for them to get a handle on working with numbers larger than twenty.  

A similar view about knowing the base-ten structure of number for working in higher 

number ranges is held by Anghileri (2006) who argues that learners who can add 10 to 

any number as a known fact is ready for 2-digit addition and subtraction. Learners who 

do not know that 32 add 10 is 42 as a known fact will need more practice with 

structured materials to establish these patterns of incrementing and decrementing by 

ten before attempting 2-digit additive problems (Anghileri, 2006). 

It is widely accepted that children need to be facile in the use of the composite unit in 

base-ten representations of number and this facility is considered to be well within the 

reach of children in the first years of school, if not earlier (Perry & Docket, 2002). As 

noted above, such fluency is not attained by many learners in South Africa and this 

paper contributes to our understanding of why this might be so. 

CONCEPTUAL SIGNALLING 

In their evaluation of a workbook as a curriculum tool, Hoadley and Galant (2019) use 

conceptual signalling to refer to the extent to which the concepts/content/skills 

underpinning tasks or activities in the workbook are made explicit. Explicit conceptual 

signalling is communicated through explanatory notes, headings, sub-headings, text 

boxes or teacher notes. In the absence of explicit signalling, the likelihood of learners 

(and possibly teachers) becoming aware of the underlying mathematics is greatly 

reduced. 

Drawing on the work of Hoadley and Galant (2019), we extend the notion of 

conceptual signalling to argue that various representations of a particular problem or 

concept may clearly signal some structure, with other representations not making the 

structure as ‘transparent’. Structured representations can be effective at signalling 

number structure like doubles, base-five or base-ten. For example, the pairwise ten-

frame in Figure 1 can signal the concepts of doubling and base-ten. Doubling, because 

eight can be seen as double 4, and base-ten, because eight can be seen as two away 

from ten – which can be linked to the number sentences ‘4 + 4 = __’ and ‘8 + __ = 10’, 

respectively.   
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Figure 1. 

By extending Hoadley and Galant’s sources of explicit conceptual signalling, we argue 

that representations in learner workbooks that exhibit mathematical structure (e.g. Part-

part-whole (P-P-W) diagrams, images of 10-frames or bead strings) can also send 

explicit conceptual signals. 

REPRESENTATIONS 

Representations play an important role in teaching and learning mathematics (Heinze 

et al., 2009) and come in many forms such as drawings and inscriptions, pictures, 

symbols and concrete objects. Researchers agree that learning how to structure number 

can be supported by the use of structured representations, initially presented as concrete 

materials and gradually ‘faded’ until these representations merely need to be imagined 

by learners to support their mental calculation (Anghileri, 2006; Wright et al., 2012). 

Examples of structured representations usually found in Foundation Phase classrooms 

include: number tracks, number charts, number lines, part-part-whole (P-P-W) 

diagrams, arrays, triad diagrams, 5-frames and 10-frames.  

Figures 2 and 3 below are two different representations of the same missing addend 

problem.  

                Figure 2.                      Figure 3.  

In Figure 3, the part-part-whole representation may enable a learner to see the structure 

in the problem as not being limited to finding a missing addend and become aware of 

the possible use of subtraction to find the solution. In the symbolic representation of 

the problem (Fig. 2) the possibility of using subtraction to find the missing addend is 

much less noticeable to young learners (who frequently add the given numbers). The 

P-P-W diagram (Fig. 3) thus conveys a stronger ‘conceptual signal’ about the 

relationship between addition and subtraction. Thus conceptual signals arising from 

structured representations can serve as an affordance to meaning making. 

The caveat must be kept in mind that children do not simply ‘see’ a number concept or 

relationship embodied in a representation, but rather become aware of these concepts 

and relationships as they use these representations in their number work (Ellemor-

Collins & Wright, 2009). One can say that learners become aware of number structure 

through the process of structuring number. For example, a learner who shows 32 on an 

abacus by counting in ones is not aware of the 10-ness embodied in the design of the 

abacus. But, when encouraged to show 32 by counting “ten, twenty, thirty, thirty-two” 

+ 15 = 40

? 15

40



Morrison, Askew 

 

3 - 206 PME 45 – 2022 

 

while moving over 3 lots of 10 beads and 2 beads on the abacus, the learner becomes 

more aware of the 10s structure of the abacus and can learn over time how to use this 

10s structure for efficient enumeration. The structured representation and structuring 

actions on the abacus lead to understanding structure.   

The importance of using certain modes of representation to encourage the structuring 

of number prompted using the notion of conceptual signalling to investigate to what 

extent representations used in workbook tasks might facilitate learners’ use of base-ten 

thinking. 

RESEARCH AIM AND QUESTIONS 

In a context where learners’ main access to mathematics structure is through 

workbooks, the aim of this study was to examine to what extent do workbooks 

conceptually signal base-ten thinking through the representations used in tasks. To 

achieve this aim we examined current Grade 1 mathematics workbooks used in South 

Africa, namely, the Department of Basic Education (DBE) Workbook and the Bala 

Wande (BW) Workbook (or Learner Activity Book). The selection of these workbooks 

was guided by the fact both workbooks are currently used in government schools: the 

DBE workbook nationally, the BW workbook in 3 of SA’s 9 provinces. The specific 

research questions guiding this investigation were: 

 How do two current workbooks used in Grade 1 conceptually signal base-ten 

thinking through the representations used?  

 What are the implications of different types of conceptual signalling?  

METHODOLOGY  

Following Mason and Johnston-Wilder’s (2006) distinction between task and activity, 

a ‘task’ in this report refers to what is presented in the pedagogical text as the focus of 

attention (these can be broken down into smaller parts) while the ‘activity’ describes 

what happens in the enactment of the task. The DBE and BW Grade 1 mathematics 

workbooks for 2021, covering all four school terms, were analysed and contrasted for 

this report; these workbooks were obtained in print and digital format.  

The BW workbooks for Grade 1 are clearly divided into weeks and days. The 5th day 

of every week is for assessment and/or consolidation. All the activities planned for one 

lesson are seen as different parts of one task, therefore 1 day = 1 task. Most of the tasks 

in the BW workbooks consist of worksheets stretching over 2 pages. The BW 

workbook series for Grade 1 consists of 185 tasks in total, divided across Terms 1 to 4 

as 45, 50, 50 and 40 tasks, respectively. The bilingual Sepedi-English version of the 

BW workbooks were used for consistency when referencing page numbers.  

The DBE workbooks for Grade 1 are presented as two volumes: Book 1 for the first 

two terms and Book 2 for the last two terms. Book 1 and 2 each contain 64 discrete 

tasks: 32 tasks per term spread over eight weeks, i.e. four tasks per week (DBE, 2011 
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as cited in Fleisch, et al., 2011). Most tasks in the DBE workbooks consist of 

worksheets covering 2 pages (a few extend to 4 pages).  

To start the process of analysis, each workbook series was carefully read to determine 

their overall structure. Using the task as the unit of analysis, a proforma was developed 

to capture the following data in tabular form: the total number of tasks per term, and 

the constitution of tasks: topic, intended activities and nature of representations used 

(i.e. structured or unstructured). This data was captured for DBE Workbook 1 (for 

Terms 1 and 2), DBE Workbook 2 (for Terms 3 and 4) and the Sepedi-English version 

of the four BW workbooks. Tasks in the BW workbooks that were used for assessment 

purposes were omitted because there are no comparable assessment tasks in DBE 

workbooks. 

After this preliminary data capture, we re-looked at each task that used a structured 

representation and recorded additional information about the task: the number range 

used, the purpose of the structured representation/s (for illustration or for learners to 

act on/use to calculate an answer) and the number structure or number relationships 

signalled by the structured representation/s. We also made a note of tasks that used 

more than one structured representation for the same activity.  

We were also interested in the frequency with which various structured representations 

were used in the workbooks. To this end we counted the number of times different 

structured representations were used across each term in both workbook series. If the 

same representation is used more than once in a task – e.g. BW Term 1 Week 5, Day 

2, P-P-W diagrams are used in the whole class activity (p52), and the same 

representation is used again in the independent activity (p53) – this is counted as one 

instance of P-P-W used. 

FINDINGS  

The number of tasks in each workbook are shown per term, side-by-side in Table 1. 

Also recorded in Table 1 are the number of tasks that make use of an image of a 

structured representation and the number of tasks that use more than one structured 

representation for the same activity.  

Table 1: Info on tasks in DBE and BW Workbooks. 

 Bala Wande Total DBE Total 

Term 1 2 3 4  1 2 3 4  

Number of tasks 45 50 50 40 185 32 32 32 32 128 

Tasks with 1 struc. rep. 28 18 34 16 96 3 11 16 10 40 

% of structured reps. 62 36 68 40 52% 9 34 50 31 31% 

Tasks >1 structured rep. 13 0 5 0 18 0 4 2 3 9 

% using multiple reps. 29 0 10 0 10% 0 13 6 9 7% 
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From Table 1 it is evident that 96 of the 185 tasks in BW workbooks (+/- 52%) use an 

image of a structured representation while 40 of the 128 tasks in the DBE workbooks 

(+/- 31%) do so. About 10% of tasks in BW workbooks use more than one structured 

representation for one activity while about 7% tasks in DBE workbooks do so.  

Table 2 shows the various structured representations present across both series of 

mathematics workbooks and the number of times these were used in tasks. Some tasks 

used more than one representation, thus the number of tasks that use an image of a 

structured representation (Table 1) does not match the number of instances a certain 

representation was used (Table 2). All nine structured representations used in the 

analysis are present in the BW series whilst five are present in the DBE workbooks. 

The 10-frame is the most frequently used structured representation  in the BW series 

(50 instances) but not used at all in DBE workbooks. Other structured representations 

present in BW workbooks but absent from DBE workbooks are the array, P-P-W, triad 

diagram and 5-frame.     

 BW Total DBE Total 

Terms 1 2 3 4  1 2 3 4  

Array 6 - - - 6 - - - - - 

Hand or foot 2 - - - 2 - 4 7 1 12 

Number chart  - - - 2 2 - 2 2 9 13 

Number line 10 - 10 4 24 3 6 10 5 24 

Number track 2 4 5 - 11 - 2 7 4 13 

P-P-W diagram 8 13 6 10 37 - - - - - 

Triad diagram 9 2 1 - 12 - - - - - 

5-frame 5 - - - 5 - - - - - 

10-frame 18 3 25 4 50 - - - - - 

Total 60 22 47 20 149 3 14 26 19 62 

Table 2: Structured representations used in workbooks. 

Taken together, Tables 1 and 2 show that the BW series of Grade 1 mathematics 

workbooks contain a wider range (9 to 5, respectively) and a higher frequency (52% to 

31%, respectively) of structured representational use across all tasks compared to the 

DBE workbooks.  

DISCUSSION AND IMPLICATIONS 

The use of structured representations of number can signal important number concepts 

or relationships that support learners’ use of calculation strategies that are not based on 

counting. For many low attainers, who rely on inefficient and error-prone counting 

strategies, the use of structured representations can be the bridge to structuring number 
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which in turn provides access to more sophisticated calculation strategies and working 

in higher number ranges. Using structured representations in an every-day resource 

like a workbook is one way of ensuring that learners have multiple opportunities to 

notice and use number structure.  

In our investigation into how two current learner workbooks conceptually signal 

number structure, especially base-ten thinking, we found that the Bala Wande 

workbooks explicitly signal number structure by using structured representations more 

frequently than the DBE workbooks. This implies that learners who used the Bala 

Wande workbooks had greater access to representations that foreground number 

structure, and therefore had a greater chance of structuring number and using 

sophisticated calculation strategies, than learners who used the DBE workbooks.  

Research shows that learners who are exposed to multiple representations of a concept, 

and who learn to seamlessly shift between representations, develop deeper conceptual 

understandings (Heinze, et al., 2009). Bala Wande workbooks provide stronger 

conceptual signals of representational flexibility than the DBE workbooks because 

they use a wider range of representations and use multiple representations for one task 

to a larger extent than their counterpart. The implication is that learners who used the 

former had a greater chance of shifting between multiple representations and 

developing deeper conceptual understandings than those who used the latter. 

CONCLUSION 

“Tasks lie at the centre of learning and teaching mathematics” (Askew, 2016, p1) thus 

their importance cannot be downplayed. In this report, tasks in Grade 1 learner 

workbooks were considered in light of the affordances provided through the conceptual 

signalling of number structure in the representations used. By focusing solely on the 

design of tasks, this report cannot claim that the presence or absence of a textual feature 

implies adequacy or inadequacy in the teaching/learning associated with such tasks. 

This report highlights the affordances and opportunities that are provided through 

workbook tasks that make use of a specific textual feature (i.e. structured 

representations), irrespective of implementation. This sends a strong message to 

workbook designers about being aware of the conceptual signalling in representations 

selected for tasks and ensuring that these signals align with their intentions for tasks. 

This is also a wake-up call to consumers of workbooks (teachers, parents, etc.) - closer 

attention must be paid to conceptual signals in representations used in tasks as this 

affects children’s opportunities to learn.  
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INTERLINEAR MORPHEMIC GLOSS (IMG) OF FRACTION 
NAMING CONVENTIONS IN ISIXHOSA 

Ingrid Mostert1, Nicky Roberts2 
1University of Johannesburg, 2University of Fort Hare 

 
Many learners of mathematics struggle with fractions, frequently considering fractions 
to be two different unrelated numbers. In this paper four mathematics texts, translated 
From English into isiXhosa, are analysed in order to describe isiXhosa fraction 
naming conventions. Interlinear morphemic glossing (IMG) provides addition 
information, which goes beyond the idiomatic translation, providing relevant 
information for both the English and isiXhosa texts. The analysis shows that there are 
two primary conventions. One convention is expressed with the denominator first as in 
‘fifths.of-which-there-are-4’, the  other is more similar to the English ‘4 over five’ but 
makes explicit a relationship between 4 and 5. The affordances and constraints of both 
isiXhosa fraction naming conventions are described in relation to the English naming 
conventions.  
INTRODUCTION 
A research agenda for ‘Language in Mathematics Education’ (LiME), has recently 
been outlined in Sfard (2021) as comprising of six interrelated themes: (1) linguistic 
mechanisms that generate mathematical objects; (2) The role of language in the 
historical emergence of mathematical discourses; (3) linguistic relativity of 
mathematics, (4) linguistic changes in the process of learning mathematics (5) 
linguistic gaps in the classroom and (6) dialogic engagement as a protection from 
falling into linguistic gaps. This research agenda asserts that mathematics is not 
universal, but is always expressed in a language. How mathematics is expressed differs 
remarkably across language groups. Previously language was generally considered to 
be the background noise, or transparent, in mathematics classrooms. This was partly 
because mathematics was expressed and studied in Indo-European language groups 
which have much in common with each other, and in largely linguistically homogenous 
classrooms. However, as the world has globalized, mathematics education research has 
become alive to language diversity. Mathematics education research now attends to the 
need to teach mathematics to English Language Learners (children who learn 
mathematics in English but draw on another language at home and for thinking), as 
well as to the richness evident when attending to the diversity of mathematics 
expressions which enriches both the mathematics and the mathematics pedagogy.   
Fractions are internationally recognised as being difficult for learners (Charalambous 
& Pitta-Pantazi, 2007). One of the primary reasons why learners struggle with fractions 
is because of their tendency to see fractions as two different whole numbers with no 
particular relationship (Charalambous & Pitta-Pantazi, 2007). In order to reduce the 
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possibility of this misconception developing, the South African Foundation Phase 
Curriculum and Assessment Policy Statement (CAPS) states that  
When writing about many fraction parts. e.g. 3 halves, 3 quarters, write this as the 
figure and the word. The expression 3 over 2 or 3 over 4 is meaningless and it is best 
to leave this symbolism to the Intermediate Phase. (Department of Basic Education, 
2011, p. 255).  
This naming convention differentiates the fractional part from the number of the 
fractional parts. While this naming convention and its affordances are available in 
English, it doesn’t stand to reason that the convention and its affordances are available 
in other languages, such as the other official South African languages. 
Even though there is a small body of research pertaining teacher preparation for 
teaching mathematics in isiXhosa (Roberts & Alex, 2020) and the naming of whole 
numbers in some of South Africa’s other official languages (e.g. Feza, 2016, Poo, 2017, 
Mostert, 2019), there is no research about the naming of fractions. This paper sets out 
to address this research gap by considering the naming of fractions in one African 
language, namely isiXhosa. In particular this paper will answer the following question: 
How are fractions named in isiXhosa and what are the affordances and constraints of 
the different naming conventions?  
By contrasting two languages with contrasting structures, we aim to reflect on two of 
Sfard’s (2020) LiME themes: (1) “linguistic mechanism used to generate the 
mathematical object” of ‘a faction’, and (5)  make explicit the related “linguistic gaps” 
which are likely to arise in isiXhosa, and English dominant classrooms. In so doing, 
we hope to better equip teachers of mathematics in English, to better support the both 
the English speakers and English Language Learners in their classrooms. Building on 
the examples given by Edmonds-Wathen (2019), this study provides an example of 
how Interlinear Morphemic glossing (IMG) can be used when comparing translations 
of canonical texts with the original language and the value of such a comparison.  
THEORETICAL FRAMING 
We briefly discuss the concept of a fraction as it is construed mathematically before 
discussing naming fractions naming in particular languages.  
The mathematical concept of fractions is made up of a number of subconstructs, where 
Kieren (1980) proposed five subconstructs – fraction as part-whole relation, as ratio, 
as quotient, as measure and as operation – all of which were necessary to understand 
the concept of fraction. The two subconstructs relevant to this paper are ‘part-whole’ 
and ‘measure’. The part-whole subconstruct is the central construct and is closely 
linked to partitioning. The measure subconstruct views a fraction as unit that can be 
repeated, and is therefore closely related to fraction addition (and subtraction) 
(Charalambous & Pitta-Pantazi, 2007).  
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Different languages have different naming conventions for fractions. One overarching 
difference between naming conventions is the word order – whether the numerator or 
the denominator is read first (Bartolini Bussi, Baccaglini-Frank, & Ramploud, 2014).  

European languages read fractions such as !
"
 from top to bottom, saying the numerator 

first and then the dominator [N-D]. As such these languages mention the number of 
pieces to be taken first, and then number of pieces the whole should be partitioned into. 
As an example in English, the numerator is read first, and the dominator follows [N-
D]: ‘4 fifths’. This is an example of discursive “compactification” (Sfard, 2008) where 
the mathematical process “start with a whole, partition the whole into 5 equal parts; 
then take 4 of those parts” is reified to become an object “4 fifths”.  
In contrast, many Asian languages read the denominator first and the numerator 
afterwards [D-N]. It is possible to express a fraction name in English where the 
denominator is read first: ‘fifths.of-which-there-are-4’ (or ‘fifths.that-are-4’). The 
latter is not in common use, but serves to demonstrate to the English speaker, how a 
fraction could be expressed with the denominator following the numerator. Bussi, 
Baccaglini-Frank and Ramploud (2014) suggest that the denominator first articulation 
might help learners conceptual understanding, as they know how to partition the whole, 
before choosing the parts.  
METHODOLOGY 
In this paper the isiXhosa translations of four mathematics education texts for grades 
1-3 are analysed: the curriculum and assessment policy standards (CAPS); and three 
sets of the learner workbooks (produced by the Department of Basic Education, the 
National Education Collaboration Trust (NECT); and the Nelson Mandela Institute 
(NMI). All four texts were written in English and translated into isiXhosa. 
To answer the question, examples of named fractions were identified in each text. 
Similarities and differences between the apparent naming conventions were noted in 
order to categorise the conventions. Then a simplified version of IMG - a form of 
translation used in linguistics in order to present the structure of the source language 
and not only the meaning - was applied. IMG provides a means of presenting the 
structure of a phrase from the source language in a target language. If only an idiomatic 
translation is provided, the structure of the source language is often lost (Edmonds-
Wathen, 2019).  
We draw on Edmonds-Wathen (2019)  to apply a four level IMG. In this study, the top 
level gives the source language, isiXhosa, in sentence form. The second level gives the 
isiXhosa morphemes (the smallest unit of a language that has its own meaning), the 
third level gives the morphemic gloss in English (the target language), and the final 
level gives a free translation in English. The following provides an example of IMG 
for the number word 37: 

Level 1:  amashumi amathathu anesixhenxe 
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Level 2:  ama-shumi ama-thathu  a-ne-sixhenxe 
Level 3:  tens that.are-three that.are-with-seven 
Level 4:  ‘thirty seven’ 

Note that the italics denotes isiXhosa words or morphemes. We then attended to the 
noun classes and adjectival stems used for numbers. This provided further detail on 
whether, and when the name of fraction was being construed, as either a process (a 
whole partitioned into five equal parts, then take 4 parts) or as an object in its own right 
(4 fifths). 
To identify affordances and constraints, both isiXhosa naming conventions were 
analysed in terms of the five different conceptions of fractions as originally formulated 
by (Kieren, 1980). 
FINDINGS AND DISCUSSION 
For clarity we focus particularly on the fraction name for ‘4 fifths’. This is intended to 
enable the English reader, who is unfamiliar with isiXhosa, to engage with the isiXhosa 
language structure. To do so we draw on Mostert (2019) to inform the reader of the 
relevant number names for whole numbers in isiXhosa. 
In isiXhosa the number ‘four’ is expressed as a numeral noun: isine, as an adjectival 
stem: -ne, or as said in the forward number word sequence (the counting song) as (zi-
)ne.  The number ‘five’ is expresses as a numeral noun: isihlanu, as an adjectival stem 
-hlanu, and in the forward number word sequence as (zi)ntlanu. 
An analysis of textbooks and workbooks reveals that there are a number of ways of 
referring to fractions in isiXhosa. There are however two primary naming conventions 
which correspond to the two English naming conventions and are discussed in terms 
of their affordances and constraints. 
Naming convention A: Number of fractional pieces naming (D-N) 

The first isiXhosa fraction naming convention articulates the denominator first.  !
"
  is 

named ‘izintlanu ezine’ which can be directly translated as ‘fifths-they.are-four’ and 
which means ‘four fifths’. The interlinear morphemic gloss for this is as follows: 

Level 1: izintlanu ezine 
Level 2: izi-ntlanu  ez-ine  
Level 3: (things)-they.are-five  (things)-they.are-four 
Level 4: ‘four fifths’ 

This convention using the basic isiXhosa noun in its plural form, drawing on noun class 
10, -izinto (things). The prefix izi- denotes the plural form, in contrast to the prefix isi- 
for the singular form. The word ‘ezine’ replaces ‘isine’ as a result of the pronunciation 
from the vowel sound (at the end of -hlanu).   



Mostert, Roberts 
 

PME 45 – 2022 3 - 215 
 

In this convention, as in English, the fraction piece (or unit) is an object that can be 
operated on. In this sense the naming convention can support the measure subconstruct 
of fractions. But notice the invariant structure evident at “ Level 3: (things)-they.are-
five  (things)-they.are-four”. Working from the isiXhosa towards the English, with 
the knowledge that this phrase refers to fraction names, lead to a Level 4 translation of 
‘four fifths’. However in the absence of the context knowledge that what is being 
translated is a fraction, this could lead to a Level 4 translation of ‘four fives’. Whether 
one is referring to 4 fives, or 4 fifths has to be deduced from the broader context. 4 
fifths is clearly mathematically distinct from 4 fives, yet is not discernible linguistically 
(in the absence of broader context). We think this is a linguistic gap for isiXhosa 
speakers which ought to be explicitly discussed in isiXhosa mathematics classrooms.   
Naming convention B: Number ‘in relation’ to number (N-D) 

The second isiXhosa fraction naming convention articulates the numerator first. !
"
 is 

named ‘isine kwisihlanu’ which can be directly translated as ‘four in/on/at/by five’ and 
which means ‘four out of five’. This is a ‘compactification’ (Sfard 2021) of the 
mathematical process ‘take four out of the five equal parts’ which is ‘objectified’ (Sfard 
2021) to be a noun depicting its number symbol: ‘four-over-five’. The IMG for this is 
as follows: 

Level 1:  isine kwisihlanu 
Level 2:  isi-ine ku-isihlanu 
Level 3:  a.four on-a.five 
Level 4:  ‘four over five’ 

This convention uses the isiXhosa numeral noun (a number). The prefix ku- becomes 
kwi- when before an i, and denotes a relationship (numerator on denominator).  
It is difficult to learn from a single example, and to note the underlying structure of 
each convention. We therefore tabulated unitary fractions as named using each naming 
convention. We constrained the number of fractional pieces to one, and varied the 
fractional parts sequentially. 
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Table 1: Unitary fractions named according to two naming conventions, in isiXhosa 
and in English. 

Creating this tabulation revealed the lack of regularity in the naming of fractions in 
English for the ‘number of fractional pieces’ convention. In English the fractional 
pieces are named using ordinal numbers (third, fourth, fifth etc)’ however this is not 
applied consistently in the case of 2 and 4. Using the ordinal number naming 
convention, ‘1 half’ should be ‘1 second’. Similarly, ‘1 quarter’ should be ‘1 fourth’. 
Given the use of ‘second’ both as an ordinal number name of 2, and as a unit of time, 
this is likely “linguistic gap” (Sfard 2021) for English Language Learners. Attention 
should be drawn to the English words – half, second, fourth, and quarter to mitigate 
against this gap. 
Next we tabulated the two conventions for different numbers of fifths. We constrained 
the fractional parts to fifths and varied the number of fractional pieces sequentially. 

 
Table 2: Different numbers of fifths, named according to two naming conventions, in 

isiXhosa and in English. 
In Table 2, the English fraction names are regular for both conventions. The isiXhosa 
fractions names are consistent within each convention, but when comparing the two 
conventions with each other there are notable differences. For the ‘number of fractional 
pieces’ convention the nominal noun class is used (izi-), for a generic set of “things” 
(noun class 1), however for the ‘ number in relation to number’ or ‘x out of y’ 
convention the numeral noun is used for both the number of parts, and for the fractional 
part. These whole number names are related by the prefix kwi- which denotes the 
relationship (‘on’ or ‘over’) between them.   
Affordances and constraints of the two naming conventions 
The first affordance for the ‘number of fractional pieces’ convention in both isiXhosa 
and in English, is that the fraction piece (or unit) is an object that can be operated on. 
In this sense the naming convention can support the measure subconstruct of fractions 
referred to by Kieran (1980). The second affordance relates to word order. Because 
adjectives follow rather than precede nouns in isiXhosa, the word order in this 
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convention is denominator-numerator (D-N). This is similar to many Asian fraction 
naming conventions (e.g. Japanese, Korean), which first specify how to partition the 
whole before specifying how many pieces to choose. However, this may in fact being 
a constraint as within the South African context where learners need to transition to 
English, and the isiXhosa D-N word order is the reverse in English, thus potentially 
making it more difficult for isiXhosa learners to transition to English. A second 
constraint relates to the ambiguity of the names of the fractional parts. In English, 
fractional parts are named using ordinal numbers (third, fourth, fifth etc) which is an 
affordance, although this is constrained in English by the irregularity relating to the 
naming of halves and quarters. In isiXhosa the nominal form of the number (isibini, 
isithathu, isine etc) is used instead of the more common ‘adjectival form’ (zimbini, 
zintathu, zine etc) (Mostert, 2019). However this naming is ambiguous as ‘izihlanu 
ezine’ can be translated both as ‘four fifths’ and as ‘four fives’, which is the third 
constraint. 
The ‘number in relation to number’ convention in both isiXhosa and in English, relates 
to the part-whole subconstruct, particularly the variation which specifies that parts are 
being referred to, ‘four pieces out of five pieces’. The process by which a fraction is 
created is explicit. This is the fundamental subconstruct that all others rest on, this is 
one affordance of this naming convention. Another affordance is the fact that the word 
order (D-N) is the same as both English naming conventions, thus potentially making 
the transition to English easier. However, the word order is also one of the constraints 
of this convention as it follows the Western convention of first specifying the number 
of parts before specifying the size of those parts. Even though the isiXhosa naming 
convention is similar to the English ‘4 over five’, the fact the prefix kwi- is used 
establishes a relationship between the two numbers, thus possibly reducing the 
likelihood that fractions are seen as two separate numbers. However, this naming 
convention does not support the measure subconstruct and therefore adding fractions 
is not as easy. 
CONCLUSION 
This paper has provided an initial description of two isiXhosa fraction naming 
conventions, appearing in four foundation phase texts. The two conventions differ both 
superficially – the order in which the numerator and the denominator are referred to is 
reversed – and more fundamentally. The first convention points to the part-whole and 
the measure subconstructs identified by Kieran (1980), while the second convention 
points to the part-whole subconstruct. The two naming conventions have affordances 
and constraints. If South African learners who are taught in African languages are to 
fully benefit from home language instruction, it is important that teachers are equipped 
to leverage these affordances and mitigate these constraints. It is also important that 
teaching and learning texts are consistent in the way in which they name fractions.  
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TEACHER LEARNING ABOUT EXEMPLIFICATION IN 
GEOMETRY THROUGH LESSON STUDY 

Lisnet Mwadzaangati, Shikha Takker, Jill Adler 
University of Malawi, University of Witwatersrand 

 
We explore aspects of Malawian teachers’ learning in their first encounter with Lesson 
Study (LS) professional development. Experienced secondary mathematics teachers 
from two schools participated in a theory-guided LS focused on geometry. Using data 
collected during the first LS cycle, we examined dimensions of variation of geometry 
examples made available, and changes in example sets. Findings show teachers’ take-
up of two dimensions of variation in the initial lesson plan, with the third dimension 
coming into focus during lesson reflection. We argue that theory-guided LS can 
support teachers to strengthen their knowledge and use of example sets in geometry. 

INTRODUCTION 
In Malawi, geometry learning is considered as very challenging (Ministry of Education 
Science and Technology [MoEST], 2020). One of the aspects of teaching geometry is 
using diagrams that exemplify geometric objects and properties. Exemplification has 
been advocated as an important teaching practice (e.g. Adler & Alshwaikh, 2019; 
Watson & Mason, 2006), suggesting possibilities for supporting the teaching of 
geometry. The broad question we pursue in the LS project is: how can we organise 
professional development (PD) to support teachers’ learning of exemplification in 
geometry? PD using Lesson Study (LS) is relatively new in Malawi and to date mainly 
conducted with primary mathematics teachers and teacher educators (Fauskanger, 
Jakobsen & Kazima, 2019). In LS, teachers undertake collaborative research to reflect 
on and improve their teaching (Lewis et al., 2006). As a PD practice, LS has been 
adapted and implemented in many countries and in geometry (Fujii, 2014; Huang & 
Leung, 2017). We build on these studies and respond to the call for theory-guided LS 
by adapting and using a Mathematics Teaching Framework (MTF) that structured LS 
in algebra in low-income South African secondary schools (Adler & Alshwaikh, 2019) 
to introduce LS in secondary level geometry in Malawi. MTF includes a focus on 
exemplification and draws directly from variation theory (e.g. Marton & Tsui, 2004) 
to enhance generalising about an object of learning through focusing on what changes 
(variance) amidst what remains the same (invariance) across an example set (Watson 
& Mason, 2006). Building on Adler & Alshwaikh (op cit), we will argue that LS is a 
productive context for learning exemplification as a mathematics teaching practice, 
here in the context of geometry. We focus on variation in diagrams, geometric 
examples in our terms, as they are vital for enhancing learners’ geometric reasoning 
(Al-Murani, Kilhamn, Morgan & Watson, 2019; Huang & Leung, 2017). The specific 
questions addressed in this paper are: 1) what dimensions of variation in examples do 
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the teachers make available, and 2) how do these dimensions unfold in successive 
lesson plans over a LS cycle? We begin by describing the MTF framework and the LS 
model used.   

MATHEMATICS TEACHING FRAMEWORK (MTF) 
MTF is a lesson planning, observation and reflection tool developed from the 
Mathematical Discourse in Instruction (MDI), an analytical framework for describing 
and evaluating the quality of mathematics made available in teaching (Adler & 
Alshwaikh, 2019; Adler & Ronda, 2015). MDI draws from key tenets of socio-cultural 
theory, and thus a view of mathematics as an interconnected and hierarchical network 
of scientific concepts, and teaching/learning as goal directed and mediated (Vygotsky, 
1987). The starting point of MDI/MTF is that teaching/learning, is always about 
‘something’ which in Marton and Tsui’s (2004) language is called the ‘object of 
learning’, and the work of the teacher entails bringing that ‘something’ into focus – its 
mediation (Adler & Ronda, 2015). The object of learning is what learners are expected 
to be able to know and do at the end of the lesson, which in our case is establishing and 
applying the exterior angle of a triangle theorem. In MTF, the object of learning is 
mediated by the teaching practices of exemplification, explanatory communication, 
and learner participation. Exemplification includes and distinguishes examples, tasks 
and representations as semiotic mediational means. In geometry, however, a diagram 
can be viewed as both an example and a representation. Thus, MTF required adaptation 
to clarify how patterns of variation in example sets can be described in geometry. We 
draw on the constructs of dimensions of variation and the range of change (Watson & 
Mason, 2006). The features of diagrams that vary constitute dimensions of variation, 
and the extent to which they are varied is the range (Al Murani et al., 2019; Watson & 
Mason, 2006).  
In this paper, we describe three possible dimensions of variation in geometric diagrams 
each of which was made available in the lesson plans we analysed: angle measures, 
complexity, and orientation of diagrams. We describe the range of change in 
orientation as between standard or non-standard. For example, standard orientation 
means that a triangle is drawn in its prototype position, i.e., a triangle ABC drawn with 
vertex A on top and vertices B and C on the bottom and horizontal side BC extended 
to E to form exterior angle ACE. Non-standard orientated triangles are those drawn in 
atypical orientations e.g. with two vertices on top and one on the bottom with one of 
the top sides extended to form an exterior angle. The range of change for diagram 
complexity is between basic (if it does not require decomposition to do calculations or 
proof) e.g. one triangle with one or more exterior angles. A diagram is complex if it 
requires decomposition, for example a diagram comprising overlapping triangles with 
an exterior angle of one triangle being an interior angle of another triangle. 
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METHODOLOGY 
Malawian secondary mathematics teachers’ challenges in teaching geometry are both 
in content and pedagogy (MoEST, 2020). Teachers were thus introduced to both 
geometry content using MTF and to LS mode of PD in a two-day PD with secondary 
mathematics teachers from two schools. After the workshop, teachers from each school 
met to decide on problems that they each wanted to focus on in their LS. The Malawian 
LS proceeded as illustrated in Figure 1 below. There were two initial planning sessions 
(LP1A and LP1B), followed by teaching 1, reflection 1 and lesson planning 2, then 
teaching 2, followed by reflection 2 and lesson planning 3. One knowledgeable other 
(first author here – KO1) participated in all stages of the LS cycle and video recorded 
the sessions. During LP1A session, there was minimal input from KO1 as teachers 
discussed their choices of examples. We aimed to identify the aspects of MTF from the 
PD session that teachers had initially taken up and included in their plans on their own. 
All authors (as knowledgeable others KO1, 2 and 3) commented on the plans, and KO1 
discussed the comments with the teachers LP1B planning session. 

 

Figure 1: Lesson Study Cycle. 
In this paper we focus on one school and conduct content analysis on a) transcripts of 
lesson planning sessions 1A, 1B and 2; b) written lesson plans; and c) transcripts of 
reflection 1 session. We began by analysing the whole set of examples across each 
lesson plan to examine the dimensions of variation made available and the range of 
change in each dimension. We then compared examples in all plans to identify what 
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the teachers maintained, added or removed. We simultaneously examined the 
transcripts for the planning sessions and lesson reflection sessions for an in-depth 
understanding of teachers’ rationales for changes made in the example sets.  

RESULTS 
The teachers decided that the problem they wanted to take for LS is the challenges that 
learners face in understanding the relationship between the exterior angle and the two 
opposite interior angles of a triangle. They specifically mentioned that students were 
not able “to form equations with interior and exterior angles of a triangle”. After the 
PD workshop, they were encouraged to plan a lesson, using the MTF as a guide, that 
could bring this relationship into focus with learners. We describe the examples 
planned by teachers in LP1A, LP1B and LP2 sessions using Table 1. We have not 
shown example space for LP3 because it is like that of LP2. 
LP1A  

LP1B  

LP2      Examples a, b, c, d, e, g, h and i are the 
same as in LP1B but another example was 
added as shown 

 

Assessment 
examples for 
LP1B and 
LP2 
 

 

Table 1: Examples for LP1A, LP1B and LP2. 
In each lesson plan, examples were to be used for different tasks. For example, in LP1A 
examples a and b were to be used for empirical activity of measuring angles to derive 
the theorem, and all the other examples were used for applying the theorem to calculate 
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measures of angles. While more can be discussed about the tasks, in this paper, we 
have backgrounded them to focus on the examples. Analysis of the example space in 
LP1A (shown in Table 1) show variation in two dimensions: the orientation of the 
diagrams in terms of the position of the exterior angle, and variation of the angle 
measure to be calculated. We view this as learning initiated by the PD workshop as 
there was no contribution from the KO in relation to examples at this stage. As Table 
1 shows, the third dimension of varying the complexity of the diagram was not in focus 
in LP1A as the example space contained only simple diagrams of a triangle with one 
exterior angle with varied orientation and angle measure to be calculated. In LP1B, 
KO1 suggested that the teachers consider using several examples with varied 
orientation and measures of interior and exterior angles to derive the theorem, and to 
consider including complex examples in the example space to enable building to 
generality through different dimensions of variation. As shown in Table 1, the teachers 
took up these suggestions, adding examples b and c for doing empirical activity, and 
examples a, b and c in the assessment section in LP1B to LP2. So, from LP1A to LP1B, 
the learning in terms of variation in examples was initiated by KO1 through the 
suggestions on varying the diagram orientation and complexity. 
In contrast, from LP1B to LP2, changes made were initiated by teachers’ observations 
from their teaching of lesson 1 and assessing the learners at the end of the lesson. In 
LP2, teachers removed some examples from LP1B. In the discussion during LP2, 
teachers paid attention to rushing of the teaching of the application examples. They 
agreed to drop examples f and j from LP1B because they were like examples e and g 
respectively, and added a new complex example shown in Table 1. The similarity was 
in terms of angle measures to be calculated and the difference was the orientation of 
the diagrams. The inclusion of complex example in LP1B resulted from their 
discussion during reflection 1 (see transcript below) on student responses to a complex 
diagram in the assessment task given at the end of the lesson.  
T represent teacher, and KO represent knowledgeable other. 

87. T1: The triangles that we gave them (in the assessment tasks) are different in 
complexity. Different from the examples we did during the lesson. 

88.  T4: Mmm, exactly. 
89.  KO: How different were they from the examples you did in the lesson? 
90.  T1:  Like triangle number one, in the example (a), we didn’t have that kind of 

diagram, there are three triangles in fact in the first diagram if we were to 
count them. There was no triangle that had a line inside (in the lesson 
examples). 

91… KO:  Within another triangle? 
94… T1: So that was somehow a challenge because during the lesson, the exterior 

angle wasn’t inside the triangle. But here we see angle b is interior to one 
triangle and is also exterior on the other triangle. 
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603. T4:  So, in terms of what we need to do differently, we discussed that on the 
examples, there’s need for an example where the exterior angle is also 
inside the … bigger triangle. 

From line number 87 to 94, T1 refers to examples a and c under the assessment section 
in Table 1 to explain the gap between examples used for teaching and those used for 
assessing learners. He explained that while the examples used during the lesson were 
simple, they contained only one triangle and one exterior angle, the examples used for 
assessment were complex because there was an overlap of at least two triangles, 
making some of the exterior angles to be embedded in a bigger triangle. In line 603, 
T4 explains that they would address this gap by including a complex example where 
an exterior angle of a triangle is embedded in another triangle. They agreed to include 
complex example in LP2 to ensure that the learners engage with complex examples 
during the lesson, thus reducing the gap between the lesson examples and assessment 
examples. Thus, through the teaching of their lesson, the teachers learned what worked 
well through the example space and what did not and made changes to improve on 
what did not work well. We infer from their changing choices on example spaces that 
those dimensions of variation appeared to make sense to the teachers, and they used 
these to reflect on their own example spaces.  
Of further interest to us in terms of the teachers’ use of the MTF for working on their 
teaching, in the focus group interviews (data also not presented here) at the end of the 
cycle, the teachers talked about using the MTF in their planning to compare the 
examples from the five different prescribed textbooks to identify the textbook that 
contained varied examples, and constructed some of their own to produce an example 
set that contained all the variations that they were looking for.  

DISCUSSION AND CONCLUSION 
Our intention for introducing the teachers to MTF was that their discussions during 
lesson study, that is, lesson planning, teaching, and lesson reflection would be informed 
by MTF, resulting in enhancing their learning to improve the quality of teaching 
geometry. As the findings have shown, the teachers were able to take up the 
exemplification aspect of MTF in a substantial way, mirroring findings in Adler and 
Alshwaikh (2019). From the first lesson planning session, the teachers showed that 
they were developing a deeper understanding of how dimensions of variation in the 
selected examples could be infused into their own classroom practices to benefit 
student learning. As the teachers worked with the examples, they also gained new 
insights into the mathematical content. For example, teachers realised that a triangle 
could have up to six exterior angles and not only three exterior angles as indicated in 
some of the textbooks that they use. While developing their own examples to enhance 
different patterns of variations, the teachers noticed that exterior angles that are formed 
from a common vertex of a triangle are vertically opposite and so equal. We therefore 
add that the moments of constructing, critiquing and revising example sets using 
variation provide teachers with mathematical content learning opportunities as well.  
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In the lesson reflection transcripts, we also noticed that the teachers used variation of 
examples as an analytical tool for reflecting on the quality of their teaching. One clear 
indicator of this was their noticing and then addressing the gaps in the examples space 
spread across teaching and assessment. Therefore, the findings show that MTF was 
used to structure discussions during planning and reflection in terms of choice and use 
of examples (Adler & Alshwaikh, 2019). We regarded the teachers’ attention to 
analysing and discussing what varied and what remained the same in the example 
spaces as knowledgeable choice of examples by the teacher. 
In conclusion, in this study, we explored aspects of what teachers learned in their first 
encounter with LS type of PD by examining the possible dimensions of variations of 
geometry examples made available, changes in the example sets, and how these 
changes come into focus. The findings reveal that the teachers quickly picked up two 
dimensions of variation during the PD workshop and implemented them in their initial 
plan. The third dimension of variation came into focus through the knowledgeable 
other and through lesson reflection on learners’ assessment examples. In conclusion, 
the paper contributes to the confirmation of prior work on exemplification in algebra 
and builds on it by locating it in geometry through introduction of LS form of PD in 
Malawi. 
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EXPLORING CHANGE IN SECONDARY MATHEMATICS 
TEACHERS' NOTICING OF ARGUMENTATION 

Samaher Nama, Michal Ayalon 
University of Haifa, Israel 

 
This study examined changes in secondary mathematics teachers' noticing of 
argumentation through experiencing a peer assessment cycle. Sixty-one teachers 
participated in the cycle comprised of (a) analyzing a written argumentative classroom 
situation (ACS) by using a report format, (b) collaboratively assessing peers' ACS 
reports using an ACS rubric format, (c) providing feedback to peers, (d) receiving 
feedback from peers, (e) individually refining the initial ACS reports, and (f) reflecting 
on their experience. Analysis of teachers' initial and refined ACS reports revealed 
changes in teachers’ noticing of various dimensions associated with argumentation. 
The study provides evidence of the potential of the peer assessment process for 
teachers' learning to notice key aspects of argumentation. 
INTRODUCTION 
The importance of students' engagement in argumentation in the mathematics 
classroom has been well recognized. It has been shown that participation in 
argumentation that requires students to explore, confront, and evaluate alternative 
positions, voice support or objections, and justify different ideas and hypotheses, 
promotes meaningful understanding and deep thinking (Weber et al., 2008). Research 
demonstrates that mathematics teachers have difficulties integrating argumentation 
into classroom practice (Ayalon & Hershkowitz, 2018) and that argumentation in the 
mathematics classroom is not yet a common practice (Umland & Sriraman, 2020). It 
appears crucial to investigate how best to devise effective professional learning for 
enhancing argumentation in the mathematics classroom. We addressed this issue by 
building on teacher noticing research to explore a particular type of noticing, which we 
call noticing of argumentation. Noticing is one of the central skills that determine 
teachers’ proficiency, involving three interrelated skills: attending, interpreting, and 
responding (Jacobs et al., 2010). We assume that teachers who are better able to notice 
argumentation possess the skills necessary to begin to promote argumentation in the 
mathematics classroom. We also drew on evidence from research on the potential of 
using peer assessment techniques for effective learning (Topping, 2010). This study 
explored the potential of using peer assessment strategies to develop secondary school 
mathematics teachers’ (SMTs) noticing of argumentation. 
THEORETICAL PERSPECTIVE 
The commonly accepted definition of argumentation is that of van Eemeren and 
Grootendorst (2004), who maintained that argumentation is “a verbal, social, and 
rational activity aimed at convincing a reasonable critic of the acceptability of a 



Nama, Ayalon 
 

3 - 228 PME 45 – 2022 

standpoint by putting forward a constellation of propositions justifying or refuting the 
proposition expressed in the standpoint” (p. 1). Following Jacobs et al. (2010), and 
based on the educational literature on argumentation, we conceptualize the noticing of 
argumentation as a set of three interrelated skills: attending, interpreting, and deciding 
how to respond. The study adopted a theoretical perspective according to which 
productive argumentation (Asterhan & Schwarz, 2016, p. 167) is characterized by co-
constructing arguments, critically and respectfully listening to others’ ideas, 
identifying the weaknesses and strengths in each idea, and searching for alternative 
ideas while working toward consensus building. Attending relates to identifying salient 
characteristics, structural and dialogic, of the argumentation in a classroom situation 
(McNeill & Pimentel, 2010). The structural aspect focuses on the proposed claim and 
the justification for the claim, and in our context, in accordance with the accepted types 
of justification in the classroom community (Yackel & Cobb, 1996). The dialogic 
aspect relates to the above-mentioned productive argumentation characteristics of co-
constructing of arguments, critiquing arguments, mutual respect, and working toward 
consensus building (Mueller et al., 2012). Interpreting relates to making sense of the 
argumentation in the classroom situation while considering factors that may enable or 
inhibit the argumentation. We consider four main factors associated with teaching that 
create opportunities for students to participate in argumentation, as expressed in the 
literature: (a) task characteristics, for example, implementing open-ended tasks that 
invite multiple representations and strategies (Mueller et al., 2014); (b) teaching 
strategies, such as encouraging students' participation and thoughtful questions 
(Mueller et al., 2014); (c) students' cognitive and affective characteristics, such as prior 
knowledge, common ways of thinking, and argumentation skills, as well as self-
confidence, interest, and enjoyment (Knuth & Sutherland, 2004); and (d) socio-cultural 
characteristics, such as recognizing the value of argumentation and expectations of 
critique, collaboration, mutual respect, and  socio-mathematical norms related to the 
kinds of justifications accepted in the classroom (Mueller et al., 2014; Yackel & Cobb, 
1996). Finally, deciding how to respond relates to what one would do assuming that 
one was the teacher in that situation, to promote argumentation. Figure 1 summarizes 
our conceptualization of argumentation in the mathematics classroom and of noticing 
of argumentation. We used this framework in building the research tool and in 
analyzing the data, aiming at exploring changes in (SMTs) noticing of argumentation 
through experiencing a peer assessment cycle.  
RESEARCH QUESTIONS 
RQ1: What change occurs in SMTs’ noticing of argumentation, if any, through 
experiencing peer assessment strategies?  
RQ2: What factors promoted or inhibited the change in SMTs’ noticing of 
argumentation, from the teachers’ point of view? 
RESEARCH CONTEXT AND PARTICIPANTS 
The study was conducted in Israel at the beginning of a course focused on 
argumentation in mathematics teaching, as part of a master's degree in mathematics 
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education. It is part of a larger research exploring the development of secondary in-
service and pre-service mathematics teachers' skills of noticing of argumentation 
during their participation in a course focusing on analysis of argumentation classroom 
situations (ACSs), which serve as both research and pedagogical tools. An ACS is a 
written representation of an instructional situation that took place in the mathematics 
classroom, which provides teachers with opportunities to attend to structural and 
dialogical aspects of argumentation. ACSs also allow teachers to offer interpretations 
for the argumentation sequence in the situation, and to address factors that seem to 
enable or inhibit the argumentation. A group of 61 SMTs participated in a peer-
assessment cycle comprised of (a) individually analyzing an ACS using a report 
format, (b) collaboratively assessing peers' ACS reports using an ACS rubric, (c) 
providing feedback to peers, (d) receiving feedback from peers, (e) individually 
refining the initial ACS reports, and (f) reflecting on their experience. The teachers in 
this group were not formally exposed to argumentation before the study. 

 
Figure 1: Theoretical perspective of argumentation in the mathematics classroom and 

the components of noticing of argumentation. 
RESEARCH TOOLS 
(a) an ACS focusing on the issue of “Abbreviated multiplication formulas” in a 9th 
grade class; (b) an ACS report format (adapted from Jacobs et al., 2010) that includes 
prompts related to the three skills of noticing of argumentation: attending prompts (a 
request to describe in detail those parts of the ACS that the SMTs deem important for 
argumentation, with reference to structural and dialogic aspects); interpreting prompts 
(a request to provide possible answers to the question “why did the ACS occur as it 
did?” by referring to possible factors that enabled or inhibited the sequence of 
argumentation); and deciding how to respond (a request to offer warranted alternatives 
to the teaching in the ACS, aiming to promote student participation in argumentation); 
(c) ACS rubric format, developed during a previous pilot course (Table 1). (The 
research tools and illustration of their use will be presented at the conference). 
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* for each of the four dialogic aspects mentioned above  
** for each of the five factors mentioned above 

Table 1: Coding framework of SMTs' noticing of argumentation. 
DATA COLLECTION 
(a) SMTs’ reports focusing on analysis of the “Abbreviated multiplication formulas” 
ACS. Each SMT submitted a report in Phase 1 of the peer-assessment cycle (initial 
ACS report) and a refined report in Phase 5, after giving and receiving feedback to and 
from peers (refined ACS report). The reports served as the main data source for 
characterizing the participants’ skills of noticing of argumentation, and the change in 
skills following their participation in the peer-assessment cycle (RQ1); (b) written 
reflections, focusing on SMTs’ experiences through the sequence of activities, their 
perceived strengths and difficulties, the similarities and differences between the initial 
and refined ACS reports, and what caused these. The reflections served as a source for 
identifying the factors affecting the change in SMTs’ noticing of argumentation, from 
their perspective (RQ2); (c) individual, semi-structured interviews with 20 SMTs 
conducted to gain more insights related to the findings and the factors affecting the 
change in noticing of argumentation, from the SMTs’ perspective. 
DATA ANALYSIS 
For RQ1: In Stage 1, we used the rubric to analyze the initial ASC reports, by applying 
the quality levels presented in the rubric format, focusing on what and how the 
components of the ACS report were noticed. In Stage 2, we applied the same process 
to analyze the refined ACS reports. Stage 3 focused on measuring the change in the 

Levels of noticing Noticing skill 
1. Identified correctly some claims and justifications; identified types of 
justification partially or not at all; or incorrectly identified some of the types 
of justification.  

Attending to 
structural aspects 

2. Identified correctly all claims and justifications; identified correctly all 
types of justifications. 
1. Paid no attention to the dialogic aspect. Attending to 

dialogic aspects* 2. Paid attention to the dialogic aspect, lacking or general description of how 
the aspect is manifested in a given situation. 
3. Paid attention to the dialogic aspect, detailed description of how the aspect 
is manifested in a given situation. 
1. Did not address the factor. Interpreting** 
2. Addressed the factor, the response is mostly descriptive or evaluative, 
little or no use of evidence to support claims.  
3. Addressed the factor, some evidence to support claims. 
4. Addressed the factor, robust evidence to support claims. 
1. Offered no ideas for alternatives, or offered ideas for alternatives that were 
unconnected to the situation. 

Deciding how to 
respond 

2. Offered ideas for alternatives that were relevant to the situation; provided 
some evidence to support claims.   
3. Offered ideas for alternatives relevant to the situation; provided robust 
evidence to support claims.  
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participants’ noticing of argumentation using the assessment obtained in the previous 
two stages. We used percentages to describe the distribution of responses in the initial 
and refined ACS reports. For statistical inference, we applied non-parametric methods 
because of the ordinal nature of the variables examined. We used McNemar’s test to 
determine whether there was a change in SMTs' attending to structural aspect of 
argumentation because only two scores were used (1 and 2). We used the Wilcoxon 
signed-rank test to determine whether there was growth in the other components of 
SMTs' noticing of argumentation (RQ1). For RQ2: Stage 4 focused on exploring the 
factors affecting the changes in SMTs’ noticing of argumentation, from the SMTs’ 
perspective. We conducted interpretive and in-depth qualitative analysis of the written 
reflections and interview transcripts. Using inductive line-by-line coding, we sought 
descriptions of the factors that shaped the change in SMTs’ noticing of argumentation.  
FINDINGS 
Change in SMTs’ noticing of argumentation 
To determine whether there was a change in SMTs' attending to structural aspects of 
argumentation, we used McNemar’s test to compare the scores of the initial and refined 
ACS reports. The results indicated a statistically significant change (p=0.001): 18% of 
SMTs increased their score of attending to structural aspects of argumentation from 
level 1 to level 2. The Wilcoxon signed-ranks test, applied to the other components, 
indicated a statistically significant change in the three SMTs' skills of noticing of 
argumentation: attending to dialogic aspects, interpreting, and deciding how to 
respond, between the initial and the refined ACS reports (Table 2). We also found that 
about one third of the teachers attended to more dialogic aspects in the refined ACS 
report than in the initial one. Similarly, in their interpretation, many teachers addressed 
more factors in the refined report than in the initial one. We found variation between 
the levels of interpretation among the factors after the intervention: most teachers 
reached high levels (3&4) with respect to the teaching strategies, student cognitive 
characteristics, and task characteristics factors. By contrast, only about half the teachers 
reached high levels of interpretation when addressing the factors affective students' 
characteristics and socio-cultural characteristics. Regarding deciding how to respond, 
most teachers offered ideas for alternatives relevant to the situation; some provided 
robust evidence to support claims (Level 4), while others provided some evidence to 
support claims (Level 3). (Findings will be presented and illustrated at the conference). 

Noticing 
skills 

Different aspects of 
argumentation 

Time Mean Z  Effect 
size (r) 

Percentage of 
increase 

Attending Co-building of 
arguments 

Initial 2.52 3.58*** 0.46 24.6% 
Refined 2.84 

Critique arguments  Initial 2.39 3.64*** 0.47 26.2% 
Refined 2.75 

Mutual respect Initial 2.21 4.40*** 0.56 36.1% 
Refined 2.64 

Working toward 
consensus building 

Initial 2.11 4.51*** 0.58 41% 
Refined 2.72 

Interpreting Task characteristics Initial 2.07 4.53 *** 0.58 42.6% 
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Refined 2.84 
Teaching strategies Initial 3.30 3.94*** 0.50 29.5% 

Refined 3.67 
Students' cognitive 
characteristics 

Initial 2.70 4.45*** 0.57 39.3% 
Refined 3.28 

Students' affective 
characteristics 

Initial 1.57 4.77*** 0.61 47.5% 
Refined 2.54 

Socio-cultural 
characteristics 

Initial 1.51 5.02*** 0.64 52.5% 
Refined 2.46 

Deciding how 
to respond 

 Initial 2.20 5.2 *** 0.67 44.3% 
Refined 2.64 

***p<0.001 
Table 2: Percentage of increase, Wilcoxon signed-ranks test, and effect size for 

initial/refined ACS reports. 
Thematic analysis of the transcripts of the SMTs’ written reflections and interviews 
The analysis process of the written reflections and interview transcripts resulted in a 
coding scheme with ten themes grouped into three main types. (1) Seven themes related 
to factors associated with the peer assessment experience, which according to the 
SMTs contributed to their noticing of argumentation: being exposed to a variety of peer 
reports, discussing their assessment with peers, and the assessments received 
contributed to (a) improvement in attending a wide variety of details and aspects of the 
situation; (b) developing flexibility in interpreting a given situation, different from 
one’s initial interpretation; (c) developing skills of providing evidence of 
interpretations; (d) increasing awareness of the distinction between quality levels; (e) 
increasing the motivation to look for and analyze the expressions of the various aspects 
of argumentation in the given situation; (f) increasing knowledge of argumentation, for 
example, what counts as acceptable justification and teaching strategies for 
encouraging argumentation; finally, (g) as the group discussion of assessing peer 
reports was argumentative, it contributed to understanding the concept of 
argumentation. (2) Two themes related to teacher factors, which according to the 
SMTs, enabled, but also constrained their noticing of argumentation: (a) the SMTs’ 
views on teaching and learning that promoted (or restricted) opportunities for 
addressing some aspects of argumentation. For example, a teacher reflected that her 
thinking that students’ cognitive skills are vital in determining the argumentation 
process, whereas social and emotional factors are much less critical, restricted her 
interpretation process; and (b) the SMTs’ self-confidence in analysis (for example, 
hesitation in discussing students’ characteristics) promoted (or restricted) their 
interpretation of certain aspects. (3) One theme related to the specific ACS 
characteristics: the specific ACS enabled but also restricted certain opportunities for 
addressing some aspects of argumentation, for example, students' affective 
characteristics were not prominent in the given situation.  
DISCUSSION 
The results of the study provide evidence of growth in SMTs’ noticing of 
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argumentation following their participation in a peer assessment process. A significant 
change took place in the three skills of SMTs’ noticing of argumentation: attending to 
structural aspects and dialogic aspects (co-constructing arguments, critiquing 
arguments, mutual respect, and working toward consensus building) of argumentation; 
interpreting the argumentation in the situation through various factors that may enable 
or inhibit the argumentation, including task characteristics, teaching strategies, 
cognitive and affective students' characteristics, and socio-cultural characteristics; and, 
deciding how to respond. These findings suggest the possibility of developing the 
teachers' skills of addressing at the same time multiple dimensions of argumentation in 
a given situation. This contrasts with a previous study showing that many teachers 
focused on one dimension of argumentation and had difficulty noticing multiple 
dimensions (Ayalon & Hershkowitz, 2018). We found that teachers have difficulty 
offering an interpretation for how the students' affective and the socio-cultural aspects 
may have shaped the argumentation in the situation. Such factors adhere to important 
notions of argumentation that promote learning (Asterhan & Schwarz, 2016) and 
therefore deserve attention. After the assessment process, most of the teachers provided 
alternatives relevant to the situation to encourage argumentation, but some teachers 
still had difficulty providing robust evidence to support their alternatives. The findings 
suggest that there is still a way to go in improving SMTs’ skills of interpreting the 
argumentation by using various perspectives and offering possible responses. 
Considerations should be given to how to design research interventions that promote 
these skills.  
Our research design does not allow making firm claims regarding the reasons for 
change in participants’ noticing of argumentation, but analysis of the SMTs' reflections 
provides some indication of the factors that supported or constrained their noticing. 
According to the teachers' responses, three types of factors were involved. Prominent 
were factors relating to the SMTs’ experience of the peer assessment process. Giving 
and receiving feedback using the rubric—considered critical in effective formative 
assessment (Swan & Burkhardt, 2012)—seemed to support their noticing. Through 
negotiation with peers about the rubrics and assessments they noticed various details 
related to argumentation in the classroom situation, which they had not considered 
before, and attended more reflexively to their practice in interpreting the situation. 
These findings resonate with those of research indicating that when learners analyze 
the work of others, they have access to a variety of examples that help them better see 
nuances in quality of the work (Topping, 2010). From the teachers’ reflections we also 
learned that teacher factors, such as views on teaching and learning, and confidence in 
analyzing the situation, also shaped their noticing, in particular, their interpretation of 
the situation. A few SMTs pointed at the specific given ACS that helped them address 
several aspects of argumentation, and at the same time hindered the noticing of some 
other aspects, such as student's affective and socio-cultural characteristics.  
This study’s findings contribute to the literature on professional learning, specifically 
on developing teachers' noticing of argumentation, by providing evidence of the 
potential of the peer assessment strategy for teachers' learning and noticing of key 
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aspects of argumentation practice. Exploration of the change that occurs in SMTs' 
noticing of argumentation, even for a short duration and with only one peer assessment 
cycle, enabled us to consider some of the likely advantages and challenges associated 
with using peer assessment as a learning tool in teacher preparation courses. One of the 
limitations of the study is that we do not know whether the change in noticing following 
the peer assessment process will remain. Further research is needed to explore the ways 
in which the effect of participation in professional learning of this type can be 
sustained, and whether it is realized in classrooms.  
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In this study, we focus on the students’ objectification of the recursion step, intended 
as a process of generalization in the sense of Radford (2001). Building on Radford’s 
model, we elaborate levels of generalization of the recursion step and use them to 
analyze the processes activated by secondary school students during collaborative 
activities with geometric recursive sequences. The analysis allows us to identify 
different levels reached by the students in grasping the recursion step and their 
transitions between these levels. 
INTRODUCTION 
This study is part of wider research on mathematical induction and its teaching/learning 
through significant and exploratory tasks (Antonini & Nannini, 2021; Telloni & 
Malara, 2021). It has been recognized that recursion and induction are strongly related 
and a deep understanding of recursion could support a meaningful learning of 
mathematical induction (Leron & Zazkis, 1986; Harel, 2001). Indeed, recursion, as a 
process which contains itself as a subprocess, has been intended as a more accessible 
and “executable version of induction”, hence a good “stepping-stone” to teach and 
learn mathematical induction (Leron & Zazkis, 1986, p. 28). In tune with this idea, we 
focus on the students’ objectification of the recursion step (RS), i.e. their understanding 
of the possibility to describe a sequence from a given basis in terms of a generic step 
which connects two consecutive elements of the sequence. In this study, we interpret 
the objectification of the RS as a form of generalization in the sense of Radford (2001): 
according to a process moving from particular to general, the RS in a geometric 
recursive sequence could be recognized as a placeholder for each specific step from a 
figure to the subsequent one.  
The research goal we pursue is to investigate how the objectification of RS emerges in 
collaborative activities involving secondary school students. 
THEORETICAL FRAMEWORK 
Assuming a socio-cultural semiotic perspective, Radford (2001, 2003) distinguished 
different levels of generalization which novice students accomplish when they are 
involved in generalization of geometric patterns. These levels of generalization, called 
factual, contextual, and symbolic, are revealed from semiotic means of objectification, 
i.e. linguistic and non-linguistic signs conveying relations between particular and 
general, which students use in mathematical generalizing processes. The factual level 
consists in a generalization of iterated actions on concrete objects, possibly linked to 
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numeric operations. The contextual level no longer operates on specific objects, but on 
concrete non-material objects, such as “the figure”. At this level students perceive the 
emergence of a general structure, as a mathematical object, genetically arising from 
the actions performed. The symbolic level arises when students produce a non context-
bounded explanation and the mathematical meanings are elaborated in general terms. 
The levels of generalization introduced by Radford refer to the generalization of 
geometric patterns, aimed at describing the nth figure of the sequence. In this study, we 
build on Radford’s model to elaborate levels of generalization concerning the 
objectification of the RS, focused on the link between figure n and figure n+1 in a 
sequence. According to our perspective, the objectification of the RS in a geometric 
recursive sequence can be interpreted as a generalization process: from viewing many 
different steps connecting a figure with the next one to grasping one generic step as a 
placeholder which represents all the steps. In tune with Radford (2010, p. 55), we 
expect that the generalization of the RS consists of: 1) “noticing commonality” in some 
given transition from a figure to the subsequent one; 2) “forming a general concept” of 
the transition from a figure to the subsequent one by generalizing the noticed 
commonality to all the transitions within the sequence.  
In the following, we rewrite the levels of generalization of the RS and identify the 
corresponding semiotic means of objectification. At the factual level of generalization, 
the students, although focused on each individual step to pass from a figure to the next 
one, begin to identify common features of the different steps. These features emerge 
from the actions to be done on a specific figure to obtain the next one. This is 
highlighted by expressions such as “always” and “so on”, referring to something 
continuing in space and time, which can be iteratively described. Other semiotic means 
characterizing the factual level are ostensive signs and verbs indicating actions or 
perceptions. Moreover, the rhythm of the utterances and the ostensive movements can 
create a cadence revealing the factual level of generalization in a non-linguistic way. 
Within the contextual level, the different RSs are grasped in terms of a generic 
representative step, dynamically viewed as a transition process between any two 
consecutive figures. The semiotic means revealing the contextual generalization are 
locative and generic terms such as “the next/previous figure”, referring to non-material 
objects, although spatially situated. The language is hybrid, including abstract and 
situated elements. The grotesque pointing to concrete objects, typical of the factual 
level, becomes a refined pointing to non-specific objects, which testifies a new 
perception field. The symbolic level is revealed by a depersonalized description of the 
RS, independent from individual actions and perceptions, without reference to space 
and time. At this level the transition from a figure to the subsequent one is algebraically 
represented as a static connection between figures n and figure n+1.  
We notice that the evolution from the contextual to the symbolic level of generalization 
of the RS is in line with the transition described by Harel (2001) from the inference 
step view, typical of “quasi-induction”, to the inference form view, typical of 
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mathematical induction. The link between the above described levels of generalization 
also recalls the passage from the local implications “P(1)àP(2)”, “P(2)àP(3)”,..., to 
the generic implication “P(k)àP(k+1)” and finally to the general implication 
“P(k)àP(k+1)  for all natural numbers k” discussed in Telloni & Malara (2021) to 
foster an aware and meaningful learning of the Principle of Mathematical Induction.   
METHODOLOGY AND TASK DESIGN 
This is a qualitative study, whose data were collected during an educational path 
carried out in distance learning. The path involved 24 voluntary students (grade 11th-
13th, from 7 secondary schools in the centre of Italy) in a series of activities, preliminary 
to the introduction of mathematical induction. Participants, who agreed to take part in 
an experimental study and to be video-recorded, were divided in 6 groups of 3-5 
students. Students of each group interacted through Meet platform under the 
supervision of a researcher; they were provided with a shared board and a shared 
document, where they were required to provide their solutions to some tasks. The 
researcher did not intervene during the activity, except to give the tasks and to answer 
specific questions by the students. Collected data consist of the recordings of the whole 
development of students’ activities and not only the final products: the video-calls, the 
shared board and shared text document. The two researchers separately analyzed the 
video-recordings, with specific attention on speeches, inscriptions and gestures as 
semiotic means of objectification of the RS at specific levels of generalization. Then 
they discuss the outcomes of the individual analyses up to reach an agreement.  
In this paper we focus on the first activity of the path, concerning geometric patterns. 
Specifically, the first five figures of a recursive sequence were given to the students 
(first task, Figure 1a), followed by two separated requests: (1) “Draw the figures 6 and 
7 which continue the sequence”, (2) “Describe the sequence of figures in a way that, a 
reader, following your words, could draw as many figures as she wants starting from 
fig.1”. Later, the first five figures of another recursive sequence were presented to 
students (second task, Figure 1b), followed by the same requests (1) and (2).  
A few comments on the task design are necessary. In the request (1) we asked students 
to draw the two consecutive figures which continue the sequence. We hypothesized 
that students could draw figure 6 and then figure 7 by using the previous drawing, 
perhaps with some ‘copy-and-paste’ strategies. In other terms, we thought that this 
request could support students in focusing on the relationships between two 
consecutive figures of the sequence, fostering an important shift of attention (Mason, 
1989): from how to draw one figure of the sequence to how to modify one figure to 
obtain the following one. In this way an initial objectification of the RS could be 
attained. Request (2) introduces two new elements to the task: the need to describe the 
sequence up to a non-specific figure (“as many figures as she wants”), and the need to 
address the explanation to someone who cannot see the sequence itself. We 
hypothesized that these two elements, in tune with what happened in Radford’s study 
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(2003), could create an effective joint labour (Radford, 2016) in the group, leading 
students to transitions from factual to contextual or symbolic generalizations.  

 

 Figure 1: The two sequences of figures, presented as given to the students.  
The two sequences were intentionally created with a difference. In the first one the 
connection between the shape of each figure and its number in the sequence is quite 
evident: the horizontal and vertical sides of the n-th figure are composed by n squares 
each. Thus, any figure could be potentially described only in terms of its numerical 
position in the sequence. In the second sequence, instead, this is not easily possible (it 
would require a closed form formula for the Fibonacci sequence). We thought that, for 
this reason, at least in this second case, students would have felt the necessity to 
describe any figure of the sequence after the first one in terms of the previous one.   
CASE ANALYSES 
Episode I - Factual generalization and the emergence of a contextual 
generalization 
In this episode a group of 4 male students (G, V, O and P) of grade 12th is facing the 
second task (Figure 1.b), request (1). After a brief observation, G says:  

1  G: It takes the previous figure as the little part, let’s say…then it puts a square 
with area (inaudible). And it draws a square on the side. 

The sentence is not grasped by the others and an exploratory phase follows, during 
which the students work on their own without coming to an agreement. After about a 
minute, while students are discussing and trying to describe the sequence (e.g., “It 
follows the factorial function, 2x1, 2. 3x2, 6…indeed figure 3 is 6”), G suggests and 
begins to sketch figure 5 on the board, then extends it to create figure 6 (Figure 2). 
Then V intervenes: 

2  V: What are you trying to draw there? 
3 G:  The figure… the next one [Figure 6].  
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4 V:  Thus, what do you do? You draw again figure 5… but add a side, right?  
5  G: You add the square on the bigger side. 
6 P: Ok, I understand.  

    

Figure 2: G’s drawing of figure 5 and figure 6 on the shared board. 
Some other interventions follow, aimed at further clarifying the construction of figure 
6, when G is preparing to draw figure 7.  

7  G: I think this can be done with the square… wait, I try to put a square over 
(G writes the label ‘7’, then he inserts a rectangular shape over the drawing 
of figure 6 (see Figure 3.a)). 

8 O: Yes, it’s faster. (Meanwhile, G drags the rectangular shape below the label 
‘7’ (see Figure 3.b)). 

9 P:  Thus, what is the criterion?  
10 O:  You take the bigger side and construct a square over it. That’s enough!  

After this speech, P and V agree with O and G. Meanwhile, G inserts a square shape 
with the upper side corresponding to the bigger down side of figure 6, then he drags it 
under the rectangular shape to create figure 7 (Figure 3.c). Finally the group, answering 
to request (2), writes on the text document “You take the bigger side and construct a 
square over it, and so on for every next figure”. 

  

Figure 3: The drawing of figure 7 using figure 6 on the shared board. The arrows 
indicate the direction of the dragging of the shapes.  

The episode shows an initial misalignment between the students in the group: G 
describes the sequence at a quasi-contextual level of generalization (line 1), highlighted 
by the expression “previous figure”, but the other students do not understand and need 
to further explore the task. Later, G sketches the figures on the shared board, using 
figure 5 to draw figure 6 (Figure 2) and then figure 6 to draw figure 7 (Figure 3). Here 
a factual level of generalization arises, testified by an iterated cycle of actions (trace a 
figure, re-trace it, extend it to create the next one), where the focus is on the singular 
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link between two consecutive figures (first on the link between figures 5 and 6, then 
on the link between figures 6 and 7). However, these actions, supported by the joint 
labour consisting of stimulus questions aimed at the generalization (lines 4 and 9), 
seem to make a new perceptual field emerge and induce a shared understanding. The 
transition from a figure to the subsequent one seems to progressively be grasped by 
students as a placeholder for each transition between consecutive figures in the 
sequence, towards a contextual level of generalization of the RS. This is testified by 
line 10 and the final solution written by the group, where the reference to previous and 
next figures is implicit, but a shift of attention can be highlighted. Indeed, the RS is 
generically expressed for all the figures in the sequence. Students display satisfaction 
that the brief description at line 10 is sufficient for a reader to draw the sequence, 
starting from the first figure (“That’s enough!”). Indeed, they finally add “and so on 
for all the next figures” only because V says that the sentence in line 11 “is too skimpy”.  
Episode II – Toward a symbolic generalization. 

A group of 4 students, three females (K, V and R) and a male (A), all of grade 13th, are 
facing the first task (Figure 1a). After V draws figure 6 and then, independently, figure 
7 on the shared board through her graphic tablet, answering to request (1), the 
researcher provides request (2). The group tries to describe the sequence of figures in 
a non-recursive way, facing some difficulties (K: “it is easy to do, but difficult to say”). 
Then A tries to support the joint labour of the group, speaking to V: 

1  A: Let us think about what you did before [when drawing figures 6 and 7]. 
2 V:  I considered the previous figure and then I added those little square.  

After one minute of group discussion on describing the diagonal of squares, V says: 
3  V: If you think the next figure is the previous figure 

plus as many little squares as the number of the 
figure is. 

4 A:  I’m not sure. 
5 V:  For example, figure 3 is an L plus three little 

squares, figure 4 is figure 3 plus four little 
squares, figure 5 is figure 4 plus five little squares 
(V rhythmically swings her head from left to 
right, according to the cadence of the phrase, 
(Figure 4))… Do you understand? 

6 A: Ah, ok…yes, ok. 
7 R: Thus, you say that figure n will be figure n-1 plus n little squares. 

After this excerpt, the group refines the final sentence and writes “figure n-1 is the 
contour of figure n with n little squares added” as shared solution in the text document. 
The episode shows the joint labour of the group, which is the key element through 

Figure 4: V’s head 
swinging at line 5. 
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which all the students reach an agreement about the generalization of the RS. Initially 
students see the sequence in different ways, including non-recursive ones. Then V, 
stimulated by A’s metacognitive intervention aimed at reconstructing the actions she 
performed (line 1), describes recursively the sequence, making explicit the connection 
between the drawings of figure 6 and figure 7 (line 2), albeit before she apparently 
drew independently the two figures. The description is at a contextual level of 
generalization (line 3), revealed by the use of generic and locative terms (“the figure”, 
“the next figure”) and references to space and time (“previous, next”). The RS is 
expressed for any transition between a figure and the next one. The need of sharing 
knowledge and the doubts of A (line 4) induce V to use the factual level of 
generalization (line 5), highlighted by the sentences with the same structure referring 
to iterative actions and by the body language. Although the group passes to a lower 
level of generalization, they now regard the sequence with a new perspective, oriented 
by the goal of “thinking about what [they] did before” (line 1). Then they reach an 
agreement, going beyond the contextual level. In line 7, as well as in the final solution, 
the RS is generalized at a symbolic level: the description of the sequence is impersonal, 
with reference to the generic number of the figures. Moreover, there are no references 
to space and time nor to individual actions or perceptions of the sequence. 
CONCLUDING REMARKS 
In this paper we interpreted the objectification of the RS as a process of generalization 
and, building on the Radford’s model (2001), we elaborated three levels of 
generalization. This theoretical lens has been used to design tasks involving geometric 
recursive sequences and to analyze the processes activated in secondary school 
students’ collaborative activities with these tasks. The analysis allowed us to identify 
different levels reached by students in grasping the RS and their transition between 
these levels. Typically, during the collaborative activities, students passed from lower 
levels of generalization of the RS to higher ones. In particular, some groups reached a 
symbolic level of generalization of the RS. A key role in these transitions has been 
played by some elements of the educational path: the chosen sequences, “easy to do, 
but difficult to say”, together with the interaction at distance, preventing some forms 
of communication, made the tasks more challenging and induced students to make their 
thoughts explicit. The students’ meta-reflection on the actions performed has been also 
crucial in supporting the development of an effective joint labour (Radford, 2016) 
within the groups and favouring a shift of attention (Mason, 1989) in viewing the RS. 
Our analysis also highlights some transitions from higher levels of generalization of 
the RS to lower ones. In both the episodes, there is an initial misalignment between the 
students about the way the sequence is viewed. The students who reach a contextual or 
quasi-contextual level of generalization feel the need to use a factual generalization to 
foster their colleagues’ understanding. In episode I, the description of the RS at the 
factual level of generalization is made by means of the drawings, done through “copy-
and-paste” techniques; instead, in episode II, the factual level emerges through 
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linguistic means of objectification and the body language. This suggests that the joint 
labour could support an evolution of the students’ objectification of the RS towards 
higher levels of generalization. However, students seem to rely on lower levels of 
generalization, namely the factual level, for communicative needs, and to reflect on 
their own actions.  
In the future, we plan to extend the study on large scale to investigate these aspects. 
Moreover, further research is needed to deepen how the objectification of the RS could 
be exploited to foster the objectification of the induction step towards a meaningful 
learning of mathematical induction.  
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THE EFFECT OF SECONDARY MATHEMATICS ON FUTURE 
CHOICE IN STEM PROFESSIONS 

Ortal Nitzan-Tamar, Zehavit Kohen 
Israel Institute of Technology, Technion 

 
Reducing leakage from STEM to non-STEM professions is important, mainly due to 
the great demand for quality manpower in STEM fields. This study aims to characterize 
learners who have the potential to drop out of STEM fields, as well as examining 
various pathways in which dropout occurs. Using big-data analysis based on 534,590 
records retrieved from the CBS in Israel for several points in time over one and a half 
decades, we identified eight pathways to choosing a profession from secondary school 
to graduating a bachelor's degree, and characterized learners in each pathway based 
on educational characteristics. Findings reveal three dominant pathways of which one 
reflects a leakage from STEM in secondary school to non-STEM in higher education. 
Further, advanced secondary math is the best indicator of completing a STEM degree. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Despite the growing demand for experts in STEM fields, many studies show a decline 
in the choice of STEM professionals throughout lifespan. This trend is referred to as 
the Leaky Pipeline Metaphor (LPM: NRC, 1986). The LPM describes the phenomenon 
of practitioners dropping out of various STEM fields throughout lifespan, starting from 
secondary school when the number of potential practitioners is relatively high, 
continuing into and graduating from STEM studies in higher education, and eventually 
working in STEM fields (Witteveen & Attewell, 2020) when the number of 
practitioners in STEM professions is alarmingly low (OECD, 2019). 
Dropouts during higher education studies are not limited to STEM subjects. Yet, the 
LPM only accounts for dropouts from STEM fields, rather than the movement from 
non-STEM into STEM fields (Witteveen & Attewell, 2020). In addition, the leaking is 
not linear, so that students who drop out of STEM studies at some point in lifespan, 
may return later on to the field (Lykkegaard & Ulriksen, 2019). Therefore, along with 
efforts to hold the leak among STEM students, it would be worthwhile to make efforts 
to increase the number of streams from non-STEM fields to STEM fields.  
Secondary mathematics have been found to provide a good foundation for later STEM 
studies, and entry into higher education (Kohen & Nitzan, 2021a; Sadler, Sonnert, 
Hazari, & Tai, 2014). The PCAST report (2012) indicates that a lack of substantial 
math skills often prevents students from choosing STEM fields for study, as 
mathematics is regarded as a fundamental subject for all other sciences (Li, 2013). 
Also, choosing STEM major in secondary school serves to develop and promote 
students' aspirations for future studies and careers in STEM fields (Holmes, Gore, 
Smith, & Lloyd, 2018).  
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The present study explores diverse pathways for choosing a profession, by examination 
the choice of STEM and non-STEM fields as a profession during significant periods in 
lifespan, starting from secondary school, first year of higher education, and graduating 
a bachelor’s degree. The data for this study that was retrieved from the Central Bureau 
of Statistics (CBS) in Israel enabled mapping the characteristics of learners in each 
pathway according to educational variables that had been found to influence profession 
choices, in particular mathematics and science studies and achievements in these 
subjects in secondary school. 
Theoretical framework – The integrative four-phases model for career choice 
The integrative model suggested by Reinhold, Holzberger, and Seidel (2018) is a four-
phases model that expresses the operational of goals for choosing a future career 
according to significant periods in life. The first phase, the wishing phase, allows 
interests in a diverse career area with little commitment, characterizing students in 
elementary and junior high school, who are not required to choose any field of 
specialization in studies. The second phase, the planning phase, represents a growing 
commitment to a particular career field, based on ability and performance, 
characterizing students in secondary school who are required to select a major subject 
for study. The third phase, the action phase represents the actions taken to realize the 
chosen career, characterizing students in higher education studying for an academic 
certificate. Finally, the fourth phase, the pursuing phase, represents the attainment and 
persevering in the chosen career, characterizing the employed in the labour market. 
The nature of the data at our disposal, indicating an actual objective choice, did not 
allow an examination of the wishing phase. In Israel, STEM education is mandatory 
before secondary school and is studied as a general subject. Therefore, our focus is on 
the last three phases that reflect actual choices towards a career, namely planning, 
action, and pursuing.  
The phases in this study are defined as follows: The planning phase refers to choosing 
STEM as a major in secondary school, which was found to play a critical role in the 
likelihood of students to reject, persist or enter STEM fields (Engberg & Wolniak, 
2010). The action phase is defined by choosing STEM as a major in first year in higher 
education, which is a critical crossroad towards choosing a career profession 
(Witteveen & Attewell, 2019). The pursuing phase is defined by obtaining a bachelor's 
degree in a STEM field, which indicates attainment and persevering in the field as a 
future occupation, as STEM graduates are more likely to work in STEM professions 
(Kohen & Nitzan, 2021b). 
Secondary school mathematics and future STEM choice for study and career 
Succeeding in mathematics during secondary school is considered an important factor 
in developing and promoting student's confidence in their ability to pursue a STEM 
career and is a good predictor of future STEM academic success and career (Kohen & 
Nitzan, 2021a; Holmes et al., 2018). A longitudinal study revealed that those who 
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excelled in mathematics in secondary school were twice as likely to be employed in 
STEM professions than those with low mathematics achievements (Anlezark, Lim, 
Semo, & Nguyen, 2008). Also, secondary school STEM studies lay the foundation for 
further STEM studies in higher education (Lichtenberger & George-Jackson, 2013), 
and an interest in majoring in STEM in secondary school is affected by future 
employment orientations. Thus, students who wish to pursue a STEM career may start 
to take an interest in these fields in secondary school, so they can better prepare 
themselves for these studies in higher education.  
AIM AND RESEARCH QUESTIONS 
The aim of the present study is to characterize different pathways according to 
important stages in the lifespan and to examine educational data that identifies the 
learners in the various pathways. Accordingly, the research questions are: 
1. What are the possible pathways to STEM and non-STEM bachelor's degrees, 

starting from secondary school through higher-education and graduation? 
2. What are the characteristics of each pathway and how do they differ based on 

various educational variables? 
3. Over different stages of life, what are the characteristics that best predict STEM 

choice? 
METHODOLOGY 
Secondary mathematics and STEM major in Israel. At 10th grade, Israeli students 
are required to choose a major subject, usually at an advanced level. There is also a 
division into three levels of mathematics, each with different levels of depth and topics 
covered. The basic level, that is the minimum required for obtaining a matriculation 
certificate, requires skills that are mainly applied techniques. The standard level 
provides a solid foundation of skills and knowledge of mathematics. The advanced 
level is the highest level, when emphasis is on developing mathematical-scientific 
thinking, designed to direct students towards STEM studies. 
Participants 
A base population of 534,590 Israeli secondary school students were sampled for this 
study. Data was obtained from the CBS in Israel, using systematic sampling that 
contains all secondary school population who graduated secondary school over one 
and a half decade, in the years 2001, 2006, 2011, 2015, and 2017.  
Observed Variables 
The CBS data allows to track student educational choices and achievements from 
secondary school to graduates and employees. The codebook that guided the analysis 
was comprised of educational data, including level of secondary mathematics, type of 
science major, and the level of success in mathematics and science major in secondary 
school. Based on the matriculation exam in math and science, this study defined 
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success as a dichotomous variable, representing excellence when the score ranges 
between 91 to 100, or not excellent if it falls below 90.  
The definition of the STEM values, which have been validated by experts, are as 
follows: STEM subjects in secondary school include the areas of physics, chemistry, 
biology, and computer science; STEM subjects in higher education refers to the 
following subjects: mathematics, statistics and computer sciences; physical sciences; 
biological sciences; agriculture; medicine; or engineering and architecture. The 
remaining subjects were defined as non-STEM values. 
RESULTS 
Pathways to STEM or non-STEM degree 
In order to identify pathways for STEM and non-STEM bachelor's degrees, we created 
a three-tiered tree. Based on frequencies analysis, the first tier represents the major 
subject that was studied in secondary school, namely STEM or non-STEM. The 
second-tier divides each of the first two branches according to the choice made in first 
year of higher education. This tier was obtained using a Chi-Square test which 
combined descriptive distribution of STEM or non-STEM subjects studied in 
secondary school and first-year in higher education. The third tier builds on the 
previous two, and represents eight pathways, from secondary school to obtaining a 
bachelor's degree. For that we ran a split-file based on the type of major studied in 
secondary school, followed by a Chi-Square test based on the choice made in first year 
of higher education and the completion of a bachelor's degree. Each pathway was given 
a number from one to eight, so that a higher number indicates persistence in choosing 
STEM over the years. The internal ranking between these pathways was performed 
according to the degree of persistence and selection sequence in STEM throughout the 
three stages of life examined. For example, learners in pathway #8 were ranked at the 
highest grade, since they persevered in the STEM professions in all three stages 
examined and completed a STEM degree. Figure 1 presents visually the three-tiered 
tree of pathways toward STEM or non-STEM degrees. 

 
Figure 1: The three-tier tree, representing eight pathways toward STEM or non-

STEM profession. 
There is a similar distribution of STEM or non-STEM choices in secondary school, 
with STEM fields being favoured (57.2%). In higher education, almost 43% of those 
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who studied STEM in secondary school choose a STEM field in their first year, as 
opposed to less than 13% of those who studied non-STEM. The distribution of 
graduates revealed an ongoing impact of the choices made at school. About 85% of 
STEM graduates, studied STEM major in secondary school compared to only 15% 
who studied non-STEM major. When focusing on absolute numbers, the three-tiered 
tree indicates three dominant pathways. Pathway #1 reflects about 35% (N=83,984) of 
total students, who persist in choosing a non-STEM field from secondary school 
throughout bachelor's degree graduation. Pathway #8 reflects the 22% persistent 
students (N=53,132) who followed a STEM path from secondary school to bachelor's 
degree graduation. Finally, there is pathway #3 which reflects about 33% of students 
(N=77,088), who studied STEM in secondary school, but chose a non-STEM track in 
higher education. As these three pathways reflect most of the students in the study 
sample who completed a bachelor's degree, at this point we base our findings on these 
three dominant pathways. 
The characteristics of the dominant pathways. 
For mapping the characteristics for each of the three dominant pathways, Chi-Square 
tests were conducted. Additionally, a Kruskal-Wallis analysis of variance was 
performed for analysing the statistical differences between the different pathways, in 
relation to each of the educational characteristics. 

 
Figure 2: The distribution of the characteristics of the dominant pathways. 

Kruskal-Wallis test revealed significant differences between the three dominant 
pathways in most characteristics. Most students who persist in the STEM path (#8) 
studied advanced mathematics and excelled in mathematics in secondary school 
compared to students in the non-STEM path (#1). In path #3, no significant difference 
was found in the distribution of these variables. It appears that there is another salient 
feature in path #3 which impacts the transition from STEM studies in secondary school 
to non-STEM studies in higher education. 
Distribution by major field in secondary school. Figure 3 presents the distribution 
of the types of secondary STEM major for pathways #3 & #8, which are the ones that 
started in STEM studies in secondary school. Results revealed a statistically significant 
difference between these pathways in the distribution by all STEM majors. Those who 
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studied physics and computer science, are more likely to follow path #8, whereas those 
who studied biology and chemistry are more likely to follow path #3. 

 
Figure 3: The distribution by STEM major type in secondary school. 

Predicting the completion of a STEM bachelor's degree 
A logistic regression revealed that all the investigated educational characteristics 
predict the likelihood of pursuing and completing a STEM undergraduate degree. The 
most influencing variable is the math level, meaning that students who study advanced 
mathematics are more likely to graduate STEM as a major in bachelor's degree, 
compared to students who study non-advanced mathematics in secondary school. 
Science major success level was found to be the second in predicting completion of a 
STEM undergraduate degree. As for the types of STEM majors, physics was found to 
be the best predictor of completing a STEM undergraduate degree, while biology was 
the least likely (see Table 1). 

Odds Ratio Wald c𝟐 B Predictor Characteristic 

1.75 789.44 .56*** Advanced compared 
non-Advanced Math level 

1.12 34.20 .11*** Excellence compared 
to non- Excellence Math success 

1.36 183.62 .30*** Excellence compared 
to non- Excellence 

Science major 
success 

1.24 1867.21 .21*** Physics 

Science major 
type 

1.11 543.45 .10*** Chemistry 
1.06 153.40 .06*** Biology 
1.16 965.95 .15*** Computer science 



Nitzan-Tamar, Kohen 
 

 

PME 45 – 2022 3 - 249 
 

Table 1: Regression findings for predicting the completion of a bachelor's degree in 
STEM. 

DISCUSSION 
Through a big data analysis, this study presents a three-tier tree which recognizes 
various pathways that lead to a STEM or non-STEM bachelor's degree, of which three 
were found to be the most dominant, reflecting the largest number of leaners who 
completed a bachelor's degree. The most significant finding is the recognition of path 
#3, that is a learner who started STEM in secondary school and moved to non-STEM 
in higher education. First, and contrary to the assumption underlying Reinhold et al. 
(2018) integrative model, the transition from the wishing phase to the planning phase 
is not the critical stage to choosing a specific career, as this study suggests that the 
critical transition occurs between the planning phase and the action phase. That is, the 
biggest leak of STEM learners to non-STEM fields occurs in the transition between 
secondary school to higher education. Further, this study shed some light on the 
characteristics of learners who persevere in STEM studies and those who drop out of 
STEM studies immediately after secondary school. We can point to a combination of 
characteristics in accordance with path #3 that do not encourage continued selection in 
STEM fields in higher education, for example students who did not study advanced 
mathematics and did not excel in mathematics and in the science major in secondary 
school, as well as students who studied biology or chemistry in secondary school. 
Therefore, and in accordance with the regression analysis, in order to encourage STEM 
choice in higher education and the completion of a STEM bachelor's degree, we might 
be focusing on increasing the percentage of students studying physics and computer 
sciences in secondary school, as well as those who study advanced mathematics. 
Finally, the identification of diverse pathways and characterization of learners in each 
path, develops new avenues through which the choice of STEM subjects can be 
preserved. 
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WHAT HAPPENS OVER TIME TO STUDENTS IDENTIFIED AS 
BEING AT RISK OF FALLING BEHIND IN NUMERACY? 

Guri A. Nortvedt 
University of Oslo 

 
This study followed 191 students in 10 schools over three years, investigating what 
happens over time with students identified as at risk of falling behind in numeracy. The 
study uses data from a formative, national numeracy mapping test. The results show 
that students’ test scores often varies from one year to the next. Only 10 students were 
consistently identified as being at risk. A score pattern analysis revealed that they 
showed little progress from grade 1 to grade 2 in number concept and counting skills. 
This improved in grade 3, but they remained behind their peers in conceptual 
understanding and calculation skills. From a response to intervention perspective, 
these students would likely have benefitted from teaching interventions in grade 1 to 
familiarise them with the number line. 
INTRODUCTION 
Previous research has shown that many students who struggle with mathematics begin 
to fall behind in the lower grades (Scherer et al., 2016). Risk factors include weak 
conceptual understanding and rigid counting strategies. Seethaler and Fuchs (2010) 
stated that assessment activities should have a response-to-intervention focus, for 
instance when screening students in early grades to detect risk of developing 
mathematical learning disabilities. Following a 2006 educational policy on early 
intervention, the Norwegian Directorate for Education and Training developed national 
formative mapping tests in numeracy for primary grades 1, 2, and 3 (Nortvedt, 2018). 
The second generation of mapping tests and support materials was released in 2014 
and used until 2021; the same assessments were used for several years to ensure that 
teachers and schools were familiar with the test content and supporting material.As the 
assessment is formative—to identify students at risk of falling behind and to plan 
teaching interventions for them—the assessment data is not reported to the national 
government but rather retained by local schools. Nevertheless, analysis of sample data 
collected nation-wide between 2014 and 2017 revealed that comparable numbers of 
students were identified as being at risk each year and that no test inflation was seen, 
even though the content was familiar to the schools (Nortvedt, 2018; Nortvedt et al., 
2020). This may indicate that the tests are robust, but it may also mean that schools 
failed to use the test outcomes to plan interventions for identified students. 
This paper reports from a study that followed 191 stude pnts from 10 schools from 
2018 to 2020 to investigate what happens over time to students taking the mapping 
test. As the final data collection was in the 2020 school year, the outcomes will also be 
discussed in light of the potential influence of the COVID-19 pandemic on 
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mathematics teaching in early grades. The research questions for the current study are 

• What happens over time to students identified as at risk in grades 1 and 2? 
• What developments in conceptual understanding and calculation skills can be 

seen amongst students consistently identified as being at risk? 
PRIOR RESEARCH 
The five basic components of counting (one-to-one correspondence, stable order, order 
irrelevance, cardinal principle, and abstraction principle; Gelman & Galistel, 1978) are 
the foundation of counting and provide students with experience that helps them to 
develop a mental number line (Dehaene, 2001). A well-developed mental number line 
allows students to count up and down, skip-count, and perform arithmetic operations. 
According to Aunola et al. (2004), students’ counting skills are a good indicator of later 
achievement in mathematics; they might also be seen as the starting point of number 
sense, which comprises knowledge and understanding of numbers and quantity as well 
as mathematical concepts and symbols (Jordan et al., 2007). Students move on from 
the core knowledge of number to understanding relationships between numbers and to 
operating with them. Good number sense is the foundation for later mathematical 
achievement (Seethaler & Fuchs, 2010). Students at risk of falling behind in numeracy 
often struggle more when learning to count and demonstrate weaker conceptual 
understanding than typically developing students (Scherer et al., 2016). Their 
progression from counting strategies to addition and subtraction strategies for 
performing calculation problems is also slower, and many at-risk students keep using 
simple ‘count-all’ strategies, even in higher grades. Moreover, they often use rigid 
counting strategies when counting and make more errors than other students make. 
Children come to school with different prior knowledge; while some already possess 
competences typically taught at school, others are still learning to count. The aim of 
schooling is to provide all students with the best possible opportunities to learn 
mathematics (Scherer et al., 2016), and as such, identifying students who are at risk of 
falling behind and mapping what they can do is an important starting point for 
classroom intervention that can improve these students’ learning. In a meta-analysis of 
34 studies on interventions in kindergarten and early primary school, Nelson and 
McMaster (2019) found larger treatment effects for interventions that included 
counting with one-to-one correspondence and that were eight weeks or shorter. 
Moreover, interventions were more effective for students at the highest risk of falling 
behind, but low socioeconomic status within a family could reduce the efficacy of the 
interventions. Aunola et al. (2004) found that children who enter kindergarten with low 
performance in basic number skills continue to perform below their peers in later 
school years; implementing evidence-based interventions in schools and documenting 
the responses to them are therefore vital (Seethaler & Fuchs, 2010), keeping in mind 
that learning is a social activity (Scherer et al., 2016). 
In Norway, all assessment at the primary school level is formative. Education is 
inclusive, and the Education Act states that teaching should be adapted so that each 
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student can reach their potential (Lovdata, 2006). Previous research has shown that 
Norwegian teachers tend to ‘wait-and-see’ when students experience difficulties 
(Haug, 2014). Special education is mainly delivered in lower secondary education, 
suggesting that interventions in earlier grades are not successful. In follow-up research 
on the mapping tests (Nortvedt, 2018; Nortvedt et al., 2021), teacher interviews 
revealed a range of different teaching interventions targeting individuals or groups of 
students and illuminated the challenges of interpreting assessment data, meaning that 
the interventions might not be sufficiently adapted to individual students and thus not 
effective in improving their learning. This interpretation is supported by the lack of 
inflation in the test results. In March 2020, due to the pandemic, Norwegian 
schoolchildren were sent home and teaching was moved from classroom to screen. 
However, Blikstad-Balas et al. (2022) found that, despite adequate access to 
infrastructure, the engagement of low-achieving students during remote instruction 
diminished more than that of their peers. Furthermore, strategies to equalise learning 
opportunities during remote learning were not implemented. 
METHODS 
This study followed 191 students from 10 schools for three years, collecting data on 
task levels from the grade 1–3 mapping tests. The assessment data was used to analyse 
what happened over time to the participating students. 
Sample 
The 10 schools were sampled in Oslo and surrounding cities. Invitation letters to 
students and parents were distributed by the schools, and parental consent was received 
from 435 homes in 2018. Parental consent and participation rates differed between the 
schools, and an analysis of the test results (and comparing to the 2014 – 2017 data sets) 
suggested that parental consent was likely not provided for the lowest performing 
students in most of the 10 schools. Due to the COVID-19 pandemic, many schools did 
not manage to administer the mapping tests in spring 2020. A number of students also 
changed schools between 2018 and 2020, so the 2020 sample is smaller than the 2018 
sample, resulting in only 191 students with data from all three test administrations. 
The mapping tests 
The tests are paper-based and administered by class teachers. Each test has two parts 
and includes a break. The test booklet is organised around groups of tasks with the 
same format and content, printed on the same page. For each test page, the teacher 
gives an oral instruction that explains the visual example (see Figure 1) printed on the 
top of the page showing students what the following 2 – 8 tasks ask of them.   
Table 1 displays the number of tasks and cut-off scores for the three grade-level tests. 
The cut-off scores were set in 2014 to identify the lowest scoring 20% of the student 
population at a national level. To maximize information about these students, the tests 
were designed to have a ceiling effect, meaning that even average ability students 



Nortvedt 
 

3 - 254 PME 45 – 2022 
 

typically solved nearly all the test tasks correctly, while students close to the cut-off 
score typically solved 75% of the tasks correctly. 

 
Figure 1: Instructional example and test task for ‘neighbouring numbers’. 

According to national guidelines, the schools annually had a window of approximately 
four weeks to conduct the mapping test, starting from mid-March and adjusting for 
Easter. In 2020, due to the pandemic, schools closed one week into the test window, 
which the Norwegian Directorate for Education and Training extended several times 
to accommodate schools, with the latest deadline being June 7—two weeks before the 
summer holiday. Schools only started opening again in May under strict regulations, 
making it challenging to administer the mapping test. Some schools, for example, only 
had outdoor teaching and learning activities due to local regulations. 
Analytical approaches 
Data on task level for all students for each year was entered into a database. Score 
patterns were investigated using mean scores. Because of the ceiling effect, analysis of 
above-average students found very little variation and should be interpreted with care. 
In addition, more qualitatively oriented analysis was applied to identify test tasks that 
most of the at-risk group could solve confidently (8 out of 10 students had a correct 
response) or to some extent (6 out of 10). This resulted in a description of what students 
close to the cut-off score could typically do while keeping in mind that, on average, a 
student near the cut-off score solved 75% of the tasks correctly. The qualitative data 
analysis sought to identify patterns in the students’ responses to test tasks in order to 
investigate their progress in conceptual understanding, counting, and calculation skills. 
RESULTS AND DISCUSSION 
Table 1 displays the test results from students identified by the mapping test as being 
at risk in each of the three years and shows that, in grade 1, 10% of the participating 
students were identified as being at risk; these students scored an average 35 points out 
of 50 (SD = 3.57), which was not far below the cut-off score.  

Test	grade	 Max	
score	

Cut-off	
Score	

Students	
identified	 as	
at	risk	N	(%)	

Score	range	 Mean	score		 SD	

1	 50	 39	 19	(10)	 26–39	 35	 3.57	
2	 55	 41	 26	(14)	 12–41		 34	 6.63	
3	 72	 59	 47	(25)	 16–59		 50	 9.73	

Table 1: Max score, cut-off score, number of identified students, score range, and 
mean scores for students identified by the mapping test as being at risk in grades 1–3. 
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In grade 2, nearly 14% of the students were identified as being at risk. Based on the 
average score and the variation in scores, the students identified in grade 2 were, on 
average, more diverse and more ‘struggling’ than those in grade 1 because the average 
score is further from the cut-off score and the standard deviation is larger. These results 
support the hypothesis that teaching interventions were not sufficiently targeted to 
individual students.  
In 2020, the COVID-19 pandemic sent Norwegian schoolchildren home and into 
digital learning. Table 1 shows that, although the students had ‘normal’ teaching until 
the beginning of the test window, nearly twice as many students were identified as 
being at risk at the time they took the test.This might be expected if the schools usually 
took the mapping test close to the end of the test window and used the weeks before it 
to practice, but due to the lack of inflation in test scores observed in previous years 
(Nortvedt, 2018), this seems unlikely. A more likely interpretation is that the test 
results are a consequence of two months of home-schooling combined with subsequent 
restrictions on teaching activities, which affected the lowest achieving students more 
than their peers, as suggested by Blikstad-Balas et al. (2022). The results might also 
indicate that, for many students, continuity and close follow-up by a class teacher are 
necessary not only for further learning, but also to maintain what the students have 
previously learned. 
Score patterns over time 
Table 2 shows the score patterns over time for the 191 students; 70.2% of the students 
had test results above the cut-off score in all three years (a–a–a), while a small 
proportion consistently scored below the cut-off score (b–b–b).  

Students scoring below the cut-off in grade 1 Students scoring above the cut-off in grade 1 

Results grades 1–2–3 N (%) Results grades 1–2–3 N (%) 

b–b–b 10 (5.2) a–b–b  12 (6.3) 

b–b–a 1 (0.5) a–b–a 3 (1.6) 

b–a–b 6 (3.1) a–a–b 23 (12.0) 

b–a–a  2 (1.0) a–a–a  134 (70.2) 

Table 2: Score patterns over time for students above (a) and below (b) the mapping 
test cut-off scores in grades 1, 2, and 3. 

Comparing grades 1 and 2, it is clear that, while nearly one third of the students identi-
fied as at risk in grade 1 experienced positive development, moving from below the 
cut-off in grade 1 to above it in grade 2, there was also a group of students—15 in total 
(or 7.9% of the total sample)—who scored above the cut-off in grade 1 but were 
identified as being at risk in grade 2. This shows that, within the sample, more students 
fell behind moving from grade 1 to grade 2 than experienced improved performance. 
A comparison of grades 2 and 3 shows that fewer of the participating at-risk students 
improved their attainment than the large number of students now identified as being at 
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risk in grade 3. This might be due to the effects of home schooling, as suggested by 
Blikstad-Balas et al. (2022). Variations in test scores are more likely for students close 
to the cut-off score than amongst those who solve nearly all the test tasks correctly. 
The students identified as being at risk or close to the cut-off score struggle more to 
use their conceptual understanding, and counting and calculation skills to solve the test 
tasks than their peers. At-risk students most likely have a less developed mental 
number line and weaker number sense. As counting skills and number sense predict 
later success (Aunola et al., 2004; Seethaler & Fuchs, 2010), such outcomes might be 
expected. 
Table 2 shows that a small group of students (5.2%) were consistently identified as 
being at risk. In grade 1, this group scored an average of 33 points out of 50, similar to 
other students identified as at risk in grade 1. However, in grade 2, they averaged 29 
points out of 55, and in grade 3, 44 out of 72. The weaker average in grade 2 than in 
grade 1 suggests that interventions based on grade 1 test results did not accelerate 
learning and it is likely that the interventions did not build on principles for formative 
assessment and building on what the students had demonstrated that they could.  
Identifying what students consistently at risk know and can do 
Teaching is more effective when it builds upon and extends prior knowledge, therefore 
identifying what an at-risk student knows and can do is important. Based on the grade 
1 test tasks that at least eight of the 10 consistently at-risk students solved correctly, 
they had mastered counting with a one-to-one correspondence when the number of 
objects was small and showed understanding of concepts such as ‘like mange’ (equal 
amount), ‘til sammen’ (all together) and ‘mest’ (largest group) . In addition, they 
demonstrated knowledge of the number line up to 20, although they were more secure 
in the 1–10 range. They also showed that they could solve simple addition and 
subtraction problems (e.g., 6 + 2 or 8 – 3), both contextually and for given problems. 
Six of the 10 students could use a criterion to count (e.g., count only the squares), 
showing some understanding of what Gelman and Galistel (1987) termed the 
abstraction principle. 
In grade 2, the same students showed that they could confidently do similar tasks and 
displayed knowledge of concepts like ‘nærmeste tall’ (nearest number) and 
‘halvparten’ (half). However, many of the tasks in the grade 2 mapping test require a 
more secure mental number line and more solid knowledge of the base-10 system. The 
students identified as being at risk in both grades 1 and 2 were most likely still 
developing this knowledge; for instance, they could sort numbers below 100 in the 
correct order but took longer than other students and made more mistakes, such as 
confusing 14 and 41. Importantly, they still demonstrated that they could do simple 
addition and subtraction, but only six of the 10 consistently at-risk students could solve 
tasks such as 6 + 9 or 8 + 8. The students scoring below the cut-offs in both grades 1 
and 2 thus showed slow development in the year between the assessments, possibly 
because learning how to count (e.g., counting in groups and skip-counting) took longer 



Nortvedt 
 

PME 45 – 2022 3 - 257 
 

than for other students (as judged by test score patterns) and consequently so did 
development of a mental number line. 
By the time of the grade 3 mapping test, these students had developed, although they 
still lagged behind; they could count in groups (see Figure 2) and knew the number 
line up to 200 (e.g., by sorting numbers by magnitude; see Figure 2) but still took longer 
than other students. They also showed that they could work with addition and 
subtraction problems that have answers close to 20 and are therefore countable (e.g., 
12 + 5 or 8 + 13). It can be argued that the paper-based mapping test does not reveal 
what strategies the students used, but based on previous research (Scherer et al., 2016), 
it is likely they used counting-all or counting-on strategies. 

   
Figure 2: Grade 3 test task, group counting (left) and sorting numbers (right). 

CONCLUDING DISCUSSION 
Analysis of the mapping test data revealed that, within the 191-student sample, the 
number of students identified as being at risk grew over time, although interpretation 
of the transition from grade 2 to grade 3 should account for the possible effects of 
home-schooling during the pandemic. Nevertheless, the current study supports 
Blikstad-Balas et al. (2022), who found that sufficient measures were not taken to 
support struggling students during home schooling. Moreover, the growing number of 
identified students and the analysis of group averages indicate that teaching 
interventions might not have been sufficiently targeted to individual students, and slow 
progress in conceptual understanding, counting and the calculation skills of students 
consistently identified as at risk indicates that the grade 1 interventions likely did not 
target the students’ counting.  
Nelson and McMaster (2019) found that extended interventions that targeted counting 
principles were the most effective. Most of the students identified as consistently at-
risk mastered one-to-one counting on the mapping test, but only for small numbers; 
interventions targeting the five basic principles might have boosted counting skills, but 
one size may not fit all, and the interventions would have needed to be targeted. In 
addition, as these students had weaker mental number lines than their peers in grade 1, 
working in the 0–100 range might have been helpful for some. By grade 3, the 10 
identified students showed awareness of the number line and used it to successfully 
sort numbers up to 200; they also demonstrated better mastery of group counting. 
Taken together, this indicates that, by March in grade 3, the students had mastered 
skills measured on the grade 2 test.  
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The test data does not reveal the quality of the content of the teaching interventions 
taking place in the 10 schools, but prior research (Nortvedt, 2018; Nortvedt et al., 2020) 
indicates that teachers find it challenging to interpret assessment data and plan 
interventions. This does not stop them from engaging students in activities, but a next 
step should be to work with teachers and schools to evaluate teaching interventions and 
the extent to which they are targeted to the needs of the students. 
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HOW CAN A SETTING INFLUENCE ONE’S REFLECTION? 
Yael Nurick, Abraham Arcavi, Ronnie Karsenty 

Weizmann Institute of Science, Dept. of Science Teaching, Israel 
 
The scientific literature acknowledges the significance and benefits of reflection to 
teachers’ practice and offers a variety of tools and environments for reflection-based 
professional development. In this paper, we analyze mathematics teachers' reflection 
in three different settings, using six categories of reflection we previously developed. 
We examine the unique opportunities for reflection that each setting offers and how it 
may cater for teachers’ different needs. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Reflection can be characterized as a process of looking at past, present, and future 
experiences in a detailed, analytical, and careful way, while considering plans, 
intensions, and behaviours, in order to gain insights about the self, about decisions and 
about actions (Karsenty & Arcavi, 2017). Reflection is a key component of 
professional development of mathematics teachers (Brown & Coles, 2012; Karsenty & 
Arcavi, 2017), since it can enhance awareness to teaching practices and to their 
underlying beliefs, thus enabling decision-making to become more deliberate (Finlay, 
2008; Karsenty & Arcavi, 2017). Reflection may become a mechanism of knowledge 
development as well as a trigger for processes of change (e.g., Karsenty et al., 2015; 
Karsenty & Arcavi, 2017; Schwarts & Karsenty, 2020). 
Despite the potential benefits of reflection, several studies indicate that teachers 
struggle to conduct productive reflective process, and may even be reluctant to engage 
in it altogether (Finlay, 2008; Korthagen, 2014; Lyons, 2010). Several explanations for 
this are suggested: First, definitions and models of reflection may be seen as somewhat 
abstract and unclear (Brown & Coles, 2012; Finlay, 2008; Lyons, 2010). Second, the 
importance of reflection and its potential value are not always fully recognized and 
appreciated (Finlay, 2008; Lyons, 2010). Third, reflection may sometimes be perceived 
as criticism, and as such can incite negative emotional reactions (Finlay, 2008; 
Korthagen, 2014). Finally, reflective processes require time, resources, and support, 
which are not always available within the intensive environment of the teaching 
profession (Finlay, 2008; Korthagen, 2014). However, the literature indicates that 
given careful guidance and appropriate tools, reflection can be productively learned 
and enacted (Finlay, 2008; Lyons, 2010).  
This study aims to contribute to the existing knowledge on reflection, and how it can 
be supported. The focal point of the study is probing mathematics teachers’ reflections 
as they are carried out in “real life”, in three different settings, each with its inherent 
features. These settings are: (1) a professional development course (described below); 
(2) weekly reflective journals; and (3) stimulated-recall interviews where teachers 
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watch their own videotaped lessons. In our analysis, we sought to characterize the 
reflections conducted by teachers in these different settings, in order to learn about the 
opportunities for reflection provided to teachers in each such setting. The ensuing 
research questions was: What opportunities for reflection do different settings provide 
to mathematics teachers? 
THEORETICAL FRAMEWORK 
In a previous work (Nurick et al., accepted), we unpacked the concept of reflection into 
six main categories (see Table 1), based on the existing literature, as well as on our 
own inductive analysis. These categories relate to actions that mathematics teachers 
perform when they reflect on their teaching practices.  

Category (action) description 
Analysis of a situation Analyzing and examining reasons for what happened; 

considering goals that stand at the basis of decisions and 
actions; cogitating broad aspects, issues, and contexts; 
evaluating the situation and the teacher's actions 

Consideration of 
alternatives, doubts, or 
dilemmas 

Pondering alternative actions, practices or perspectives 
and their possible applications; deliberating on certain 
issues; referring to dilemmas of practice 

Re-orientation 
 

Arriving at new insights as a result of the analysis, as 
realized either in “thinking forward”, i.e., referring to 
possible future actions, or in a change in the teacher's 
perspective (e.g., beliefs or perceptions) 

Consideration of beliefs Considering, reviewing, or questioning beliefs regarding 
mathematics, mathematics teaching and teachers’ roles 

Addressing emotions  Confronting feelings emerging in certain situations  

Addressing challenges 
of teaching 

Elaborating various challenges that arise during teaching 
and analyzing them 

Table 1: Categories of reflection (Nurick et al., accepted). 
METHODOLOGY 
Data collection 
The study is defined as a collective case study (Yin, 2009) and comprises 11 cases of 
secondary school mathematics teachers. For each of the teachers, data was collected 
from three settings designed for stimulating teachers’ reflection on the mathematics 
teaching practice: 
VIDEO-LM professional development (PD) meetings: Each of the 11 teachers 
participated in one of seven PD courses offered in Israel in 2015-2016 by a large project 
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named VIDEO-LM (Viewing, Investigating and Discussing Environments of Learning 
Mathematics). The project aims at enhancing reflection skills and mathematical 
knowledge for teaching. Courses consist of 30 hours, divided into 7-10 sessions. In 
each session teachers watch a videotaped mathematics lesson taught by a different, 
usually unknown, teacher. The lesson serves as a basis for a peer discussion, directed 
and guided by a facilitator, who relies on a “six-lens framework” to observe and reflect 
on the mathematics, the lesson goals, the tasks, the classroom interactions, the teacher's 
dilemmas, and his/her manifested beliefs (for details, see Karsenty & Arcavi, 2017). 
For the purpose of the study, sessions in all seven courses were videotaped, and all 
excerpts in which the 11 teachers (the study subjects) talked were transcribed. 
Weekly Reflective Journals (RJ): The 11 teachers wrote personal journals on a 
weekly basis during five months. In these journals, the teachers were asked to write 
about the most significant event which happened to them during the week, either while 
preparing for class or during the teaching itself. They were requested to relate to the 
reason the event was significant for them. There was no additional guidance or 
instructions. 
Stimulated-Recall Interviews (SRIs), based on a videotaped lesson: One lesson (of 
the teacher’s choice) was filmed for each of the teachers. After some time, individual 
interviews were held with each teacher, where s/he watched the videotaped lesson with 
first author. The interviews were unstructured, and the only instruction for the teachers 
was that they are invited to stop the video whenever they see a “matter of interest” 
which they want to talk about. All the interviews were videotaped and transcribed. 
Data analysis 
The goal of the analysis was to identify opportunities for reflection that each setting 
offers to mathematics teachers. The analysis was done in several phases, while looking 
both across the 11 cases studies and across the three settings:  

(1) Defining units of analysis: Expressions of teachers were divided into segments, 
with a different definition of "segment" for each setting: in the PD it was a turn 
or a sequence of turns where the teacher talked; in the RJ we took each weekly 
journal as one segment; in the SRI it was a sequence of turns where the teacher 
stopped the video and talked about a specific subject.  

(2) Coding of the segments according to the six categories of reflection (see Table 1): 
Each segment was analyzed to identify which categories of reflection it alludes to.  

(3) Identifying patterns: For each teacher we characterized the reflective process, 
relying on the coding as well as on repeated reading of the data. 

(4) Identifying opportunities for reflection in each of the three settings: For each 
setting, searching for recurring patterns across the different cases helped us to 
point out the opportunities for reflection it may offer. 
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RESULTS 
In this report we focus on opportunities for reflection identified in each of the settings. 
Due to space limitations, we present only some of the opportunities found, and 
demonstrate them using the case of Sam. At the time of the study, Sam had five years 
of experience. He taught in an urban junior-high school in a low socio-economic area.  
Setting #1: VIDEO-LM PD – exposure to teaching practices and teachers’ ideas 
as a catalyst for reflection 
15 segments where Sam talked in the VIDEO-LM PD were analyzed. In 12 of the 
segments, a similar pattern was identified: Sam noticed a situation in the videotaped 
lesson, or an issue raised by another teacher. This led Sam to a reflection where he 
offered an alternative action and analyzed it. To exemplify this pattern, we describe a 
section from the third PD meeting of the course, where the teachers watched an 
introductory lesson to the topic of “growth and decay problems”. 
At the beginning of the videotaped lesson, the teacher presented two questions: one 
relating to the increasing price of a painting and the other to the decreasing price of a 
used car. The PD participants ascribed the following possible goal to the filmed 
teacher’s choice of questions: to emphasize that in both growth and decay problems 
there is always a factor by which one multiplies to obtain a sequence of values. When 
the teachers wondered if the presented questions are appropriate for this goal, Sam said: 

Sam:  I think what Josh [another teacher in the PD] was trying to say, is that it 
would perhaps be better to present the same question. He [the filmed 
teacher] used a painting for the first question and a car for the second. [It's 
better to ask] the same question, let’s say about money or a question of 
prices going up or down, but within the same context. […].  

Facilitator:  You would have used something with money [or] something with bacteria 
[…] Why? What does it enable? 

Sam:  Because I think that here [in the lesson] they can… you can never know, 
but if you would have asked the students what is the difference between the 
questions, some might have not said that 'this is growth and this is decay', 
but that 'here it's a painting and here it's a car'. 

Facilitator:  But as Aaron [another teacher in the PD] says, the context here has strength, 
because a painting of a famous artist, you expect, especially if you present 
it like that, that its value will increase. A car, you would expect that… 

Sam:  Okay, as a later stage I would of course present questions from different 
contexts, to demonstrate it's the same. But at first I think I would show the 
same context. Then, maybe yes, expose them to a variety of questions, 

Sam's articulations in this segment are representative of how he often demonstrated the 
following reflective actions: he referred to a situation that he identified, either in the 
videotaped lesson or in contributions made by another teacher in the PD, and offered 
an alternative action; he analyzed the situation, while explaining his goals and 
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considerations (e.g., presenting the concept of a growth factor while avoiding  surplus 
“noise”); he referred to students’ possible mistakes, attending to assumptions on what 
is easy or difficult for them. In other segments he also related to students’ emotional 
challenges. In addition, the last utterance was categorized as re-orientation, since after 
the facilitator’ comment about the potential strength of the context, Sam expressed a 
certain shift in his perspective. However, the re-orientation category was not common 
in other segments. Sam usually did not refer to his beliefs. In the PD, he tended to 
present successful events and practices from his classroom, using a decisive tone to 
present his ideas, which hints to the need to save face. Nevertheless, comments made 
by the facilitator or by other teachers led Sam to rephrase and clarify his stance. 
Setting #2: Reflective journals – a personal arena for a focused and deep analysis 
Sam wrote 15 weekly reflective journals. Here too, he usually related to positive 
events, however unlike in the PD he also elaborated his beliefs and goals while 
revealing challenges and dilemmas he faced. Sam wrote relatively long journals (220 
words per journal, on average). His writing was fluent, and it seemed he devoted time 
and thought to it. 
Of the 15 journals Sam wrote, 12 related to situations in lower-level classes he taught. 
He often began with addressing general mathematical-pedagogical challenges (e.g. 
“Once again, I realized how difficult it is for struggling students to deeply understand 
the meaning of mathematical rules, concepts and definitions”, RJ#6), or with alluding 
to specific student mistakes (e.g., “I gave the students a task, to collect like terms in 
the expression 13m + b +m+ 4 + 1 + 3b − 3m […] a common solution was 17m +
4b + 5”, RJ#3). Sam analyzed the situations in a detailed way: he evaluated his actions 
and considered his goals, while referring to different aspects, especially to affective 
aspects of students learning (e.g., “students with low self-image in mathematics get 
frustrated easily, every little change takes them out of balance”, RJ#6). Sometimes, 
Sam included a mathematical analysis, for example when he analyzed the different 
roles of arithmetic symbols, or when he wrote on the nature of mathematics as a 
discipline. Sam also considered his beliefs toward teaching mathematics to struggling 
students, and how he views their characteristics and the ensuing teacher's role (e.g., 
“giving students such challenges can change their attitudes towards the subject and can 
also develop their confidence to cope with unfamiliar exercises”, RJ#4). 
Unlike his articulations in the PD meetings, in his journals Sam hardly considered 
alternative actions. When he did so, it was usually as a contrast to a preferred action 
he already took. For example, in his first journal Sam wrote: “formulas should not be 
taught in a technical way, we should explain the rationale behind them, even to 
struggling students”. On some occasions, Sam expressed intense emotions (e.g., “I felt 
that as a teacher, I sometimes lapse in teaching these concepts briefly, skipping quickly 
to the next topic”, RJ#6). Regarding the re-orientation category, in some journals a 
change in Sam’s perception could be identified, sometimes through his choice of words 
(e.g., “I learned”), or when he noted he was impressed with a new method that he tried 



Nurick, Arcavi, Karsenty 
 

3 - 264 PME 45 – 2022 
 

in his class for the first time. Overall, Sam tended to write in a manner that can be 
interpreted as decisive and self-assured. 
Setting #3: SRIs – a unique opportunity for in-depth self-observation 
The SRI enabled Sam to talk at length about concrete situations he identified in his 
videotaped lesson, while analyzing them and connecting them to his goals and beliefs. 
Sam’s SRI was focused, at his request, on the first part of a lesson in an advanced level 
8th grade class. The subject of the lesson was the meaning of intersection points of 
linear graphs, by means of a realistic problem Sam posed. Students were asked to 
compare two optional destinations for vacation, Thailand and London, each with fixed 
expenses (e.g., air fare) and expenses depending on the length of stay (e.g., hotel, food). 
Based on different representations of the problem (tables, graphs, etc.), the class 
discussed various questions such as what is the meaning of one graph being higher than 
the other in different domains; what is the meaning of the intersection point of the 
graphs; where should one fly, based on how many days of vacation can be taken, etc.  
The SRI was divided into 14 segments. Sam usually began with analysis of the 
situations he identified in the lesson: He considered the goals of his actions (“This is 
an important point […] I want the students to be accurate”) and evaluated consequences 
of his actions (“in the first task, I gave the students some anchor, and then in the second 
task they immediately knew what to do”). He also considered his beliefs in detail. 
Sam’s consideration of broad aspects was salient in the SRI. He related to both 
mathematical-pedagogical and interpersonal aspects (“the subject of linear functions is 
considered to be not easy, but when it is well-structured then it is interesting and 
relevant”). He also mentioned ways the socio-economical background of his students 
influences his decisions, for example to deliberately use high register words, in order 
to enrich students that he knows are not exposed to such words in their homes. 
However, in the SRI Sam hardly analyzed the mathematical content. Interestingly, 
unlike in the other settings, in the SRI Sam addressed emotions the situations evoke in 
him, both positive emotions of satisfaction and less pleasant emotions, for instance:  

Often, we teachers […] provide the answer ourselves […] and this is in my view my biggest 
problem. It is hard for me [to wait for students’ answers] for two reasons. I want to cover 
the content, but also, I am afraid to let them… Maybe I don’t trust them enough.  

Regarding the categories of considering alternative actions and re-orientation, 
different and sometimes opposing patterns were identified within Sam's articulations 
in the SRI. Sam related to mathematical-pedagogical actions and choices in a confident 
way, defending them against other alternatives, but when relating to generic issues of 
teaching, he was less confident and sincerely considered alternatives. Searching for 
evidence for re-orientation, it was hard on the one hand to identify changes in Sam’s 
perceptions or to trace thoughts about different future actions. On the other hand, the 
SRI revealed instances in which Sam seemed surprised by students’ answers and 
behaviors which he missed noticing while he was teaching, and his reaction conveyed 
a shift in his view. For example: “wow, this student, I’m shocked […] I suddenly look 
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at him in a completely different way, he has a learning disability […] and his answers 
are great”. Overall, Sam’s talk in the SRI was not always coherent or linked to 
situations in the video. Although we identified various categories of reflection, we also 
characterized Sam’s articulations as sometimes tending to take the form of 
explanations and even self-justifications, at the expense of learning-oriented analysis.  
CONCLUSIONS AND DISCUSSION 
In this paper, we analyzed reflections of a mathematics teacher on his practice in three 
different settings. Sam’s example is representative of what we learned about the three 
settings and the different opportunities for reflection they offer, as we elaborate below. 
In the PD meetings, participants observed and discussed teaching practices enacted in 
videotaped lessons, a setting which enabled them to listen and consider ideas and 
comments of each other. This exposure stimulated and promoted teachers’ reflection, 
based on the co-analysis of alternative practices, goals, actions, and more. In line with 
previous work (Karsenty & Arcavi, 2017; Karsenty et al., 2015; Schwarts & Karsenty, 
2020), we suggest that a video-based PD setting offers a combination of peer 
discussions, a vivid object for analysis (the videotaped lesson), and guidance provided 
by a facilitator, which allows for deep reflection. Nonetheless, PD meetings do not 
always allow for personal reflections to arise. Issues such as the need to save face and 
the balance of power relations in the group can inhibit some teachers’ reflection. 
Journal writing offers teachers an intimate arena for a focused and deep personal 
analysis, where they can candidly write about specific and focused situations. In line 
with previous findings (e.g., Hiemstra, 2001), we found that the affordances of a 
journal include the possibility to freely express challenges, beliefs, and emotions and 
to inspect oneself critically, something that may be harder to do in the social 
environment of a PD. However, journal writing lacks external stimulus, guidance, and 
peer interaction, and thus some teachers will not fully utilize its benefits. 
The SRI also provides a personal setting, where teachers can watch an authentic 
representation of their own teaching, examine situations, analyze, and evaluate them. 
The detailed depiction of one’s own actions as displayed in a video, helps teachers to 
notice situations, including those that were overlooked in “real time”. Nonetheless, 
self-watching stirs emotions, and some teachers tend to criticize themselves, or 
alternatively justify their actions, instead of productively examining their practice. 
The results of this study reveal that beyond the importance of any reflection process 
per se, the settings in which the reflection takes place and their specific affordances (or 
limitations) make a difference. Thus, attempting to support teachers in learning to 
reflect, either by providing guidance or by offering various tools (Finlay, 2008; Lyons, 
2010), must consider not only the inherent complexities of the processes, but also the 
possible different contexts in which to enact them. Rather than implying that there is a 
preferred setting, we point to the need to consider the characteristics of each of the 
three settings, and how they (and possibly others) may complement each other.   
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Only a few international comparative studies have reported on proof and proving in 
curriculum documents. This report proposes a method of comparing the meaning of 
proof-related words in two specific countries’ curriculum documents (the USA and 
Japan) through quantitative and interpretative analyses. Using a text mining approach 
to explore text data, we found that the co-occurrence network of the words “proof” 
and “prove” in curriculum documents from the two countries is quite different. In the 
USA, the word “proof” is concerned with justification and “prove” is used as a 
general process, while in Japan “proof” is more related to discovery and “prove” is 
more associated with specific theorems. 

INTRODUCTION 
Although the universality of mathematics is widely recognized, mathematics educators 
also acknowledge that it is situated differently in different countries’ educational 
systems. This is also the case for proof and proving in a mathematics curriculum. 
However, only a few international research studies have reported on the role of proof 
in curricula (Reid, Jones, & Even, 2019). An international comparative study on proof 
and proving is promising but challenging because educational, linguistic, and cultural 
conditions vary according to country (Reid, 2015). 
Currently, proof and proving are mentioned in the official curriculum documents of 
many countries. However, there are still debates among researchers over what 
constitutes proof, even after repeated discussions over the last three decades (e.g., 
Mariotti, 2006; Stylianides, Bieda, & Morselli, 2016). How are proof and proving 
conceptualized in curriculum documents? What are the specificities of their meanings 
in documents from different countries? How can we compare and analyze them? To 
address these questions, this study proposes a method of comparison based on the text 
mining approach, which allows us to analyze the co-occurrence of words in documents, 
both quantitatively and qualitatively.  
The present study is a part of an ongoing international research project for comparative 
studies on argumentation and proof. In this report, we present a case study by focusing 
on documents from two specific countries: Principles and Standards for School 
Mathematics (NCTM, 2000; hereafter called Standards) in the USA and Teaching 
Guide of the Course of Study: Mathematics (MEXT, 2008; hereafter called CoS) in 
Japan. Standards is one of the most well-known and influential curricular documents 



Otani, Reid, Shinno 
 

3 - 268 PME 45 – 2022 
 

in the world. Though it has strongly influenced curricula in the USA and elsewhere, it 
is not the national curriculum in the USA. CoS is less known outside Japan, but it is an 
elaboration of the national curriculum. Therefore, while the two documents are 
different, they play similar roles in their contexts, and so are comparable. 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 
Although there are limited international comparative studies on curriculum regarding 
proof and proving (except for Hemmi, Lepik, & Viholainen, 2013), several 
comparative studies have been conducted on mathematics textbooks (e.g., Miyakawa, 
2017) and classrooms (e.g., Knipping, 2004). To gain a better understanding of how 
proof and proving are conceptualized in different countries’ curricula, it is important 
for researchers to develop a methodological approach to compare and analyze them. 
To do so, it is reasonable to pay more attention to linguistic aspects related to proof 
and proving, although some other aspects such as “structure” and “function” can also 
be considered (Miyakawa & Shinno, 2021). While the approach developed in the 
Lexicon project (e.g., Clarke, Mesiti, Cao, & Novotná, 2017) in which the 
methodology focuses on general pedagogical vocabulary used by teachers is 
promising, we require a more particular approach to investigate how proof-related 
words are used in curricula. 
Some previous studies have considered linguistic issues involving cultural elements, 
which may affect the nature of proof (e.g., Balacheff, 1987; Sekiguchi, 2002). For 
example, according to Sekiguchi (2002), “argumentation” is a culturally dependent 
notion and its meaning in Japanese is not equivalent to that in English or any other 
Western languages. However, even the term “culture” is often ambiguous, which 
sometimes represents an obstacle to international communications in our research field. 
How then to compare the meanings of words across different languages and cultures? 
As Wittgenstein reminds us, “the meaning of a word is its use in the language” 
(Philosophical Investigations, §43). Hence, our study adopts a text mining approach 
that allows us to analyze proof-related words through quantitative comparisons of their 
use between different countries. Although it pays little direct attention to cultural 
issues, the results may create an opportunity for discussion among researchers, which 
may bring new insights into proof and proving from a cultural perspective. 

METHODOLOGICAL CONSIDERATIONS 
Text mining approach 
The methodological approach adopted in our study employs text mining, specifically 
co-occurrence network analysis. This approach interprets the meaning of a word from 
its occurrence with other words, that is, co-occurrence relations. Since the meaning of 
a given word may vary from country to country, we cannot determine the “true” 
meaning of the word. However, a word’s use in any given text can be interpreted 
quantitatively by its co-occurrence network in that text. The advantage here is that we 
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can avoid possible ambiguities due to the linguistic nuance in each country’s language, 
since it makes use of linguistic networks to characterize the usage of the word within 
the document. 
Using this approach, we can compare and analyze the commonalities and specificities 
in the co-occurrences of proof-related words in curricular documents of both countries. 
In short, if the co-occurrence of a particular word in different languages is similar, then 
we can interpret that the word has a similar meaning. If not, the word can be interpreted 
as having a different meaning. 
Data set 
For the USA, Standards (NCTM, 2000) is used for the analysis. Although the actual 
mathematics curriculum varies from state to state, Standards has influenced the 
curriculum in most states. The recently published Common Core State Standards for 
Mathematics (CCSSI, 2010) is also influential nationally and internationally, but it 
contains fewer explanations about mathematical contents and processes than those in 
Standards. Therefore, we chose Standards for our quantitative text analysis due to the 
abundance of data in Standards for our analysis. 
The words “proof” and “prove” often appear in the content standard “Geometry” and 
the process standard “Reasoning and Proof”. The section analyzed in this paper is all 
text in the overview (Chapter 3) and standards for grades 6-8 part (Chapter 6) (See 
Table 1). 

Standards CoS 
Overview of the Standards for 
mathematics education 

- Geometry 
- Reasoning and Proof 

Section 1.1: Objectives of Mathematics 
Section 2: Content 

Standard for Grades 6-8 
- Geometry 
- Reasoning and Proof 

Section 1.2: Objectives for Each Grade 
Section 3: Contents of Each Grade 

- Geometrical Figures  
- Mathematical Activities 

Total 1,090 sentences (in English) Total 930 sentences (in Japanese) 

Table 1: Contrast of the data. 
For Japan, the national curriculum provided by the Ministry of Education (MEXT) 
consists of a small number of pages for mathematics and has no additional explanations 
about the objectives and contents. The document we analysed, CoS, is the teaching 
guide to the curriculum, which contains a greater number of pages with a detailed 
description of the objectives and contents. In practice, Japanese teachers use both 
publications as curriculum sources. We used the Teaching Guide of the Course of 
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Study: Mathematics (Grade 7-9), published in 2008 (MEXT, 2008) for our analysis. 
Although the latest CoS was published in 2017, we used the 2008 version because this 
version has an English translation (Isoda, 2010), which made identifying 
corresponding words easier. The Sections corresponding to the parts of Standards that 
were analyzed are shown in Table 1. 
Text analysis software 
In this report, we utilized KH Coder (Higuchi, 2016, 2017), which can be applied to 
both Japanese and English. One of its advantages is that it allows easy visualization of 
the results, thus helping us to perform an exploratory study. The procedure with KH 
Coder can be summarized into the following four steps: data preparation, pre-
processing, visualizing, and exploring the co-occurrence network chart. KH Coder 
performs pre-processing and visualizing steps automatically, and exploring the 
displayed chart is an important step for us to understand and re-interpret the meaning 
of the words. Because the latter process takes place qualitatively, this is considered a 
mixed method study. The four steps are as follows. 
Data Preparation. KH Coder can analyze text format data using sentences as the unit 
of analysis. Text files were prepared from Standards and CoS and anything that could 
not be identified as a sentence in the text was not included in the data. For example, 
section headings with no periods or words within the figures were not included. 
Pre-processing. Pre-processing consists of morphological analysis and word counting 
of the text files. For English, the Stanford POS Tagger software was used to tokenize 
sentences into words and identify the part of speech. The stop words function in KH 
Coder identified common words that could occur in any text, such as articles and forms 
of the verb “to be,” and these were omitted. For Japanese, Chasen software was used 
for morphological analysis. Chasen could not distinguish between a noun (e.g., 証明; 
shōmei, proof) and a nominal verb (e.g., 証明スル; shōmei-suru, prove), so the latter 
was manually specified as one word so that it could be counted separately. 
Visualizing. The “Word Association” command was used to determine which words 
were closely associated with specific words. The command, under the condition “a 
specific word (e.g., proof, prove) must appear,” searched for sentences satisfying the 
condition, and listed the words that occur with a particularly high probability. The 
results were displayed in the co-occurrence network chart and analyzed visually. 
Exploring. Based on the co-occurrence of words centered around “proof” and “prove,” 
their meanings were interpreted. In the co-occurrence network chart, words with 
similar appearance patterns (i.e., with high degrees of co-occurrence) are connected by 
edges. Thicker edges correspond to stronger co-occurrence. If words are not connected 
with edges, there is no strong co-occurrence. The number of edges drawn on the chart 
can be increased to the number at which a focused word can be interpreted by its co-
occurrence. The color of each node represents sub-graphs, which means that the same 
color belongs to the same group. Edges between words belonging to different sub-
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graphs are represented by dotted lines. By considering words with strong co-
occurrences and sub-graphs, the meaning of a particular word in the text can be 
interpreted. 

RESULTS  
The co-occurrence network of frequently occurring words in the Standards is shown 
in Figure 1. 

            

Figure 1: Extract of the co-occurrence network chart for “proof” (left; 164 edges) and 
“prove” (right; 10 edges) in Standards. 

The word “proof” occurs 30 times and is strongly associated with the words 
“mathematical,” “develop,” “argument,” “way,” “particular,” “justification,” and 
“reasoning.” The proof in the text can be re-interpreted in three ways using connected 
words: (1) developing mathematical arguments in a particular way, (2) justification, 
and (3) reasoning. While “proof” is associated with a rich set of words, the word 
“prove” appears only 4 times. It is surprising that the noun form occurs more often than 
verb form. This may suggest that the process standard “proof” is not always understood 
as a process. “Prove” is used in the phrases such as “to prove conjectures” (NCTM, 
2000, p.42), or “to solve problems and to prove their results” (ibid., p.43). “Prove” can 
be re-interpreted as a process that targets the conjectures about a figure and the results 
of problem-solving. Of course, due to the small amount of data, the interpretation may 
be biased. 
In the CoS, the noun 証明 (proof) appears 40 times and the nominal verb 証明スル 
(prove) 12 times. The numerical tendency is the same as that of Standards. The co-
occurrence network for these words in CoS is shown in Figure 2. The Japanese in the 
figure is translated into the corresponding English word, with reference to Isoda 
(2010). 
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Figure 2: Extract of the co-occurrence network chart for 証明 (proof) (left; 150 edges) 
and 証明スル (prove) (right; 323 edges) in the CoS. 

The word “proof” is relatively strongly associated with the words “property,” “figure,” 
“triangle,” “parallelogram,” “discover,” “understand,” “necessity,” and “importance.” 
The proof in the text can be re-interpreted in two ways: (1) to discover the properties 
of figures such as triangles and parallelograms and (2) something whose necessity and 
importance are supposed to be understood. Moreover, it is interesting to note that proof 
in the text is strongly associated with “discovery,” not “justification.” The description 
of the CoS emphasizes discovering new properties through reading proofs. On the 
contrary, it is found that the word “prove” is associated with words about the “inscribed 
angle theorem,” such as “center,” “circumference,” “relation,” and to “properties of 
triangles.” Given that it did not co-occur with “discover,” it is thus a different 
conceptualization from “proof.” From the associated words, “prove” can be re-
interpreted as a process that targets the properties of specific geometrical figures. 

DISCUSSION AND CONCLUSION 
The results show that the co-occurrence of “proof” and “prove” in curriculum 
documents in the USA and Japan is quite different. In Standards, the word “proof” is 
strongly associated with the development of a mathematical argument. This 
conceptualization is close to the definition by Stylianides (2007), who describes proof 
as a mathematical argument. In the CoS, it is associated with the understanding of the 
properties of specific geometrical figures. The former is more concerned with 
justification, whereas the latter is more concerned with discovery. Additionally, the 
word “prove” in Standards can be re-interpreted as a general reasoning process, and in 
the CoS as a process that associates with specific theorems. In this way, the text mining 
approach to the comparison allowed us to better understand the conceptualization of 
proof and proving in each document, since we could not get such an insight from a 
superficial comparison of the original texts, which describe the meaning of “proof” in 
each document as follows. 
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•  “A formal way of expressing particular kinds of reasoning and justification 
[…] arguments consisting of logically rigorous deductions of conclusions 
from hypotheses” (NCTM, 2000, p.56). 

•  “A proof is a series of statements starting with the ‘hypothesis’ and leading 
to the ‘conclusion,’ supported by the ideas that have already been accepted 
as true” (MEXT, 2008, p.115; translation by Isoda, 2010, p.181). 

This suggests that the conceptualization of “proof” and “prove” in the texts is different 
and that curriculum developers in both countries may use the terms in different ways. 
To be sure, what we have articulated in this paper is only one reasonable interpretation 
of the meaning in the specific texts, not the “true” meaning. However, it is very 
important to consider the possible influence of cultural differences when conducting 
and utilizing international comparative studies. Since the intended curriculum 
influences the implemented and attained curriculum, it is necessary to examine whether 
these differences are also found at other curriculum levels (textbooks or classrooms). 
The text analysis approach to the usages of words in curriculum documents can be 
applied to other related words, such as “reasoning” or “argumentation,” in other 
countries, although a certain amount of text is required. Furthermore, it allows us to 
understand how certain words are conceptualized in documents based on the linguistic 
culture of the country. Articulating how proof and proving are conceptualized in 
different curricula using the same methodology is important for further development 
of international comparative research. 
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STUDENTS’ EXPLORATION OF TANGIBLE GEOMETRIC 
MODELS: FOCUS ON SHIFTS OF ATTENTION 

Alik Palatnik 
The Hebrew University of Jerusalem, School of Education 

 
This empirical study applies the analytical apparatus of Mason’s shifts of attention 
theory to investigate why and how using physical models of different scales can 
facilitate learning of (spatial) geometry. In the presented case study, six high school 
students learned the properties of icosahedron by constructing and exploring physical 
models. Shifts in the focus and structures of attention were associated with multimodal 
perception and collaborative physical actions of students with and through the models. 
Models of different scales landed students different affordances for exploration, 
facilitating noticing of invariant scale-free features of a geometric object and 
influencing the dynamic of student collaboration.  
INTRODUCTION AND THEORETICAL FRAMEWORK 
According to Goldenberg et al. (1998), geometry is “an ideal intellectual territory 
within which to perform experiments, develop visually based reasoning styles, learn to 
search for invariants, and use these and other reasoning styles to spawn constructive 
arguments” (p. 5). This claim concurs both with Freudenthal’s view on geometry as 
“one of the best opportunities which exist to learn how to mathematize reality” 
(Freudenthal, 1973, p. 407) and with tenets of embodied design for mathematics 
instruction (Abrahamson et al., 2020) supporting primacy of students’ enactment of 
conceptually oriented movement forms and gradual formalization of gestures and 
actions in disciplinary formats. Embodied learning is rooted in an ecological approach 
in cognitive psychology (Gibson, 1986/2015), capitalizing on organism-environment 
relations. In particular, Gibson conceived perception as an active, embodied process in 
which we notice optical invariances of the object under the movement of the source of 
light, movement of the observer, movement of an observer’s head, and manipulations 
and local transformations of the object itself. Students facing tasks in realistic 3D 
contexts can be introduced to the language of geometry, its objects and constructions 
(Doorman et al., 2020). They conduct mathematical modeling of their experiential 
world and then are invited to use informal strategies (horizontal mathematization) and 
further develop them into normative forms and practices of mathematics (vertical 
mathematization) (Gravemeijer, 1998). Several scholars suggested that mathematical 
modeling of geometric figures should take into account four distinct perceptual systems 
of the figure(s): (a) as physical navigation of macrospace (objects more than 50 times 
the size of an individual); (b) as capturing an object in mesospace (0.5 to 50 times); (c) 
as constructions of small objects in microspace (less than 0.5 times); and (d) as 
descriptions and manipulations of small objects in microspace (e.g. Herbst et al., 2017). 
Still, why and how physical models of different scales can facilitate learning of 



Palatnik 
 

3 - 276 PME 45 – 2022 
 

(spatial) geometry remains an open question. This empirical study seeks to provide an 
answer using the analytic apparatus of Mason’s shifts of attention theory. 
Learning as shifts of attention 
Mason (2010) claims that learning is a transformation of attention involving “shifts in 
the form as well as the focus of attention” (p. 24). Thus, to characterize learning, Mason 
considers what is attended to and how the objects are attended to. Per Mason (2008), 
there are five different forms or structures of attention. One may hold the wholes 
without focusing on particularities or discern details among the rest of the elements of 
the attended object. From there, one may recognize relationships between discerned 
elements and even perceive properties by actively searching for additional elements 
fitting the relationship. The ultimate structure of attention is reasoning based on 
perceived properties. The shifts in attention structures are not necessarily sequential, 
and one may return to holding the whole to reassess the situation.    
In Mason’s works (2008, 2010), these theoretical constructs were suggested for use in 
teachers’ education. In more recent studies, the theory of shifts of attention was applied 
as an analytical framework to study students’ problem-solving efforts (Palatnik & 
Koichu, 2015) and assess individual changes in children’s communication and 
conceptualization of arithmetical tasks (Voutsina et al., 2019). Palatnik and Sigler 
(2019) suggested that shifts in form and focus of attention can also be applied to 
analyzing geometric tasks and activities, particularly when introducing an auxiliary 
element is necessary. The current study expands the application of shifts of attention 
as an analytical framework for investigating spatial geometry learning. In this report, 
the analytical lens of shifts of attention is applied to collaborative geometric activity in 
which students explore tangible models of a geometric object on different scales. 
Research questions 
When students study 3D geometrical objects by exploring physical models, which 
shifts of attention do they experience? What role do physical features of the models 
(i.e., their relative size and their orientation in space) play in the process of student 
exploration? 
METHOD 
Context 
This study is a part of a research project Learning Geometry as Negotiating 
Perspectival Complementarities studying activities that foster conceptually productive 
discursive and pragmatic tension between differing perspectives on sensorial features 
of shared displays of geometric objects (Benally et al., 2022). A distinctive feature of 
the empirical context of the current study is that students explore the same geometric 
objects at different scales. In one of the tasks, students are given a 2D diagram and 
written instruction (see Figure 1) to construct an icosahedron—a polyhedron whose 
exterior is composed of twenty equilateral triangular faces. They have to build 
relatively small as well as human-scale models using wooden rods and silicone joints. 
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Once both models are built, students are asked questions concerning the icosahedron’s 
properties, for example, “How many vertices and edges does an icosahedron have?”, 
“How many parallel edges?”, “If the icosahedron were standing on its triangular base 
and filled halfway up with water, what would be the water’s surface shape?” 

Your team has to construct two three-
dimensional models (one large, one small) 
of a geometric solid, a polyhedron.  
The polyhedron has the following 
properties: 

• All the faces are congruent equilateral 
triangles. 

• The same number of edges converges 
at each vertex. 

 

 

Figure 1: The icosahedron construction task and materials.  
Data collection and analysis 
The case presented in the paper provides an account of an outdoor implementation of 
the activity with a group of six tenth-grade students. This activity was a part of an 
enrichment program for the students at the beginning of their first year in the new high 
school. This case was chosen from the data collected (14 cases)for two reasons: First, 
the way this group constructed the models and answered the questions was typical of 
this activity. Second, the students were more verbal than other groups, making 
indications of their attention shifts more distinguishable.  
The activity was video-audio recorded. To analyze the data, we combined multimodal 
analysis of students’ interactions (Abrahamson et al., 2020) with microgenetic analysis 
of shifts of attention (Voutsina et al., 2019) in the following way. We prepared a 
complete transcription of the activity, overlaid with a description of students’ actions, 
gestures, and movements. The resulting protocol was divided into episodes (i.e., 
construction of the large-scale model, construction of the hand-held model, the answer 
to the first question, etc.) In each episode, we looked for the indicators of the shifts in 
focus (what is attended to) and structures of attention (how it is attended to). Marking 
the objects directly mentioned in the conversation, the direction of the gestures and 
gaze (where available) helped us identify the focus of attention. To identify shifts in 
structures of attention, we, following Gibson’s approach, interpreted changes in 
students’ movement in space, manipulations with and local transformations of the 
object itself (for instance, change in the model’s orientation). Particular attention was 
paid to the actions, gestures, and utterances that preceded students’ advancements in 
the task. At the subsequent analysis stage, we compared how students interacted within 
the team and with models in different episodes. Due to the page limitation, we focus 
here on two episodes: finding the number of vertices and the number of edges. 
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FINDINGS 

	
a	

	
b	

	
c	

	
d	

Figure 2: (a) Students discuss a small-scale model resting on a triangular face; (b) the 
student examines a small-scale model while holding it on a vertex; (c-d) different 

points of view on the same model. 
Having constructed both the large and small models, the students used the small model 
to find the number of vertices (Participants are referred to by the color of their t-shirts; 
transcription translated from Hebrew by the author). 

Grey [holds a model on its vertex, starts counting] One, two, three, four, five. 
[touches an upper vertex, touches two additional vertices] 

Black How many vertices? [Reaches out for the model and touches it]. We already 
counted (them). It is a number of joints.  

Yellow [takes the model, starts to count by touching silicon joints] One, two. 
Grey Twelve. Times five. Sixty. 
Yellow How (it can be) twelve times five? How (it can be) sixty? [looks at the 

model]. 
Grey [tries to take a model from Yellow] Ah, vertices… Twelve. Put it (the 

model) like this [tries to orient the model on the vertex] 
Yellow Give it (the model) to me for a moment. I know what I’m doing [takes the 

model away from Gray]. 
Grey But, but…It’s… Ohhh… 
Yellow [starts counting the joints from two facing her]. One, two. [continues 

counting] One, two, three…ten. It is twelve! [puts a model on a floor to 
write an answer] 

Grey [takes a model and tilts it on a vertex] Look [addressing Yellow] at it this 
way. [Starts counting from a lower basis] One, two… 

Yellow There are twelve!!! 

In this episode, Gray and Yellow answer the question by counting the silicon joints of 
the small-scale model. The small size of the model allowed the students to group 
around it. The model became the focus of their joint attention. The model’s size also 
enables students to simultaneously grasp most of its features, holding the whole. Both 
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students physically touched the joints while counting vertices which helped them to 
discern these relevant details of the model (separating it from edges and faces). Both 
students were successful in counting 12 vertices. However, the ways of counting were 
qualitatively different. By orienting the model in a particular way (Figure 2 b, d), Grey 
recognized a relationship between several groups of vertices of the icosahedron. 
Grey’s persistence to explain his point of view and his frustration when he was denied 
the explanation can indicate that he perceived this orientation as the property of an 
icosahedron, and it served as the base for his reasoning. Yellow was also successful in 
her attempt to count the vertices, which she separated into two groups of two and ten 
and did not see the value in the alternative orientation of the model in space. The next 
episode will demonstrate that Gray’s unappreciated know-how of holding an 
icosahedron on its vertex will help answer how many edges an icosahedron has while 
Yellow’s attempt will fail. 

Yellow How many edges are there? 
Black Okay, that’s tricky because they’re shared. (i.e., each edge is shared by two 

triangles). 
Blue I’ll put a finger [on the first edge, to Yellow help her monitor the count]. 
Orange You just count the sticks. 
Yellow I’ll go to the big one (i.e., the large-scale model). 
Black The big one is just nicer. 

Figure 3: (a) students’ problem-solving attempt inside and outside a human-scale 
model (standing on a triangular face); (b) having tilted the structure onto a vertex, the 

students soon arrive at a critical breakthrough; (c) partition of an icosahedron. 
Three of the six students rose and walked over to the nearby large-scale model. This 
larger model is advantageous for counting because its edges are more perceptually 
distinct. A model’s greater size, while availing perceptual acuteness, may come with a 
price that its figural elements in question (the to-be-counted edges) are never all in 
one’s arm’s reach—you cannot directly touch or gesture to each edge as you tally it. 
Thus, using structures of attention terminology, greater size afforded students easier 
holding the wholes while impairing discerning detail by a sense of touch. To overcome 
this, Yellow entered inside the model, where all edges are within her reach (Figure 3a). 

	
a	

	
b	 c	
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Still, when you are inside an object, part of it is always behind you, so you might lose 
track of your count. Indeed, Yellow’s initial attempts to count failed.  
The excerpt below demonstrates two phases of student solution. During the first phase, 
Yellow attempted to use some of the icosahedron properties that the team discovered 
during construction, yet again she failed to develop a systematic approach. During the 
second, Grey received an opportunity to demonstrate that his strategy of putting the 
model on a vertex has an advantage. In seconds, his physical action facilitated the 
restructuring of Yellow’s attention leading her to a correct solution. 

Yellow There are five from each vertex. One should be subtracted. Then there are 
four. Two should be subtracted here. It’s three. It doesn’t work that way…3, 
4, 5 [sits on the floor, inside the model, frustrated]. I can’t count this. 
[Stands up]. How many sticks did we use [during the construction stage]? 
Three and another three, and another three, and another three, it’s 12… 

Grey Let’s do it as we did with (inaudible) [Stands up]  
Yellow [referring to triangular faces] …another three, 15, another three… 
Black We need a formula for this… 
Gray I’m tilting it. [starts tilting the model] 
Yellow No, no, no, no! eighteen…No! Why? 
Gray To make it like this (standing on the vertex). It will be easier to count like 

that [holds the model on the vertex] (Figure 3b). 1, 2, 3, 4, 5 [counts the 
edges diverging from the upper base vertex by pointing at them]; 1, 2, 3, 4, 
5 [counts the edges diverging from the lower base vertex] 

Yellow [turns inside the model and counts the edges of a lower base pentagon by 
pointing at them] 1, 2, 3, 4, 5.  

Grey Look, the base is ten. 
Yellow [counts the middle section] 1, 2, 3, 4... Where did I start? (to Grey) Put your 

hand here. [continues to count silently] ... [raises arms to the upper base] 
ten, [lowers arms to the lower base] ten, [makes a circular breaststroke 
movement with both hands indicating a middle part] ten, ...thirty! 

At the beginning of the episode, Yellow discerned relevant details of the model and 
even recognized the relationship between them: five edges meeting at the vertex, three 
edges forming each of the triangular faces. Each of these relationships has the potential 
to become the property leading students to a correct solution. However, these 
properties were not useful for Yellow’s approach of direct counting. While standing 
inside the model and reassessing the situation, she cannot hold the whole. From a 
mathematical point of view, it does not matter how the icosahedron is positioned in 
space—the polyhedron’s mathematical properties remain the same. However, in a 
material gravitational world, the model lay on one of its triangular faces, making it 
difficult to perceive certain structural symmetries. 
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When Grey tilted the model onto a vertex (Figure 3b), he restructured Yellow’s 
attention. Previously this action enabled Grey to count the vertices, and now it helped 
Yellow to perceive an icosahedron as tripartite: two opposing “bases” and a connecting 
“belt” (Figure 3c). Grey also gave Yellow a hand (literally) in counting edges in a 
“belt.” New structures of attention facilitated counting, and three aggregating gestures 
summarized the perceived property that there are ten edges in each of three groups.  
DISCUSSION 
The first research question raised by this study was on shifts in focus and form of 
students’ attention when studying 3D geometrical objects by exploring physical 
models. By moving in space, changing points of view, and modifying a physical object 
(Gibson, 2015), the students experienced shifts in focus (small and large model, three 
distinct parts of the model, vertices, edges, groups of edges) and structures of attention. 
All five theoretical structures of attention and shifts between them (Mason, 2008) were 
documented in two episodes. Note that shifts in the structures of attention were 
associated with vision and touch, proprioception, and physical actions of students with 
and through the models. For instance, tilting the model on its vertex allowed students 
to structure their seeing of the icosahedron into three visible sets. We reported this case 
as indicative since this action helped students answer questions about vertices and 
edges or explain their solution to their peers in all the cases we possess.  
The second question was on the role of physical features of the models in the process 
of student exploration. Models of different scales landed students different affordances 
(Gibson, 2015) for inquiry. For instance, in most cases, at least one student entered a 
human-scale model to examine the features of the polyhedron from within (as Yellow 
did). The activity enabled students to ground conceptions of the geometric figure 
simultaneously as objects in mesospace and macrospace (c.f. Herbst et al., 2017), 
providing more opportunities for possible shifts in focus and structures of attention and 
thus learning (Mason, 2008, 2010). Each model served as a physical attractor with 
different affordances for and constraints on the action; accordingly, students 
reorganized around these affordances and constraints. For instance, the small-scale 
model centered the group’s multimodal interactions, but its size could not 
accommodate students’ form of inquiry; the apparent availability of a larger model 
catalyzed splitting the group, which, in turn, juggled students’ social roles. 
The case study findings highlight the pedagogical potential of using different scales 
3D models in spatial geometry instruction. First, the students experienced construction 
and informal exploration of polyhedron models producing a multitude of perspectives 
and collaborative insights on their features. Their efforts combined collaborative 
actions, gestures (indexing and iconic), and speech to indicate and highlight models’ 
properties. The fluency with which students moved from one model to another—both 
physically and inferentially—suggests they noticed invariant scale-free features of a 
geometric object. Then, students’ shifts of attention were multimodally grounded in 
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their senses and converged to a gradual disciplinary formalization of the polyhedron’s 
concept (c.f. Abrahamson et al.,2020, embodied design for mathematics instruction).  
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THE MTE: MANAGING THE PROFESSIONAL EMPOWERMENT 
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The knowledge and practices of primary mathematics teacher educators in the period 
of initial training have the same impact on prospective primary teachers as teachers’ 
knowledge does on their students’ learning. The aim of this study is to contribute to 
characterising educators’ knowledge, particularly with respect to developing their 
students’ abilities and professional identity. Based on the observation of a training 
session and an interview, we recorded instances of a primary teacher educator’s 
knowledge, which we then analysed. The results indicate that not only the construction 
of professional knowledge, but also the development of teaching abilities and the sense 
of belonging to a community of teaching practices, become key to the process of 
professional empowerment of the prospective primary teachers. 
THEORETICAL BACKGROUND 
Mathematics teacher educators’ (MTEs) knowledge is one of the major challenges in 
mathematics education research today (Chapman, 2021). Understanding and 
characterising MTEs’ knowledge means recognising their role as agents of change in 
the learning of prospective primary teachers (PPTs), in the same way as had 
traditionally been recognised in terms of mathematics teachers and their students 
(Jaworski, 2008). 
Research into MTEs’ knowledge is based on, at least, mathematics teachers’ 
knowledge (MTK) and knowledge of mathematics teachers’ education (KMTed) 
(Chapman, 2021). MTEs’ knowledge should also contemplate the primary teacher’s 
knowledge as part of the content to be imparted/constructed in the course of the 
training. Consequently, many approaches to educators’ knowledge have been couched 
as extensions to the teacher’s knowledge (Castro-Superfine, et al., 2020; Perks & 
Prestage, 2008; Zaslavsky & Leikin, 2004), adapted to the primary training context. 
Likewise, teacher educator knowledge in the domain of primary mathematics should 
consider aspect related to how to teach teachers’ knowledge (KMTed). In this regard, 
the work of Chick and Beswick (2018) and their characterisation of the pedagogical 
content knowledge of primary teacher educators suggests that it is a question of the 
educator’s meta-knowledge of how to teach content knowledge for teaching 
mathematics. 
Our views on the knowledge of MTEs are consistent with many previous studies. On 
the one hand, we consider that there are many points of contact between the educator’s 
knowledge and the teacher’s knowledge, although there are areas of divergence, too. 
The differences revolve around the depth of understanding of mathematical content, 
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and the connections between the mathematical content and pedagogical content 
knowledge which the educator might have (Escudero-Ávila, Montes & Contreras, 
2021). 
Nevertheless, bearing in mind the observations of Ponte (2012) regarding the 
structuring of primary teacher training, the educator’s knowledge should also include 
elements of knowledge of the teaching as a profession, professional practices, and 
professional identity, along with such knowledge as will allow them to help the PPTs 
gain access to these elements. Likewise, these areas of knowledge should be combined 
at the two levels at which the educator discourse is focused – that of the initial training 
classroom and the PPTs, and that of the future mathematics classroom and the students 
(Jaworski & Huang, 2014). Although the educator’s knowledge should be understood 
as multidimensional, complex and indivisible (Escudero-Ávila et al., 2021), the 
analytical advantages of establishing different categories of knowledge leads us to 
consider the structure and content of the MTSK model (Carrillo et al., 2018) as the 
inspiration for the conceptualisation of the educator’s knowledge. 
Our study aims to contribute to the characterisation of the educator’s knowledge, and 
to explore the connections between the elements of this knowledge, foregrounding how 
this promotes the development of PPTs’ abilities and teaching identity during the initial 
training. To do so, we focus on analysing which aspects of the MTEs’ knowledge 
enables them to manage sessions of primary teachers’ initial training which promotes 
that the PPTs learn how to act as teachers, and to recognise themselves within the 
teaching community. In the next section, we describe the methodological aspects of 
the study. 
ANALYTICAL APPROACH 
The study took the form of a case study (Bassey, 1999), in which an expert informant 
was selected (a mathematics education researcher working in the field of teachers’ 
knowledge and professional development, with more than thirty years as an educator, 
whose work is widely respected within the academic community), henceforth referred 
to as Lucas. Several distinct training sessions were observed and video-recorded, and 
the foundations of these sessions were then discussed with him. 
The excerpts discussed in this study correspond to the evidence of knowledge 
identified in the course of a session in which the definition of polygon was constructed 
with the PPTs, as part of the course content on the methodology of geometry in the 
Degree in Primary Education at a Spanish university. Once the class extracts had been 
selected, we identified points providing evidence of different kinds of knowledge 
according to the method of content analysis (Krippendorff, 1980). The accumulation 
of these focal points developed our understanding of the educator’s knowledge, and 
each was matched against the analytical structure by Escudero-Ávila et al. (2021). The 
process of discussing these episodes by a group of experts, and contrasting the evidence 
obtained according to different data gathering tools (Baxter y Lederman, 2001) enabled 
us to triangulate and validate the various elements of the educator’s knowledge. This 
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in turn helped us to understand how Lucas managed the learning of different 
professional practices related to task planning, and how he promoted certain values 
which constitute a teaching profile, and supported the development of the PPTs’ 
professional identity. 
ANALYSIS AND DISCUSSION 
Lucas presented this session to the PPTs a class in which the main objective was 
tackling the mathematical practice of defining, specifically in this case the construction 
of the definition of a polygon. The session was structured around a set of geometric 
shapes which formed the basis of a discussion about the mathematical elements which 
make up the definition of a polygon (Figure 1). 

 
Figure 1: A selection of examples for constructing the definition of a polygon. 

Taking the perspective on exemplification offered by Watson and Chick (2011), Lucas’ 
handling of the selection of examples provides indications of his mathematical 
knowledge regarding the definition of polygons and the practice of defining, especially 
in the way he guides discussion of the necessary conditions and leads his students to 
inductively construct a definition of a polygon. 
Lucas presents the construction of mathematically satisfactory definitions as a social 
activity, that is, as a collaborative endeavour. The approach reflects his beliefs about 
what mathematics is, which, although not the direct focus of this study, can be 
transmitted over the course of the initial training programme as a source for configuring 
the students’ teaching profile: 

Lucas: Let’s see if we can remember. What are the arguments underlying what 
we’ve agreed on so far? What might be revealed by including or excluding 
the circle in the set of polygons? That’s one of the things we’re going to 
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look at today. If we decide it’s a polygon, what consequences follow on 
from that? ¿OK? 

 […] 
 What else do we need to think about? Is there just one way of defining a 

polygon? Is there a correct way? Or are there various possibilities? 

The discussion about the consequences of including certain shapes inn the set of 
polygons further illustrates Lucas’ understanding of the interdependence of the 
mathematical results which they are hierarchically constructing. The fact that Lucas 
highlights these mathematical relationships not only illustrates his conceptualisation of 
mathematics as a connective network linking together concepts, procedures and 
practices, but also represents an opportunity to empower the PPTs to become actively 
engaged with mathematical knowledge. The ability to recognise these relationships and 
to be able to construct new ones by changing the underlying premises, is indicative of 
deep mathematical knowledge. It is this kind of knowledge, in particular with respect 
to the knowledge of topics (KoT) and knowledge of practices in mathematics (KPM) 
subdomains (Carrillo, et al., 2018), which mark the difference here between the 
primary teacher educator and primary education teachers, as other episodes across the 
full study also suggest. 
Showing awareness that the PPTs are immersed in a process of reformulating their 
mathematical knowledge during the course, Lucas draws on exemplification and 
analysis of geometric definitions in order to lay the foundations of this new way of 
understanding mathematical content. Through the principle of isomorphism (Ponte & 
Chapman, 2008) and the premises of modelling (Rojas, et al., 2021), by which the 
teaching they receive in their initial training serves  as a model for their own teaching 
when they enter the profession, the PPTs can transform their experience into content 
for their primary education training. 
Lucas’ discourse also shows evidence of his knowledge of how to teach content related 
to planning activities for classroom use, bridging between the context of initial training 
and that of primary teaching (Jaworski & Huang, 2014) 

Lucas: Let’s take a moment to reflect now about the wealth, when it comes to 
making distinctions, the wealth that each step we took in the elimination 
process could give rise, yeah? Thinking about how we now understand 
those steps. And how the act of defining, agreeing properties together, leads 
us to a shared definition of a polygon, as opposed to a definition that’s 
imposed, where we don’t understand why those particular criteria have 
been imposed. And it’s just the same when you come to teach it, because 
your pupils can also go through this process, which is such a richer 
experience.  

Lucas makes it very clear that the PPTs are perfectly capable of planning primary 
lessons which are fully consistent with what they have experienced themselves in their 
initial training. This excerpt brings to the fore how Lucas articulates various elements 
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of his knowledge in order to mould the task, which at the same time serves as a model 
for teaching in the primary context. What he does can be interpreted as putting into 
effect his knowledge of teaching pedagogical knowledge for the teaching of 
mathematics. 
In the extract below, when some of the PPTs encounter difficulties with the task, Lucas 
makes reference to different approaches to defining a polygon. In doing so, he 
demonstrates his knowledge of traditional modes of teaching mathematical concepts, 
where in the past deductive methods predominated: 

Student: Me, at least the way I see it, if we can’t compare it with anything, if we’re 
not sure about what a polygon is, then how can we say if it’s a polygon or 
not? 

Lucas: Well, you’re negating the main thing. What you’re saying is: “Unless I have 
a definition, how can I know what a polygon is?” Well, OK, let me turn that 
back on you, because what you’re essentially saying is that the only way to 
define something is to go from the general to the particular.  And I want to 
question that. Maybe it’s because that’s what you’re used to. I want to know 
if it is possible, based on different particular situations, to try and construct 
a general concept. 

The activity of constructing the definition of a polygon, and the considerations of what 
to take into account when teaching the topic, is brought to a close by Lucas’ reflections 
on the teaching materials used at this level, specifically the textbooks. His comments 
illuminate his perspective on the teacher’s professional identity, locating them as an 
expert in the teaching of mathematics, capacitated to make analytically based decisions 
on the material they use. 

Lucas: What would be nice now would be to have a look at the textbooks, which 
is the third part of the activity, and see if the definition of a polygon which 
they give in the textbooks is the same as ours, and see if our process has 
been a richer or less rich experience than what the book offers, which 
almost certainly the complete opposite. So I suggest that’s what you do. We 
can definitely find it in the books for third year primary. I recommend you 
have a look at how polygons are introduced, how they introduce them. 

The work on defining a polygon was complemented by the video recording of a 
primary lesson in which the teacher carried out an activity similar to that the PPTs had 
experienced. As a follow-up, they were asked to think about which aspects of the 
teacher’s performance had stood out, what suggestions they might make for areas of 
improvement, how effective they considered the examples used, and what 
interventions or responses by the pupils had struck them. 
The design and execution of this kind of activity by the educator as part of the initial 
training course illustrate his knowledge of the professional practice of planning tasks 
for teacher education which become the principal focus of the session. The teacher 
educator leads a discussion phase covering different elements of professional 
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knowledge, but its essential function is to provide a model of how the PPTs might 
proceed in their own future classes, which they then subsequently discuss. The 
discussion of the examples deployed by the teacher in the video places the focus on the 
role of exemplification as a teaching tool, in particular the choice of examples, their 
degree of transparency, and the educational potential of the example space. In this 
regard, the educational practice considered in this phase provided evidence of another 
area of the educator’s knowledge. 
CONCLUSIONS 
The conclusions to be drawn from this study underline the importance of the 
interconnections between the trainer's knowledge of primary education teaching 
practices, the means of transmitting these to the PPTs and professional empowerment 
in education. The teaching of such educational practices as task design and 
exemplification represents one of the distinguishing elements of initial primary training 
with respect to other university domains involving the teaching of mathematical 
content. Recognising the specificity of content involved in primary teacher training, 
and the importance of the educator’s knowledge in developing this, represents an 
advance in improving the teaching and learning of mathematics at various educational 
levels. It is here where the chief contribution of this study lies, and in this regard it fits 
alongside the developments in characterising educators’ knowledge proposed by 
Escudero-Ávila et al. (2021). 
The knowledge required by MTEs to be able to manage the learning of these practices 
following the practices of isomorphism (Ponte & Chapman, 2008) or modelling (Rojas, 
et al., 2021), can be interpreted from the perspective of practical wisdom described by 
Perks and Prestage (2008), but requires an exhaustive revision so as to understand the 
different ways MTEs deliver the training content to the PPTs. Progress along these 
lines would see an improvement in programmes for training educators. Analysis of 
video-recorded lesson, such as that described in this study, and roleplaying activities 
in the training course, which we also saw in or wider study, amplify the modes 
available to MTEs for teaching to teach mathematics, and rest on both knowledge of 
training content and pedagogical content knowledge for training. 
The development of teachers’ professional identity can take place in parallel with work 
on professional practices in initial training course. The inclusion of content dealing 
with the day to day concerns of teachers directs the PPTs’ awareness towards their 
professional future, and encourages them to see themselves as teachers rather than 
students. Nevertheless, occasions when the educator expresses their knowledge of 
professional values or attitudes, and beliefs about mathematics and its teaching and 
learning, confirm the presence of content related to the configuration of teachers’ 
professional identity in the initial training course. Further studies are needed in this 
vein to help us systematically identify the signals that recurrently appear in studies of 
educators’ knowledge. The configuration of teachers’ professional identity and the 
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development of professional profiles constitute one of the major milestones in the 
initial training of primary teachers. 
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In this study, we analyze how 9-10 years old students represent and refer to 
indeterminate quantities when posing equations associated with arithmetic word 
problems. The analysis focuses on the semantic congruence of the expressions 
proposed by them and on the dialogue they held during the translation process. The 
results show that arithmetic word problems allow the indeterminate to become an 
object of thought for students, who represent it in multiple ways and refer to it when 
proposing equations that represent the structure of each problem. Another finding 
highlights that reflection on the interpretation of the equations favors the identification 
of two meanings associated with indeterminate quantities, namely, unknown and 
variable. 
School algebra should be understood as a topic related to other mathematical contents 
(Kaput, 2008). One of the main aspects of school algebra in elementary school is to 
develop algebraic thinking, which allows children to interact with indeterminate 
quantities: unknowns, variables, parameters or generalized numbers (Radford, 2018). 
In this context, our interest is in establishing relationships between the resolution of 
arithmetic word problems (AWP, hereafter) and their translation using algebraic 
notation. We seek that elementary school students agree on the meaning of 
indeterminate quantities and how to represent them using letters or another symbol 
proposed by them. The role of AWP is important because the context favors the 
students to give meaning and support to indeterminate quantities (Janßen & Radford, 
2015). Some previous studies have reported that 9–10-year-old children solve AWP 
and treat them in a general way. However, they cannot express them with algebraic 
notation (Fritzlar & Karpinski-Siebold, 2018). 
Therefore, in this work we describe how 9-10 years old students represent and refer to 
indeterminate quantities when posing equations associated with AWP. For this aim, 
we focus on how students translate AWP into algebraic notation. 
ALGEBRAIC THINKING AND EQUATIONS 
One of the areas of content to algebraic thinking includes equivalence, expressions, 
equations, and inequalities (Kaput, 2008). This area seeks to develop a relational 
understanding of the equal sign, as well as reason with expressions, establish the 
equivalence between different expressions in general terms, and pose and solve 
equations and inequalities (Blanton et al., 2011). 
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In this work, we focus on the equations, understanding that an equation is a 
mathematical sentence that involves an equal sign to show that two algebraic or 
numeric expressions are equivalent (Blanton et al., 2011). Radford (2021) pointed out 
that using an equation to reason about the representation and communication of the 
relationship between quantities is a cornerstone of algebra. In addition, many problems 
are better solved if the equation is first written to represent the problem statement. He 
highlighted that developing an understanding of how equations can be written to 
represent problems at elementary school can build a foundation for later learning 
formal algebra. 
ARITHMETIC WORD PPROBLEMS AND ITS TRANSLATION  
AWP contain information that is presented exclusively through natural language, and 
to solve them it is necessary to apply one or more elementary mathematical operations. 
In turn, these problems can be represented using different representations, therefore, 
their interpretation and solution can lead to several translations carried out by the 
solver. 
Regarding the translation of natural language to algebraic symbolism, several authors 
focus mainly on courses after primary education. For instance, Castro et al. (2021) have 
shown that to be successful in translations, students must identify the variables 
involved, the relationships between them, and the syntax of the symbolic 
representation. One of the difficulties that students face is to understand the meaning 
of algebraic notation, since this type of representation is considered opaque for them. 
They use to have difficulties to visualize the advantages of algebraic notation. 
About the translation from one representation to another, Duval (2006) pointed out that 
two representations are congruent when the following three conditions are met: (a) 
semantic correspondence between the significant units that constitute them; (b) 
semantic univocity, i.e. each initial significant unit of output corresponds to one and 
only one significant elementary unit of the input record; and (c) the order within the 
organization of the significant output units is maintained in the arrival representation. 
When one of these criteria is no longer met, the representations are not congruent with 
each other. However, this author added that two expressions can be referentially 
equivalent without being semantically congruent. Semantic congruence allows us to 
see the degree of transparency of the relationship between two representations. 
METHODOLOGY  
The data that we present here comes from a Summer School that took place virtually 
for two weeks and was attended by pupils who had just finished the 4th year of 
elementary school.  
Participants 
The Summer School had 21 participants, who attended their previous school year 
online. The students belonged to two different schools that are part of the same 
Educational Foundation that serves children and young people from low-income 
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sectors. The students were selected with the help of their regular math teachers under 
the following three criteria: (a) gender parity (10 girls and 11 boys); (b) willingness to 
work during the summer; and (c) different paces of learning. 
Design 
The Summer School was organized in 10 sessions following the areas of content to 
algebraic thinking (Blanton et al., 2011; Kaput, 2008): generalized arithmetic (sessions 
2, 3 and 4), equivalence, expressions, and equations (sessions 5 and 6), and functional 
thinking (sessions 7, 8, and 9). In the first and last sessions, the students’ knowledge 
was assessed. Sessions 2-9 followed a similar structure, organized into three parts: (a) 
small groups (4-5 students), in which the aim was for the students to dialogue and 
collaborate with each other in the search for regularities, conjectures, and solutions to 
the problems presented; (b) whole group, where each group presented their findings 
and two teachers led the discussion so that the pupils synthesized their ideas; and (c) 
medium-sized groups (10-11 students), in which the objective was to transfer what had 
been  discussed to another similar situation or to delve into a finding from the previous 
parts on the problems presented. Each part favored the installation of spaces for 
cooperation, confrontation, and discussion of ideas. 
In this paper we focus on session 6, however, we will describe in general terms what 
was done previously, without considering the initial assessment. In session 2, students 
expressed their general ideas through natural language by arguing what happens when 
odd and even numbers are added. Then, in sessions 3 and 4 they discussed the relational 
meaning of the equal sign. Here, for the first time the letter is introduced as a 
representation for generalizing arithmetic properties (for example, the commutativity 
of addition). In this first encounter with the letter, the students concluded that it could 
represent any number (generalized number). In session 5, they were proposed an 
adaptation of the cards and envelopes problem described in Janßen and Radford (2015). 
The students were asked to express and solve the equation involved in the problem 
using manipulatives and pictorial representations. However, it became clear that it was 
necessary to deepen the approach to equations. Although they were able to represent 
them with manipulative material, with drawings and even with letters, doubts remained 
about the meaning of the indeterminate. 
Data selection: 6th Session 
In the sixth session, we pursued two learning objectives: (a) to represent everyday 
situations with algebraic notation, and (b) to use the letter as a representation of an 
indeterminate quantity. We analyze the result obtained in the first two parts (small 
group and whole group), due to the extension of this work. In these parts, we proposed 
two AWP, which were represented with natural language and the students had to 
translate and represent them with algebraic notation. The first AWP involved an 
unknown, had a unique solution, and it involves the structure y+15=20. The other AWP 
implicated two unknowns whose value could not be determined due to the lack of data 
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in the statement and it involves the structure y=20+b. In Figure 1 the AWP and 
representations that the teacher raised for each situation are presented. 

     
Figure 1: Representation of AWP introduced by the teacher. 

The problems were presented following a similar structure. Each problem was 
presented orally and in writing, projected on the screen. Firstly, the students were asked 
to "tell the story" (i.e., to represent verbal sentences) with mathematical symbols.  In 
the first instance, the undetermined quantities could be represented as they consider 
pertinent, then the possibility of representing them with letters was mentioned by the 
teacher and discussed within the group, as had been done in previous sessions. After 
reaching agreement on the representation of the problems in a group discussion, 
students solved each equation and discussed what the value of each unknown was. 
Analysis  
We analyze the students’ written and oral responses to the two AWP presented. We 
focus on semantic congruence. Following the ideas of Duval’s (2006) proposal, we 
describe the existing correspondence between the AWP and the algebraic expressions 
that they propose. Specifically, we focus our attention on: (a) semantic correspondence 
between semantic units, (b) semantic univocity between representations; and (c) 
organization of relations between representational units. The three previous elements 
allowed us to indicate the presence or absence of semantic congruence.  
Students were labeled as Si, where i = 1, ..., 19. 
RESULTS  
In this section, we present the responses of the 19 students who participated in the 
session (two students were absent). Firstly, they worked on “the pencil problem” and 
then “the apple problem”. The main results obtained are presented below, following 
our research objective: to analyze how students represent and refer to indeterminate 
quantities when proposing equations associated with AWP. 
The pencil problem 
Here, students had to identify how many pencils were in the box and discuss the value 
of the unknown. Broadly speaking, of the 19 students who solved this problem, 10 of 
them used the letter to represent the problem with an equation, three used a question 
mark “?”, four students made drawings, one focused on a specific calculation and 
another student did not respond. 
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Concerning the congruence, four students came up with an equation consistent with 
the pencil problem. Eight students raised referentially equivalent equations, but not 
congruent since they do not meet the organization of relations between representational 
unit criteria. In this case, the structure represented by these students was 15+y=20. One 
student proposed the equation 15+a=35 and another wrote the calculation 15+5=20. In 
these last cases only semantic univocity is observed. 
In terms of representing the unknown quantity (number of pencils in the box), 10 
students used letters (a, b, and x) and another three used a question mark “?”. Similarly, 
the 13 students refer to the letters or the symbol “?” as the number of pencils in the box 
that they do not know, i.e., they interpreted them as an indeterminate number. For 
example, S3 proposes the equation b+15=20, he said: “I thought: he says that he bought 
a box, but you do not know how many pencils that box has, and that represents b. 15 
in the house. I used b, but any letter can be any number.” This last sentence highlights 
that he accepts that the representations of his classmates are also correct, even when 
different letters are used. 
Regarding the equivalence of the equations of the form y+15=20 and 15+y=20, 
students were asked if they represented the same thing, although the order of the 
addends was different. S8 pointed out: “if we change their place, it does not alter the 
result due to the commutative property.” S15 also mentioned the commutative property 
to justify the equivalence between expressions. 
Regarding the value represented by the unknown, at the end of the discussion of this 
problem, all the children agreed that the only possible answer was 5, and this was 
mainly verified by replacing the letter by the number or by subtracting, as shown in 
Figure 2.  

     
Figure 2: Representation and solution of the problem made by three schoolchildren. 

The apple problem 
This problem involves the structure y=20+b, and the idea was for the children to 
identify how to represent the total number of apples and discuss the value of the 
unknowns. Of the 19 students who solved this problem, 13 used the letter to represent 
the problem with an equation, three made drawings, one focused on a specific 
calculation, and two did not respond. 
In the verbal statement of this problem, it was first mentioned that there were apples in 
a basket and then it was described what kind of apples they were, so the children were 
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expected to represent the total of apples to the left of the equal sign to maintain the 
order of the statement. However, all the students represented it to their right, therefore, 
no expression was semantically congruent with the problem as the organization of 
relations between representational unit criteria was not met. 
Three students proposed an equation of the form y+20=b and seven students wrote an 
equation of the form 20+y=b. Like in the previous problem, they recognized that these 
equations are equivalent and alluded to the commutative property of addition 
(explicitly or only mentioning that the order of the addends does not change the result). 
Two students represented the statement as 20+x=x. This last equation does not meet 
the univocity criterion, since x represents the number of red apples and the total number 
of apples in the basket as well. In a discussion, S6 said that it cannot be possible and, 
referring to indeterminate quantities as if they were known, pointed out: “when you 
add the letter it will give you a result and it cannot be because they will give different 
numbers”. S9 added “it must be another symbol otherwise the result would be the same 
as the red [apples]. Instead of x in the sum, you change it to a”. This discussion was 
ended by S8, who suggested that there were five red apples to show that the result would 
be a quantity other than five. 
One student answered, “20 + x=” and pointed out that he cannot complete the 
expression because he did not yet know how many red apples there were, therefore, he 
cannot write any. Another student wrote 20+n=40, in this case he interpreted that there 
were 20 apples of each type, so his answer did not correspond to the statement. 
Something similar happened with another student, who answered: 10+10=20. 
On the way to represent indeterminate quantities, as in the previous problem, the 
students recognize that they can use different letters. However, seven students used a 
question mark “?” to refer to the total number of apples in the basket. For example, S6 

said that “?” represents “the result that we do not know.” Another example is S15’s 
answer shown in Figure 3. She said: “I put the green ones with a black marker and the 
red one like the red apples. But we do not know how many red apples there are, and 
we do not know how much it gives us”. 

 
Figure 3: translation of a word problem into mathematical language. 

Finally, after representing the problem statement, the student agreed that they cannot 
know how many apples were in the basket, therefore, they cannot know the value of 
the unknown quantities. S18 said that there was not enough information. S8 said that 
“we are missing a clue. Example, how much would it give or how much was the result”. 
To which S7 and S6 respond by pointing out that the number of red apples could also 
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be said, for example 20 or 19. S5, without referring to a certain quantity, argued: “it has 
to be greater than 21 for T, because it says 'others', so it has to be more than 1 [referring 
to the number of red apples]. In this case the letter can have different values”. 
DISCUSSION AND CONCLUSIONS  
The objective of this work was to analyze the translation process of AWP to algebraic 
expressions. To achieve this, we focused on analyzing the way in which the students 
referred to and represented indeterminate quantities when posing equations associated 
with verbal sentences. The children identified the indeterminate quantities involved in 
the different contexts and represented them with letters or a question mark (“?”). In the 
process of establishing semantic congruence between natural language and symbolism, 
students expanded the meaning associated with indeterminate quantities by 
interpreting them as: (a) unknowns, which is evidenced when they had enough 
information in the statement and they interpreted the indeterminate as an unknown with 
a fixed value; and (b) variables, which is observed when they did not have enough 
information in the statement and argued that the value of the indeterminate depended 
on the values assigned to any of the quantities that they did not know. 
Previous studies have already highlighted the importance of relying on everyday 
experiences, appropriate for the age, and possible to be approached by different 
students using their own natural intuition to develop algebraic thinking in the first 
school years (Molina & Castro, 2021). In this study, it is observed that family contexts 
and lower linguistic complexity helped children to visualize the relationship between 
each of the significant units expressed both in natural language and in symbolic 
language (semantic correspondence between semantic units). Just thinking about 
whether the expressions told the story mentioned in the problem motivated them and 
helped them discuss the relevance of using certain symbols in their equations. For 
example, they agreed that the same letter could not be used to represent different things 
in the problem (semantic univocity between representations) or that the order in which 
the addends are written does not have the same order in the problem statement (same 
organization of relations between representational unit), but it is mathematically 
correct due to the commutativity of addition. 
The indeterminate, by becoming an object of thought of the pupils, gave the additive 
problems an algebraic character. Our proposal is to motivate students to understand the 
problem and express it algebraically before seeking its solution. Once they accept and 
understand how to correctly translate each statement, the next step would be to focus 
on the resolution strategies. In previous research, it can be observed that students of 
similar ages solve arithmetic-algebraic problems. However, they cannot express them 
with algebraic symbols (Fritzlar & Karpinski-Siebold, 2018). 
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INTRODUCING MULTIPLES AND SUBMULTIPLES TO PRE-
PRIMARY CHILDREN 

Georgia Pitta, Xenia Vamvakoussi 
University of Ioannina, Greece 

 
We present part of an ongoing topic-specific design research aiming at enhancing pre- 
primary students’ multiplicative reasoning. We focus on an activity introducing 
vocabulary for multiples and submultiples with a view to enable children to express 
multiplicative relations verbally. We present the rationale and the design of the activity 
and findings of its first enactment with eight kindergarten children. The children 
appropriated the intended terms for multiples and, to a lesser extent, for submultiples 
as well, and used them to express multiplicative relations. The affordances and 
limitations of the activity are discussed, with a view to re-design it.  
THEORETICAL FRAMEWORK 
Research evidence indicates that there are early competences pertaining to 
multiplicative reasoning. Young children can trace multiplicative/proportional 
relations at a rudimentary level (McCrink & Spelke, 2016; Mix, Huttenlocher, & 
Levine, 2002); and can handle simple multiplicative situations involving discrete as 
well as continuous quantities (Hunting & Davis, 1991). These competences are limited; 
but may be enhanced if children are exposed to relevant informal and formal 
experiences (Hunting & Davis, 1991; Van den Heuvel-Panhuizen & Elia, 2020). 
Such evidence has not been fully exploited in early childhood education even though 
learning objectives regarding multiplicative reasoning are included in mathematics 
curricula. For example, an analysis of a Greek mathematics curriculum (K-2) 
(Vamvakoussi & Kaldrimidou, 2018) has shown that learning objectives pertaining to 
additive reasoning were far more and were allocated far more teaching time, than the 
ones for multiplicative reasoning; and the latter referred far more to discrete, than to 
continuous, quantities. Moreover, the vocabulary necessary to express multiplicative 
relations was very limited. In kindergarten, in particular, all explicit learning objectives 
pertaining to multiplicative reasoning were placed in the context of discrete quantities, 
referring to the “equal groups” structure and the three problems that stem from this 
situation (corresponding to multiplication, partitive and quotitive division); and no 
term for multiplicative relations was mentioned, not even the word “half”. 
It is true that multiplicative situations that involve continuous quantities are more 
challenging. For example, in fair-sharing situations with discrete quantities, strategies 
like “dealing” one by one are accessible to young children. Such relatively simple 
strategies are not available for continuous quantities. Nevertheless, children appear to 
grasp underlying principles in multiplicative situations (e.g., “more recipients, smaller 
share”) simultaneously for discrete and continuous quantities (Kornillaki & Nunes, 
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2005). For different, albeit complementary, reasons, several researchers suggest that 
discrete and continuous quantities should be treated similarly. For example, Steffe 
(2013) argues that the construction of both types of quantity is based on the same 
mental operation, namely unitizing; and that counting schemes can be qualified as 
measuring schemes. Sophian (2004) argues that the role of the unit in counting is more 
similar to the role of unit in measuring than typically assumed. Vamvakoussi and 
Kaldrimidou (2018) stress that three fundamental multiplicative operations—iteration 
of a quantity, equi-partitioning, and measuring with different units—are the same for 
both types of quantity.  
On the other hand, linguistic tools are important so that children can identify the same 
multiplicative relation in different contexts and be able to organize their formal or 
informal experiences of multiplicative situations (Hunting & Davis, 1991). Indeed, 
there is evidence that knowing simple words for multiples (e.g., “double”) in the first 
grade is associated with higher multiplicative/proportional reasoning competences in 
the second grade (Vanluydt, Supply, Verschaffel, & Van Dooren, 2021).  
This paper presents part of an ongoing topic-specific design research (Gravemeijer & 
Prediger, 2019) aiming at developing a program of activities to support multiplicative 
reasoning at the first years of instruction. The three pillars of the program are a) 
addressing discrete and continuous quantities in a unified manner, b) providing 
experiences that pertain to three fundamental multiplicative operations (equi-
partitioning, iteration of a unit and counting with various units (i.e., composite, 
fractional), and c) introducing terms for multiples and submultiples. The program has 
already been enacted once with kindergarten children (Pitta, Kaldrimidou, & 
Vamvakoussi, 2021), and has been redesigned, based on the findings. This paper 
focuses on a new activity intended as the introductory one in the current version of the 
program. This activity introduces vocabulary for multiples and submultiples with the 
purpose of describing multiplicative relations among the natural numbers 1-10—
represented as continuous quantities—and the unit (1). The activity aims at capitalizing 
on children’s experiences with the sequence of natural numbers, as cardinal and ordinal 
numbers, and at grounding the intended multiplicative relations on measurement. Our 
local hypothesis (for this activity) was that the regularities underlying the natural 
number sequence as well as the production of Greek words for multiples and 
submultiples would support students to learn and produce such terms; and that 
multiplicative comparison via measurement would help them assign meaning to the 
terms. 
 It should be noted that Greek words for multiples are produced with a prefix that is the 
main part of the corresponding number word, and an invariant suffix (-“(a)plasio”). 
For example, “pente” is the Greek word for “five” – “pentaplasio” is the word for 
“quintuple”. Although there are slight variations in some of the terms, the regularity is 
quite salient. On the other hand, the words for submultiples are produced by the word 
for “one” (“ena”) and the corresponding ordinal number (similarly to English), also for 
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1/2 (unlike English). Although 1/2 can be verbalized as “one second” in Greek, a 
different word, similar to “half” (“miso”) is widely used.   
METHOD 
Design of the activity 
The activity is story-based. The characters are imaginary creatures that play a sports 
game (two teams, “Pam’s team” and “Pom’s team”). The “players” are wooden 
cylinders with the same diameter but different height. Each team has a “captain” (Pam 
and Pom) representing the unit (4cm and 3cm high, respectively); and nine more 
players representing the numbers 2-10 with corresponding heights (multiples of the 
units). Each player has a paper “team shirt”, bearing the syllable “PAM” and a void to 
be filled by the players’ number (---PAM). Several copies of units are available.    
A key part of the activity is naming the players: The 1st player is introduced as “Pam” 
and the children are asked to fill “the captain’s number” (1) in her shirt. The 2nd player 
is introduced as “Pam-Pam”, the 3rd as “Pam-Pam-Pam” and so on. The children are 
asked to a) to call the players by their names, clapping their hands with every “Pam”, 
b) write their numbers on their team shirts, and c) predict the name of subsequent 
players from the third one on. As the names become longer and more difficult to say, 
the nickname of each player is introduced which is synthesized by the part of the 
number words that serves as prefix for the corresponding multiple (hereafter 
symbolized by n) and the suffix “Pam” (2-Pam, 3-Pam, etc.). Then children are asked 
to compare the players with Pam (e.g., “how many Pams does it take to measure 3-
Pam?”), using the available materials. The relationship is described symmetrically 
(e.g., “It takes 3 Pams to measure 3-Pam”/ “Pam is one out of the three parts of 3-
Pam”. Then the terms for multiples and submultiples are also introduced 
symmetrically: The captain and the player verbalize their relationship (e.g., “I am the 
3-multiple of you” / “I am the one third of you”). In the process, the task for the children 
varies. One of the following is given and the rest are asked: a) the player as a physical 
object, b) the full name of the player, c) the players’ nickname, and d) the number on 
its team shirt. We note that if (a) is given, then children need to measure its height by 
the unit (length of Pam); and if (b), (c), or (d) is given, then children need to iterate the 
unit to find (a). A constant task across all variations is to find and express verbally the 
relation between the “player” and the “captain”, which is eventually explicitly asked 
using the word “relation”. The activity is repeated with “Pom’s team” (same 
multiplicative relations, different unit). 
Participants 
The participants were eight children (five girls), Greek native speakers with a mean 
age of 5 years and 9 months (ages varying from 5 years and 7 months to 6 years and 4 
months). All children were students of a private Kindergarten in Ioannina. The children 
and their parents consented to their participation in the study.  
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Procedure 
The children were tested via individual interviews before the intervention in order to 
investigate their prior knowledge on terms related to multiples and submultiples. They 
were familiar only with the term “half” but had no means available to explain or show 
what “half” means.   
Our initial intention was to implement the entire program of activities, but this was not 
possible due to the pandemic. The introductory activity was implemented in May 2021, 
when schools opened after the lockdown. The children participated in groups (two 
groups, 4 members each) in the course of four weeks (one session per week for each 
group, about 45’ each).  
A retention test was conducted for every child individually, after the summer break 
(approximately four months later). The retention test was framed in the same context 
as the activity. Pam’s team was presented to the child along with their team shirts, at 
random order. The researcher gave one player to the child who was asked to recognize 
the player and find her team shirt (Task A); verify/explain their answer (Task B); and 
express the multiplicative relation between the player’s and the captain’s heights (Task 
C). In total, 3 players were used—2-, 3-, and 4-Pam—addressing the relations 2:1/ 1:2, 
3:1 /1:3, and 4:1/1:4, respectively; and corresponding to three trials for the tasks A, B, 
and C (Ak, Bk, and Ck, k=1, 2, 3). 
RESULTS 
During the intervention 
The children indeed employed the natural number sequence to predict the name of the 
“next player” (e.g., Kostas below); they also started naming players beyond the given 
ones (e.g., Penny below): 

Kostas: Miss, I know who this is. It’s 4-Pam. You see, these are one-two-three [pointing 
to the players already on the table] and then comes four. So, this one is 
four.  

Penny: Let’s get a really big one, 24-Pam. 

They also employed the recursive rule underlying the natural number sequence to 
predict the height of the “next player”. For example, Aris selected the 5th player and 
explained how: 

Aris: I counted. The previous was the fourth one, so now I need her plus another one. To 
reach the fifth one [illustrates placing a copy of the unit on top of 4-Pam] 

Researcher: How many Pams do you need to get from 5-Pam to 6-Pam?  
Aris: One. Each time we must put one like this [pointing to a copy of the unit] on top. 

With the players’ nicknames at hand, and after the introduction of the term for “double” 
(2-multiple), the children quite readily adjusted the players’ nicknames to terms for 
multiples:  
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Researcher: We said that 2-Pam is the 2-multiple of Pam. Could you tell me what is the 
relation of 3-Pam to Pam?   

Penny- Kostas: She is the 3-multiple! [together].  

On the other hand, the terms for submultiples proved quite challenging. The main 
obstacle was the over-use of the word “half”. For example: 

Researcher: Now, could you tell me what is the relation of Pam to 3-Pam?   
Lora- Kostas: She is the one-half of her [together] 
Researcher: One half? But we needed three pieces to make 3-Pam. 
Penny: She is the three-half of her.  

We reasoned that this obstacle was probably due to our decision to use the word “half” 
for the very first submultiple, although it is very different from the subsequent ones, 
because we knew it was more familiar to the children. In light of this realization, 1/2 
was re-expressed as “one second”, and the relevance of the sequence of ordinal 
numbers was brought to the children’s attention. This was indeed helpful for the 
children; still, multiples remained easier to produce and use than submultiples, as 
illustrated in the following excerpt: 

Researcher: So, what is the relation of 5-Pam, the taller one, to Pam?  
Aris: She is the 5-multiple.  
Researcher: And how about Pam? What’s her relation to 5-Pam?   
Aris: One fourth.  
Researcher: How many Pams do they fit in 5-Pam?. 
Soti: I know, I know! It’s one fifth.   

During the intervention the children gradually started to use the new terms more 
accurately, connecting them to the two fundamental operations (measurement and 
iteration of a quantity) to respond to the tasks and justify their answers. In the following 
examples, Lora verbalizes and explains the relation of 4-Pam to Pam; Kostas gets the 
team shirt of 8-Pam and explains how he is going to find this player and how she is 
related to Pam; and Nikos verbalizes and explains the relation of Pam to 3-Pam:  

Lora: 4-Pam is the 4-multiple of Pam because you need to stack four Pams to make 4-
Pam, Pam-Pam-Pam-Pam [illustrating with the materials]. 

Kostas: I’ll build her first. I don’t know how tall she’s going to be. I need eight like these 
[points to the copies of the unit, then stacks eight units]. It’s the 8-multiple. 
It’s eight Pams. 

Nikos: We need three Pams to measure the big one. This one [pointing to Pam] is one out 
of the three pieces of that one [pointing to 3-Pam]. She is the one third of 
her.  
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Retention test 
In task A, a response was coded as 1 if the child had recognized the player, otherwise 
as 0. In task B, a response was coded as 1 if the child had implemented a valid strategy 
to verify or explain her/his answer, otherwise as 0. In task C, we first examined whether 
the child used or not (coded as 1/0, respectively) the terms for multiples and 
submultiples to describe the intended relations. Then we examined how the terms were 
explained, or the relations described (in case the terms were not used).  
In the case of multiples, we identified three types of explanation that were coded as 
follows: M1-Repeated Addition (e.g., “3-Pam is one Pam, and another one, and another 
one”); M2-Measurement (e.g., “This is 2-Pam, because it contains 2 Pams” or “2-Pam 
is two Pams”); M3: Multiplicative comparison (e.g., “She is three times as Pam”). In 
the case of submultiples, three types of explanation were identified and coded as 
follows: S1- Part/Whole Relation (e.g., “She is half, because she is one of the other’s 
two pieces”); S2-Measurement (e.g., “One fourth! Because you can fit four Pams into 
4-Pam”); S3 -Combination of S1 and S2 (e.g., “2-Pam contains two pieces, and one of 
them is half”).  
Table 1 presents the responses per child, across the three trials Ak, Bk, and Ck, of the 
tasks, corresponding to the relations examined. Ck.1 and Ck2. refer to multiples and 
submultiples, respectively; and are assigned two codes each, one for response, and one 
for type of explanation.  
As can be noticed in Table 1, one child (Heleni) was unwilling to respond to any of the 
tasks; she related that she just wanted “to play with Pam’s team”. All the remaining 
children identified the given players (Ak); used a valid strategy (i.e., measuring or 
repeating a quantity) to verify their answers (Bk); and used all terms for multiples (Ck.1). 
In addition, all children explained adequately the terms for multiples (Ck.2). Two used 
systematically the same type of explanation (M1 for Kostas and M3 for Peny). With 
the exception of Soti, who never used M3 explanations, the remaining children moved 
from M1 or M2 to M3, for “bigger” multiples.  
With respect to submultiples, there was more variation among the children. All used a 
term in C1.2, and all preferred the word “half”. Only three, however, explained their 
answer.  Overall, four children used all terms correctly, but only two of them (Aris and 
Yianna) also explained all their responses (via S3). Nikos did not provide any 
explanation, while Peny explained “one third” and “one fourth”, but not “half”.   
Lora used the terms “half” and “one third” but only explained the second term. Finally, 
Kostas and Soti did not use any term other than “half”, which Kostas also explained. It 
is worth noting that these three children constructed their own terms for the ones they 
missed, mis-using the word “half”. For example, Lora said “half of fours” instead of 
“one fourth”. 
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Child   
Relation: 1:2/ 2:1 Relation: 1:3/ 3:1 Relation: 1:4/ 4:1 
A1 B1 C1 A2 B2 C2 A3 B3 C3 

    C1.1 C1.2     C2.1 C2.2     C3.1 C3.2 
Nikos 1 1 1 M1 1 - 1 1 1 M3 1 - 1 1 1 M3 1 - 
Lora 1 1 1 M1 1 - 1 1 1 M3 1 S2 1 1 1 M3 0 - 
Kostas 1 1 1 M1 1 S1 1 1 1 M1 0 - 1 1 1 M1 0 - 
Penny 1 1 1 M3 1 - 1 1 1 M3 1 S2 1 1 1 M3 1 S2 
Aris 1 1 1 M1 1 S3 1 1 1 M3 1 S3 1 1 1 M3 1 S3 
Soti 1 1 1 M1 1 - 1 1 1 M2 0 - 1 1 1 M2 0 - 
Yianna 1 1 1 M2 1 S3 1 1 1 M3 1 S3 1 1 1 M3 1 S3 
Heleni 0 0 0 - 0 - 0 0 0 - 0 - 0 0 0 - 0 - 

Table 1: Responses and types of explanation per child in the retention test. 
CONCLUSIONS-DISCUSSION 
The first enactment of the sequence indicated that—as we expected—the children 
employed their knowledge end experiences of the sequence of natural numbers, as 
cardinal and as ordinal numbers; and they also discerned the regularities in the 
production of the Greek words for multiples to learn and produce such terms. The 
introduction of the terms for submultiples was challenging. We attributed the difficulty 
to our (rather unfortunate) decision to harvest the children’s informal knowledge of the 
term “half” to introduce the very first term. This could explain the misuse of “half” in 
the production of subsequent terms, which persisted for some children up until the 
moment of the retention test. It has been suggested that the word “half” as well as the 
particular relation are privileged but may become an obstacle in the long run (Hunting 
& Davis, 1991). Using from the beginning and systematically the alternative term 
(“one second” in Greek) that is compatible with the subsequent ones may prove 
helpful. We had such indications during the intervention, and we will take them into 
consideration in re-designing the activity.  
A promising finding is that the children appropriated the intended multiplicative 
operations and employed them to deal with the tasks, and to explain their answers. The 
retention test showed that these competences were retained for multiples, with the 
observation that “larger” multiples triggered more elaborate explanations, which will 
be take into consideration in re-designing the activity. On the other hand, in the case 
of submultiples, there were many limitations, and differences among the children, with 
respect to the use of terms and also the explanations. We note that the use of terms for 
submultiples did not necessarily imply that an explanation was provided; however, a 
relation was never described, if the appropriate term had not been used. This is an 
indication of the supporting role of relevant vocabulary for multiplicative reasoning, 
consistent with the findings by Vanluydt and colleagues (2021).  
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Nicora Placa, Karen Koellner, Nanette Seago, Amanda Riske, David Carlson 
Hunter College, Arizona State University, WestEd 

 
This study provides an in-depth examination of two teachers who participated in a 
mathematics professional development project that focused on linguistically 
responsive teaching and what the teachers took up and used in their classrooms 3-4 
years after their participation in the project. Survey, interview and classroom video 
data were analysed in order to explore the ways in which the teachers’ learning from 
the PD endured over time. Results indicate that the teachers remembered, continued 
to use and hone their use of visual representations as a strategy to provide access to 
English learners. These strategies and implementation use were aligned to the goals 
and intention of the PD. Furthermore, they extended and transferred this knowledge 
to other content areas and to remote teaching settings.  
INTRODUCTION 
High-quality professional development (PD) in mathematics education is considered 
the key to improvement of students’ mathematics learning. One commonly accepted 
trajectory of teaching and learning suggests that gains in teacher knowledge can lead 
to changes in instruction, which in turn has a positive impact on student learning (e.g., 
Yoon et al., 2007). Current trends related to research on mathematics PD have started 
to show more evidence of change, mostly incremental changes in teachers’ knowledge 
and instruction, and somewhat less in terms of the more distal, student achievement 
(Jacobs, et al., 2019). We posit that teacher learning and implementation of new ideas 
and strategies takes time. This paper examines the instructional changes related to the 
goals and intentions of a US nationally funded PD that focused on linguistically 
responsive teaching (LRT) 3-4 years after participating in the project. Specifically, the 
research question that guided this work is: What specified and intentional instructional 
LRT practices did the teachers take up and use 3-4 years post PD experience?  
THEORETICAL FRAMEWORK  
Mathematical Knowledge for Teaching – Visual Representations (MKT-VR) 
Ball and Bass (2000) were the first to coin and define mathematical knowledge for 
teaching (MKT), the requisite knowledge to effectively teach mathematics to K-12 
students. This knowledge is complex and includes both content and pedagogical 
knowledge and provides the field with baseline knowledge to focus on in teacher 
preparation programs and professional development experiences for teachers (Jacob et 
al.,2017). DePiper and Driscoll (2018) were inspired to think about the need to further 
theorize the MKT constructs and created the MKT-VR theoretical framework. They 
define visual representations (VRs) as graphic creations such as diagrams or drawings 
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that illustrate quantities, quantitative relationships or geometric relationships. Using 
models or representations is an important component of doing mathematics and 
especially important for English learners, a cornerstone for LRT (DePiper et al., 2021). 
VRs support students to make sense of problems by identifying quantities and the 
relationships between quantities in order to use VRs to reason with and ultimately 
justify mathematical solutions (Ng & Lee, 2009). However, this knowledge is complex 
and requires challenging skills including a strong grasp of the content, anticipation of 
students’ thinking, and selecting the most appropriate VRs for particular purposes.  
OVERVIEW OF TADD PROJECT 
This paper highlights a project that is part of a large three-year impact study, Taking a 
Deep Dive (TaDD), that collects qualitative data from three large U.S. National Science 
Foundation PD projects in order understand what teachers take up and use and the 
factors that influence uptake 3-4 years post PD experience.  
Visual Access to Mathematics (VAM)  
The VAM PD, the focus PD of this paper, is a “60-hour blended, face to face and online 
course to build teachers’ knowledge of and self-efficacy about LRT strategies to 
strengthen English Learners (Els) problem solving and discourse in middle grades” 
(De Piper et al., 2021 p. 491). The goals and intentions of VAM were to cultivate in 
teachers the fluent use of representations, anticipation of students’ strategies, the ability 
to interpret and construct various mathematical solutions, and to reason with and across 
representations. Teachers learned how to strategically select and align VRs with their 
instructional goals, anticipate student thinking and misconceptions, and then 
implement lessons using these strategies in their classrooms. Once implemented they 
would share experiences and student work, and collaboratively and independently 
reflect on the teaching cycle in the VAM PD online workshops.  
In particular, VAM focused on two VRs, the double number line (DNL) and tape 
diagrams. Both VRs are effective tools that have the potential to foster students’ 
understanding of proportional reasoning and reinforce students’ conceptual 
understanding of rational numbers (DePiper & Driscoll, 2018). The DNL is a 
representation that uses a pair of parallel lines to represent equivalent ratios. Tape 
diagrams, also referred to as bar diagrams, are rectangular representations that illustrate 
number relationships. Both diagrams represent quantities and the relationships between 
quantities, allow students that think more additively to “see” multiplicative 
relationships and the relationships between quantities with the representation. VAM 
focused on problem solving with rational number tasks that were easily represented on 
a DNL or tape diagram and actually many different representations. Subsequently these 
VRs were used as a communication tool to show and explain students’ mathematical 
thinking in a very concrete and conceptual manner. We selected VAM as a case 
because the PD illustrates evidence of high uptake and at the same time provides 
evidence that teachers continued to hone their craft, modify and expand their use of 
VRs using different mathematical problems, domains and contexts.  
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Participants and Settings 
This paper focuses on two teachers, Kimberly and Rachel (pseudonyms), 3-4 years 
post participation in the VAM PD to address the research question: What specified and 
intentional instructional LRT practices did teachers take up and use 3-4 years post the 
PD experience? We purposefully selected two teachers that showed high levels of 
uptake in the surveys we initially administered (n = 66) across all three projects. We 
wanted to dig deeper to better understand the factors that influenced their high levels 
of uptake. They were also chosen because they used and modified strategies and VRs 
learned in the PD while teaching remotely during the COVID 19 pandemic. Although 
the intent of this project was not to study remote teaching and learning, the pandemic 
changed the nature of the classroom data we collected and allowed us to explore the 
ways in which participating teachers used and modified representations in the online 
setting. Both teachers taught middle school mathematics in the northeast US and both 
used online platforms to teach synchronous mathematics lessons to their students in 
the data collected in this study.  
Data Collection and Analysis 
Multiple data sources were collected in order to comprehensively understand of the 
participants’ uptake and enable triangulation of findings (Cresswell & Poth, 2018). 
These data sources included survey data, interviews, and videotapes of classroom 
instruction. The survey included questions that asked participants to reflect on their PD 
experience and characterize their past and/or current use of the PD content, pedagogy 
and materials. The survey included both Likert scale questions, in which participants 
responded to statements on a scale of 1-10, as well as follow up questions that allowed 
the participants to explain and provide more details about their numeric responses. 
Following the completion of the survey, 17 case study teachers from across the three 
projects were asked to videotape their classroom once a month and identify clips in 
which they believed that they were using content, pedagogy and/or resources from the 
PD they participated in. Kimberly and Rachel were interviewed twice during spring 
and fall 2021 school year by the TaDD project research team for approximately one 
hour each. The first part of these interviews included questions aimed to understand 
the teachers’ experiences with the PD, what they remembered related to the goals and 
intentions of the PD and what strategies, content and resources they used from the PD 
in the past and continue to use currently in their classrooms. The second part of these 
interviews followed a think aloud protocol, where teachers watched video clips they 
selected and described their perceived uptake and implementation of content, 
pedagogy, and resources from the PD. These interviews were recorded on Zoom and 
transcribed.  
At least two of the research team members reviewed and took detailed notes on the 
survey, interview and video data several times to create a profile for each teacher. 
These profiles were analysed and coded for segments that related to participants’ use 
of representations using the MKT-VR theoretical framework. Sample codes included 
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use of DNL, use of tape diagrams, alignment of DNL/tape diagrams with teaching 
goals, and use of VRs to represent quantitative relationships. The members of the 
research team then met to discuss what they noticed, and identified salient themes and 
patterns that emerged. The three themes that emerged were related to (a) knowledge 
and uptake of new VRs, (b) use of VRs in remote settings and (c) application of VRs 
to other content areas. Findings from all the varied sources were validated through a 
triangulation process. For example, data from the individual teacher's surveys, 
interviews and classroom videos were matched for convergence and divergence. 
Following this, narratives were written for each of the three themes and reviewed for 
consistency and alignment across the data sources.  
FINDINGS 
Knowledge and uptake of new visual representations 
Survey Data. Kimberly and Rachel both perceived high levels of uptake in terms of 
content, pedagogy and resources in their initial survey responses. They mentioned that 
they learned new VRs in VAM, in particular the DNL and rectangular tape diagrams. 
Rachel mentioned that she saw a DNL prior to VAM and wrote: 

I never really understood the purpose of them until I saw how many different ways they 
can be used to represent a situation and solve problems. 

Kimberly reported that she enjoyed the DNL activities and shared the applet with her 
students. From both teachers indicated on their surveys that they implemented the VRs 
and perceived them as relevant and helpful teaching strategies. 
Interview Data. Prior to participating in the PD, neither participant was familiar with 
using these VRs to solve problems and had not used them in their classrooms. In her 
interview, Kimberly said: 

I remember when the Common Core Standards came out and we were like, ‘What’s a tape 
diagram? I don't know what a double number line is. How can I figure out how to use these 
tools in my classroom? 

Similarly, Rachel mentioned in her interview: 
I didn’t know a lot of the representations that they were teaching us [in VAM]. I had been 
teaching middle school math for 8 years and I had never used a DNL. I was solving these 
problems using proportions or equations and I never knew this thing existed.  

Prior to the PD, Rachel mentioned that she used equations to solve proportions, as she 
did not know about the VRs options. This aligns with the research indicating that when 
teachers are unfamiliar with how to use these tools they typically rely on algorithmic 
thinking to solve these types of ratio and proportional reasoning problems (Orrill & 
Brown, 2012).  
After the PD, Kimberly and Rachel began to incorporate these representations in their 
teaching and continue to use them. Interview data reflected their uptake of the tape 
diagram and DNL in their classrooms. For example, Rachel noted in her interview: 
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I started to take the DNL and completely change the way I teach ratio and proportion and 
percent and I started to use the tape diagrams and the DNL for everything. I still am using 
the materials from VAM for those units. 

Video Data. The classroom video data aligns with the perceptions they shared with us 
during the interview and on their surveys about their use of the representations in their 
classrooms. Video clips include examples of them modelling the creation of DNLs and 
tape diagrams, asking students to examine different tape diagrams and DNLs and 
having students create their own tape diagrams and DNLs. When talking about one of 
her video clips, Rachel discussed her use of the DNL in a unit rate lesson and how she 
would never have thought to use it before VAM. She mentioned that her goal in the 
lesson was to help students make connections between what was going on in the 
context of the problem and the visual representation of it.  
The two teachers also strategically chose VRs and used them to promote quantitative 
reasoning. They encouraged their students to use the diagrams to reason about the 
relationships among quantities in the problems. The teachers also articulated why they 
chose to use certain representations. In discussing one of her classroom clips in which 
she displayed tape diagrams to represent different percent amounts, Kimberly noted: 

In VAM, we used a lot of tape diagrams which I don’t think I had used as much beforehand. 
So that was a newer model to me. I think a lot of teachers want to go back to the pie, you 
know the fraction pie, but I think the tape diagram leads us to the DNL which is so useful 
with percent so I definitely took that away-- starting with that tape diagram talking about 
percent and fractions and leading them to the DNL later on.  

Both teachers demonstrate this strategic use of representations throughout their video 
clips and explained how their choice of representations in their lessons align to their 
instructional goals in the interview data. 
Using visual representations in a remote setting  
Video Data. Kimberly and Rachel adapted their use of VRs to their remote settings. In 
some instances, they had students draw VRs on their papers and hold them up to the 
camera. In other situations, they used online platforms such as PearDeck to display 
teacher created representations as well as to allow students to create and display 
representations to the class. One feature of these online tools that they noted was to the 
ability to give immediate feedback to the students about their representations. The 
teachers saw the students’ diagrams in real time and gave feedback on the labelling or 
accuracy of the representation. The video of the two teachers showed their use of these 
tools to strategically select students’ representations to share with the class, which 
allowed students to communicate their mathematical thinking.  
Interview Data. Both participants noted in the discussion of their video clips is that one 
of the ideas that resonated with them from the VAM PD was the use of VRs as 
communication tools. Kimberly mentioned:  
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I think one thing I took away was getting kids to talk about their models or look at each 
other’s models because I don’t think we always did that before. We had them draw their 
models and then that was it. But I think one thing I really like to do is have kids draw a 
model, and then have somebody else look at it and try to see what connections that student 
made. That was one thing we definitely did during the PD that I continue to do.  

In one of Kimberly’s classroom videos, she demonstrated how she used representations 
as a communication tool by having students sometimes hold up the VRs they drew and 
at other times, displaying one of the VRs on the slides they had created from the online 
PearDeck slides. Then, another student explained the diagram that was displayed. 
Similarly, in one of Rachel’s videos, she selected and displayed two tape diagrams 
students created during the lesson. She then asked the class to compare them and 
discuss what they noticed and what they would change about the representations. In 
the interview, both teachers noted how the online tools made it easy to select and 
display students’ representations. 
The two teachers also noted some challenges that occurred in the remote setting. One 
was related to creating classroom records of work. Kimberly mentioned: 

I usually annotate a representation as a student is explaining in the classroom and leave 
that up and that’s harder to do in the electronic world as they sort of disappear as we go 
slide to slide. 

They also discussed the challenges of group work in an online setting and the ways in 
which they need to adapt tasks and use technology to address these challenges.  
Application of representations to other content areas  
Interview Data. Although the VAM PD focused on proportional reasoning, interview 
and video data from both participants indicated that they applied what they learned 
about VRs to other content areas. Kimberly noted: 

I like to have visual representations in everything we do. The VAM PD focused on 
ratio/proportion but I have taken it though the whole curriculum. They didn’t give us 
models for other topics but when I see them I know what they should look like. You leave 
with this idea of this is what a good model looks like.  

Kimberly added that she now uses mobiles to teach algebra because they allow students 
to develop a visual understanding of the quantities in an algebraic equation.  
Video Data. Similarly, a video clip from Rachel demonstrated how she uses tape 
diagrams in her algebra unit. She noted: 

I have never taught tape diagrams with expressions and equations until this year. But it was 
a really interesting way to think about not just the distributive property (to show them how 
you can chunk things up differently and still get the same value) but in terms of solving 
equations thinking of what you can get rid of immediately and what you have left. 

Years after the PD, she incorporates what she learned about VRs in new ways and 
applies these ideas to new content areas. While the VAM PD did not focus 
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representations in these content areas, the teachers credited the PD with their extension 
of representations throughout their other units.  
DISCUSSION AND IMPLICATIONS  
This in-depth examination of teachers’ classroom practices 3-4 years after participating 
in the VAM PD showed that their uptake of VRs continued in ways that connected to 
the goals and intentions of the VAM PD. The two teachers explain and demonstrate 
the ways in which they select and use specific representations, in particular tape 
diagrams and DNLs, in their classrooms. Classroom video data supports their survey 
and interview data and illustrates the ways in which these teachers use VRs to foster 
an understanding of important mathematical ideas related to ratio and proportional 
reasoning. The teachers also use representations to assist student’ communication and 
explanation of their mathematical thinking. This knowledge and use of representations 
aligns to the goals and intentions of the PD developers.  
These findings provide insight into the ways in which teachers continue to take up 
ideas that they learned in PD, years after their participation and the ways in which they 
adapt and apply them to novel contexts. In the case of these two teachers studied, 
knowledge related to VRs endured over time and is evidenced in their practice. 
Furthermore, while the initial PD did not focus on remote settings or content areas 
outside of proportional reasoning, these participants were able to transfer and extend 
their knowledge and use of VRs to these contexts. They also use online tools to provide 
immediate feedback on the accuracy and labelling of students’ representations as well 
as to strategically select students’ representations to share with the class. They 
incorporate the online tools to allow students to communicate their thinking related to 
the representations they create and to allow other students to comment and unpack the 
diagrams that their classmates create. This adaptation to remote learning aligns with 
the initial goals of the PD of having teachers strategically select VRs and use them as 
communication tools. 
From our case studies presented here, it appears that learning strategies focused on 
LRT were transformative. Specifically, VRs added to teachers’ pedagogical toolboxes 
in ways that cut across mathematical domains, types of teaching (online to face to face) 
and uses for different learners. We hypothesize that this type of flexibility that allows 
teachers to hone their craft over the four years and show high levels of uptake. 
Additionally, this PD was optional and teachers that elected to participate were 
teaching in schools with high numbers of Els so the strategies that they picked up were 
important for their context in order to reach and be successful with students learning 
English. These predictors of uptake need further examination to identify the other 
possible predictors of high levels of impact. All classroom video included in the 
analysis were of remote instruction and we are still unclear how this translates to in-
person classroom practice. Our next steps are to continue this work as teachers 
transition back to in-person teaching. We also plan to conduct cross-case analyses in 
order to understand the similarities and differences that may exist across different PD 
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projects. While our paper reports on a small-scale case study, it contributes to how we 
conceive and theorize about teacher learning and the importance of recognizing that 
learning happens over time. Over the past two decades, the studies on teacher PD that 
show incremental change are possibly the seeds which call for further exploration, as 
a pre- post randomized control study might not provide enough time for planning, 
implementation and reflection to support teacher learning.  
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RESPONSIVENESS IN MATHEMATICS CONTENT TEACHING 
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Although our community has come to know that language is an important resource for 
mathematics teaching and learning, there is a less fine-grained understanding of how 
developmental work with mathematics teachers can be designed to support content 
teacher talk that is language-and-learner responsive. In this report, we first discuss 
our theoretical framework with the tools of naming and lexicalization, interpreted as 
uses in classroom teacher talk of content-related word names and explanatory 
sentences with the potential to reduce specific learning difficulties. We then change the 
emphasis to explore challenges of thinking a version of the framework and tools for 
work with mathematics teachers in order to inform their decisions as to how and why 
selected names and/into explanations can be particularly responsive in content 
teaching.  

OUR RESEARCH AND DEVELOPMENTAL PROJECT   
The path from research findings and theories about mathematics teaching and language 
to practical proposals of developmental work with mathematics teachers on content 
teaching, or even vice versa, is not straightforward. Any formulation of how to traverse 
this path is problematic because theoretical tools may not be directly applicable or 
easily understandable in the developmental site. In the domain of mathematics teacher 
development, the common aspiration of producing research that can impact on the 
professional learning and knowledge of teachers, and ultimately on content teaching 
practices in classrooms, is nonetheless essential and remains a driving force (Adler, 
2021). As we share this aspiration, we continue to draw on sociocultural approaches to 
language and mathematics (e.g., Pournara, Adler, Pillay, & Hodgen, 2015; Planas, 
Morgan, & Schütte, 2021) in our pursuit of content teaching that is language-and- 
learner responsive, or grounded on the provision of talk in the interaction with learners 
that is mathematically focused and responds to learning demands and challenges.   
In this report, we present two theoretical tools in construction —naming and 
lexicalization—, and examine their potential and nuances for use in developmental 
work on language-and-learner responsive content teaching with mathematics teachers. 
These tools and the framework they conform were implemented implicitly rather than 
explicitly in a pilot intervention study with two secondary school teachers on the 
exploration of mathematical languages at the levels of word names and explanatory 
sentences for the teaching of algebraic concepts (Planas, 2019, 2021). At its actual 
stage of conceptualization, the framework and the tools reveal strong theoretical and 
practical interest. Whilst it is relatively uncomplicated to identify the potential of the 



Planas, Alfonso, Rave-Agudelo 
 

3 - 316 PME 45 – 2022 
 

theoretical tools for reflection on specialized meaning making in language, it is not 
clear-cut the process towards specifying how to introduce them to teachers in ways that 
are not too highly conceptual to be practical for them, and that enhance content 
mathematics teaching aimed at the reduction of school learners’ challenges.  
Following this introduction, the report is structured to discuss two questions. In the 
first section, we discuss: 1) How do the theoretical tools of naming and lexicalization 
relate to the study of content teacher talk? In the second section, we discuss: 2) How 
can they be reinterpreted into developmental tools for work towards language-and- 
learner responsiveness in mathematics content teaching? We finish with some remarks 
about possibilities of continuing the refinement and expansion of the framework. 

THEORETICAL TOOLS FOR THE STUDY OF TEACHER TALK 
Our framework for the study of teacher content talk started to unravel backed up by 
intensive revision of literature on language and mathematics teaching and specifically 
grounded on Halliday’s functional grammar (1985). Without diminishing the 
importance of nonverbal and paralinguistic tools in language, the intention was to 
increase the understanding of mathematical meaning making enhanced at the levels of 
words and sentences in classroom teacher talk. Earlier field research on mathematical 
meaning making in classroom talk (e.g. Pimm, 1987; Schleppegrell, 2007) already 
suggested the study of dense noun phrases, being and having verbs, conjunctions with 
technical meaning or logical connectors, which all fit into our focus on words and 
sentences. Today, analyses of mathematics teacher talk often privilege the study of 
conversational patterns and communicational moves and, when mathematical content 
specificity is also addressed, words and sentences tend to be studied in general terms 
and subsumed to, instead of interacting with, the broader discourse level. Instances of 
words and sentences are often illustrated and said to be mathematically and 
pedagogically relevant but the criteria of relevance are not detailed or focused on.      
The interconnected distinction in Halliday (1985) between the linguistic forms in a 
language and their functions to produce situated meaning expresses the diverse ways 
by which words, sentences, and discourses in a language system and an interactional 
situation are lexically elaborated to communicate meaning (Morgan, 2021). Alongside 
the study of discourses or larger language units over isolated words, words into 
sentences, and sentences, meaning making crucially develops at granular linguistic 
levels. In this regard, the experiences of teachers and learners in classroom content 
teaching and learning are subject to the complexity of using words into/and sentences 
to communicate some meanings considered as (more) appropriate amongst all those 
possibly lexicalized —i.e., encoded with precise meaning— in the interaction and the 
language system. In Halliday (1978, p. 195), a register is precisely, “a set of meanings 
that is appropriate to a particular function of language, together with the words and 
structures which express these meanings.” In the mathematics classroom, the forms 
used to encode meanings within a mathematical content register may also bring with 
them less appropriate or unintended meanings. In order to address this complexity, we 
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examined two tools in language; one at the level of the set of words or lexicon in a 
language system, the other at the level of further lexical elaboration into sentences:  

- Naming or giving word names from mathematical content registers  
- Lexicalization or giving sentences with encoded explanations of 

mathematical content meaning 
In this version of the tools, responsiveness in teacher talk is basically a function of 
content specificity through the use of content-related names and explanations. In the 
current more advanced version, responsiveness in teacher talk is a function of content 
and learning specificity through the use of content-related names and explanations 
aimed at supporting content learning challenges (see Figure 1). The refinement to 
strengthen the emphasis on learner responsiveness has therefore led to: 

- Naming or giving word names from mathematical content registers 
oriented to reduce content learning challenges  

- Lexicalization or giving sentences with encoded explanations of 
mathematical content meaning oriented to reduce content learning 
challenges  

Language-and-learner responsiveness in this way emphasizes the learning goal without 
losing the focus on curricular content demands. It connects mathematical meaning 
making in content teaching to mathematical meaning misunderstood or overlooked by 
learners. If we think of the teaching of fractions, for example, language-and-learner 
responsive names and explanations would address and challenge field-documented 
learning misunderstandings such as the common belief that the parts of the continuous 
whole are equal-shape (Darrough, 2015). Equal-size and (non)equal-shape would be 
instances of naming within the fraction register, and the equal-size parts of a 
continuous whole are not always equal-shape would be an instance of lexicalization. If 
we consider the teaching of angles, in a lesson with dynamic software where secondary 
school learners keep referring to angles as static bounded regions only (Mitchelmore 
& White, 2000), the rotation about a point also makes an angle, would be an instance 
of lexicalization including important names. 
Language responsiveness and learner responsiveness are then different phenomena in 
content teacher talk with special connection between them. Language responsiveness 
in content teaching exists as soon as the language of mathematics is made explicit and 
public at the levels of words, sentences, and discourse, although it does not necessarily 
address the needs or demands of learners in content learning. Learner responsiveness 
therefore involves language responsiveness, but the converse cannot be argued.  
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Figure 1: Successive versions of the theoretical framework. 

TOWARDS A DEVELOPMENTAL VERSION OF THE FRAMEWORK     
The reinterpretation of research tools for use in developmental practice implies shifts 
in meaning. This is the case with the reinterpretation in Adler (2021, p. 83) of “naming” 
—very close in meaning to our first version of naming— as word use in the teaching 
version of the Mathematics Discourse in Instruction frame. We rethink naming and 
lexicalization in mutually supportive ways, rather than treated separately, as word 
names into/and explanatory sentences (see Figure 2), whose communication in teacher 
talk can prevent or diminish learning challenges shown to be persistent across school 
ages, individual learners and classroom settings. Field research has actually 
documented numerous reasoning biases or tendencies of school learners to confirm 
and retain meanings, experiences and beliefs that do not conform or that enter in 
negative conflict with mathematical content. We have already mentioned biases in the 
thinking of: the fraction parts of the continuous whole as equal-shape (Darrington, 
2014), and the angle as static bounded region only (Mitchelmore & White, 2000).  
We assume that reasoning biases remain behind important content learning difficulties, 
and accordingly propose work on noticing processes (e.g., ZDM issue edited by 
Dindyal, Schack, Choy, & Sherin, 2021) with mathematics teachers towards: 

- Knowing common reasoning biases of school learners, and considering 
their importance in mathematics content learning.   

- Identifying, interpreting, and deciding on names into/and explanations for 
mathematics content teaching aimed at reducing biased reasoning. 

In the progressive thinking of how to make operative the theoretical framework and 
tools (see Figure 2), the issue of how to produce knowledge-based names into/and 
explanations is crucial. The amount of mathematical meanings associated to each 
curricular content is enormous, and hence in the work with teachers some criteria must 
be given for the effective selection of some names and explanations over others. 
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Otherwise, the framework tools may remain too open to be fully useful or manageable. 
Although conditions posed to the choice of words and sentences can generally be read 
as limitations to creative teaching, conditions regarding the content learning challenges 
to be addressed positively relate to teacher talk of higher language-and-learner 
responsiveness. The attention to particular reasoning biases can especially help 
teachers to gain knowledge-based autonomy and to produce content-related names 
into/and explanations aimed at reducing or preventing the biases in play. 

 
Figure 2: Successive versions of the developmental framework. 

We cannot totally anticipate, accurately predict, or make a definite distinction of 
content teacher talk that will be learner-and-language responsive over the diverse 
interactional situations of a classroom lesson. Nonetheless, the curricular context and 
field-based knowledge can help to distinguish words and sentences which are expected 
to be responsive with respect to specific content learning demands and challenges.  
In the upper secondary school classroom, for example, the angle in between these lines 
measures one hundred and eighty degrees is highly language-responsive, compared to 
the angle in between these lines ‘is’ one hundred and eighty degrees, or to this is one 
hundred and eighty (see Table 1). This explanatory sentence and the specialized names 
included, however, do not meet the particular challenge around the persistence of the 
static angle bias, compared to the rotation from this line to this other line is half of a 
whole turn —or to the rotation about a point also makes an angle—. Learner 
responsiveness makes these sentences qualitatively different (see Table 1). While all 
words and/into sentences in teacher content talk cannot be ‘equally’ responsive 
regarding particular registers and learning challenges, there must be some words 
and/into sentences offering opportunities for listening to specialized names and to 
explanations of mathematical meanings whose learning is possibly hindered by 
reasoning biases documented in field research as common and pervasive. 
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Teaching angles in the upper secondary school – Static angle bias 

Quality  Low  Medium High 

Language 
responsiveness 

This is one 
hundred 
and eighty 

The angle in between 
these lines is one hundred 
and eighty degrees 

The angle in between these 
lines measures one hundred 
and eighty degrees 

Learner 
responsiveness 

The angle in between these lines 
measures one hundred and eighty 
degrees 

The rotation from this line to 
this other line is half of a 
whole turn 

Table 1: Examples of variability of responsiveness in teacher talk. 
Although incorrect reasoning biases in a content domain are persistent in nature, and 
preventing, reducing or even eliminating them require the adoption of multiple 
directions, teachers need to develop the ability to identify, interpret, and decide on 
classroom talk that refers to, for example, the dynamic meaning for angle, or to the 
meaning of equal sizes of unequal shape for the fractional parts of a continuous whole.  
One more example for developmental work would be the presentation to teachers of 
the equiprobability bias reasoning (Green, 1982), or the tendency of secondary school 
learners —but also younger and older learners— to believe that every process in which 
randomness is implied corresponds to a fair distribution, with equal probabilities for 
any possible outcome. Once the equiprobability bias was introduced and discussed, 
teachers would be able to notice that the probabilistic meaning of all the outcomes of 
an event being equally likely is not obvious or intuitive, or that semantic everyday 
associations operate in and interfere with the learners’ thinking such as the physical 
meaning of equally likely or physically equal. The practice with them could then move 
towards identifying, interpreting, and deciding on talk for the communication of the 
probabilistic meanings encoded into names such as equally likely and into its 
distinction from nonequally likely in situations in which either A or B can occur, but 
one of them can be most/more or least/less likely. High responsive explanations to be 
considered would be: They are all possible but five is the most likely outcome when you 
roll the die with the five painted twice. In the project context of different intervention 
studies, we are engaged and making good progress in the production of materials (on 
fractions, angles, and probability teaching) for primary and secondary school teachers 
to gain knowledge on learners’ specific reasoning biases, and professional noticing 
abilities at the levels of words and sentences within mathematical content registers.  

MORE REFINEMENT, POSSIBLE EXTENSION     
It is common to describe when the use of certain theoretical and practical constructs 
began in the literature, and then to draw on them, as if they were finished products, to 
conduct our investigations. In this report, we have addressed a framework in the middle 
of its conceptualization in research and developmental work with mathematics teachers 
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on language-and-learner responsive content talk in teaching. We have argued that to 
facilitate work with teachers it is necessary to clearly outline criteria for identifying, 
interpreting, and taking decisions on language-and-learner responsive languages of 
content teaching. When preparing and conducting developmental tasks around the 
teaching of a mathematical content and showing or asking for specialized word names 
and/into explanatory sentences, we thus need to provide criteria as to why these names 
and/into sentences can support the school learning of the content and meet learners’ 
demands. We have proposed presenting to teachers well-documented content 
reasoning biases in order to guide their processes of noticing talk for content teaching.   
Our theoretical and developmental project with mathematics teachers towards 
language-and-learner responsive content teaching remains unfinished in many 
respects. The realization of teacher talk, from the perspectives of explicit content 
teaching and reduction or prevention of learners’ biased reasoning, requires further 
refinement and expansion work. The current framework integrates mathematics 
teaching that is responsive of mathematical content learning and mathematical 
language teaching with the sentence level linked to content-related explanations. Yet, 
this level can additionally be linked to examples or variations of content-related 
elements so that the following third tool in language is being examined:  

- Exemplification or giving sentences with encoded variations of content-
related elements oriented to reduce content learning challenges. 

Furthermore, our project is grounded on the broader sociocultural interpretation of 
teacher talk as discourse, and hence on views that primarily focus on words and 
sentences once they are put to use or thought for use in situated communication. Rather 
than highlighted sporadically, the attention to word names and/into explanatory (and 
exemplifying) sentences should be blended and embedded in developmental work on 
mathematical discourse practices. While the tools of naming and lexicalization refer to 
discrete resources in the language system, our attention to these tools is shaped by 
social understandings of mathematical meaning making through participation in 
discourses that offer sustained opportunities of doing and talking mathematics. 
Regardless of strategic developmental orientations and analytical research decisions, 
there is not indeed a linear order in classroom practice from words to sentences, and 
from sentences to discourse, since mathematical meaning making is constructed and 
negotiated on a synergetic continuum across all levels of language.      
By presenting the above-mentioned possibilities of extending the framework and of 
continuing the refinement of the theoretical and developmental tools, we hope to 
inspire other researchers to re-evaluate the importance of language-and-learner 
responsiveness in teacher talk, and perhaps to establish connections with their own 
frameworks for professional development on mathematical content teaching.     
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MATHEMATICS TEACHER EDUCATORS’ WORK TO FOSTER 
AN INQUIRY COMMUNITY 
Gabriella Pocalana, Ornella Robutti 

Università degli Studi di Torino 
 
For several years, the study of mathematics teacher educators (MTEs) has been 
considered central in research. The present study is focused, in particular, on MTE 
expertise in generating documents for the work with teachers, during a professional 
development (PD) program. We aim to analyse how MTEs generate documents 
coherently with the goal they have set for the PD program itself. In the case study 
presented in this paper, MTEs’ goal is building an inquiry community with the 
teachers. The results illustrate what kind of resources are involved in MTEs’ 
documentational genesis and how MTEs’ choices in their documentation work are 
connected with their goal for the PD program. 
INTRODUCTION AND THEORETICAL FRAMEWORK 
Working Group 3 (WG3) at PME44 conference was on the theme “Conceptualizing 
the expertise of the mathematics teacher educators” (Helliwell, & Chorney, 2021), in 
continuity with the WG on the same topic at PME 43 (Helliwell, & Chorney, 2019), 
testifying the centrality of mathematics teacher educators’ (MTEs) role in current 
research. Two of the aims of WG3 at PME44 were: 1) “to formulate approaches and 
research questions around MTE expertise”; 2) “to explore and develop potential 
methodologies that support these approaches and research questions.” (Helliwell, & 
Chorney, 2021, p. 97).  
The study presented in this report is framed on these aims, which give space for new 
fields of investigation. The authors’ research group has been involved for several years 
in the study of teacher professional development, introducing theoretical models for 
the analysis of teachers’ and MTEs’ practices as part of a community evolution process 
(e.g. Robutti, 2020; Robutti et al., 2021). The report is focused on MTE expertise in 
generating documents for teacher professional development (PD), analysed with the 
Documentational Approach to Didactics (DAD: Gueudet & Trouche, 2009; 2010; 
2012). Specifically, we study MTE expertise in generating documents consistent with 
the goal they set for the PD program, through a case study involving a group of 
researchers in mathematics education. The researchers (including the authors) have the 
role of MTEs and have the task of designing and implementing a teacher PD program. 
We identify the relationships between their documentation work (Gueudet & Trouche, 
2009; 2010; 2012) and their goal of building an inquiry community (Jaworski, 2006; 
2008) with the teachers participating in the PD program. 
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Inquiry communities 
Jaworski (2006, 2008) introduces the term “inquiry community”, referring to 
didacticians (researchers, who are also teacher educators) and teachers working 
together, exploring and developing mathematics teaching-learning in classrooms. 
Jaworski’s vision of inquiry communities is based on the concept of co-learning 
inquiry, that means people learning together through inquiry. Inquiry, in this context, is 
intended both at class level and at teachers and didacticians level, while exploring how 
to use inquiry-based tasks with their students (Jaworski, 2006). The idea of inquiry 
community is built on Wenger’s (1998) idea of communities of practice, whose 
members experience engagement, imagination and alignment of shared practices. In 
this approach, alignment means engaging in forms of practice and ways of being, in 
order to conform to expectations and to the “normal desirable state”. The difference 
with respect to communities of practice is that, in an inquiry community, the “normal 
desirable state” is continuously challenged, with a questioning attitude (Jaworski, 
2008), called critical alignment (Jaworski, 2006). This means bringing a critical 
attitude to alignment - questioning, exploring and seeking alternatives – that renders 
possible to develop and change the normal state.  
In our study, MTEs’ goal is to build an inquiry community with teachers, by promoting 
a questioning attitude and by prompting critical alignment, resulting from a process of 
co-learning inquiry. To achieve this goal, MTEs engage teachers in an inquiry cycle 
(plan, act and observe, reflect and analyse, feedback), which led to a continuous 
process of reconceptualization and redesign (Jaworski, 2008) of teaching materials for 
their students, based on inquiry-based tasks. Besides contributing to the design of 
teaching materials, MTEs also have to design materials to be used with teachers during 
the meetings of the PD program. We analyze this latter design work with the 
theoretical lenses of DAD, because this framework allows to highlight exactly the 
aspects that interest us, related in particular to the resources on which MTEs relies. 
Documentational Approach to Didactics (DAD)  
DAD framework (Gueudet and Trouche, 2009; 2010; 2012) focuses on teachers using 
different kinds of resources to prepare their lessons and to support students’ learning. It 
is framed on the instrumental approach (Rabardel, 2002), which distinguishes between 
artifact (only object) and instrument (involving also the subject). DAD introduces a 
parallel distinction between resources and documents: a document consists of a set of 
resources and subject’s utilization schemes for a particular class of situations. 
Documents may be material, or psychological entities, like instruments in the sense of 
Rabardel. Documentational genesis is the process by which documents are generated 
(Gueudet & Trouche, 2009), starting from resources and introducing utilization 
schemes, namely classes of situations (in which resources are used), rules of action 
(stable elements in the way the resources are used) and operational invariants (which 
are part of the set of beliefs and knowledge of the teacher). 
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Usually, DAD is used to investigate teachers’ work and growth via understanding 
changes in their documentation work. However, there are also other possible studies: 
Kieran et al. (2013) apply DAD framework to researchers’ documentational genesis: 
the documents generated by researchers are directly designed for the students and not 
for the work with teachers; Psycharis & Kalogeria (2018) analyse the documentation 
work of trainee teacher educators, who were themselves teachers (and not researchers). 
Their learning was expected to be developed through their engagement in designing 
resources for teachers during a PD program. 
Aiming to broaden the horizons of these previous studies, and remaining situated in 
continuity with previous PME reports, we analyse the documentation work of MTEs, 
who are researchers in mathematics education, when they design documents for 
teachers’ PD. Our research question, therefore, is:  
How do MTEs generate documents to foster the building of an inquiry community with 
teachers? 
Answering this question will allow us to have a deeper insight in MTEs’ expertise in 
performing their documentation work consistently with the goal of the PD program. 
METHODOLOGY 
The context 
The PD program is part of the Turin University project Scuole Secondarie Potenziate 
in Matematica (SSPM,  
https://frida.unito.it/wn_pages/tmContenuto.php/456_matematica-teorie-e-applicazio
ni/45/), which is part of the national project Liceo Matematico 
(https://www.liceomatematico.it/torino/). Through an agreement with the Mathematics 
Dept. of the University, the schools involved in the project provide additional 
mathematics hours to the students, taught by their mathematics teachers, who attend a 
PD program (30 hours per year), held by mathematics education researchers. 
We examine here the community of lower secondary school (grades 6-8) mathematics 
teachers, created in 2017: they are 17 teachers, who have attended the program from 
the start. The MTEs are academics and two of them coincide with the authors. The data 
collected refer to the fourth year of teachers’ attendance, when the program was held 
online, due to Covid-19 pandemic restrictions. The program for the teachers consists 
in: ten 2-hour meetings of PD – one per month - and additional work online through a 
platform in, and of 33 hours of classroom implementations, in charge of teachers. The 
meetings had a fixed structure: a first moment in a common session, in which the 
MTEs presented the activities to the teachers, followed by a moment in which the 
teachers worked in groups on the activities, and, in the end, a collective discussion 
orchestrated by the MTEs. 
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Data collection 
All the analysed data are retrievable on the web platform (Moodle) used for the 
asynchronous interactions between teachers and MTEs, during the PD program. 
In particular, we collected: 

1. The ten “activity sheets” given to teachers during the meetings. They include 
ideas for mathematics tasks for students, whose design must be implemented 
and reflection questions for the teachers.  

2. All the slides projected by the MTEs during the meetings, to introduce the 
activities.  

3. The transcripts of the video-recordings of all the interactions, included 
collective discussions, occurred when teachers and MTEs were altogether in 
the main session of the on-line meeting (in the separated sub-sessions it was 
not possible to record, due to technical limitations).  

4. Teachers’ protocols, provided in response to MTEs’ requests. They include the 
design of tasks for students, teachers’ answers to reflection questions and 
reports on classroom experimentations. 

5. Teachers’ answers to a written questionnaire about their beliefs and practices, 
administered during the first meeting.  

6. Transcripts of teachers’ semi-structured interviews, conducted by an educator 
(one of the authors), remotely via a web platform.  

The written questionnaire, mentioned in point 5., consisted of 25 questions: 23 open 
questions, a multiple choice and a Likert Scale. 
Data analysis 
As in DAD is analysed the reflective investigation of teachers’ documentation work, in 
this study we base our analysis on the reflections of the MTEs, scrutinizing their 
documentation work. Since DAD points out the importance of an active involvement 
of teachers, because they have access to their documentation work and they can make 
visible some hidden resources (Gueudet & Trouche, 2012), here too we rely on the 
MTEs’ reflective attitude towards their own documentational genesis. 
The first two types of data enlisted above (points 1. and 2.) can be considered the 
“material part” of documents generated by the MTEs, for the work during the PD 
program. In addition, we analysed them also as resources for the generation of new 
documents, by MTEs, to be used in the subsequent meetings of the PD program. For all 
the documents, we identified the utilization scheme, composed by the class of 
situations, the rules of action and the operational invariants. Besides that, we identified 
the main resources on which the MTEs relied for their documentational genesis, 
proceeding with a backward analysis and having an overall look at the development of 
the entire year of the PD program. 
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The data enlisted in (points 3.; 4.; 5. and 6.) were analysed following the principles of 
qualitative thematic analysis (Braun & Clarke, 2006), with an inductive approach. Our 
aim, related to our research question, was to identify the different kinds of resources, 
embedded in these data, that were involved in the MTEs’ documentation work and to 
study how they contributed to their documentational genesis. 
In the end, we traced a connection between MTEs’ documentation work and their goal 
of building an inquiry community with teachers, explaining the motivations at the basis 
of their choices in the process of documentational genesis. Particularly, we identified 
MTEs’ attempts to promote critical alignment (Jaworski, 2006) in the teachers, 
through a process of co-learning inquiry, involving a critical attitude. 
At every stage, the authors worked, at first, individually, especially focusing on the 
part of the documentational genesis in which they had been more involved. In a second 
moment, they met together to share and discuss the results of their analysis. 
RESULTS AND DISCUSSION 
We will present an example of a document generated by the MTEs’, identifying the 
main resources on which it is based and its utilization scheme. Other examples can be 
presented during the conference. We will trace, in this document, evidence of 
connections with the MTEs’ goal of building an inquiry community with teachers.  
Document for the 4th meeting 
In this example, we will show a MTEs’ document, generated for the 4th meeting of the 
PD program. On that occasion, the MTEs presented some slides to the teachers, to 
prompt a reflection moment and a collective discussion. During the previous meetings, 
the teachers had been asked to propose task designs for their students and to report on 
the implementations of their classroom activities, based on what they had designed. 
The 4th meeting started with a slideshow, presented by one of the authors, which had 
the aim of triggering a collective discussion on the teachers’ task design proposals and 
reports of classroom activities. We consider the slides as the “material part” of the 
document we are describing, associated with the utilization scheme that we will 
illustrate below.  
The first slide shows the distribution of the answers to the Likert Scale question of the 
preliminary questionnaire (point 5.), administered to teachers during the first meeting. 
In this question, teachers were asked to express with a score from 1 to 6 how much they 
feel that certain tasks are central to the role of the mathematics teacher. The image that 
emerges from the answers is that of teachers who have to promote student centred 
activities, in which students are engaged in creative processes. The items with the 
highest scores are, in fact, those most in line with what is required of a teacher in 
laboratory, inquiry-based activities: “To create situations in which students have to 
make decisions and choices” (5,5 points), “To promote freedom of thought and 
creativity” (5,47 points) and “To promote students’ awareness and critical sense” (5,44 
points). 
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The second slide, presented during the 4th meeting, contains four questions for 
teachers, based on the answers showed in the first slide: 
“How and to what extent have awareness and critical sense been promoted with this 
activity?”; “How and to what extent have freedom of thought and curiosity been 
promoted?”; “How and to what extent did students have to make decisions and 
choices?”; “Could the previous aspects have been further promoted? How?” 
The MTEs’ aim was to prompt a collective reflection, making a comparison between 
the reports, made by teachers, about the implementation of the activities they had 
designed for their students during the previous meetings and their answers to the Likert 
Scale question of the preliminary questionnaire. There was, in fact, an evident (at least 
for MTEs) inconsistency between what teachers had declared in the questionnaire and 
their task designs and the content of their classroom activities reports. These last, in 
fact, never mentioned opportunities for students to make choices, to exercise their 
freedom of thought, creativity, or their awareness and critical sense. 
The utilization scheme of the document, whose material part is constituted by the 
slideshow described above, is the following: 
Class of situations: collective discussion and reflection with teachers on their task 
design and classroom reports. 
Rules of action: 1) Show a slide with the teachers' answers to a question of the 
preliminary questionnaire, about the teacher’s role. 2) Ask teachers to reflect on the 
consistency between their answers to the questionnaire, the task design they proposed 
and the reports of the activities they carried out in their classrooms.  
Operational invariants: 1) Teachers should be confronted with possible 
inconsistencies between their answers in the preliminary questionnaire and their 
practices. 2) The collective discussion should address possible issues, which prevented 
teachers from enacting practices coherent with what they had declared in the 
questionnaire. 
Resources 
Resource 1. Answers to the Likert Scale question of the preliminary 
questionnaire (point 5.), provided by the teachers participating in the PD program. 
These answers were used by the MTEs, during the 4th meeting of the PD program, as a 
stimulus for the collective discussion, because they appeared in contrast with the 
reports of the classroom activities, made by the same teachers during the meetings of 
the PD program. 
Resource 2 – Reports of classroom activities (point 4.). In many reports about the 
implementation of the activities, designed by teachers in the first meetings, it emerged 
that teachers guided their students a lot, to try to lead them to find the solution of the 
proposed tasks. For example, in the reports related to the task design and the 
implementation in the classroom of an activity, intended for a VI grade class, there was 
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no evidence of peer discussion, sharing and comparison of conjectures or wrong 
discoveries. A teacher reported a justification of her task design, saying: 

Lucia:  In grade VI, […] the questions must be made explicit as clearly as possible 
and, above all, they must be progressive. In grade VII you can also skip a 
question and make sure that, in order to answer another question, the 
students must have already answered the underlying one. Instead, in grade 
VI no, in my opinion they must be guided step-by-step to the solution […]. 

Based on the reports obtained during the first three meetings, the MTEs felt the need to 
deeper investigate the teachers’ reluctance to engage both low and high-achieving 
students in activities, which promote higher order thinking, creativity, critical sense, 
freedom of thought and awareness. So, they generated the document for the fourth 
meeting, presented above, with this aim. 
Other resources. There are, of course, other resources, in addition to those detailed 
above, that contributed to the MTEs’ documentational genesis. Among them, we can 
list: transcripts of the collective discussions among teachers and MTEs, notes of the 
meetings among MTEs on the design of the PD program, literature in the field of 
mathematics education, national and international meetings with scholars who work in 
the field of teacher professional development. 
Building an inquiry community 
The documentational genesis we described in the previous section is connected with 
the MTEs’ goal of building an inquiry community among MTEs and teachers. This 
connection is testified by their effort to prompt collective discussions and reflections 
among teachers and MTEs, to promote a questioning attitude. The MTEs designed 
documents aimed to highlight possible issues, which can hinder the implementation of 
the inquiry-based approach by the teachers in their classrooms. These documents are 
thought to foster a co-learning inquiry process, in which teachers and MTEs try to 
address the emerging issues and to implement an inquiry cycle. The teachers, in fact, 
are requested to reflect on their task design and on their classroom implementations, in 
order to make improvements and redesign their teaching materials. 
With this study, we obtained an insight in the expertise of MTEs, who are also 
researchers, interested in generating documents based on teachers’ feedback and on the 
interactions during the PD program. Such an insight could also have an impact on 
MTEs’ own professional development, which could be object of further research. 
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STAND.OUT.ERRORS: A STARTING POINT TO ADDRESS 
MATHEMATICS LEARNING LOSSES POST COVID-19   
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The COVID-19 pandemic resulted in school closures and loss of learning and teaching 
across the world, and the impact will be most severe in low-income countries and 
communities. Research on impact of similar severe disruptions is unanimous that 
learning of mathematics is impacted most but recommendations for recovery are 
vague. The notion of stand.out.errors is proposed as a starting point for mathematical 
recovery. This notion is defined, operationalised and applied to the test responses of 
376 Grade 7 learners. The stand.out.errors in four test items are discussed and 
recommendations for addressing errors are made.  
INTRODUCTION  
In the last quarter of 2021, after several months of school closures, learners in low-
income communities in South Africa (SA) typically got five hours of mathematics 
lessons in a two-week period. In some developing countries like Uganda and the 
Philippines, public schools did not open at all in 2021. What do schools, teachers and 
learners do to recover and catch up the lost learning time and forgotten mathematics in 
such circumstances? While some important principles can be learned from research on 
the impacts of previous extended disruptions to schooling, the findings lack specificity 
for school mathematics. I propose the notion of stand.out.errors as a starting point to 
guide teachers and policy makers in focusing initial attempts to address learning loss 
in mathematics, with particular focus on learners from low-income communities. The 
empirical data on which this paper is based comes from the pilot implementation of a 
mathematics test involving multiple-choice questions (MCQ) designed to provide 
diagnostic information on learners’ mathematical knowledge as they transition from 
primary to secondary school in the midst of the COVID-19 pandemic. The research 
question guiding the larger study was: What mathematics do Grade 7 learners bring to 
secondary school? This paper is guided by the question: What is the potential in the 
notion of stand.out.errors to inform Grade 8recovery mathematics programmes?   
BACKGROUND AND LITERATURE REVIEW   
Severe disruptions to schooling come in various forms, including natural disasters (e.g. 
floods, earthquakes), man-made disasters (e.g. war, nuclear explosions) and disease 
(e.g. Ebola, Polio, COVID-19). The impact of such disruptions on schooling are 
immense, not just in terms of teaching and learning but because schools provide 
services such as meals for learners in low-income communities. Research on the impact 
of such disruption is seldom published in peer-reviewed academic journals. Typically, 
it appears in reports, blogs and other web-based publications, reported by international 
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aid agencies (e.g. UNESCO, USAID, World Bank) and non-profits (e.g. UKFIET, 
RTI). The research is mostly quantitative and based on relatively large samples. 
Nevertheless, the findings are important to consider in a response to the COVID-19 
pandemic which led to school closures in over 190 countries, affecting more than 90% 
of school-going learners (UNESCO, 2020).  
The research is unanimous that extended school disruptions lead to learning loss and 
negative psycho-social effects for all learners, but this is greatest for learners from low-
income families (e.g. World Bank, 2020). Consequently, interventions to address 
learning loss must pay particular attention to schooling for those in poor communities. 
A review of research on the impact of severe disruptions on schooling in economically 
poor countries such as Indonesia (Rush, 2018), Nepal (Mu et al., 2016), Pakistan 
(Andrabi, Daniels & Das, 2020), Sierra Leone (Powers & Azzi-Huck, 2016), and 
Rwanda (Thomas, 2010) provides important insights to inform responses to the impact 
of COVID-19, as outlined below. 
Severe disruptions typically have a greater impact on secondary schools than primary 
schools (Rush, 2018) but learning loss is greater for younger children and these effects 
accumulate over time. Consequently, they may be unable to learn new content at later 
stages because of their earlier gaps (Das, Daniels & Andrabi, 2020). On the other hand, 
younger learners will have more years in school with potential to benefit more from 
intervention programmes. Research conducted four years after the Pakistan 
earthquakes in 2005 showed that, although learners in the most severely affected areas 
had only missed three months of school, they were a 1.5 years behind their peers living 
in areas less affected by the disaster (Andrabi, Daniels & Das, 2020).  
Research on school subjects generally focuses only on performance in literacy/ 
language/reading and numeracy/mathematics, where it is unanimous that disruptions 
have greater impact on performance in numeracy/mathematics (e.g. World Bank, 
2020). Since the research is generally reported by aid agencies and their affiliates, 
recommendations relating to mathematics teaching and learning lack mathematical 
detail. However, the recommendations should not be ignored. They include: start 
where the learners are, based on their current levels of mathematical knowledges, not 
with the curriculum requirements; pay attention to core concepts first; pay deliberate 
attention to gaps in learners’ knowledge; do not seek to cover large volumes of content 
which inevitably requires a fast pace (World Bank, 2020; Mu et al, 2016).   
Of course, there is a wealth of mathematics-specific research reporting on learners’ 
mathematical difficulties and errors which complements these broader findings from 
research on disruptions. However, at least in the SA context, the findings and 
recommendations from mathematics education research are not easily transferable to 
contexts requiring large-scale interventions to address learning loss and learner 
backlogs, particularly in contexts of limited resources which dominate the country. It 
is highly likely that this situation is found in many parts of the developing world. 
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The research reported here contributes to the knowledge gap by taking a more nuanced 
mathematical focus on learners’ errors. It also seeks to provide practical starting points 
which are briefly discussed in the final section.  
STAND.OUT.ERRORS: DEFINING AND OPERATIONALSING 
A stand.out.error (SOE) is an incorrect response to an MCQ item which occurs much 
more frequently than other incorrect responses to that item. For example, a test item 
required learners to calculate 6 + 24 ÷ 3. The most frequent response by far was 10. 
This SOE indicates that learners are not paying attention to order of operations but 
merely working from left to right. To operationalise the definition of SOE, we first 
used two criteria. An incorrect response, R, is an SOE if the: 

1. Error frequency of R ≥	20% AND 
2. Error frequency of R ≥ 10 percentage points (pp) of the frequencies of other 

incorrect responses.  
The definition was later expanded for the case where the frequency of two incorrect 
responses was at least 20% but they were not 10pp apart: incorrect responses R1 and 
R2 are both SOEs if the error frequency of R1 and R2 are both ≥	20% (even if they are 
not 10pp apart nor 10pp more than the next most frequent response). Examples are 
provided below. This expanded definition was necessary when seeking trends in SOEs. 
Three (or more) incorrect responses with a frequency of 20% or more, is likely a sign 
of random guessing and so none of the responses is considered an SOE.   
In order to identify SOEs, the learner sample is divided into five sub-groups (quintiles) 
of approximately equal size. A frequency count is generated for each quintile for each 
distractor on each MCQ test item. The above SOE criteria are then applied to the top 
four quintiles. The bottom quintile (in this case, scores below 28%) is excluded because 
previous analysis of their errors did not reveal trends as clearly as the other quintiles.  
Identifying SOEs for individual quintiles is insufficient to address common errors. 
Trends in SOEs across quintiles have potential to reveal more detail. A 3-point SOE is 
a stand.out.error in three or more consecutive quintiles. A 2-point SOE applies to 
exactly two consecutive quintiles. It is possible to have more than one 3-point or 2-
point SOE for an item but a 3-point SOE classification overrides a 2-point 
classification. Identifying and then addressing 2- and 3-point SOEs is important 
because it will impact a wider range of learners, not just the stronger or weaker groups. 
A comparison of SOEs for the whole group versus for consecutive quintiles is provided 
in Table 1. This shows that while the 3-point SOEs will be picked up in a simple 
analysis of the SOEs for the full group, many of the 2-point SOEs will not be identified. 
METHODOLOGY 
The pilot test instrument consisted of 66 MCQ items covering typical curriculum 
content of Grades 4 to 7 on: whole number properties and operations; rational number 
(fractions, decimals, percent, ratio and rate); patterns, functions and introductory 
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algebra; measurement and geometry. The topics were weighted differently based on 
their relative importance in the primary school mathematics curriculum, with 65% of 
the items dedicated to the number topics (see Table 1). Items were selected/adapted 
from a range of sources including local, national and international assessments. Each 
item incorporated distractors that reflect typical errors and/or misconceptions 
identified by teachers and/or reported in the local and international literature such as 
conceptions of equality (Kieran, 1981), decimals (Steinle & Stacey, 2004), and the 
arithmetic-algebra transition (Kaput, 2008).   
The items were trialled with Grades 7 and 8 learners in 16 schools. This paper focuses 
on an opportunistic sample where a school requested to test their incoming cohort for 
2021 but administered the test during an orientation programme in December 2020, 
after schools had closed for the year-end holidays. This sample of 376 Grade 7 learners 
was drawn from more than 20 primary schools. The relatively large number of different 
schools reduces the teacher and school effects on the sample although learners had 
inevitably had varying opportunities to learn throughout primary school and during the 
COVID lockdown periods since some attended well-resourced schools with well-
qualified teachers while others came from poorer areas, with larger class sizes and 
fewer resources. Nevertheless, the vast majority of learners in the sample would not 
have access to online learning at home and this would have negatively impacted their 
learning during the extended school closures in 2020.  
Learners wrote their responses on a pre-prepared answer grid which was scanned and 
processed by an online learner management system. Accuracy checks of the scanned 
images showed that approximately 10% of answer sheets were not scanned with 100% 
accuracy and therefore required manual capture. Data cleaning and processing revealed 
that the mean percentage of blank responses was 3.5%. The mean percentage of “bad” 
responses, e.g. where learners selected more than one distractor or their choice of 
distractor was not clear, was 4.8%. Each correct response was given a score of 1. 
FINDINGS AND DISCUSSION 
With respect to overall test performance, the weighted mean score was 43.9%. The 
breakdown per topic is given in Table 1. The performance trends per topic reflect those 
of the other schools where the test was piloted.  
The procedure to identify SOEs was completed as described above. There were 41 
SOEs for the full sample (all quintiles) with the breakdown shown in Table 1. When 
separating quintiles, 31 3-point SOEs and 18 2-point SOEs were identified. While only 
two of the 3-point SOEs were not picked up by the whole group analysis, there were 
nine 2-point SOEs that were not picked up. This shows the value of disaggregating the 
group into quintiles, identifying SOEs per quintile and then across adjacent quintiles. 
Further detail of SOEs is given in the four examples below (see Tables 2-5), all of 
which involve number and number operations. Correct options are shown in bold.  
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Topic # items % 
correct 

Full sample 
SOEs 

3-point 
SOEs 

2-point 
SOEs 

Whole number & 
operations 23 45.9 14 10 4 

Rational number 20 40.9 13 11 6 
Measurement 8 35.4 9 8 1 
Patterns, functions, 
algebra 10 49.5 4 2 5 

Geometry 5 49.4 1 0 2 
TOTAL  66  41 31 18 

Table 1: Summary of performance per topic and SOEs on MCQ test. 
Item 48 tested learners’ understanding of the equal sign as an equivalence operator 
(Kieran, 1981, see Table 2). Surprisingly, this issue is not explicitly mentioned in SA 
maths curriculum documents. The incorrect answers reflect the following reasoning: 
A: right-to- left reasoning, operational view (7–3=4); B: operating on all numbers 
(5+4-7=2); D: left-to-right reasoning, operational view (5+4=9). This item illustrates a 
case where there is no SOE for the full group but the disaggregated scores reveal a 2-
point SOE (see bold frequencies in Table 2). In quintiles 2 and 3, more than a third of 
learners appear to hold an operational view of the equal sign given their choice of D. 
In addition, more than 20% of learners in quintile 2 operated on all three numbers in 
the equation thus also reflecting a lack of understanding of the notion of equality.  

Item 48:   5 + 4 = 	o − 7  
 A 

3 
B 
2 

C 
16 

D 
9 

Quint 2 (28.1-35.0%) 7.9 23.7 25.0 35.5 
Quint 3 (35.1-45.0%) 8.0 13.3 41.3 33.3 
Quint 4 (45.1-59.9%) 3.7 9.8 68.3 14.6 
Quint 5 (60.0-100.0%) 0.0 9.2 88.2 1.3 
All quintiles 4.5 15.7 48.4 24.2 

Table 2: Response frequencies and SOEs per quintile for Item 48. 
The 2-point SOE classification (linked to D) suggests that approximately 60% of the 
sample need support to develop an appropriate understanding of the equal sign. By 
contrast, most learners in the top two quintiles are entering secondary school with an 
equivalence view of the equal sign. 
Item 3 tested addition of decimals, introduced in Grade 6 in SA. It is well-known that 
learners apply whole number thinking when operating on decimals (Steinle & Stacey, 
2004) and this sample was no different (Table 3). Response B reflects typical whole 
number thinking in adding significant digits, irrespective of their place value. 
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Responses C and D reflect partial awareness of place value. Response D mixes rules 
for multiplication of decimals since the distractor contains three decimal places, which 
is the number of decimal places in the two addends. 
There is a 3-point SOE for quintiles 2-4, but no SOE for the full group because the 
percentage point difference between the frequency of B and D is marginally less than 
10 pp. There are two SOEs for quintile 2 based on the expanded definition of SOEs. 
The anomaly where the frequency of B increases from quintile 2 to 3 (23.7% to 32.0%) 
may merely be a consequence of the high frequency of quintile 2 learners choosing D.  

Item 3:   0.5 + 0.03 =  
 A 

0.53 
B 

0.8 
C 

5.3 
D 

0.053 
Quint 2 (28.1-35.0%) 35.5 23.7 13.2 21.1 

Quint 3 (35.1-45.0%) 46.7 32.0 8.0 10.7 

Quint 4 (45.1-59.9%) 61.0 20.7 2.4 9.8 

Quint 5 (60.0-100.0%) 88.2 7.9 0.0 2.6 

All quintiles 52.4 22.3 5.6 12.8 

Table 3: Response frequencies and SOEs per quintile for Item 3. 
Item 12 contains a 3-point SOE that extends through four quintiles but is not an SOE 
for the full group (Table 4). It is also contains two SOEs in quintiles 2 and 3. The item 
deals with squares and cubes. In the SA curriculum learners work only with these 
powers until Grade 7. Thereafter the exponential laws are introduced. The high 
frequency of response A may be partly due to learners expecting that the answer should 
be in exponential form. However, the choice of A provides an important insight into 
pre-conceptions learners bring about adding powers, i.e. “when you add powers with 
the same base, you add the exponents”. Similarly, given the relatively high frequency 
of option C for the whole group, it is important to make teachers aware of this incorrect 
thinking, and thus to better prepare them to introduce exponential laws, paying careful 
attention to the base and the operation being performed on the powers.  

Item 12:    2! + 2" 
 A 

2# 
B 
𝟏𝟐 

(8 + 4) 

C 
4# 

D 
10  

(2 × 3 + 2 × 2) 
Quint 2 (28.1-35.0%) 26.3 31.6 26.3 9.2 

Quint 3 (35.1-45.0%) 21.3 44.0 22.7 9.3 

Quint 4 (45.1-59.9%) 25.6 54.9 7.3 6.1 

Quint 5 (60.0-100.0%) 21.1 55.3 7.9 6.6 
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All quintiles 23.1 39.4 18.6 9.8 

Table 4: Response frequencies and SOEs per quintile for Item 12. 
Item 39 was one of several items dealing with generalisation of number properties and 
operations in preparation for algebra (Blanton, Stephens, Knuth, Gardiner, Isler & 
Kim, 2015). The 3-point SOE in response C shows strong evidence that most learners 
are not yet able to generalise division by 1 (Table 5). 

Item 39:    If u is any whole number, then u
$
= 

 A 
0 

B 
u 

C 
1 

D 
Impossible to tell 

Quint 2 (28.1-35.0%) 5.3 11.8 56.6 18.4 

Quint 3 (35.1-45.0%) 9.3 17.3 45.3 24.0 

Quint 4 (45.1-59.9%) 6.1 26.8 41.5 15.9 

Quint 5 (60.0-100.0%) 1.3 51.3 25.0 13.2 

All quintiles 7.2 25.5 38.8 17.8 

Table 5: Response frequencies and SOEs per quintile for Item 39. 
CONCLUSION 
Whether or not we are comfortable with deficit discourses, we must acknowledge that 
the COVID-19 pandemic has wreaked havoc on education and will continue to do. In 
countries where learners may have missed an entire year of schooling, they are also 
likely to have forgotten some of what they had previously learned. Those with access 
to online learning, have a wealth of resources at their disposal. Learners from poor 
communities do not. For many mathematics teachers the problem may seem 
insurmountable, begging the question “where do I begin?” The notion of SOEs is a 
starting point to identify specific gaps in learners’ knowledge and evidence of incorrect 
thinking. Since these SOEs are manifested (at least to some extent) in learners’ answers 
to carefully-designed MCQs, we can identify specific concepts and procedures that are 
not fully understood, and ways of thinking that are partially or substantially wrong. In 
this study, a total of 49 SOEs were identified in learners’ test responses. This provides 
a list of priorities. The more detailed discussion of four items in this paper served to 
pinpoint in more detail what needs to be done to address learners’ errors. For example, 
teachers cannot assume that learners enter secondary school with an equivalance view 
of the equal sign, and yet many do. While previous research has already shown this 
(e.g. Knuth, Stephens, McNeil, & Alibali, 2006), the extent of the problem may be 
larger in the wake of the pandemic. A finding not reported in the literature suggests 
that learners’ incorrect pre-conceptions about operating with powers could underpin 
the difficulties they experience with exponents in over-generalising the exponential 
laws. The transition from arithmetic to algebra is one of the key challenges in the 
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transition from primary to secondary school. The SOE reported here regarding item 39 
provides one example of work that mathematics teachers need to do with regard to 
number and moving from a focus on calculations to a focus on structure.  
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INTEGRATING THE AFFECTIVE DOMAIN WHEN 
INTERPRETING UNDERSTANDING IN MATHEMATICS: AN 

OPERATIONAL APPROACH 
Verónica A. Quintanilla, Jesús Gallardo 

University of Málaga (Spain) 
 
We present here an integrative proposal allowing to interpret the different systems of 
the affective domain and its relationship with understanding when performing 
mathematical activity. A conceptualisation of the affective domain is advanced based 
on the emotional system, which serves as a central point of reference, and a functional 
perspective of understanding relating to the uses given to mathematical knowledge. We 
also provide a specific interpretive method and exemplify it with a practical case of a 
preservice elementary teacher engaged in solving a flat surface measurement task. To 
conclude, by incorporating affective phenomena into the interpretation, we found 
complementary reasons that accounted for the student’s mathematical understanding. 
INTRODUCTION 
While progress has been made in research on the affective domain in Mathematics 
Education, a consensus has yet to be reached on its organisation, characterisation and 
assessment. Calls have been made for specific models to be elaborated that would 
include affective domain conceptualisations linked to the specific issues under study 
(Hannula, 2012; Schlöglmann, 2002). It is in this problematic context that we 
conducted the present study, which addresses understanding in mathematics. Focusing 
on the key role of emotions in the development of understanding in mathematics, we 
sought to elaborate an integrative framework of the various components of affect in 
mathematics, a major challenge recognised in our field of research.  
We used a developing model that is based on the interpretation of students’ 
mathematical understanding (Gallardo & Quintanilla, 2019; Quintanilla, 2019). At a 
theoretical level, we put forward a dialectical approach in which the affective domain 
has a systemic nature, in order to incorporate a number of consolidated results within 
a single common process. At the methodological level, we provide a specific 
qualitative method to observe and interpret students’ mathematical understanding 
based on the affective dimension. To show the method’s potential in practice, we 
implemented it in an empirical qualitative study with preservice elementary teachers 
who undertook the resolution of measurement tasks. By integrating the different 
components of the affective domain and the understanding of mathematical 
knowledge, we succeeded at characterising the student’s distinctive cognitive and 
affective features within a single interpretative process as he performed mathematical 
activity in the classroom.  
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THEORETICAL FRAMEWORK 
We conceive the affective domain as an autonomous, dynamic, cyclical and closed 
meta-system that arises from the interactions among the related main systems it is made 
of: (a) belief system, (b) motivational and behavioural system, (c) emotional system, 
(d) attitudinal system, and (e) values and norms. Emotions are a central reference of 
the affective domain and are directly linked to the rest of the components, acting as 
mediators among them. 
Every emotional experience starts with a first unconscious phase during which the 
person seeks – though a cognitive evaluation, conditioned by the context – to establish 
whether a certain object (physical or mental) or event (real, evoked or imaginary) may 
become an emotionally competent stimulus (ECS) (Damasio, 1994). This natural or 
acquired stimulus has the ability to trigger a particular emotion. Emotion is always the 
product of a value judgment made by the individual's cognitive system based on innate 
genetic patterns or socially and culturally learned patterns (Nussbaum, 2001). Beliefs, 
motivation, values and norms also contributes to this cognitive assessment of whether 
an object is an ECS (Di Martino & Signorini, 2019; Rouleau, 2019). In addition, 
emotions usually manifest themselves through emotional responses in the form of 
facial expressions, body language, tone of voice, and verbal locutions that can be 
recognised by outside observers (Ekman, 1993). 
In a second phase of the emotional experience, the person’s awareness of the different 
physiological changes provokes new thoughts relative to the object or initial situation 
that generated them and also relative to one’s general physical status. A feeling thus 
appears as a mental representation of emotion (Damasio, 1994). Feelings prolong the 
impact and effects of emotions and, when evaluated cognitively, enable the generation 
of new emotions following a dynamic and cyclical process (meta-emotion). In addition, 
feelings predispose the subject to action by creating consciously adapted responses. 
Changes in emotional states also form stable affective patterns that are intertwined with 
cognition, creating contexts that are conducive to the individual taking action and in 
which beliefs act as systems of applied rules (Beswick, 2018; Goldin, 2004). Attitudes, 
on the other hand, constitute a tendency towards a specific type of action and contribute 
to shaping a person’s identity. Again, the motivational system intervenes in the 
cognitive evaluations of this phase of the emotional experience, decisively influencing 
the subsequent course of action. In short, the specific actions associated with a given 
emotion in a particular context are triggered by a decision-making process link to the 
self-regulating and self-controlling nature of the emotion itself (Goldin, 2004; Lazarus 
& Lazarus, 1994). This facet allows to manage the emotion’s external representations 
according to the interests of the person and the surrounding social and cultural norms, 
and finally, to generate the voluntary behaviours considered appropriate in each 
situation (Nussbaum, 2001). 
From this perspective, the relationships between the different systems that compose 
the affective domain are established and transit through the emotional system. Thus, 



Quintanilla, Gallardo 
 

PME 45 – 2022 3 - 341 
 

norms regulate emotional experience by influencing how people value objects within 
their social group (Nussbaum, 2001). This system of values and norms can modify 
attitudes and beliefs with the mediation of the emotional system. The attitudinal 
system, on the other hand, is based on repeated emotional experiences and it is these 
experiences that link beliefs to attitudes. Beliefs, in turn, are directly related to meta-
affect, self-regulation, and motivation, processes that can also modify the belief system 
itself (Di Martino & Signorini, 2019; Goldin, 2004; Hannula, 2012). Finally, objectives 
and motivations, such as impulses to act, can lead to specific attitudes and beliefs, 
behaviour being the most reliable manifestation of motivation (Rouleau, 2019). 
Regarding our approach to understanding in mathematics, we assume that individuals 
understand a mathematical knowledge in so far as they are able to use it, in any of its 
possible forms, in situations where the knowledge makes sense and contributes to a 
resolution. It is a functional view based on the uses of mathematical knowledge that 
students implement during their classroom activity. The actions deployed in the 
concrete situation, including the uses of mathematical knowledge, are directly related 
to a decision process in which emotions are key. The student's various accumulated 
emotional experiences, resulting from their experiences in the mathematics classroom, 
directly influence their future decisions, actions and uses in the classroom. We thus 
recognise the existence of mental processes that are strongly linked to the emotions 
underlying the decisions about the uses of mathematical knowledge and which explain 
the student’s understanding. Therefore, we characterise understanding in mathematics 
as an intellectual activity of an affective nature that enables the person to elaborate 
observable, adapted and contextualised responses, involving a recordable and 
interpretable usage of mathematical knowledge.  
METHODOLOGY 
In recent years, we have been developing an interpretive method which we call the 
hermeneutic circle of understanding in mathematics (Gallardo & Quintanilla, 2019). 
This method allows us to interpret simultaneously both the affective traces that 
accompany actions and motivate them, and the traces of understanding displayed by 
students when they solve problems. We applied our method in a qualitative study in 
which we interpreted the preservice elementary teachers’ understanding of 
measurement based on their various manifestations of affect. 
Participants and context 
The participants were 20 volunteer preservice teachers enrolled in their fourth year of 
their Degree in Primary Education at the University of Málaga. They studied the 
Didactics of Measurement subject during the second semester of the 2017-2018 
academic year. The participants solved measurement tasks in their ordinary classroom, 
within the usual classroom schedule and together with the rest of their classmates. Our 
method was implemented over nine weeks, during the subject’s two weekly hours of 
practice. 
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Mathematical tasks 
The selection was made based on each representative task of the different phases 
involved in the mathematical foundation of magnitude measurement (identification of 
magnitudes, conservation and comparison of quantities of magnitude, choice of 
measurement units, quantification and use of measurement instruments and 
arithmetisation). Non-equivalent tasks were used, the joint resolution of which would 
allow us to characterise the understanding of measurement. We illustrated the study 
using the records generated by one of the participating teachers (Antonio) when solving 
a task focused on the surface measurement of flat figures (Figure 1). 

How large is the surface of the following figures? 

 
Figure 1: Flat Figure Surface Measurement Task. 

Data collection  
Each episode was conducted over three consecutive phases in which we used different 
data collection instruments. 
Phase 1. Each participant was given the measurement tasks and a brief conversational 
interview took place. We addressed three main themes: (a) initial emotions when 
observing the tasks; (b) beliefs about mathematics and the students’ personal 
relationship to mathematics; and (c) experiences with mathematics in the past. The 
interviews were recorded in audio (transcription as first written record).  
Phase 2. The students were organised in pairs and solved the different tasks 
collaboratively. We sought to detect evidence of the interaction between the students’ 
affective processes and their understanding as they use the mathematical knowledge. 
All the mathematical activity was recorded in audio and video (second written record). 
Phase 3. The researcher shared her findings based on the results obtained in the 
previous phases and presented an interpretation of the student's performance in order 
to reach an agreement with him/her regarding the uses given to mathematical 
knowledge and their relationship with the affect experienced. Each interview was 
recorded in audio (third written record). 
Data analysis and interpretation 
The hermeneutic circle follows the various semiotic, phenomenon-epistemological and 
dialogical planes included in their interpretative trajectory. 
We sought to identify the uses given to the mathematical knowledge and traces of 
understanding on the semiotic and phenomenon-epistemological planes. The following 
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analyses served as a reference: (a) the phenomenon-epistemological analysis of the 
problem raised, in which we clarified the essential knowledge that could help to solve 
the problem; and (b) the phenomenological analysis of the student’s emerging affective 
components during mathematical practice. We characterised these components using 
different representation systems that informed us of what was being communicated and 
how it was communicated: (i) the verbal system (tone of voice and locutions) and (ii) 
the kinesthetic system (facial and body expressions). 
On the circle’s dialogical plane, we compared the student’s mathematical activity 
during the episode, we established relationships with the uses given to mathematical 
knowledge, and then structured the conclusions regarding the student’s understanding. 
The search for a consensus also allowed us to contrast information relating to the 
different affective components displayed by the student during the episode’s previous 
phases. The appropriation that occurred during the agreement-building with the other 
was expected to generate a transformative effect on the protagonists. 
RESULTS 
In Phase 1 of the study, students’ beliefs and personal mathematical history began to 
emerge, and we identified a number of initial emotions. 

Antonio:   (Low voice, nervous laughter) I don't know how to solve them (belief about 
what I should know). I should have worked on many of these things at 
school when I was a child (belief about school teaching and learning). 

Interviewer:  If you had to find a word for that feeling.  
Antonio:  Being unsure. Hesitations, quite a lot of doubts (uncertainty). I think that 

the lack of usage ... makes me forget about it (causal attribution). I don't 
understand why they don't explain this to me (belief about teaching). I am 
very eager to understand certain things (belief about oneself). I would say: 
I'm going to look for the answer, let’s see if I find it (perseverance). 

Antonio shows shame and, as he describes having doubts, he recognises feeling 
uncertainty. These emotions originate from the discrepancy between a belief about 
himself (he should know more about mathematics) and the recognition of not being 
able to immediately solve the tasks posed. He uses causal attributions as a justification 
(a characteristic component of the belief system) probably as a way of attempting to 
minimise the negative effects of his emotions. When describing his mathematical past, 
he is also showing beliefs about his own preferences and he is shaping a recognised 
attitude of perseverance.  
During Phase 2, Antonio perceives the task as easy and becomes suspicious (belief). 
In addition, he manifests a limited understanding of the fraction as a measure. The fact 
of not regarding the triangle as a unit generates uncertainty (emotion): 

Antonio: Maybe you can't, let's see... There is always a catch in these exercises. (In the 
first figure) 1, 2, 3, 4, 5, 6, 7, 8... Exactly half is left over (half a square or 
a right-angled triangle). I don't know if it is linked to... 
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He modifies his strategy and uses knowledge of formulas, without paying much 
attention to its adequacy. New beliefs are involved that may favour this change 
(mathematics requires the use of sophisticated calculations): 

Antonio: In Primary school, you don’t know the Pythagorean theorem, but if I know this 
(the cathetus) and I know this (the cathetus), I know how much the diagonal 
measures (hypotenuse). Taking the area of this triangle, I add it to the area 
of the square and we obtain the surface. And if not, then you would have to 
calculate the surface of one of the triangles and since all triangles are the 
same, you simply add the surface. That would be another option. 

His beliefs (numbers are needed to calculate measurements) and his understanding 
influence his emotions. He shows uncertainty and distress that are reflected through 
tensions (emotional responses in Figure 2). He abandons the first flat figure: 

Antonio: With the Pythagorean theorem, you have to know the measurement to get an 
answer. We don't have the numbers here, so we can't give numbers. The 
quadrilateral in the first figure is formed with... 

(a)               (b)  
Figure 2: (a) Tense body and face, continuously touches his nose; (b) Covers mouth 

with hand, hunched shoulders, clenched hands. 
Finally, he manages to measure the second figure and, therefore, decides to that the 
task is solved with an expression of relief (emotion): 

Antonio: In this case (second flat figure), you can make the square with the additional 
pieces, those that are left over, and yes, it is possible to calculate the surface. 
Here we could form six squares. It would be the same. That's it! 

In Phase 3, we obtained complementary information which allowed us to confirm the 
relationships existing between Antonio’s affective domain and his understanding. 

1 I: Did you have doubts while you were doing the exercise? 
2 A: Yes (firm voice, sounds very certain). Uncertainty and frustration, partly. 

Because I should be able to solve it and... why can't I? I find it hard to 
believe that things can be simple (origin of a belief). 

3 I: You started talking about the Pythagorean theorem. 
4 A: I wanted to apply the Pythagorean theorem if a measurement was given. 

We would multiply the triangle by two and we would obtain the surface of 
the square. Here the surface would be given in terms of numbers of squares. 

5 I: How much would it be? 
6 A: Here, six (second flat figure). And for this one (first flat figure), let's see: 

One, two, three, these would form two, four, five. No! Five and a half.  
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7 I: Five and  a half. That was the answer. What happened do you think? 
8 A: I like it when things are complicated (muffled laugh). Since there was no 

tangible measure, I didn’t give an answer. Numbers were missing. I'm used 
to having to give a precise result... but it's not like that (timid laughs). But 
I’ve still got it there... I don't know if one day I’ll lose it... 

9 I: But you told me that your perspective was changing... 
10 A: I have to change the way I see things. I have the mathematical knowledge. 

What I need to understand is how I can really teach that knowledge. 

We found evidence of the relationship between the uncertainty and frustration that 
Antonio felt and his beliefs about himself and the social context in which he was 
immersed (his own expectations and that of others about what he should be able to do) 
(1-2, 8-10). Moreover, he again displayed the emotional responses of tension and 
nervousness (8). The strategy he planned based on the use of the Pythagorean theorem 
was conditioned by his beliefs (mathematics consists of rules, formulas and complex 
procedures) (3-4). Subsequently, because he could not apply the theorem due to 
missing numerical data, he came back to resorting to his initial knowledge, and 
managed to solve the task (5-7). Finally, as he became aware of his mathematical 
performance during the task, Antonio encountered fresh motivation regarding his 
future teaching practice: He opened up to a possible modification of his own previous 
beliefs manifested in Phase 1 (the learning of mathematics depends on the teacher’s 
actions). Above all, he was aware of the influence of the affective domain on his 
understanding (I have the knowledge, but I must change the way I see things) (9-10). 
DISCUSSION AND CONCLUSION 
A mathematical situation was evaluated by Antonio's cognitive system, based on his 
belief system about mathematics, about his teaching and learning, about himself and 
about the context. These beliefs were incompatible with the reality of the context of 
the task, thus generating different emotions. His facial and body expressions during the 
episode provided emotional evidence of his uncertainty, frustration, distress and relief. 
These emotions, in turn, generated emotional responses (tension and blockage), and 
the latter determined his decisions of action. Antonio's affective system thus intervened 
in his mathematical practice, conditioning the uses given to mathematical knowledge 
and providing reasons for his understanding of measurement.  
The configuration of theoretical frameworks that help to understand the role of affect 
in mathematical learning is an ongoing objective in the field of Mathematics Education 
(Goldin, 2004; Hannula, 2012). Another goal is to define procedures that allow to 
interpret the acknowledged relationship between affective domain and cognition in 
mathematics (Schlöglmann, 2002). The specific contribution of our study is an 
approach that enables exploring the understanding of mathematical knowledge through 
different components of affect. Identifying the relationship between affective domain 
and understanding allows to obtain a more accurate assessment of the students' actual 
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mathematical understanding. Such an assessment will help us in the future to guide 
students' affective responses towards learning with understanding. 
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Although self-generated drawing is a powerful strategy in the domain of geometry, 
students lack spontaneous use of the drawing strategy. In the current study, we 
investigated instructional, cognitive, and motivational predictors of students’ drawing 
use. We first assessed strategic knowledge about drawing and strategy-based 
motivation in 132 students in Grades 9 and 10. Then, students were randomly assigned 
to solve geometry modelling problems either with or without drawing instructions. 
Students with drawing instructions constructed more drawings than students without 
drawing instructions. Strategic knowledge about drawing, self-efficacy expectations, 
and perceived costs predicted drawing use while intramathematical abilities were 
controlled for. Utility value did not predict drawing use in the current study. 
INTRODUCTION 
Self-generated drawing is considered a powerful strategy for finding a solution to a 
geometry modelling problem. Although 13- to 15-year-old students are familiar with 
the strategy of self-generated drawing, many of them do not spontaneously use the 
drawing strategy (Uesaka et al., 2007). One way to increase students’ use of drawings 
is to explicitly instruct them to make a drawing before solving a modelling problem. 
Previous research has indicated that a notable proportion of students still do not make 
a drawing even when instructed to do so (De Bock et al., 1998). Explanations for 
students’ lack of drawing use include strategy-based cognitive and motivational 
factors. In the current study, we investigated how drawing instructions, strategic 
knowledge about drawing, and strategy-based motivation (self-efficacy expectations, 
utility value, and perceived costs) predict students’ use of drawings to solve geometry 
modelling problems. 
THEORETICAL BACKGROUND 
The use of learner-generated drawings to solve geometry modelling problems 
Past research has repeatedly shown that students experience diverse difficulties when 
solving modelling problems (e.g., Galbraith & Stillman, 2006). Modelling problems 
are ill-defined mathematical problems with a connection to reality that, amongst other 
functions, allow students to make realistic assumptions and apply different 
mathematical solution methods. An exemplary modelling problem is presented in 
Figure 1. 
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Cable car  
The municipality of Engelsberg needs to replace the 
steel rope of holding the cable car. One meter of the 
steel rope costs 9 €. How much will the new steel 
rope cost? The following data on the cable car are 
available: 
Model:   Engelsberg cable car 
Bottom station:  1,023 m above sea level 
Top station:   1,605 m above sea level 
Horizontal difference: 1,041 m 
Transportation capacity: 585 passengers per hour 
Driving speed:  9 m/s 

Figure 1: Exemplary modelling problem Cable car. 
One way to help students overcome difficulties in the modelling process is to instruct 
them to use powerful strategies, such as self-generated drawing (Galbraith & Stillman, 
2006). The strategy of self-generated drawing describes the process of constructing a 
structurally analogous representation of the modelling problem on paper and to use it 
as a problem-solving aid (Van Meter & Firetto, 2013). From a theoretical perspective, 
the drawings that are used to solve modelling problems can be classified as situational 
or mathematical drawings (see Figure 2). 

 
Figure 2: Exemplary situational (left) and mathematical (right) drawings by students. 
The Cognitive Theory of Drawing Construction (Van Meter & Firetto, 2013) supports 
the assumption that making a drawing can help students work through the modelling 
process because it promotes the construction of mental models. A previous study 
confirmed that situational and mathematical drawings are powerful types of drawings 
that can help students solve a geometry modelling problem because students who made 
a more accurate situational or mathematical drawing solved the geometry modelling 
problem better than peers with a less accurate drawing (Rellensmann et al., in press). 
For example, a student can benefit from making a drawing for the modelling problem 
Cable car because the drawing may help them understand the relationship between the 
top and bottom stations or may help them figure out that the information they are 
looking for can be modelled as the hypotenuse of a right-angled triangle. 
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Drawing instructions 
Although self-generated drawing is a powerful problem-solving strategy, previous 
research has shown that students often do not make drawings spontaneously (De Bock 
et al., 1998; Uesaka et al., 2007). For example, Uesaka and Manolo (2012) reported 
that 38% to 70% of students made spontaneous use of the drawing strategy to solve 
geometry word problems. One instructional approach that can be used to increase 
students’ use of drawings is to explicitly ask them to make a drawing. Still, notable 
proportions of students do not follow such instructions (De Bock et al., 1998). 
Explanations for why students do not use drawings consist of deficient strategic 
knowledge about drawing (Rellensmann et al., in press) and a lack of strategy-based 
motivation (Uesaka & Manalo, 2012).  
Strategic knowledge about drawing 
Strategic knowledge about drawing (SKD) is specific strategic knowledge (Borkowski 
et al., 2000). It includes knowledge about the characteristics of an accurate drawing for 
solving a modelling problem, including the adequate representation of relevant objects 
and their relationships and complete labelling with relevant numbers (Rellensmann et 
al., 2020). According to the theoretical model proposed by Borkowski et al. (2000), 
SKD is an important precondition for the use of the drawing strategy. A recent study 
showed that improving students’ SKD with strategy training resulted in more accurate 
drawings (Rellensmann et al., in press). Whether SKD predicts students’ use of 
drawings has not yet been investigated. 
Strategy-based motivation 
Strategy-based motivation (SBM) is motivation that derives from the characteristics of 
strategies and their use. Referring to the expectancy-value theory of motivation (Eccles 
& Wigfield, 2020), SBM stems from specific manifestations of expectancies and value 
appraisals and can explain strategy-related decisions (e.g., the use of the drawing 
strategy). In the current study, we examined whether drawing-related SBM (self-
efficacy expectations, utility value, and perceived costs) would predict students’ use of 
drawings. 
Regarding the drawing strategy, self-efficacy expectations comprise a student’s 
confidence in being able to construct accurate drawings to solve modelling problems. 
A student with high self-efficacy expectations would give an affirmative answer to the 
question “Are you confident that you can make a very good drawing for any modelling 
problem?” Previous studies have found that self-efficacy expectations are positively 
related to drawing use (Uesaka et al., 2007) and drawing accuracy (Schukajlow et al., 
2021). One explanation is that students who have more confidence in their abilities to 
generate accurate drawings set higher goals and engage in deeper learning processes 
compared with students who have less confidence in their drawing abilities. To date, 
no studies have investigated whether self-efficacy expectations affect drawing use. 
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Drawing-related value appraisals comprise utility value (Barron & Hulleman, 2015), 
that is, a student’s belief that the activity of making a drawing is helpful for achieving 
their goals (e.g., solving the modelling problem). Previous empirical findings indicate 
that utility value predicts strategy use only when students have free choice of strategies: 
In studies on the spontaneous use of drawings, utility value positively predicted 
drawing use (Blomberg et al., 2020; Uesaka et al., 2007), whereas utility value did not 
predict drawing use when students were instructed to make a drawing (Schukajlow et 
al., 2021). 
Another component in expectancy-value theories is the component of perceived costs 
(Eccles & Wigfield, 2020). Perceived costs of drawing comprise a student’s belief 
about the amount of time and effort they need to invest to make a drawing. Previous 
research found negative relationships between the objective costs of drawing and 
spontaneous drawing use (Uesaka & Manalo, 2012) and negative relationships between 
perceived costs and drawing accuracy when students were instructed to make a 
drawing (Schukajlow et al., 2021). To date, it is an open question whether the perceived 
costs associated with making a drawing impede students’ use of drawings. 
RESEARCH QUESTION AND HYPOTHESES 
In the current study, we investigated the following research question: Do drawing 
instructions, SKD, and SBM (self-efficacy, utility value, and perceived costs) predict 
students’ use of drawings while mathematical abilities are controlled for? We expected 
that drawing instructions, SKD, self-efficacy expectations, and utility value would 
positively affect students’ use of drawings, whereas perceived costs would negatively 
affect students’ use of drawings. 
METHOD 
Procedure and participants 
Participants were 132 students (45% female, 15–16 years old) in Grades 9 and 10 and 
in the middle achievement track of two German secondary schools. Students were 
randomly assigned to one of two groups: instructions to make a situational or 
mathematical drawing for each modelling problem (n = 91) and no instructions to make 
a drawing (n = 41). We aggregated students with situational and mathematical drawing 
instructions into the group with drawing instructions because the analyses did not 
reveal any differences between the groups with different drawing instructions. Data 
were collected on two different occasions to reduce the possibility that students in the 
control condition would be inadvertently prompted by the questionnaire to generate 
drawings. On the first data collection date, students worked on the test of 
intramathematical abilities, the strategic knowledge test about drawing, and the 
strategy-based motivation questionnaire. On the second data collection date, students 
were asked to solve eight modelling problems with or without drawing instructions. 
Measuring instruments 
Intramathematical abilities. To control for students’ intramathematical abilities, we 
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asked students to solve mathematical tasks without a connection to reality (10 items). 
For example, students were asked to set up an equation that fit a right-angled triangle 
or to solve a quadratic equation. Students’ solutions were scored 0 (incorrect solution) 
or 1 (correct solution). 
Strategic knowledge about drawing. The SKD scale (16 items) was developed and pilot 
tested in previous studies (Rellensmann et al., 2020). To solve an item from the SKD 
scale, students were asked to use a Likert scale to rate how helpful three situational 
drawings and three mathematical drawings were for solving a word problem. The three 
drawings that were provided differed in their accuracy. Students’ evaluations of the 
three drawings were scored from 3 to 0 with respect to their accuracy. 
Strategy-based motivation. To answer the strategy-based motivation questionnaire, 
students rated statements about themselves and their strategy-based motivation on a 5-
point Likert scale. The items formed scales representing self-efficacy expectations 
(e.g., “I am confident that I can make a very good drawing for any word problem,” 4 
items), utility value (e.g., “I believe that it is important to make a drawing because 
making a drawing can help me solve a difficult word problem,” 4 items), and costs 
(e.g., “I have to put forth a lot of effort to make a drawing for a difficult word problem,” 
3 items). 
Drawing instructions. On the second data collection date, students worked on eight 
geometry modelling problems (see Figure 1). Students’ group assignment was dummy 
coded: 0 (without drawing instructions) or 1 (with drawing instructions).  
Drawing use. For each of the eight modelling problems, a student’s use of a drawing 
was coded. When the student did not make a drawing, a code of 0 was given. When 
the student made a drawing, a code of 1 was given. 
Interrater reliabilities (Fleiss’ ϰ > .84) and scale reliabilities (Cronbach’s α > .64) were 
satisfactory for all scales. 
RESULTS 
Correlations, means, and standard deviations for the investigated variables are 
presented in Figure 3. All correlations were in the expected directions, as SKD, self-
efficacy expectations, and utility value were positively related to the use of drawings, 
and costs were negatively related to the use of drawings. Across the eight modelling 
problems, on average, 33% and 21% of the students made a drawing for a modelling 
problem in the groups with and without drawing instructions, respectively. 
As we found notable correlations between the SBM components (e.g., r = -.41 between 
self-efficacy expectations and perseived costs), we computed multiple regression 
analyses with self-efficacy expectations, utility value, and perceived costs as 
simultanous predictors (Model 1) or separate predictors of students’ use of drawings 
(Models 2a-c) (Figure 4). 
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Figure 3: Correlations, means, and standard deviations for the investigated variables. 

 
Figure 4: Model 1 with simultaneous SBM predictors (left) and Models 2a-c with 

separate SBM predictors (right). 
In Model 1 with simultaneous predictors, we found that drawing instructions (β = .19, 
p < .05), SKD (β = .19, p < .05), and self-efficacy expectations (β = .28, p < .01) 
predicted students’ use of drawings while intramathematical abilities were controlled 
for (β = .17, p < .05). Perceived costs (β = -.11, p > .05) and utility value (β = .01, p > 
.05) did not predict students’ use of drawings. 
In Models 2a, 2b, and 2c, we computed regression models with drawing instructions 
and SKD as predictors and intramathematical abilities as a covariate. We also entered 
self-efficacy expectations, utility value, and costs as separate predictors one at a time. 
In line with our hypotheses, self-efficacy expectations (β = .31, p < .01) and perceived 
costs (β = -.22, p < .05) were significant predictors of students’ drawing use. Contrary 
to our hypothesis, utility value did not predict drawing use (β = .04, p = .67). 
DISCUSSION 
In line with previous research, we found that large proportions of students lacked 
spontaneous drawing use or did not follow drawing instructions to solve geometry 
modelling problems. This study contributes to previous research on drawing use, as we 
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identified instructional, cognitive, and motivational predictors of drawing use while 
controlling for students’ intramathematical abilities. First, we found that drawing 
instructions are an instructional means for overcoming students’ lack of spontaneous 
drawing use. Thus, teachers might explicitly ask students to make a drawing to solve a 
modelling problem to give students more experience with the drawing strategy. 
Second, as hypothesized in the model by Borkowski et al. (2000), we found that 
students with good SKD used drawings more often than students with lower SKD. This 
finding adds to previous research that showed that SKD is an important prerequisite 
for drawing accuracy (Rellensmann et al., 2020). Thus, teachers should aim to create 
opportunities for students to develop their SKD. Strategy training, which can increase 
students’ SKD, involves instructional elements (e.g., comparing drawings of varying 
accuracy) that can be used to promote students’ SKD (Rellensmann et al., in press). 
Third, we found support for Borkowski et al.’s (2000) hypothesis that SBM affects 
strategy use. Our results extend Borkowski et al.’s (2000) model by indicating which 
components of SBM are particularly important for strategy use. As hypothesized, we 
found that students with high self-efficacy expectations used drawings more often than 
peers with lower self-efficacy expectations. Also, students who perceived drawing as 
too cost-intensive (i.e., taking too much time and effort) did not use drawings as much 
as students who perceived drawing to be less cost-intensive. Due to the strong 
correlation between self-efficacy expectations and costs, the effects of costs were no 
longer statistically significant when self-efficacy expectations were simultaneously 
considered in the regression model. Thus, self-efficacy expectations were found to be 
the stronger predictor of students’ drawing use. Contrary to our expectations, utility 
value did not predict drawing use in the current study. One explanation is that utility 
value is powerful in educational settings that give students a choice between different 
strategies (e.g., Uesaka & Manalo, 2012). Thus, the current findings suggest that the 
promotion of SBM will help students make use of the drawing strategy. Further, prior 
research has demonstrated ways to enhance SBM in educational settings (Eccles & 
Wigfield, 2020). One way is for teachers to scaffold students’ drawing construction 
(Zhang & Fiorella, 2019) to facilitate a mastery experience, thus enhancing students’ 
self-efficacy expectations and reducing the perceived costs associated with drawing. 
In the current study, we investigated relationships between strategy instructions, 
strategic knowledge, strategy-based motivation, and strategy use for self-generated 
drawing. Further research should confirm the relationships that were hypothesized in 
Borkowski et al.’s (2000) model for other strategies (e.g., backward or forward 
strategies). 
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In light of a gender-gap in school mathematics favoring girls among Palestinian/Arab 
Israelis, this study explores 147 high school students’ views of mathematics with 
respect to gender. We administered a “Who and Mathematics” survey used in a prior 
study. Findings include gender-neutrality about teacher interactions, parent 
expectations, and future employment. Negative relations with mathematics were 
attributed to boys. A broader set of narratives were attributed to girls, including items 
about caring or worrying about success and finding mathematics interesting. These 
results challenge an assumption that the social construction of mathematics as 
masculine is universal and present a picture of how gender shapes and is shaped by 
mathematics education for Palestinian/Arab Israelis.  
INTRODUCTION  
Israel presents an interesting case with respect to gender and mathematics achievement. 
On the one hand, across schools separated by language of instruction, Israel posts large 
differences between its Jewish majority (in Hebrew-speaking schools) and 
Palestinian/Arab Israeli (P/AI) minority (in Arabic-speaking schools) (Rapp, 2015). 
These achievement differences can be interpreted as part of a legacy of inequitable 
access and opportunity. In Israel’s Hebrew-speaking schools, there is a persistent 
gender gap in mathematics and science participation that favors boys (Friedman-
Sokuler & Justman, 2020). In those schools, which represent Israel’s majority, boys 
are slightly over-represented in advanced mathematics and heavily over-represented in 
physics and computer science coursework. In contrast, however, in Israel’s Arabic-
speaking schools, girls tend to outperform boys–on state and international mathematics 
tests and at all school levels– and are over-represented in advanced mathematics, 
physics, and computer science coursework (Pinson et al., 2020). Despite their 
eligibility, however, few Palestinian/Arab Israeli women continue to higher education 
in STEM fields (Fuchs, 2018); instead, teacher education is the most common 
undergraduate path of study (Arar & Haj-Yahia, 2016).  
Prior research has pointed to various potential explanations for an absence of a gender 
gap favoring boys in mathematics achievement and participation at K-12 levels. For 
one, Palestinian/Arab Israeli girls are said to have limited opportunities for success, 
outside of school, as girls or women (Nasser & Birenbaum, 2005). Furthermore, the 
structure of Israel’s separate school system has provided a narrower range of kinds of 
advanced course offerings to Arabic-speaking schools (Ayalon, 2002), positioning 
mathematics as a singular option for excellence. A third explanation, of particular 



Rubel, Ayalon, Shahbari, Awad 
 

3 - 356 PME 45 – 2022 

 

interest for this study, is that the social gendering of mathematics as masculine 
common elsewhere and among Israel’s majority (Markovits & Forgasz, 2017) might 
not extend to Palestinian/Arab Israelis. Our goal here is to explore this conjecture, by 
surveying high school students among Palestinian/Arab Israelis about gender and 
mathematics.  
PRIOR RESEARCH  
Guided by prior research that deemphasizes any biological differences between sexes, 
our perspective is, instead, a social one: We view gender as a social construct that is 
performed in different ways across individuals and across contexts (Butler, 1990). In 
mathematics education, participation and success can be understood in terms of 
gendered stories about mathematics in circulation in a society: these stories are seen to 
shape classroom interactions, between teacher and students, and among students, and 
to inform students’ identity development with respect to mathematics (Mendick, 2005). 
One explanation for gender-based differences in mathematics achievement and 
participation is in terms of the stories or narratives that are told and retold that construct 
mathematics as a masculine domain (Leyva, 2017). Many interrelated narratives 
comprise binary but unequal oppositions -- like analytic/emotional, 
objective/subjective, innately able/ hard-working, confident/lacking confidence-- 
wherein one in every pair is more valued and socially associated with masculinity 
(Mendick, 2005). 
One set of related studies in the literature explores the gendering of mathematics 
through a focus on teachers. For example, Fenemma et al. (1990) and later, Tiedemann 
(2000) and Sarouphim and Chartnouy (2017), in the United States, Germany, and 
Lebanon respectively, point to a tendency among teachers to attribute boy’s success to 
innate ability and girls’ success to effort. These studies speculate that these narratives 
shape teachers’ instruction and ways of relating with students in ways that benefit boys. 
A parallel set of studies explores children and students. Children’s adherence to 
gendered stories about mathematics in which mathematics is masculinized has been 
shown among students at all levels, from college to elementary school and even in pre-
school contexts and across a wide range of geographical contexts (e.g., Cvencek et al., 
2015; Passolunghi et al., 2014).  
In the Israeli context specifically, recent findings include that elementary school boys 
tend to more highly rate their own achievement in mathematics than girls rate theirs 
(Markovits & Forgasz, 2017). Whereas students tended to indicate that girls and boys 
are equally good at math, when shown two photographs, the majority indicated that the 
image perceived to be a “man” was more likely to use mathematics at work than the 
image perceived to be a “woman” (Forgasz & Markovits, 2018). These studies suggest 
that children do not adhere to explicit gendered attributions of ability in mathematics 
but that their sense of who participates in mathematics as adults remains gendered. 
However, these recent studies of Israeli school-children included only students in 
Hebrew-speaking schools. 
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In terms of Palestinian/Arab Israeli school students, the population of interest in this 
study, the field’s knowledge rests on Forgasz and Mittelberg’s (2008) comparative 
survey of 9th graders. In that study, Forgasz and Mittelberg compared responses of 
Palestinian/Arab Israelis with Jewish Israelis and with Australians and found that the 
Palestinian/Arab Israeli students’ responses were less consistent with dominant 
narratives about gender and mathematics. An absence of a masculinazation of 
mathematics is a potential explanation for the success and participation of 
Palestinian/Arab Israeli girls and women in school mathematics. Forgasz and 
Mittelberg’s (2008) findings are surprising, however, since the Palestinian/Arab Israeli 
society, in general, is considered traditional about gender roles, at least with respect to 
caretaking, food preparation, and childrearing (Haj-Yahya et al., 2018). Nearly 15 
years later, in light of broader changes towards gender equity around the world, we are 
curious to repeat Forgasz and Mittelberg’s survey, with a larger number of participants. 
Our research interest is not in intra-group comparisons, but rather, to explore 
Palestinian/Arab Israeli high school students’ views of gender and mathematics.   
METHODS 
We utilized the survey “Who and Mathematics” from Forgasz and Mittelberg (2008) 
with our own translation of the items into Arabic. The survey comprises 30 Likert-
scale items; each indicates a statement–for example, “Give up when they find a math 
problem too difficult” (item 4), with an associated prompt to select one from among: 1 
(boys definitely more likely than girls), 2 (boys probably more likely than girls); 3 (no 
difference between boys and girls); 4 (girls probably more likely than boys); 5 (girls 
definitely more likely than boys). We administered the survey to students at four 
Arabic-speaking schools in Israel, in an electronic format. Participants include 147 
people: 72 ninth-graders (41 identify as girls, 31 as boys) and 75 eleventh-graders (35 
identify as girls and 40 as boys). We chose high-school because we assume that 
students at this age group are highly reflective about teachers, parents, and future 
employment. We chose two different age groups within high school as a way to 
determine if students’ responses at each grade level are different.  
For each item, we computed averages and standard deviations of responses. We 
compared the responses of girls with boys, and compared the responses of 9th graders 
with 11th graders, using t-tests. There were few instances of differences across these 
subgroups: girls and boys answered only two items differently (items 4, 10) and 9th 
and 11th graders answered only three items differently (items 18, 23, 25). We 
aggregated the responses of all 147 students. Next, using t-tests, we checked to see 
which items had averages statistically close to 3 (attributed to neither boys nor girls), 
which items had averages significantly less than 3 (attributed to boys), and which items 
had averages significantly greater than 3 (attributed to girls).   
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RESULTS 
Narratives Not Assigned to Gender 
On 18 of the 30 items, the average scores were not statistically distinguishable from 
the value 3, meaning that these items were not attributed on average to any gender. For 
10 of these items, which we show in Table 1, our results confirm the results of Forgasz 
and Mittelberg and, furthermore, challenge the gendered stories predicted by the 
literature. Included in this set are finding mathematics easy or difficult (items 18, 27), 
liking challenging mathematics problems (item 11), enjoy math or it’s their favorite 
subject (items 6, 1), and multiple items about interactions with teachers (items 3, 12, 
25).  

Std 
dev Mean 

F&M (2008) 
Nd = no 
difference 

Predicted by Literature, 
as reported by F&M Item 

1.148 2.891 nd M Math is their favorite 
subject 1 

1.034 3.163 nd F Think it's important to 
understand math 2 

1.103 3.054 nd M Are asked more questions 
by your math teacher 3 

1.127 3.177 nd M Enjoy mathematics 6 

1.121 2.932 nd M Like challenging 
mathematics problems 11 

1.032 3.054 nd M Are encouraged to do well 
by their math teacher 12 

1.093 2.939 nd M Find mathematics easy 18 
1.195 2.871 nd F Need help in mathematics 20 

1.009 2.905 nd M Mathematics teachers 
spend more time with them 25 

1.123 2.857 nd F Find mathematics difficult 27 

Table 1: Items Attributed Neutrally, In Agreement with Forgasz & Mittelberg (F&M, 
2008). 

In addition to the ten items in Table 1, we found an additional eight neutrally designated 
items on average, which we share in Table 2. Here we have items about parental 
expectations (items 9, 19), teacher expectations (item 13), and the meaning of 
mathematics for one’s future (items 10, 14). These items were found to be gendered in 
previous literature and found to be gendered in Forgasz and Mittelberg’s study, but in 
our study, were found to be neutral.  
Gendered Narratives 
The other 12 items produced results statistically different from the value 3, meaning 
that they were attributed on average to girls or to boys. There were five items that were 
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attributed on average to boys, which we show in Table 3. In four of the five cases, these 
results confirm the earlier results from Forgasz and Mittelberg. All of these are 
negative statements – about negative relations with mathematics [consider 
mathematics to be boring (item 26), giving up in response to difficulty (item 4), being 
not good at mathematics (item 23)] or about negative classroom behaviors [distracting 
others (item 16), teasing boys who are good at mathematics (item 21)].  

Std dev Mean 
F&M, 
2008 
 

Predicted Item 

1.104 3 M M Parents would be disappointed if 
they don't do well in math 9 

1.042 2.959 M M Need math to maximize future 
employment opportunities 10 

1.135 3.014 F M Math teachers think they will do 
well 13 

1.101 2.98 M M Think mathematics will be 
important in their adult life 14 

1.101 2.98 F M Expect to do well in mathematics 15 

0.956 2.932 M F get the wrong answers in 
mathematics 17 

0.968 3.048 M M Parents think it is important for 
them to study mathematics 19 

1.065 2.898 M M Tease girls if they are good at 
mathematics 30 

Table 2: Items Attributed Neutrally, In Disagreement with Forgasz & Mittelberg 
(F&M, 2008). 

 

p t SD Mean F&M 
2008 Pred Item 

0.016 -2.445 1.147 2.769 nd F Give up when they find a math 
problem too difficult 4 

<.001 -6.265 1.145 2.408 M M Distract other students from 
their mathematics work 16 

< .001 -4.258 1.027 2.639 M M Tease boys if they are good at 
mathematics 21 

0.004 -2.92 1.073 2.741 M F Are not good at mathematics 23 

< .001 -4.343 1.101 2.605 M F Consider mathematics to be 
boring 26 

Table 3:  Items Attributed to Boys. 
Finally, participants on average attributed seven items to girls, which we show in Table 
4.  Six of these items had previously been found by Forgasz and Mittelberg to be gender 
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neutral. Some of these items have traditionally been associated with boys, about the 
link between preparation and success (item 8), liking using computers to do 
mathematics (item 24), and finding mathematics to be interesting (item 29). Other 
items that have traditionally been found to be gender neutral that pertain to success and 
diligence [care about doing well in math (item 7), worry if they do not do well in math 
(item 22)] here were attributed to girls. We summarize results and how they confirm 
or challenge Forgasz and Mittelberg’s results in Table 5.  

p t SD Mean F&M 
2008 Pred Item 

0.004 2.94 1.21 3.293 F F Have to work hard in math to do 
well 5 

0.035 2.13 1.05 3.184 nd nd Care about doing well in math 7 

0.004 2.89 1.18 3.279 nd M 
Think they did not study hard 
enough if they did not do well in 
math 

8 

0.003 3.06 1.16 3.293 nd nd Worry if they do not do well in 
mathematics 22 

0.028 2.22 1.08 3.197 nd M 
 
Like using computers  
to work on mathematics problems 

 

24 

0.016 2.43 1.12 3.224 nd F Get on with their work in class 28 
0.009 2.65 1.06 3.231 nd M Think mathematics is interesting 29 

Table 4: Items Attributed to Girls. 
 

Outcome Forgasz & Mittelberg  2008 Present study 

Girls or boys: No 
difference  

1, 2, 3, 6, 11, 12, 18, 20, 25, 
27 
4, 7, 8, 22, 24, 28, 29 

1,2,3, 6, 11, 12, 18, 20, 25, 
27  
9, 10, 13, 14, 15, 17, 19, 30  

“Boys more likely”  16, 21, 23, 26, 
9, 10, 14, 17, 19, 30 

16, 21, 23, 26,  
4 

“Girls more likely”  5, 
13, 15  

5,  
7, 8, 22, 24, 28, 29 

Italicized items are common, Underlined items are reversed from prior literature. 
Table 5: Comparison of Current Results with Previous Results. 
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DISCUSSION 
We note how among the 12 items found to be gendered, the direction of the gender 
stereotype in half of them reverses the predictions based on findings in the literature 
pertaining to Western contexts about masculinization of mathematics. In some cases, 
(items 4, 23, 26), the students attributed items to boys about negative relations with 
mathematics, about their finding it boring or being not good at or giving up in the face 
of challenge. In contrast, the students attributed to girls (items 2, 24, 29) interest in 
mathematics, enjoying working with technology, and an expectation that their own 
hard work will produce success. This is and of itself is significant because it shows 
how the masculinization of mathematics that is endemic in some cultures or 
geographies does not seem to be universal. 
Our results correspond to Forgasz and Mittelberg’s results with respect to 15 of the 30 
items. We had expected that over the passage of 15 years, more items would shift to 
the gender neutral category, because of increasing gender equity, but this was not the 
case. Some of the items that had previously been found to be gendered (9,10,13, 14, 
17, 19, 30), in this study then fell into the neutral category – these include parental or 
teacher expectations (9, 13, 19) and use of mathematics later in life (10, 14). The fact 
that these are considered neutral by high school students likely reflect recent changes 
in society especially in terms of more opportunities in higher education and 
employment for Palestinian/Arab Israeli women.  
However, there were seven items that had been previously found by Forgasz and 
Mittelberg to be neutral, but in this study were attributed to a gender group, and mostly, 
to girls (7, 8, 22, 24, 28, 29). We note that many of these items pertain to success or 
“doing well”– caring or worrying about success and diligence with classwork – along 
with attributing to girls the finding of mathematics as interesting. Unlike the previous 
study, here more items were assigned to girls. These items communicate views of a 
positive alignment between girls and mathematics and their interest in or commitment 
to success, accomplishments, or recognition. Our findings are limited by the survey 
methodology which does not allow for insights into why students answered these items 
in these ways or how they might make sense of connections across the items. Further 
studies can complement these findings using additional qualitative methods.  
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In this paper we direct attention to the single unit counting strategy that is observed to 
be limiting students’ opportunities to develop their arithmetic skills. We describe what 
impediments single unit counting may entail when encountering novel subtraction 
tasks, and how these impediments can be explained. From a sample of 121 interviews 
of students aged 7-8 we have chosen nine who were using single unit counting as their 
dominating arithmetic strategy. An analysis based on variation theory reveals that the 
impediments are related to the students not experiencing numbers as composed units 
and thereby lack in discerning number relations necessary to handle multi-digit 
subtraction. Educational implications are discussed grounded in the theoretically 
driven findings. 

INTRODUCTION 
In the large body of research on young children’s arithmetic development, many 
scholars have described strategies for arithmetic problem solving (e.g., Fuson, 1992; 
Baroody & Purpura, 2017 for overviews), ending up in recommendations for how to 
teach arithmetic strategies (e.g., Baroody, 1987; Torbeyns et al., 2004). What seems to 
be lacking is however a critical view on the observed strategies, whether the observed 
trajectory in fact reflects a powerful path to proficient arithmetic problem solving 
skills, which likely have implications for teaching practices. In this paper we aim to 
raise attention to particularly one of the basic strategies observed in early arithmetic 
development and in teaching – single unit counting – and raise some issues on what 
implications students’ single unit counting strategies may have in a long-term 
perspective. The specific research questions are: 1) what impediments may single unit 
counting as the dominating arithmetic strategy entail when encountering novel 
subtraction tasks, and 2) how can these impediments be explained? To answer these 
questions, we analysed task-based interviews with school beginners (age 7-8 years in 
Swedish schools). 

RESEARCH ON EARLY ARITHMETIC STRATEGIES 
There are many studies describing the trajectory of arithmetic skills development, but 
in this paper, we direct specific attention to single unit counting. Counting strategies 
are ways to keep track of counted units, either by raising one finger at a time 
(representing the single units counted) or by making markers, one for each counted 
unit. These are commonly observed among young children (Laski et al., 2014) and 
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some researchers find this to be a normal step in the trajectory of learning arithmetic 
(Fuson, 1988). Furthermore, counting by ones may also entail double counting that is 
keeping track of the sequence of words that become the entities to be counted, a 
strategy which Steffe (2004) interprets as the student having constructed a scheme of 
the number sequence which in turn bridges to strategic arithmetic reasoning and is 
thereby considered a higher level of functioning.  
Single unit counting strategies (such as “counting all” and “counting on”) may solve 
simple arithmetic tasks but do not per se support students’ recognising a part-whole 
structure of an arithmetic task, which becomes necessary to solve more advanced tasks, 
for example multi-digit subtraction. The shortcomings of single unit counting as the 
dominating strategy among young students were shown in Neuman’s (1987) studies 
and later in studies by Ellemor-Collins and Wright (2009), in which students who rely 
on single unit counting strategies did not develop efficient arithmetic skills. Research 
influenced by cognitive science conclude that students are ”forced” to develop more 
advanced strategies when the number range exceeds 10 and concrete units like fingers 
can no longer support their keeping track (Carpenter & Moser, 1982). However, there 
seems to be a need for educational interventions for some students to learn to discern 
the relation between and within numbers and thus make use of more efficient strategies 
than single unit counting. What is it then that these students lack in order to develop 
and broaden their repertoire of arithmetic strategies? This becomes a critical issue in 
educational research and practice, because studies from teaching interventions show 
that learnt single unit counting strategies are not easily abandoned by students (Cheng, 
2012). 
When arithmetic strategies’ limitations are discussed in the literature, this is mainly in 
relation to students having mathematics difficulties (e.g., Ostad, 1998; Geary et al., 
2004). Not surprisingly, these studies show that students who rely on counting 
strategies have difficulties solving novel problems because they lack in conceptual 
understanding of arithmetic. From the research literature, we see that students are 
observed making use of single unit counting strategies but often abandon these for 
more powerful strategies. Nevertheless, research also shows that this is not true for all 
students and normally developing students may prefer the cumbersome strategies even 
when encountering larger number ranges (Ellemor-Collins & Wright, 2009). It 
surprises us that not more attention is directed towards the single unit counting strategy 
and the limitation it may entail for students’ developing arithmetic skills.  

METHODS 
This is a study of young students solving arithmetic tasks, as part of a larger project 
focusing on early arithmetic teaching and learning. Teachers and students from five 
elementary schools participate in the project. The classes were selected due to their 
teacher’s interest in participating in a practice-based research project where their 
teaching was target for development and study. To follow any learning progress among 
the students in these classes, each student was asked to participate in task-based 
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interviews at three occasions. The students’ legal guardians were asked for written 
consent, which included the option of participating in video-recorded interview or only 
audio-recorded. This ended up in 121 students participating in the interviews at three 
occasions. 
Procedure 
The interview guide consists of arithmetic tasks given orally or on paper. To increase 
verbal reasoning and reflections among the students, no manipulatives were given to 
the students. The interviews were conducted individually at the students’ own schools, 
by researchers trained in interviewing young students. The interview occasions were 
done at the beginning of Grade 1 (Interview I), at the end of Grade 1 (Interview II) and 
at the end of Grade 2 (Interview III).  
For the purpose of this particular analysis, we selected subtraction tasks from the 
interviews that were the same in all three interviews: 10–6=_, 15–7=_, 24–_=15, 14–
_=6, a new subtraction task given in Interview II: 32–25=_and new ones in Interview 
III: 57–38=_, 83–7=_, 204–193=_, 204–12=_ (bold = oral context based tasks, e.g., 
“you have ten candies and eat six of them, how many are left?”, normal text = written 
tasks with only numerals).  
Analysis  
All students participating in the interviews were coded for strategy use, either Counting 
or Structuring. If a student was coded as structuring, it meant the student reasoned her 
way to an answer to a particular task by experiencing numbers in the task as parts and 
whole, dealing with larger units than one (e.g., task 15–7=_ “I take five from the seven, 
that makes ten and then two more and I have eight left). For the purpose of our research 
interest, we selected those students who at the first interview only made use of a single 
unit counting strategy when attempting to solve the three subtraction tasks. We chose 
subtraction as target tasks, since these are more likely to induce counting-strategies if 
a student does not have a repertoire of number facts or know how to apply the 
complement principle (thus experiences numbers’ part-whole relations and being able 
to use structuring strategies). This ended up in a sample of 39 students. These were 
followed through the second and third interview, resulting in three groups: students 
who abandoned the single unit counting strategy and approached subtraction tasks in 
the later interviews by structuring numbers (N=26), students who expressed a mix of 
structuring and single unit counting strategies (N=4) and students who remained using 
single unit counting as the main strategy in all three interviews (N=9). The nine 
students who remained using single unit counting through all three interviews are 
chosen for further analysis in this paper. 
To answer RQ1, we did a qualitative analysis of the nine students who remained using 
single unit counting throughout all three interviews, to find out how they encountered 
novel tasks. To answer RQ2, principles from variation theory (Marton, 2015) were 
used as analytical tools. The theory states that powerful strategies stems from powerful 
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ways of experiencing, which presupposes the discernment of critical aspects of what is 
learned (the object of learning). From a variation theory perspective, learning 
difficulties, e.g. to solve a subtraction task like 83–7= is explained in terms of not (yet) 
having discerned certain aspects of the task, the numbers involved and relations 
between and within them. This way of analysing students’ responses to arithmetic tasks 
ends up in categories that reveal qualitative different ways of experiencing numbers in 
a task. The answer to our research questions is thereby shown in such categories, where 
those aspects of numbers that a student discerns constitute his or her way of knowing 
and thus what strategies he or she is able to execute in completing the arithmetic task. 
The categories found among the nine single counting strategy users in our sample are 
presented in the following.  

RESULTS 
In the first and second interview we observe the students solving the subtraction tasks 
by counting down in ones and using fingers to keep track of counted numbers, or if the 
numbers exceeded the student’s fingers, using other objects (e.g. sheets of paper). The 
strategy counting single units was thereby considered strong in the selected group of 
students for our further analysis. When analysing the students’ ways of solving novel 
tasks in the larger number range in interview III, certain problems emerged that direct 
attention to aspects that seem to become critical for these students to discern in order 
to develop arithmetic skills that allow them to try to solve novel tasks in a larger 
number range. All of the nine students were primarily counting down in ones, but 
encountered difficulties when the subtrahend (to be counted down) was larger than 
they managed to keep track with their fingers. Thus, they had to make use of some 
other strategy to complete the task, usually operating with numbers in similar positions 
(similar to a written algorithm line-up). The strategies these students apply in their 
completing the tasks may bring an answer to the task, sometimes even correct ones, 
but as a recurring strategy we here aim to interpret how such encounters may become 
an impediment in the students’ development of arithmetic skills. 
Cannot create a composite unit of single entities 
Our observations show that the students rely on counting single units as a primary 
strategy. In novel tasks where the number range is larger, they operate the task as a 
“counting down” act on the number sequence.  
Task: 204–12=_ 

Jonas: 203, 204 (folds down one finger for each said counting word) Wait. 203, 
202, 201 (stops) 200 (stops) 199 (stops) eeh, 198, 196, 194, 193 (hesitates) 
192, 191 (still folding one finger for each counting word). 

This observation of the student Jonas is typical. The students operate on the number 
sequence, but need to keep track with their fingers. What stands out is that each number 
(counting word) appears as a single unit and particularly bridging hundreds (or tens) 
does not indicate a benchmark to them. When experiencing numbers as single units in 
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this way, ten or hundred do not mean a composed set of “ones” and thus becomes one 
number just like any other number in the long line of numbers in a sequence. This way 
of experiencing numbers makes the counting sequence an important asset to apply the 
single unit counting act on, which we in the observation above can see becomes an 
obstacle when counting “backwards” while having to keep track of the number of 
counted (spoken) counting words. When the number of counted single units (the 
subtrahend) is large, this entails a severe challenge, because of the difficulties to keep 
track of counted units. 
Task: 57 – 38 =_ 

George:  (unfolds one finger at a time on his right hand, then on his left hand and on 
the right hand again) Thirty. It’s thirty. 

Interviewer: Did you count up or down? 
George: Up, no down, down, down from 57. To 25, I think. 

The student George encounters a problem when it becomes necessary to keep track of 
single units and does not experience any benchmark in the counting sequence that 
could indicate larger units to relate to. The same student George responds to the task 
204–193=_ by saying: ”Wait, this one is impossible. It’s too difficult”. His response 
indicates that the strategy he executed in earlier subtraction tasks would not be helpful 
in solving the subtraction task with such a large subtrahend (that is, counting down 193 
single units). He does not either try to solve the task by any other strategy. 
Number relations – What to add and what to subtract 
Students who realize they cannot execute the “counting down in single units” strategy 
when encountering the subtraction tasks may turn to another strategy based on an 
algorithmic-like approach. This means, the students are operating on the numbers 
based on their position, reminding of written calculations. However, when executing 
this strategy mentally, our observations reveal that these students do not necessarily 
experience multi-digit numbers as composed units, but rather operate on the numbers 
as if they were single units. We can see expressions of this way of experiencing 
numbers when students complete the task 83–7=_ by first operating on the three and 
the seven, then realizing the eight should also be part of the operation, for example as 
one of the students, Vera, starting with “three plus seven”, then continuing saying 
“eighty… eight-hundred-ten, no, eighty, eight-hundred-one”. This way of reasoning 
indicates difficulties in experiencing how numbers relate to each other and particularly 
how ones and tens, as well as hundreds relate. Below is another example of a similar 
way of experiencing numbers that frequently appear in our sample when encountering 
larger number ranges. 
Task: 204–193=_  

Jenny: (unfolds index finger, folds it again) It’s one hundred ninety one. Because 
you take the four minus three, and then the zero minus nine makes nine and 
then two minus one, that’s one. 
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The student Jenny also seems to experience numbers as single units that are to be 
treated as individual entities rather than composed units of tens or hundreds. The 
student Vera seems though to experience some sense of value difference between 
numbers, since she claims the result of her operation cannot become “more” as in eight 
hundred one. Nevertheless, the relation of ones and tens are not discerned by her. The 
same way of experiencing numbers is observed in how the student Jenny attempts to 
solve 204–193=_ by subtracting each number as “taking the smaller from the larger” 
and disregarding any meaning of the positions that the numerals are presented – the 
numbers are not related to one another as would be necessary to experience the idea of 
the base ten system and positioning of numbers. This way of experiencing numbers 
induces that, what is part and what is whole are not discerned. The students seem to 
attend to some kind of algorithmic-like strategy but they do not experience numbers’ 
relations within the task, such as how digits in a multi-digit number represent tens or 
hundreds. 

DISCUSSION 
The conclusion we draw from the analysis above, is that single counting units becomes 
an impediment for these students when encountering multi-digit subtraction tasks, 
which confirms Ellemor-Collins and Wright’s (2009) as well as Neuman’s (1987) 
observations. We add to these observations that these students’ ways of completing 
subtraction tasks may be explained by their way of experiencing numbers and the 
meaning assigned to numbers and their relations. When students are experiencing 
numbers as single entities rather than composed units, they are not discerning the 
relations between parts and whole within numbers and thereby not relations between 
numbers either. That is, ten is not seen as a benchmark either. Tens and hundreds are 
merely experienced as single numbers in a long line of numbers and do not represent 
composed units, which is why ten is not taken as a benchmark to help structure their 
problem solving. 
To recognize and make use of number structure builds on the student experiencing 
numbers as composite sets that can be decomposed, and that there are numerical 
relations between and within numbers. For example, in subtraction the subtrahend can 
be decomposed into two parts in order to bridge the nearest ten (e.g., 83–7=_ , 7 is 
decomposed and 80 is a benchmark, 83–3=80, 80–4=76). Number relations do not 
appear when counting single units, for instance when keeping track of counted units 
on the fingers or by making markers, because number relations and experiencing units 
larger than one are not needed to solve the task. To prevent un-developable strategies 
among students and support conceptually founded knowledge, some researchers 
advocate that a structural approach to arithmetic problem solving, which primarily 
directs attention towards relationships between numbers in a task (Venkat et al., 2019) 
and making use of part-whole relations rather than single unit counting strategies, 
should be emphasised already in the early years (Brissiaud, 1992; Davydov, 1982; 
Neuman, 1987; Polotskaia & Savard, 2018). In following reports, we will do analyses 
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of the teaching conducted between the interviews, to find possible keys for how 
teaching may influence arithmetic development that apparently is necessary for the 
students in our sample.  
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ARAB AND JEWISH MATHEMATICS TEACHERS' ENDORSED 
PEDAGOGICAL NARRATIVES AND REPORTED PRACTICES 

Soryna Sabbah, Einat Heyd-Metzuyanim 
Technion – Israel Institute of Technology 

 
Our aim in this study was to adjust a qualitative discursive framework on teachers’ 
pedagogical discourse to develop a survey tool that would enable a quantitative 
examination of teachers' endorsed pedagogical narratives, or beliefs, and their 
reported practices. Furthermore, we aimed to use the survey tool to assess differences 
in beliefs and reported practices between Arab (N=28) and Jewish (N=45) teachers in 
TEAMS (Teaching Exploratively for All Mathematics Students) professional learning 
communities. The survey was developed around three sub-scales: Exploratory 
pedagogical discourse (EPD), Delivery pedagogical discourse (DPD), and 
mathematical literacy. Findings reveal satisfactory reliability measures of the three 
subscales, as well as interesting differences between the Arab and Jewish teachers.  
BACKGROUND 
In recent years, efforts have been made to integrate explorative teaching practices for 
the development of 21st century mathematical skills (e.g. Heyd-Metzuyanim, 
Nachlieli, Weingarden, & Baor, 2020; Seif, 2019). Studies show (e.g., Eilam, 2003) 
that some teachers have more difficulty than others in implementing these 
student-centered teaching practices. For example, in Israel, the norm in Arab schools is 
to value obedience and respect for adult authority.  Thus, previous studies (e.g. Seif, 
2019) have raised conjectures that the Arab teacher population may need extra efforts 
in professional development and other supports to introduce student-centred teaching 
practices into the classroom. Our goal in this study was to better understand the 
differences between Hebrew-speaking (Jewish) and Arab teachers’ pedagogical 
discourses as they relate to explorative, student-centered instruction in mathematics. 
Explorative teaching practices are important to minimize students' reliance on external 
authority, strengthen their mathematical reasoning, and acquaint them with the norms 
for establishing mathematical arguments (Schoenfeld, 2014). These practices include 
promoting students’ authority through productive classroom discussions where 
students raise mathematical ideas and the teacher, as well as other students, discuss 
these ideas (Heyd-Metzuyanim et al., 2020). Teaching for explorative participation has 
some overlap with practices that promote mathematical literacy (OECD, 2018). These 
teaching practices involve engaging students in problem solving, using a variety of 
means to represent mathematical concepts, and encouraging communication about 
mathematics (Gleason, Livers, & Zelkowski, 2017). There are reasons to believe that 
student-centred instruction would promote mathematical literacy, as it promotes 
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conceptual understanding and students' agency in general (e.g. Hwang, Choi, Bae, & 
Shin, 2018). 
Despite their importance, explorative teaching practices are difficult to establish 
classrooms (Resnick et al., 2015). In particular, Arab classrooms have been known to 
be more teacher-centered than Jewish classrooms (Eilam, 2003). Because of their 
cultural differences, collectivist norms in Arab schools translate to more authoritarian 
teachers, discouraging students from argumentation, or expression of their own 
opinions (Eilam, 2003; Hwang et al., 2018). 
One of the concerning issues among researchers and educators is the difficulty to 
instigate changes to teachers' practices (e.g. Kennedy, 2016). One reason for the 
difficulty is teachers’ beliefs or the Pedagogical Discourses they align with 
(Heyd-Metzuyanim, Greeno, & Munter, 2018). Previous studies (Heyd-Metzuyanim et 
al., 2018; Heyd-Metzuyanim & Shabtay, 2019) have demonstrated that although 
teachers are often very enthusiastic about adopting explorative teaching practices, they 
eventually do not implement them in their classrooms. Heyd-Metzuyanim and Shabtay 
(2019) explain this phenomenon by pointing to “misalignments” between the teachers’ 
individual pedagogical discourse (beliefs) and the socially constructed Explorative 
Pedagogical Discourse which they try to adopt. These misalignments may explain why 
teachers often report implementing explorative practices while observations (done by 
researchers or teacher-educators) reveal otherwise, (Heyd-Metzuyanim et al., 2018).   
To delineate between Pedagogical Discourses that support traditional vs. “reform” 
instructional practices, Heyd-Metzuyanim and Shabtay (2019) used the terms Delivery 
vs. Exploration Pedagogical Discourses (DPD vs. EPD). Explorative Pedagogical 
Discourse (EPD) values students' struggle, agency, and conceptual understanding. By 
contrast, Delivery Pedagogical Discourse (DPD), values the teacher’s “delivery” of the 
knowledge, and students' accurate application of procedures (Heyd-Metzuyanim & 
Shabtay, 2019). 
While studies of beliefs, for example, show that teachers' beliefs differ from the 
behaviours they engage in (e.g. Beswick, 2018) a discursive theory of pedagogical 
discourses offers a more nuanced view of these differences. Thus, differences may be a 
result of how teachers perceive or frame their own practice, in contrast to how the 
researchers frame their actions in the classroom.  Following this logic, we will refer to 
what others often refer to as “teachers’ beliefs” as “endorsed pedagogical narratives”. 
In doing so, we align with the common definition of beliefs as “anything that the 
individual regards as true” (e.g. Beswick, 2018; p. 3) yet foreground the fact that these 
beliefs originate from culturally produced narratives.  
So far, studies adopting the discursive view of teaching practices have been based on 
qualitative methods such as interviews and classroom discourse analysis. Yet such 
methods are limited if one wishes to examine the differences between groups of 
teachers as they align with a certain Pedagogical Discourse.  We thus designed a 
survey tool that would enable studying the alignment with EPD/DPD and ML practices 
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at scale. Our question in this research was thus: Can the EPD/DPD discourses be 
detected through a Likert-style survey? And are the ML narratives distinct from 
EPD/DPD? Are there differences in beliefs and reported practices between Arabic and 
Hebrew speaking teachers? 
METHOD  
TEAMS21- Teaching Exploratively for All Mathematics Students, is an in-service 
professional development program for teachers and teacher-leaders that includes 
professional learning communities (PLCs) focused on explorative teaching practices. 
At the time of the study, the project included five PLCs that were of mostly Hebrew 
speaking (Jewish) teachers and two PLCs that were of Arab-speaking teachers. The 
PLCs are led by teacher-leaders who participate in a mixed (Jewish and Arab) leaders’ 
PLC. 
We designed a survey that was administered to the teachers in the TEAMS21 PLCS.  
28 Arabic-speaking and 45 Hebrew-speaking teachers answered the survey during one 
of the PLC meetings, which was held at the middle of the first year of the project.  
Development of the Instrument  
Thirty-one items were designed to assess teachers' endorsement of pedagogical 
narratives (beliefs) and reported practices associated with EPD, DPD and ML. Some of 
the items used in the instrument were developed for this study and other items were 
selected from previous survey instruments, as described below.  
Items measuring teachers' endorsement of narratives (beliefs) 
The scale of endorsed pedagogical narratives contained 15 items on a Likert scale of 
1-5 from “completely disagree” to “completely agree”. These items began with “I 
think it is important that in mathematics lessons…” or with “please mark the extent to 
which you agree with the following statements”. All the items related to EPD and DPD 
were adapted from Stein and her colleagues’ survey (2017). This survey was picked as 
a basis for our instrument since it relied on a theoretical framework close to that 
underlying our TEAMS project. Thus, Stein et al. (2017) searched for teachers’ beliefs 
about giving students opportunities to struggle with meaningful tasks, along with the 
teacher giving explicit attention to concepts in classroom discussions, two major 
themes in our TEAMS project (Heyd-Metzuyanim et al., 2020). Items related to EPD 
(7 items) were, for example, “(It is important that…) The students will use different 
strategies for solving the same problem”, “I will facilitate students' connecting of ideas 
in order that they arrive at their own explanations of a general mathematical principle”, 
“Students will work on cognitively challenging tasks with minimal direction from the 
teacher”. In general, all these items aligned with messages and instructional practices 
that were promoted in the TEAMS21 PLCs. 
Items related to DPD (4 items) were chosen to reflect practices that were de-valued in 
the TEAMS21 PLCs, and that were thought to be the opposite of explorative teaching. 
These included the valuation of the teacher explaining a mathematical idea (thus 
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reducing struggle for the students), e.g. “The students will receive an explanation from 
me before they investigate the idea”. Also thought to be valued in the DPD were 
statements valuing drill and practice, for example “Students will have the opportunity 
to develop conceptual understanding through repeated practice of the same algorithm, 
applied to different problems”.  
For measuring teachers endorsed narratives about ML, we chose three items from the 
CLES (Constructivist Learning Environment Survey, Johnson and McClure (2004)) 
that fit narratives promoted in our TEAMS21 project around mathematical literacy. 
For example, “Students learn about the world outside of the school”. One item 
assessing narratives about ML (in the negative form) was devised for this study “There 
is no need to give literacy context when teaching the required procedure”. Narratives in 
positive and negative form (e.g. valuing and de-valuing ML) were devised to increase 
reliability of the sub-scales. 
Items measuring teachers' reported practices 
The scale measuring teachers’ reported practices included 16 items asking teachers to 
testify if they enact a certain practice on a Likert scale of 1(Never) to 4 (In any lesson 
or almost any lesson). These items began with the question “How often do you do the 
following in your mathematics classroom?”. Five items related to practices associated 
with the EPD, four of them were adapted from the TIMSS Math Teacher 
Questionnaire, for example “I ask students to decide their own problem-solving 
procedures” and “I encourage students to express their ideas in class”. One item was 
adapted from Stein and colleagues’ (2017) survey: “(I) answer a student’s questions 
with more questions rather than just providing the correct answer”.  
For measuring reported practices related to the DPD, we devised five items. Two of 
them were adapted from the TIMSS Questionnaire, e.g. “I solve problems with the 
whole class with direct guidance from me”, and three items were devised for this study. 
These were related to valuing drill and practice, for example “I make sure to practice 
procedures until they become automatic”.  
For measuring reported practices related to ML, we devised six items. Three of them 
were adapted from Johnson and McClure (2004), including, “I teach interesting things 
about the world outside of school”, “I start teaching a new topic with problems 
pertaining to the world outside of school “, and “I teach how mathematics can be a part 
of students’ out-of-school lives”. Two ML items were adapted from the TIMSS Math 
Teacher Questionnaire, such as “I connect what was learned in the lesson to students’ 
daily lives”. 
Validation process  
The content of the survey was validated through consultation with two content experts 
whose previous research made use of the concepts of EPD and DPD. This process was 
done to verify that the items aligned with narratives previously elicited in qualitative 
studies of teachers’ pedagogical discourses (e.g. Heyd-Metzuyanim & Shabtay, 2019; 
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Nachlieli & Heyd-Metzuyanim, 2021).  After that, we interviewed two teachers (an 
Arabic-speaking teacher and a Hebrew-speaking teacher) to ensure that the items were 
understood. Thereafter, a re-validation process was conducted to clarify the content of 
the items that were not well-understood. 
Data analysis 
We conducted two types of statistical analysis. First, we used Exploratory Factor 
Analysis (EFA) to determine the internal structure of the instrument. Because the data 
had a theoretical structure of multiple interdependent factors, we analyzed the data 
using a maximum-likelihood extraction of three factors (EPD, DPD, ML). Two 
exploratory factor analyses were conducted, one for the beliefs items and one for the 
practices items. We checked whether the data generated by the instrument were 
consistent with the theoretical constructs hypothesized by the content experts.  
The EFA process yielded three factors for the instrument, forming subscales. We then 
analyzed the interrater reliability on the subscales obtained through the EFA to answer 
the first RQ, whether the Discourses could be detected, in other words, whether 
statements theoretically hypothesized to cohere with each other indeed do. In the 
second step, we conducted independent group means t-tests to compare Arabic and 
Hebrew speaking teachers. This test was used to examine the relationship between 
teachers' ethnicity and beliefs along the three factors found in the EFA (EPD, DPD, 
ML beliefs) and between ethnicity and reported practices related to EPD, DPD and 
ML. 
FINDINGS  
Regarding endorsed pedagogical narratives (beliefs), the exploratory factor analysis 
revealed three dimensions that explained a total of 51.78 percent of the common 
variance. This was assessed after excluding four items that had low loadings (<.30) on 
the extracted factor, or whose loadings appeared on more than one factor. These 
removed items included four that were originally thought to relate to DPD endorsed 
narratives: “Students are not ready for inquiry problems until they have acquired the 
necessary basic mathematics“, “(It is important that) Students perform the procedures 
accurately“, “In general, students' errors can be characterized as a lack of practice of 
the procedure used”; and “(It is important that) students practice using a procedure 
enough for them to be able to apply it to more complex problems”. Thus, the final 
result of the factor analysis consisted of 15 items. One factor consisted of 7 items, all 
designed initially to measure EPD-aligned endorsed narratives. This subscale had a 
sufficiently high reliability (Cronbach's alpha = 0.77) (Lance, Butts, & Michels, 2006). 
The second factor consisted of 4 items that were originally designed to assess 
DPD-aligned endorsed narratives. This subscale also had reasonable reliability 
(Cronbach's alpha = 0.653). The third factor consisted of 4 items assessing endorsed 
narratives about ML. This subscale had reasonable reliability (Cronbach's alpha = 
0.686). 
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Regarding reported practices items, the exploratory factor analysis yielded three 
dimensions, which altogether explained 55.46 percent of the common variance. This 
was assessed after excluding one item that was originally designed to measure 
EPD-related practices: “(I) link new content to students’ prior knowledge”. As a result, 
the final solution of the factor analysis consisted of 16 items. The first factor consisted 
of 5 items designed to measure reported EPD practices (Cronbach's alpha = 0.720) and 
was labelled EPDP. The second factor consisted of 5 items designed to measure DPD 
reported practices (DPDP, Cronbach's alpha = 0.654). The third factor consisted of 6 
items designed to measure practices associated with ML (MLP, Cronbach's alpha = 
0.873). 
To answer the second RQ, relating to the differences between Arabic and Hebrew 
speaking teachers, we used a t-test for independent group means. Figure 1 shows the 
means of the respondents' agreement with the endorsed pedagogical narratives and 
reported practices associated with EPD, DPD, and ML. 

  

 
Figure 1. Distribution of Arabic (N=28) and Hebrew (N=45) speaking teachers’ 

answers on: A.  a Likert-scale (1-5) regarding EPD, DPD, and ML endorsed narratives. 
B.  a Likert-scale (1-4) regarding EPD, DPD, and ML reported practices. 

We found no significant differences between Arabic and Hebrew speaking teachers in 
EPD and ML endorsed narratives. In contrast, differences were found between the 
groups with relation to DPD endorsed narrative. Thus the mean of agreement with the 
statements of the DPD was higher among Arabic speaking teachers than among 
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Hebrew speaking teachers (t(71)=0.309 p < 0.05). Similarly, there were no significant 
differences between Arabic and Hebrew speaking teachers in the reported EPD and 
ML practices, but a significant difference was found in the means of DPD reported 
practices. Thus, reported practices around DPD were higher among the Arabic 
speaking teachers than among the Hebrew speaking teachers (t(71)=1.99 p < 0.01). 
DISCUSSION AND CONCLUSIONS 
The survey designed for this study appears to be a reliable tool for examining endorsed 
narratives and reported practices aligned with the EPD, DPD, and ML. The narratives 
belonging to each sub-scale showed sufficient reliability, indicating that these 
statements indeed cohere with each other, and may thus be a useful, albeit reductionist, 
tool of measuring teachers’ pedagogical discourses.  
An interesting implication of the independence of the EPD and DPD scales (as seen in 
them forming separate factors) is that these are, in fact, not opposite views. Thus, 
teachers can agree with narratives aligned with the EPD (such as giving students 
opportunities to struggle or encouraging multiple solutions for a problem) and at the 
same time, agree with narratives aligned with the DPD (valuing, for example, drill and 
practice of procedures). It thus may be that the traditional dichotomy between 
“teacher-centered” and “reform” instruction may need to be re-examined. Similarly, 
pedagogical narratives and reported practices related to ML were independent of the 
EPD or DPD (although some of them correlated well with EPD). Thus, it makes sense 
to continue measuring beliefs about ML independently from other pedagogical 
narratives. 
Finally, our findings agree, in part, with previous studies (e.g., Eilam 2003) about the 
Israeli teacher population, which have shown that Jewish teachers believe more in 
student-centred instruction than Arab teachers. However, importantly, they show that 
the difference can only be found in relation to valuing of DPD related practices. Given 
that EPD and DPD may be separate Discourses, it is important to notice that the fact a 
teacher values drilling procedures, does not necessarily mean that they do not value 
discourse-rich instruction. 
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In this study, we aim to analyse the preservice teachers’ perspectives on creativity, in 
particular, if they consider that creativity can be developed, and their strategies to 
foster students’ creativity. The participants are 43 preservice teachers who were taking 
a master’s degree to become teachers of secondary school. The master’s program did 
not include a specific training in creativity. They answered a questionnaire about 
creativity and then three of them were interviewed. We did a content analysis of their 
answers. Most of the preservice teachers think that creativity can (and should) be 
developed in the mathematics classroom. They suggest different strategies to foster 
students’ creativity that agree with literature, but solving open-ended problems stands 
out among the rest of strategies.   
INTRODUCTION 
The research interest in creativity has increased in the last decades (Joklitschke et al., 
2018). At the same time, the view of creativity as an ability that can be developed and 
that is related to the learning processes, instead of being just an innate and uncommon 
ability, has spread among researchers and education professionals (Beghetto & 
Kaufman, 2007). In particular, creativity is associated with mathematical processes, 
such as problem posing and problem solving (Mann, 2006). Therefore, mathematics 
teaching and learning processes should include the development of students’ creativity 
in order to be meaningful for them; however, this rarely happens in practice (Luria et 
al., 2017). Yazgan-Sağ and Emre-Akdoğan (2016) highlight that teachers should be 
aware of the importance of creativity and how to enhance it in their lessons. 
This study is part of a research about the secondary school preservice teachers’ 
perspectives on creativity and its enhancement in mathematics classroom, when they 
are not specifically trained to develop their students’ creativity. The context of this 
research is a master’s program in teaching in secondary school (specialization of 
mathematics), which does not include a specific training in creativity. In this paper, we 
aim to answer these questions: 1) Do preservice teachers think that creativity can (and 
should) be developed at school? 2) Which strategies do they propose to enhance 
students’ creativity?  
THEORETICAL FRAMEWORK 
In this section, we briefly review some previous research on strategies to enhance 
students’ creativity in the mathematics classroom and research on the conceptions of 
creativity of preservice and in-service teachers.  
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Strategies to enhance creativity 
There are several research on how to foster students’ creativity. In particular, in the 
mathematics classroom, Silver (1997) suggests that the students’ work should be more 
similar to the work of a mathematician, including problems solved and posed by the 
students. Some authors focus on the characteristics of the problems; for example, 
Sitorus and Masrayati (2016), with Realistic Mathematics Education; or Chamberlin 
and Moon (2005), with model-eliciting activities. Moreover, according to some 
authors, creativity can be related to processes such as visualization, exploration, 
making conjectures or argumentation that can be enhanced with the use of physical 
(Siew & Chong, 2014) and virtual manipulatives (Yildiz et al., 2017). Other strategies 
to foster creativity at school are enhancing the students’ interaction, since verbalizing 
ideas is useful to structure them and generate new connections (Fischer, 2004; 
Levenson, 2011), and using an informational evaluation (Amabile and Pillemer, 2012). 
Teachers’ conceptions of creativity 
In order to provide the students with the opportunity of developing their creativity, 
first, teachers should be aware of the importance of developing students’ creativity, as 
Yazgan-Sağ and Emre-Akdoğan (2016) suggest. They compared the answers of four 
prospective teachers of mathematics and one of their educators about the actions that 
define a creative teacher. The prospective teachers highlighted the characteristics of 
the activities that the creative teacher would propose (use of different resources, real-
life or open-ended problems, etc.), whereas the teacher educator gave more relevance 
to the thinking processes and explained that a creative teacher enables students to solve 
problems autonomously. Another example of research with preservice teachers is the 
study of Vanegas and Giménez (2018). They included a specific training in creativity 
for early childhood preservice teachers. We also found some research on the 
conceptions of creativity of in-service teachers (e.g., Cheng, 2010; Leikin et al., 2013, 
Lev-Zamir & Leikin, 2013). Cheng (2010) did an action research with seventy-five 
primary school teachers. They had to implement creative teaching in their schools and 
then they explained the tensions and dilemmas that they had experienced. Leikin et al. 
(2013) reported the results of a questionnaire answered by 1089 teachers from six 
countries. The questions were about the characterization of a creative student and a 
creative teacher, the relation between creativity in mathematics and culture and 
participants’ general view of creativity. Lev-Zamir and Leikin (2013) studied the 
differences between the teachers’ declarative conceptions of creativity and their 
conceptions-in-action. 
METHODOLOGY 
We used a qualitative methodology, based on the interpretation of the preservice 
teachers’ answers to a questionnaire and some interviews about their perspectives on 
creativity and its development at school. 
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Context and participants 
Forty-three preservice teachers, who were taking a master’s program in teaching in 
secondary school (specialization of mathematics) in the year 2017-2018, voluntarily 
answered the questionnaire. Afterwards, three of them (P1, P2 and P3) were 
interviewed. The questionnaire was implemented after the period of teaching practice 
of the master’s program; therefore, the participants already had some teaching 
experience, though scarce. At the end of the master’s program, the preservice teachers 
present a master’s final project (MFP), where they reflect on their teaching practice, 
assess it and propose some improvements for the learning sequence that they 
implemented. The MFP of the three preservice teachers that participated in the 
interviews, at the end of the course, were considered in the design of their interviews.     
The questionnaire and the interviews 
We adapted a questionnaire used in previous research (Seckel et al., 2019) to the 
specific context of the master’s program. The questionnaire has 26 Likert questions 
and 5 open-ended questions. The Likert questions used a 5-point scale and were 
structured in the following topics: characteristics of creativity and creative thinking; 
the elements of a creative process; characteristics of a creative student; characteristics 
of a creative teacher; elements to enhance mathematical creativity in the classroom; 
and the impact of enhancing creativity in the classroom. The open-ended questions 
were about: the characteristics of a mathematical activity that enhances students’ 
creativity; general strategies to foster creativity in the classroom; an example of 
activity; the importance that designing these activities should have within the teachers’ 
work; and whether this topic was present in the master’s program and how. The last 
question was posed to check our supposition that the master’s program did not include 
a specific training in creativity, although some ideas about the enhancement of 
creativity could have been commented in the sessions. 
At the end of the course, we interviewed three preservice teachers that had previously 
answered the questionnaire. The interview was semi-structured and had two parts. In 
the first part, we asked the participants about their definition of creativity, especially 
in school context, the characteristics of a student’s creative work, the importance of 
fostering creativity and the difficulties to do it. In the second part of the interview, we 
used some comments related to creativity that had been previously identified in the 
MFP of each participant. We asked the preservice teachers to explain their comments 
and whether they considered that they could foster students’ creativity with the tasks 
that they had proposed in the MFP. We also asked them about other strategies to 
enhance creativity. In this work, we focus on whether participants think that creativity 
is an innate ability or can be developed, and the strategies that they propose to enhance 
students’ creativity in the classroom. 
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Analysis of the participants’ answers 
In order to analyse the answers to the questionnaire, first, we considered the questions 
separately. With the Likert questions, we calculated the percentages of answers in each 
level of the scale. Then, we did a content analysis (Miles & Huberman, 1994) of the 
answers to the open-ended questions. We generated categories of answers in the first, 
second and fourth open-ended questions. The answers to the third question were 
compared to the answers in the first and second questions. In the fifth question, we 
could identify some subjects of the master’s program where, according to the 
preservice teachers, some ideas about creativity and creative work in secondary school 
had been introduced. In a second phase of analysis, we compared each participant’s 
answers to the questionnaire, organizing the questions using the dimensions of the 
didactic suitability criteria (DSC) of the Onto-Semiotic Approach (Breda et al., 2017; 
Godino, 2013). The DSC enabled us to consider the different dimensions of a teaching 
and learning process (epistemic, cognitive, mediational, affective, interactional and 
ecological) and classify the strategies to foster creativity that the preservice teachers 
propose, based on these dimensions. The DSC were used similarly in the research of 
Seckel et al. (2019). Moreover, the comparison of each participant’s answers was 
useful for detecting possible inconsistencies between the answers to the Likert 
questions and the answers to the open-ended questions. In these cases, the answers 
were not considered in the report of the results. 
Then, we did a content analysis of the three interviews. Regarding the strategies that 
the preservice teachers proposed to enhance creativity, we used the DSC again to 
classify the strategies. The interviews complemented the results of the questionnaire. 
RESULTS AND DISCUSSION 
Based on the results of the questionnaire, most of the preservice teachers (69.7%) 
consider that creativity can be developed, though some of them (11.6%) disagree with 
this view (Table 1). In addition, seven participants agree with both statements A.1.1 
(creativity is an innate ability) and A.1.2. (creativity can be developed). On the other 
hand, most of the preservice teachers do not think that creative thinking is a 
consequence of exceptional moments of inspirations, but they do not relate it to a 
thoughtful analysis of a problem either. Similar results are reported by Seckel et al. 
(2019), whose participants were in-service teachers. 

A.1. What characterizes creativity and 
creative thinking? 

1 
% 

2  
% 

3 
% 

4 
% 

5 
% 

1. Creativity is an innate ability or quality. 11.6 25.6 30.2 20.9 11.6 
2. Creativity is a quality that can be 

developed, trained, etc. 
0.0 11.6 18.6 30.2 39.5 

3. Creative thinking is a consequence of 
exceptional moments of inspiration. 

14.0 39.5 25.6 16.3 4.7 
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4. Creative thinking is associated with a 
long and thoughtful process of study of a 

problem.  

18.6 20.9 30.2 27.9 2.3 

Table 1: Percentages of answers to some Likert questions of the questionnaire. (In 
this scale, 1 = strongly disagree, 2 = disagree, 3 = not agree nor disagree, 4 = agree, 

and 5 = strongly agree). 
In general, preservice teachers consider that enhancing creativity in the mathematics 
classroom is something positive (Vanegas & Giménez, 2018), because it makes the 
students like the subject more (33 participants, 76.7%), learn more (33 participants, 
76.7%) and work more (28 participants, 65.1%). Some of the participants (11.6%) 
think that it is important to develop students’ creativity because this prepares them 
better for their future jobs and society. 
Regarding the strategies that the preservice teachers propose to enhance students’ 
creativity, most of them are related to the epistemic dimension. They suggest to 
enhance creativity through activities that are rich in mathematical processes (Mann, 
2006; Chamberlin & Moon, 2005; Silver, 1997), especially solving problems and open-
ended tasks (30 participants mention it in the questionnaire). Some participants also 
mention that the tasks should be contextualized (Sitorus & Masrayati, 2016), include 
interdisciplinary connections, and let the students pose their own mathematical 
questions and make conjectures. 
Considering the cognitive dimension, some preservice teachers explain that the tasks 
should be adapted to the diversity of students’ mathematical level. For example, P24 
says that the task should be “affordable for the different learning rhythms”, with “clear 
and short objectives” and “motivating”. Moreover, some participants mention that the 
task should be challenging for the students. Regarding the assessment of students’ 
learning, P34 suggests that the teacher “assesses aspects that are not usually assessed”, 
without specifying which aspects should be considered. In the interviews, we asked 
preservice teachers if the assessment could enhance students’ creativity. P3 thinks that 
the assessment process determines a lot if students are more or less creative. He 
explains that the fact that students get responsible with their work and their learning 
process leads to foster more creative answers or processes and suggests the use of 
personal learning journals. P2 says that the assessment can foster creativity, but he does 
not know how to do it. On the other hand, P1 responds that the assessment cannot foster 
creativity, but affect it negatively: 

P1: For me, one of the main problems is that students study just for the final 
result, not for the knowledge. Then, the assessment does not foster 
creativity, it fosters competitiveness and willingness to have a better mark, 
but not creativity. (…)  

Interviewer: Okey. But assessment is a broad concept. (…) There is also the formative 
assessment and other things… 
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P1: Exactly. Well, it would not foster it [creativity] either. (…) Could it 
consider it [creativity]? Yes, it could, but it does not foster it [creativity]. 
(…) No, because then you would try to force it and creativity should be 
something that appears spontaneously. 

We could observe a relation between the interviewed preservice teachers’ ideas about 
assessment and their ideas about students’ responsibility, that may also explain their 
reflections on whether assessment can foster creativity or not. P3 relates responsibility 
to creativity; whereas, P2 and P1 do not relate these terms and P1 justifies that the 
students’ responsibility is studying what they are told to. As Amabile and Pillemer 
(2012) highlight, using the assessment as an extrinsic motivation does not usually 
foster the development of creativity; in contrast, an informational assessment can help 
to enhance students’ creativity.    
Nineteen participants suggest the use of manipulatives (mediational dimension) to 
enhance students’ creativity, since manipulatives can help them to visualize a 
mathematical object and its properties (Siew & Chong, 2014; Yildiz et al., 2017). For 
instance, P14 explains that the use of physical manipulatives or learning and 
knowledge technologies “allow for experimentation to discover”. In the interviews, P2 
and P3 say that the use of manipulatives can also motivate the students and this boosts 
their creativity (affective dimension). Indeed, in the questionnaire, most of the 
preservice teachers (65.1%) agree both that motivation boosts creativity and that 
enhancing creativity makes the students like the subject more, indicating a possible 
positive feedback between creativity and motivation. Cheng (2010) identifies a similar 
relation between creativity and motivation (though expressed in negative terms), based 
on the answers of in-service teachers: when students are not used to work creatively in 
the classroom, they have more difficulties to respond to tasks that aim to enhance their 
creativity, then they maintain their previous learning habits and are less motivated; at 
the same time, if they have a low motivation, they tend to participate less in the 
classroom, which hinders the development of creativity. 
Thirteen preservice teachers propose enhancing students’ participation in the 
classroom as a strategy to foster the development of their creativity (Sitorus & 
Masrayati, 2016). Other strategies of the participants related to the interactional 
dimension are working in little groups (Fischer, 2004; Levenson, 2011), giving 
freedom to the students and fostering students’ autonomy. In the interviews, P2 and P3 
mention that the work in groups may enhance creativity; however, P1 does not think 
the same way. For him, when the teacher proposes an activity to work in groups, the 
students divide the work and there is not a real interaction between them. 
Finally, most of the preservice teachers (93%) consider that the teacher’s attitude 
affects the enhancement of students’ creativity. In addition, eight participants indicate 
in the open-ended questions that the teacher should have an open and positive attitude 
(Levenson, 2011; Sitorus & Masrayati, 2016), three participants say that the teacher 
should have an open but critical attitude, and two participants think that the teacher 
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should like the activities that they implement. The latter aspect is also identified in 
previous research with in-service teachers (Cheng, 2010; Leikin et al., 2013).  
CONCLUSIONS 
Although the preservice teachers did not receive a specific training in creativity, most 
of them assume that students’ creativity can be developed at school and that it is 
something positive. They propose several strategies to foster creativity that are 
coherent with literature. In particular, most of them associate the enhancement of 
creativity in the mathematics classroom with problem solving. However, less than half 
of the preservice teachers explain an activity to enhance students’ creativity in the third 
open-ended question of the questionnaire. This may suggest that the strategies that they 
recognize in theory are not incorporated into their teaching practice. In this sense, Lev-
Zamir and Leikin (2013) also detect a gap between teachers’ declarative conceptions 
of creativity in mathematics teaching and their conceptions-in-action. 
Moreover, we observe that some strategies, such as working in little groups and using 
the assessment to foster creativity, are not so often assumed among the participants. 
Assessment seems to be a key aspect, since depending on how it is designed it could 
enhance or hinder students’ creativity (Amabile & Pillemer, 2012). These results may 
be useful to design a specific training in creativity for preservice teachers that 
strengthens their skills to design tasks that foster students’ creativity and focuses on 
those aspects that they usually find more difficult to manage in the classroom.     
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MODELLING PROPORTIONAL REASONING SKILLS IN 
LEVELS WITHIN A DIGITAL SETTING 

Constanze Schadl, Anke Lindmeier 
FSU Jena, Germany 

 
Proportional reasoning skills are central for fraction learning which, in turn, is an 
important aim in secondary mathematics education. In an effort to better understand 
students’ proportional reasoning and its relation to fractions, previous research has 
used paper-based tests and succeeded in modelling proportional reasoning skills in 
levels. However, so far these findings cannot be used by teachers because of the high 
effort involved with paper-based testing. In this report, we explore the applicability of 
digital methods to address this issue with data from fifth graders (n = 93) in a mode 
study. Despite of a need to adapt the instrument for the digital assessment, we observe 
similar levels based in IRT modelling as in the paper-based settings. The findings 
inform the further development of digital assessments to support fraction learning. 
MOTIVATION 
It is well known that dealing with fractions causes problems for several students far 
beyond secondary education (Mazzocco & Devlin, 2008; van Dooren et al., 2015). 
Further, previous cross-sectional (DeWolf et al., 2015) and longitudinal (Siegler et al., 
2012) research provided evidence for the relevance of fraction learning for later 
success in mathematics. At the same time, research showed a broad range of different 
mathematics-specific skills to predict the learning of fractions (e.g., Hansen et al., 
2015; Schadl, 2020). Specifically, proportional reasoning skills have been found to be 
relevant for later fraction learning (e.g., regarding conceptual knowledge: Hansen et 
al., 2015, additionally regarding procedural knowledge: Schadl, 2020). Typically, 
these studies used paper-pencil based large scale assessments and showed the 
covariation of relevant prerequisite skills with targeted outcome skills. Using 
item-response-theory (IRT) modelling approaches, Schadl (2020) could further shed 
light on the nature of different proportional reasoning skills and describe innovative 
level models. These models are suited to describe the relations between proportional 
reasoning skills and fraction knowledge beyond a “more is better”. So, for example 
depending on the nature of proportional relations successfully solved, students seem to 
be more or less successful when dealing with fractions later on. 
Proportional reasoning, its assessment and the role of numerical structure 
Proportional reasoning skills are typically assessed with missing value tasks with three 
given quantities and an unknown one of the following form (van Dooren et al., 2009). 

Format: In a shop, a packs with pencils cost b euro. A teacher buys c packs. How 
much does she have to pay? (Schadl, 2020; van Dooren et al., 2009) 
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Such missing value tasks contain either proportional or non-proportional relations of 
quantities. For example, considering the sample task, the quantities have to be related 
proportionally. To solve this situation, the number of packs can be compared with the 
price (comparison a and b in the sample task). This relation is called the external ratio 
(van Dooren et al., 2009) as two different quantities are compared. If the solution uses 
a comparison within one quantity (comparison a and c in the sample task), it builds on 
the internal ratio. 
The difficulty of missing value tasks seems to vary depending on whether these ratios 
are natural or non-natural (termed simply “rational” for the rest of this report). Thus, 
according to extensive international research (e.g., Fernández et al., 2011; van Dooren 
et al., 2009), missing value tasks whose internal and external ratio is natural 
(NN-structure), as well as those with a rational external ratio and a natural internal ratio 
(QN-structure) seem to be easiest for most students. In contrast, missing value tasks 
with a natural external ratio and a rational internal ratio (NQ-structure), as well as those 
with both ratios in the rational range (QQ-structure) prove to be more difficult for most 
students (ibid.). With the given QQ-example, a student using the external ratio could 
argue 6 ⋅ 4/3 = 8, so 9 ⋅ 4/3 = 12, whereas using the internal ratio leads to 6 ⋅ 3/2 = 9, so 
8 ⋅ 3/2 = 12. 

NN-version: In a shop, 6 packs with pencils cost 12 euro. A teacher buys 24 packs. How 
much does she have to pay? 

QQ-version: In a shop, 6 packs with pencils cost 8 euro. A teacher buys 9 packs. How 
much does she have to pay? 

Modelling proportional reasoning skills in levels within a paper-based setting 
As explained, missing value tasks differ in respect to numerical structure and this task 
feature proved to be relevant for the task difficulty. Furthermore, the contexts in which 
missing value tasks are embedded, are more or less familiar to students and hence, also 
impact task difficulty. So, despite of using the same task structure, missing value tasks 
with different numerical and context characteristics can be used to map differences 
between students’ proportional reasoning skills (e.g., van Dooren et al., 2009). 
Schadl (2020) has recently used these findings to design a paper-based instrument that 
systematically varies task features and developed a level model for students’ 
proportional reasoning skills using IRT (N = 784, grades 4-6). This model allows to 
assign students to well-described proficiency-levels. Students on the lowest level can 
solve missing value tasks in a particularly familiar context (shopping context) with a 
numerical structure of at least one natural ratio. On the second level, tasks may show 
different contexts (e.g., sports or mixtures of juices and colours) including NN- and 
NQ-structures. From the third level on, proportional reasoning skills can be flexibly 
applied in different contexts with QN-structures. On the highest fourth level, students 
are expected in addition to solve tasks with QQ-structures. In contrast to the previous 
results by van Dooren and colleagues (2009), in the more recent German study, 
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students seem to focus more on external ratios as missing value tasks with 
QN-structures have proven to be more difficult for most students than NQ-structures. 
These level models allow Schadl (2020) to describe the relations between the learning 
prerequisite of proportional reasoning skills and different facets of fraction knowledge 
beyond a “more is better” as students’ assessment results can be linked to the kinds of 
tasks a student is (not) able to solve. This could, for example, allow to identify students 
at risk for learning fractions before they start with learning fractions. Hence, results 
from this assessment could support teachers to identify difficulties of students timely 
and foster them adequately. Unfortunately, the paper-based testing involves high effort 
and is hence not suited for everyday use in practice. Digital methods could possibly 
solve the problem, but so far there is a lack of appropriate digital tools for monitoring 
students’ learning progress in the context of fraction learning. In this paper, we address 
this gap with regard to a proportional reasoning assessment. 
THE PRESENT STUDY 
This report presents a digital adaption of the proportional reasoning test of Schadl 
(2020) and investigates whether results based on the adapted instrument show similar 
characteristics as the paper-based version. We specified the following two research 
questions: 
Research question 1 (RQ1): Is it possible to model proportional reasoning skills 
assessed with an adapted digital instrument with IRT methods? 
Research question 2 (RQ2): Which levels for proportional reasoning skills can be 
modelled within the digital setting and to what extent do they replicate the levels from 
the paper-based setting? 
Despite of necessary adaptions (see below), we expected the numerical structure and 
the type of contexts to be relevant for task difficulty. In detail, we supposed missing 
value tasks with NN- and NQ-structures to characterize lower levels compared to those 
with QN- and QQ-structures. Regarding contexts, we assumed shopping contexts to be 
more familiar to students and hence, to characterize easier tasks. 
METHOD 
Study design and procedures 
We digitally assessed proportional reasoning skills of fifth graders approximately four 
months after the start of the school year. We carried out the study in a whole-class 
setting in the computer room of the schools. Students worked about 30 minutes on the 
instrument including 14 tasks with differing task features (numerical structure, 
contexts). Tasks were ordered at random and administered through the online platform 
Levumi (Gebhardt et al., 2016). 
Sample 
The sample consisted of 93 fifth graders (45.2% female) who attended four classes 
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preparing for higher education (Gymnasium) in Germany. Students’ participation was 
voluntarily and needed informed consent. 
Instrument 
We used a digital adaption of the paper-based proportional reasoning test of Schadl 
(2020). The original test asked for open responses (“Write down your solution.”) and 
needed manual coding. To reduce coding effort and avoid expected difficulties for 
students to enter their solutions, the adaption should have a closed format. We chose a 
multiple choice format and presented three solutions by fictitious students per missing 
value task. Students had to select the correct solution. To reduce the probability of 
guessing, we also offered the option “no solution is correct”. 
For example, for the QQ-version of the shopping context, the instruction read: 
“Antonia, Jonas and Lena have already solved the task. Who did it in the correct way? 
Tick the appropriate box.” Antonia’s solution focuses on the internal ratio. Regarding 
the packs of pencils, she calculates 6 ⋅ 1,5 = 9, and consequently 8 ⋅ 1,5 = 12 for the 
price to get the correct solution. Jonas calculates 6 + 8 = 14 and afterwards 9 + 14 = 23, 
representing an incorrect solution using an additive strategy. Lena focuses on the 
external ratio, but calculates 6 + 2 = 8 and 9 + 2 = 11. Hence, she also failed through 
additive strategies. Note that different from this specific example, we also presented 
correct solutions with additive strategies with some items. 
For each task, we presented two solutions that could be related either to a 
multiplicative (see Antonia) or an additive strategy (see Lena). Further, the third 
solution could have been alternatively related to another strategy, including a rather 
unsystematic way of operating with the given numbers (see Jonas) that was derived 
from the previous paper-based study by Schadl (2020). Whether the presented 
students’ solutions used the external (see Lena) or internal (see Antonia) ratio, was 
systematically varied, in particular for missing value tasks with NQ- and 
QN-structures. For example, regarding tasks with NQ-structures, solutions represented 
a multiplicative strategy based on the natural external ratios or alternatively an additive 
strategy based on the rational internal ratios. This systematic variation was based on 
previous findings (e.g., Fernández et al., 2011; van Dooren et al., 2009) indicating that 
students tend to use multiplicative strategies when focusing on natural ratios and 
additive strategies when focusing on rational ratios. So, we mirrored known student 
strategies. 
In our digital instrument, we not only systematically varied the numerical structures as 
it is proposed by van Dooren and colleagues (2009), but also the contexts (without 
varying the text structure). So, for example regarding the shopping context, we 
replaced the shop by a bakery and the packs with pencils by breads, to obtain different 
shopping contexts. We did so not only for the shopping contexts, but also for the other 
ones like the sports contexts and juice mixtures. 
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The adapted digital instrument comprised 14 proportional missing value tasks in the 
newly developed multiple choice format. 4 items referred to the shopping context and 
10 to other contexts. Among them, 2 items were constructed as distractors where all 
three presented students’ solutions were incorrect. Each of the four numerical 
structures was given in three tasks, of whom one referred to the shopping and two to 
other contexts. Concerning the latter one, for one context the numbers of the three 
given quantities were multiples of ten and for the other one not, as it was also the case 
for all shopping contexts. 
Analysis 
To test whether the adapted instrument is indeed suited to capture proportional 
reasoning skills with the intended breadth, we used IRT and estimated 
person-parameters and item difficulties on a common scale. According to the 
dichotomous Rasch model (Rasch, 1960), a person v solves an item i with the 

probability of 𝑓!(𝜃") = 𝑃(𝑥"! = 1|𝜃", 𝜎!) =
#!"#$%
$%#!"#$%

. The person-parameter θv models 
the person’s ability with regard to a latent trait (here: proportional reasoning skills) and 
the item-parameter σi the difficulty of the item i (here: missing value task in multiple 
choice format). If the person-parameter is larger than the item-parameter, the 
probability to solve an item increases and approximates 1 in case of high skills. Vice 
versa, if the item-parameter is larger than the person-parameter, the probability to solve 
an item declines and approximates 0 in case of low skills. A Wright-map allows the 
joint representation of item- and person-parameters as item-person-map (Wilson, 
2011). In this map, persons with low skills as well as less difficult items are plotted at 
the bottom and persons with high skills as well as more difficult items at the top. If 
Rasch-modelling supports the psychometric quality of the instrument, the estimations 
of item-parameters are used to qualify levels. The bookmark-method is a typical 
procedure to set meaningful borders for different skill levels using an ordered item 
booklet (Mitzel et al., 2001). This ordered booklet informs about the difficulty of the 
items and allows researchers to identify groups of items based on the knowledge about 
task features. Having identified groups of tasks with similar task contents and 
demands, they are, in turn, used to characterize the different levels. Rasch analysis was 
run with ConQuest 2.0. 
RESULTS 
In mean, the dataset holds answers from 93 students for each of the 14 items. The 
Rasch-model estimated to fit the data shows acceptable to good fit-indices as is 
indicated by the internal consistency (Cronbach’s alpha = 0.72, WLE-reliability = 
0.67), item discrimination (.34 < rpoint-biserial < .60) and infits ranging from 0.80 to 1.09 
(Bond & Fox, 2013; Field, 2014; Linacre, 2002). Further, as the item-parameters of 
two sub-samples (girls vs. boys were chosen as the required sample independence had 
to be checked) distributed largely roughly around the main diagonal in a bivariate 
scatter plot, we could assume Rasch-homogenous items. In sum, Rasch-modelling is 
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possible and hence, RQ1 affirmed. Figure 1 summarizes the person- and 
item-parameter estimates as Wright-map according to numerical structure. Regarding 
RQ2, we next describe the digitally assessed proportional reasoning skills in levels. 
The lowest level is characterized by proportional reasoning in specific shopping 
contexts with either a natural internal or external ratio. On the second level, we model 
proportional reasoning with natural and rational ratios in probably less familiar 
shopping contexts as well as in different contexts (e.g., mixtures of juices or colours). 
On the third level, proportional reasoning becomes more flexible as it is characterized 
by the QN-structures, compared to the prior level including particularly NN- and 
NQ-structures. The highest level is modelled by proportional reasoning with rational 
ratios in different contexts. In total, we observed that proportional reasoning skills 
assessed with the adapted digital instrument led to very similar levels compared to the 
original paper-based assessment. 

 
Figure 1: Wright-map of proportional reasoning skills. Items are plotted in columns 

according to their numerical structure. Item labels are constructed as follows: NN, NQ, 
QN and QQ indicates the numerical structure; infix “-D-” signifies a distractor; prefix 

“S-” signifies a shopping context; with regard to the other contexts, it is labelled 
whether the number triples were multiples of ten (M) or not (nM). 

DISCUSSION 
Fraction learning is a central topic in secondary mathematics education and research 
led to valuable insights into learning conditions such as that proportional reasoning 
skills predict fraction learning. However, such findings are still not available for most 
mathematics teachers in practical contexts because of the high effort involved with the 
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paper-based settings. Hence, to address this issue, we explored the applicability of 
digital methods. We could not just digitalize the paper-based instrument as we 
expected students to struggle with entering their solutions for example. Thus, we 
developed a new closed format with multiple choice tasks students could deal with. 
Also, from the perspective of psychometric quality, our results indicate that the digital 
assessment can map the range of proportional reasoning skills (see RQ1). 
Further, it was of our interest to study whether the levels of the paper-based setting 
could also be transferred to the digital setting. Even though further evidence is needed 
to ensure level characterization, we replicated largely the findings from previous 
paper-based research (Schadl, 2020), in particular with regard to the numerical 
structure. So, proportional reasoning with rational ratios revealed as being more 
difficult compared to natural ratios. In detail, lower proportional reasoning skills 
referred to dealing with shopping contexts and other ones including NN- and 
NQ-structures, whereas dealing with QN- and QQ-structures characterized higher 
proportional reasoning skills. However, regarding familiarity with contexts, it is not 
clear based on our data set, whether shopping contexts characterize a separate level or 
not. So, the existence of shopping contexts that emerge as particularly familiar and 
easy to solve for most students seems plausible (see items S-NQ and S-QN). Further, 
due to the fact, that the shopping context with two rational ratios (item S-QQ) was 
scaled on level 2, it is plausible that proportional reasoning is less difficult for most 
students in shopping contexts compared to other contexts. The item using a shopping 
context with two natural ratios (item S-NN) was – contrary to our expectations – scaled 
on level 2. Compared to the other tasks with shopping contexts, however, rather large 
numbers were used here (16, 48, 80) which could have led to the observed higher 
difficulty. But we cannot rule out the possibility that the closed response format of the 
digital test affects task difficulty and mitigates effects of context familiarity. Shopping 
context tasks did not largely differ in difficulty from tasks of other contexts including 
NN- and NQ-structures in our model. Whether the number triples a, b, c in missing 
value tasks are chosen as multiples of ten or not, seems in particular of relevance on a 
lower level. So, our results revealed the items NN-M and NQ-M as less difficult 
compared to the items NN-nM and NQ-nM, whereas this was not the case for the QN- 
and QQ-structures (see items QN-M and QN-nM respectively QQ-M and QQ-nM). Of 
course, this study has some limitations such as a small sample size. Further, as no 
common scaling was possible, level characterization was done based on a comparison 
with the original levels from the paper-based setting. 
To conclude, the digital adaption of the instrument to assess proportional reasoning 
skills shows promising characteristics and is a step towards our goal of making the 
research results on fraction learning accessible for practical use by teachers through 
providing research-based support for learning assessment. 
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FRAMINGS IN NOTICING STUDENT MATHEMATICAL 
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This study explores prospective teachers’ framings in noticing students’ mathematical 
thinking. A course was designed to engage prospective teachers in critical reflection 
of their framings and to encourage strengths-based framings when noticing students’ 
mathematical thinking. Responses to noticing tasks during the first and last session of 
the course were analysed to identify what aspects prospective teachers pay attention 
to, what stances they adopt when interpreting, and what instructional moves they 
propose in responding to students’ mathematical thinking. On this basis, prospective 
teachers’ framings were characterised as deficit-based or strengths-based. The results 
show that prospective teachers shifted from deficit-based framings to strengths-based 
framings, and specific changes in prospective teachers’ noticing are discussed. 

INTRODUCTION 
Research in teacher education over the last two decades has focused on an essential 
skill for teaching – the ability to pay attention to, interpret and respond to students’ 
thinking – which has been termed ‘teacher noticing’ (for an overview, see Dindyal et 
al., 2021). One reason for this is that it captures teachers’ moment-to-moment decision-
making, which relies on teachers paying attention to what students are thinking and 
doing, and interpreting students’ ideas to make informed decisions about how a lesson 
should proceed (Mason, 2002; Schoenfeld, 2011). This ability to notice students’ 
thinking is central to the kind of instruction advocated, in particular by mathematics 
education reform initiatives that promote a student-centred, responsive approach to 
teaching (Franke et al., 2001).  
Research shows that noticing matters for teaching and learning mathematics: when 
teachers pay close attention to the details of students’ mathematical thinking, more 
opportunities for students’ mathematical learning emerge (Santagata & Yeh, 2014). 
Research also shows that teachers can pay attention to the substance of students’ 
mathematical thinking through targeted professional development (Santagata et al., 
2021); however, the literature raises questions about what triggers changes in noticing. 
Some research suggests that changes in noticing are related to the specificity with 
which teachers see a phenomenon (van Es, 2011). Other research suggests that changes 
in noticing are related to how teachers frame or reframe the object of attention (Russ 
& Luna, 2013). 
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The construct of framing is becoming increasingly important for understanding the 
nature of teachers’ noticing and for designing teacher education and professional 
development programmes (Scheiner, 2021; Sherin & Russ, 2014). For example, 
research shows how framing can strongly influence teachers’ noticing and actions in 
the classroom (Levin et al. 2009). Research also shows that teachers rely heavily on 
deficit-based framing, i.e. ways of thinking that portray students’ mathematical 
thinking as deficits, inadequacies or failures (Louie et al., 2021). Teachers who use 
deficit-based framing often identify what students do not know or cannot do. However, 
deficit-based framing is a barrier to improving students’ mathematical learning and can 
be detrimental to students’ development of a positive mathematical identity (Aguirre 
et al., 2013). There are increasing calls for alternatives to deficit-based framing of 
students’ mathematical thinking; one such alternative is strengths-based framing. 
Strengths-based framings are ways of viewing students’ mathematical thinking as 
assets or resources rather than weaknesses or deficits (Crespo, 2000). 
However, noticing students’ mathematical strengths is a complex skill that needs to be 
learned in part because deficit-based framings are systematically embedded in 
mathematics education (Adiredja & Louie, 2020). Therefore, teachers need guided 
support to productively move away from deficit-based framings and embrace 
strengths-based framings to notice students’ mathematical strengths. To this end, a 
teacher education course was designed to engage prospective mathematics teachers in 
critical reflection of their individual and collectively shared framings of students’ 
mathematical thinking, and thus bring about a change in their orientations in noticing 
students’ mathematical thinking. 
The study presented here contributes to research on teacher noticing: it identifies 
teachers’ framings and noticing practices in relation to students’ mathematical thinking 
and investigates the nature and development of teachers’ noticing of students’ 
mathematical strengths. Specifically, the objectives of the study were: (a) the 
identification of a typology of deficit-based and strengths-based framings in noticing 
students’ mathematical thinking, and (b) the characterization of how changes in 
framings promote changes in prospective teachers’ attending, interpreting and 
responding to students’ mathematical thinking. 

THEORETICAL FRAMEWORK 
The study presented here draws on research on teacher noticing and teacher framing. 
An extensive body of research in teacher education has focused on understanding 
teacher noticing (for a critical discussion, see Scheiner, 2016; for a recent review, see 
König et al., 2021). There is broad consensus that noticing consists of the ability to pay 
attention to noteworthy aspects of teaching, interpret what is observed, and decide how 
to respond (Jacobs et al., 2010; Kaiser et al., 2015; van Es & Sherin, 2002). 
Conceptualisations of noticing that include attending, interpreting and responding have 
been used to examine teachers’ noticing with different foci, with particular attention to 
noticing students’ mathematical thinking (Sherin et al., 2011). However, common 
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approaches to teacher noticing focus on individual teachers and their internal mental 
processes, obscuring the fundamental ways in which noticing is shaped by historically 
and culturally constituted ways of structuring and organising experiences (Louie, 2018; 
Scheiner, 2021). 
However, learning to recognise and interpret students’ mathematical strengths requires 
acquiring tools and frameworks to figure out what to look for and how to characterise 
students’ mathematical thinking. Such a perspective was articulated and applied in this 
study through the use of framing theory. Framings are understood here as culturally 
and historically constituted ways of organising and structuring experience (Goffman, 
1974). They provide interpretive contexts that help participants in a given situation 
understand what tasks they are engaged in, what knowledge is relevant, and what 
behaviours are expected of them and others (Hammer et al., 2005).  

 

Figure 1: An integrated view of teacher noticing and teacher framing. 
Following Levin et al. (2009) and Russ and Luna (2013), this study took an integrated 
view of framing and noticing (see Figure 1). That is, the three processes of attending, 
interpreting and responding are shaped by the ways teachers frame the object of 
attention, which in turn is constituted by broader orientations, such as orientations to 
deficits in students' mathematical understanding (see Scheiner, 2021). Accordingly, 
framing and noticing often reinforce each other. This makes it essential to critically 
reflect on framing and the ways in which it drives noticing. 
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RESEARCH DESIGN AND METHOD 
Mathematics teacher education course 
In this study, a teacher education course consisting of fourteen three-hour face-to-face 
meetings was designed to support prospective teachers notice students’ mathematical 
strengths by encouraging more systematic reflection on their own and others’ framings 
using methods of critical reflection (Brookfield, 1995; Liu, 2015). Specifically, 
carefully designed case studies of students’ mathematical work were used (e.g., 
Scheiner & Pinto, 2019), and prospective teachers were asked to respond in writing to 
what they noticed about students’ mathematical thinking. These written noticing 
responses were intended to help the prospective teachers reflect critically on their own 
and others’ noticing as they thought about, talked about and looked at students’ 
mathematical thinking. These reflections went far beyond reflecting on personal 
framings by encouraging the prospective teachers to consider framings of students’ 
mathematical thinking represented in the literature and in critical writings that counter 
deficit-based framings of students’ mathematical thinking, such as Smith et al. (1994). 
The prospective teachers then explored how they might use these new perspectives and 
ideas in their own framing of students’ mathematical thinking. 
Data collection 
The study data were collected from nine prospective secondary mathematics teachers 
who participated in the mathematics teacher education course. The study data consisted 
of the prospective teachers’ written responses to noticing tasks collected during the 
first and last sessions of the course. The noticing tasks were specifically designed to 
gain insight into the nature and development of prospective teachers’ noticing of 
students’ mathematical understanding of limits. 
Similar to Jacobs et al. (2010), each of the tasks involved a series of noticing activities 
that focused the prospective teachers’ attention on the particular student’s reasoning 
(‘What do you find noteworthy about the student’s mathematical reasoning?’), their 
interpretation of the student’s understanding (‘What did you learn about the student’s 
mathematical thinking and how can you interpret the student’s understanding?’), and 
their response to the student’s thinking (‘Suppose you were the student’s teacher, what 
and how would you respond to the student’s mathematical thinking?’). The purpose of 
these noticing activities was to find out which aspects the prospective teachers 
highlighted as noteworthy, what their stances were in interpreting students’ 
mathematical thinking, and what instructional moves they suggested in their responses 
to the students’ thinking under consideration.   
Data analysis 
The analysis of the prospective teachers’ written noticing responses was conducted in 
four phases. First, the written noticing responses were divided into three units: 
attending, interpreting and responding. Second, fine-grained analyses (see diSessa et 
al., 2016) were conducted at the level of each written noticing response unit to identify 
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the aspects that the prospective teachers highlighted as noteworthy in their attention to 
students’ mathematical reasoning, the stances they used in interpreting students’ 
understanding, and the instructional moves they suggested in responding to students’ 
thinking. Third, the identified aspects, stances and instructional moves were used to 
code the response units (attending, interpreting and responding units) of the 
prospective teachers at the beginning and end of the course. This process involved 
double coding of all attending, interpreting or responding units for the presence or 
absence of each of the aspects, stances or instructional moves. Inter-rater reliability 
was above 80% for all categories (aspects, stances and instructional moves) for all 
response units (attending, interpreting and responding). Disagreements were resolved 
by consensus. Fourth, the framings that the prospective teachers used in noticing 
students’ mathematical thinking were derived based on the aspects, stances and 
instructional moves that the prospective teachers identified in their written noticing 
responses. 

RESULTS AND DISCUSSION 
In total, seven different framings of students’ mathematical thinking were identified; 
three of these were deficit-based (a-c), one was uncommitted, i.e., neither deficit-based 
nor strengths-based (d), and three were strengths-based (e-g) (see Figure 2).  

 
Note. Black coloured circles refer to different framings, the grey coloured circles in between refer to 
tendencies towards the respective framings. Each of the dashed lines refers to one of the prospective 
teachers’ shifts in framing, the direction of which is indicated by the arrow. 
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Figure 2: Prospective teachers’ shifts from deficit-based to strengths-based framings 
of students’ mathematical thinking. 

Analyses of the written noticing responses indicated that the prospective teachers 
purposefully shifted from deficit-based framings to strengths-based framings. Seven of 
the nine prospective teachers initially showed a strong tendency towards deficit-based 
framings in their written noticing responses, while the other two prospective teachers 
tended towards strengths-based framings at the beginning of the course. By the end of 
the course, all prospective teachers tended towards strengths-based framings in 
noticing students’ mathematical thinking.  
The shifts in the prospective teachers’ framing (see Figure 2) promoted a mode of 
attention, interpretation and response that differed substantially from the way the 
prospective teachers had previously noticed students’ mathematical thinking. First, the 
prospective teachers’ attention shifted in terms of the aspects they highlighted in 
students’ mathematical thinking. Not only did the prospective teachers shift from a 
general tendency to identify students’ weaknesses to identifying students’ strengths; 
they also paid less attention to students’ weaknesses while their attention to students’ 
strengths increased. Second, the stances that prospective teachers adopted when 
interpreting students’ mathematical understanding changed. Prospective teachers 
moved from a general tendency to use deficit-based stances to strengths-based stances; 
but they also moved beyond simply evaluating or judging students’ mathematical 
understanding to interpreting it as a phenomenon in its own right. Third, the 
instructional moves that the prospective teachers proposed in response to students’ 
mathematical work also changed. In the beginning, the prospective teachers tended to 
propose instructional moves aimed at addressing or overcoming deficits and 
weaknesses that the prospective teachers had discovered in the students’ mathematical 
thinking. In the end, however, the prospective teachers tended to propose instructional 
activities aimed at enriching, extending or building upon students’ understanding. 
Of course, it is very likely that the framings identified here and the ways in which they 
promoted changes in teachers’ noticing are specific to the context of this study. Thus, 
the framings shown in Figure 2 are not necessarily representative but illustrate the 
many ways in which prospective teachers attend, interpret and respond to students’ 
mathematical thinking.  
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Modelling is an important part of mathematical learning. One characteristic feature 
of modelling problems is their openness. In this study, we investigated the relationship 
between interest and performance in solving open modelling problems and closed real-
world problems. We used questionnaires and tests to assess the interest and 
performance of 143 ninth- and 10th-grade students at different achievement levels. We 
found that low-achieving students were more interested in solving open modelling 
problems than closed real-world problems. Also, prior individual interest in 
mathematics and performance were positively related to situational (task-specific) 
interest. These results contribute to interest theories by underlining the importance of 
types of real-world problems and achievement levels for situational interest. 

INTRODUCTION 
Modelling competencies are essential for mathematical learning. One important 
characteristic of modelling problems is their openness. In short, in our study, openness 
means that some important information is missing from the problem, and students must 
make assumptions about this information to solve the problem. Open problems can 
often be found in the real world, and thus, abilities to solve open modelling problems 
should be addressed in school. However, we do not know much about students’ views 
on open modelling problems and their relationship to students’ performance in solving 
this type of problem. We addressed students’ interest as an important affective factor 
with high relevance for students’ future educational choices (Hidi & Renninger, 2006) 
and examined differences in situational interest when solving open versus closed 
problems in high- and low-achieving students (i.e., students who attend middle- and 
low-track schools). We also analyzed how initial individual interest in mathematics 
and students’ performance are related to situational interest in solving open modelling 
problems and closed real-world problems. We aimed to uncover the role of different 
kinds of mathematical problems (open modelling problems vs. closed real-world 
problems) in piquing students’ situational interest. We seek to contribute to interest 
theories by clarifying how individual interest in mathematics and performance are 
related to situational interest in solving different types of mathematical problems. 
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THEORETICAL BACKGROUND 
Open modelling problems and closed real-world problems 
To solve modelling problems, problem solvers must engage in the demanding transfer 
process between the real world and the mathematical world (Niss et al., 2007). Open 
modelling problems refer to problems with vague conditions. They do not include all 
the information needed to develop a solution, require problem solvers to make 
assumptions, and result in multiple solutions. Open modelling problems are examples 
of so-called ill-structured problems and rely on the model of ill-structured problem 
solving (Jonassen, 1997). Ill-structured problems are usually situated in a specific 
context in which one or more aspects of the problem situation are not specified, and 
the information needed to solve the problem is not completely provided in the problem. 
By contrast, well-structured problems provide all the information needed for a solution, 
and the problem solver just needs to select the relevant information from the task and 
link this information by using an appropriate mathematical procedure. In the past, a lot 
of research was carried out on closed real-world problems, whereas not much research 
on the affective and cognitive factors of modelling problems has focused on the 
openness of this type of problem.  
Theoretical models of solution processes in mathematical modelling include, among 
other activities, understanding, structuring, simplifying, and idealizing a given 
situation (Blum & Leiss, 2007). Solving open problems requires problem solvers to 
notice missing information and make realistic assumptions about the situation 
described in the task and about the quantities that are missing (Krawitz et al., 2018). 
For example, while solving the Speaker problem (Figure 1), students need to notice 
that the information about the diameter of the speaker is missing and assume—by using 
the picture—that it might be one fourth of the height (about 5 cm).   

Speaker 

Maria bought the Ultimate Ears BOOM 
Speaker for 149.95 €. It has 360° sound 
with deep and precise bass. The speaker is 
18.4 cm high.  
Maria looks for a box with a cover for her 
speaker. On the web, she found a 
beautiful box. It is 14 cm wide, 10 cm high, and 14 cm deep.  
Will the speaker fit in the box? 

Figure 1: Open modelling problem “The Speaker”. 
Simplifying and idealizing are much easier when solving closed real-world problems. 
For example, after understanding the real-word problem Pyramid (Figure 2), students 
can directly construct the real model and the mathematical model, calculate the 
mathematical result, and interpret it to answer the question. In mathematics classrooms, 
closed real-world problems are a lot more common than open modelling problems. 
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Pyramid 

The Cheops pyramid was built about 4,500 years before Christ, and it is the 
highest pyramid in Egypt. The blueprints show that the square base of the Cheops 
pyramid has a length of 230 m. The original lateral edge of the pyramid was 
originally 219 m long.  
Because the pyramid was used for a long time as a quarry, it is now only 138 m 
high.  
How many meters less is the Cheops pyramid now than it was before?  

Figure 2: Closed real-world problem “Pyramid”. 
Interest and performance 
Interest is defined as a relation between a person and an object (e.g., mathematical 
problems). Students with high interest engage with their object of interest over time 
(Hidi & Renninger, 2006). Models of interest development assume that unstable 
situational interest (state) develops into stable individual interest (trait), with individual 
interest strongly predicting situational interest (Hidi & Renninger, 2006). Individuals 
with more interest in mathematics can be expected to engage more often and more 
deeply in solving mathematical problems, consequently achieving higher performance. 
Many empirical studies have indeed found that the relation between individual interest 
and performance ranges from small to medium, depending on performance tests 
(Heinze et al., 2005). Situational interest assessed during problem solving in 
mathematics was found to be positively related to performance in solving problems 
and to initial individual interest in a prior study (Nuutila et al., 2020). Furthermore, 
students’ initial individual interest in mathematics contributed to students’ engagement 
and situational interest while solving the problem (Nuutila et al., 2020).  
Motivational constructs, including interest, can address different objects (e.g., learning, 
mathematics, or modelling competencies) (Schukajlow et al., 2017). The strengths of 
relations between motivation-related measures (e.g., situational and individual interest) 
and performance depends on the domain and the types of problems. Researchers have 
found differences in situational interest between different domains (e.g., writing vs. 
mathematics) and within the domain of mathematics (e.g., interest in analytic vs. 
numerical reasoning) (Ainley et al., 2009; Nuutila et al., 2020). Prior research indicated 
that students’ motivation (self-efficacy and task value) for solving open modelling 
problems was lower than for “dressed up” word problems (i.e., problems that do not 
require assumptions to be made, offer a model of the situation, and are related to closed 
real-world problems) (Krawitz & Schukajlow, 2018). This result contradicted the 
assumption that realistic problems are more motivating for students and was explained 
by the high difficulty of open modelling problems and students’ lack of confidence in 
solving this type of problem. Further, researchers found that the relations between 
individual interest, performance, and situational interest depend on students’ 
prerequisites and the type of task (Ainley et al., 2009; Nuutila et al., 2020). One 
explanation for this phenomenon is an alignment between the objects of initial 
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individual interest: performance and situational interest. If the tasks offered in the 
classroom do not meet students’ expectancies, the relation between initial interest on 
the one hand and performance and situational interest on the other might be weak. For 
open problems, if students with high mathematical interest solve an unfamiliar open 
problem that does not include all the information needed to solve it, the relations of 
individual interest and performance to situational interest might be weaker than for 
familiar closed real-world problems. Another important factor for the development of 
students’ individual interest is students’ prior performance. Problems that are too 
difficult or too easy for students might have a negative impact on situational interest. 
Prior research has rarely analyzed the relations between individual interest, situational 
interest, and performance for students with different levels of prior performance, even 
though it is important to determine the role of individual prerequisites (e.g., 
performance in this study) for the validity of theoretical assumptions and to draw 
practical implications from interest theories for the teaching of mathematics. 

PRESENT STUDY, RESEARCH QUESTIONS, AND EXPECATIONS 
This study was carried out within the framework of the project Offene 
Modellierungsaufgaben in einem selbständikeitsorientierten Unterricht (OModA), in 
English, Open Modelling Problems in Self-Regulated Teaching, which is aimed at 
investigating cognitive, strategic, and affective conditions for the teaching and learning 
of open modelling problems. Our research questions and expectations were:  
RQ 1: Does students’ situational interest in open modelling problems differ from their 
interest in closed real-world problems for both high- and low-achieving students? 
Because open problems are more realistic than closed problems (Blum & Leiss, 2007; 
Jonassen, 1997; Krawitz et al., 2018), we expected higher situational interest in solving 
open problems in both high- and low-achieving students. 
RQ 2: Is students’ initial individual interest in mathematics and performance related to 
situational interest in open modelling problems and closed real-world problems for 
high- and low-achieving students? On the basis of theories of the development of 
interest and motivation (Hidi & Renninger, 2006; Schukajlow et al., 2017), we 
expected initial individual interest and performance to be positively related to 
situational interest for both types of problems and in high- and low-achieving students. 
We had no clear expectations of differences between high- and low-achieving students.   

METHOD 
Sample, procedure, and measures 
One hundred forty-three ninth graders (51% female; mean age = 15.66 years) 
participated in the study. The school system in the region of the study is organized such 
that, after attending primary schools, most students continue their education in mixed-
track schools (Gesamtschule) or in high-track schools (Gymnasium). In order to 
capture students with different performance levels, we asked 76 students from a mixed-
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track school (called low achievers in this study) and 67 students from three high-track 
schools (called high achievers in this study) to participate voluntary in our study. 
Students filled out a questionnaire on individual interest in mathematics and took a 
performance test that included both open modelling problems and closed real-world 
problems in a mixed order. Immediately after solving each problem, students 
responded to the situational interest questionnaire.  
Individual interest was assessed with a well-validated scale from a prior study ranging 
from 1 = not at all true to 5 = completely true (Frenzel et al., 2012) (six items, e.g., “I 
am interested in mathematics”). Internal consistency (Cronbach’s α) was .84. Students’ 
performances in solving open modelling problems and closed real-world problems 
included six problems of each of the two problem types. An example of an open 
modelling problem is the Speaker problem (Figure 1), and an example of a closed real-
world problem is the Pyramid problem (Figure 2). To analyze performance in solving 
open modelling problems, students’ solutions to these problems were scored 0 (wrong 
solution), 1 (no assumptions or unrealistic assumptions but otherwise accurate 
solution), or 2 (accurate solution under realistic assumptions). For performance in 
solving closed real-world problems, students were given a 0 for a wrong solution or a 
1 for an accurate solution. The internal consistencies (Cronbach’s α) of the instruments 
were .714 (open problems) and .711 (closed problems). Situational interest was 
assessed by asking students directly after solving each problem about their interest in 
solving the problem: “It was interesting to solve this problem” (1 = not at all true, 5 = 
completely true). We built a scale for situational interest in solving open modelling 
problems (six items) and closed real-world problems (six items) by calculating the 
mean across the respective types of problems. The internal consistencies were .78 
(interest in solving open problems) and .83 (interest in solving closed problems).  
We used ANOVAs, t tests, and regression analyses to address the research questions. 
Less than 5% of the students had missing values, when they skipped a questionnaire or 
did not solve any problems on the test. Students with missing values were excluded 
from the analyses. 

RESULTS 
Preliminary analyses confirmed differences between students in the high-achieving 
and low-achieving groups in their performances in solving open problems, M(SD)high-

ach = .62(.33), M(SD)low-ach = .30(.28), t(141) = 6.260, p < .001, and closed problems, 
M(SD)high-ach = .48(.28), M(SD)low-ach = .21(.21), t(141) = 6.459, p < .001. 
RQ 1 was about the differences in students’ situational interest in solving open 
modelling problems and closed real-world problems (Table 1). A repeated-measures 
ANOVA with the factors type of problem (open vs. closed) and students’ achievement 
(high vs. low) revealed no difference in interest regarding open versus closed problems 
across the whole sample, F(1, 137) = .232, p = .37, η2 = .006. However, there was an 
interaction between type of problem and students’ achievement, F(1, 137) = 11.293, p 
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< .001, η2 = .076. Whereas high-achieving students had similar interest in solving open 
modelling problems and closed real-world problems with a slight tendency toward 
higher interest in closed problems, t(66) = 1.825, p = .072, Cohen’s d = 0.223, low-
achieving students were more interested in solving open modelling problems, t(71) = 
2.905, p = .003, Cohen’s d = 0.342.  

Situational interest High-achieving students 
M (SD) 

Low-achieving students 
M (SD) 

Interest in open modelling problems 2.98 (0.88) 3.01 (1.05) 

Interest in closed real-world problems 3.12 (0.93) 2.79 (1.05) 

Table 1: Means (standard deviations) for students’ situational interest 
RQ 2 was about the relations of prior individual interest, performance in solving 
problems, and situational interest (see the correlations in Table 2).  

 Prior individual 
interest 

(1) 

Performance 
open problems 

(2) 

Interest      
open problems  

(3) 

Performance 
closed problems 

(4) 

Interest     
closed problems  

(5) 

(1) 1 .235 .941** .355** .946** 

(2) .216 1 .158 .547** .280* 

(3) .943** .209 1 .291* .783** 

(4) .271* .772** .235* 1 .372** 

(5) .946** .208 .790** .283* 1 

* p < .05, two-tailed. ** p < .01, two-tailed. 

Table 2: Pearson correlations for performance and interest in high-achieving students 
(above the diagonal) and low-achieving students (below the diagonal). 

Prior individual interest in mathematics was strongly related to situational interest in 
solving open modelling problems and closed real-world problems. Students who were 
interested in mathematics were also interested in solving open and closed problems. 
The correlation was very high (r > .9) in high- and low-achieving students. 
Performance in solving open modelling problems was not related to situational interest 
in either achievement group, but performance in solving closed real-world problems 
was positively related to situational interest. Students who solved the real-world 
problems more accurately reported higher interest in this type of problem. When we 
included both individual interest in mathematics and performance as predictors of 
situational interest in solving real-world problems in a linear regression model, only 
individual interest remained statistically significant (high achievers: βint = .94, p < .001, 
βperf = .026, p = .525; low achievers: βint = .93, p < .001, βperf = .041, p = .345), indicating 
that individual interest was more important than performance for situational interest.  
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DISCUSSION 
The goals of the present study were to identify the role of the type of problem (open 
modelling problems and closed real-world problems) for situational interest (i.e., task-
specific interest) and to examine whether prior individual interest and performance 
were related to situational interest for high- and low-achieving students. In line with 
prior research (Krawitz & Schukajlow, 2018), the analysis revealed that high-achieving 
students reported similar interest in both types of problems with a slight tendency 
toward higher interest in closed problems. However, low-achieving students were more 
interested in solving open problems. This result is in line with theories of interest and 
modelling discussions, which assume that problems with a stronger connection to 
reality are more interesting for students, but why this was not the case for high-
achieving students remains an open question. A possible explanation for the difference 
between high- and low-achieving students might be that low-achieving students did 
not notice that they needed to make assumptions to solve the open problems.  
In line with interest theories (Hidi & Renninger, 2006), students’ prior individual 
interest was found to be a strong predictor of situational interest. Interestingly, this 
finding held for traditional closed real-world problems and for less familiar open 
modelling problems. Students’ performance was found to be related to situational 
interest for closed problems but not for open modelling problems. One reason for this 
result might be the differences in students’ perceptions of the accuracy of their 
solutions for the two types of problems, which in turn might influence their situational 
interest. For example, some students might overlook the importance of the diameter of 
the speaker, calculate the diagonal of the box (see Figure 1), and assume that they 
developed the correct solution. The inaccurate perception of the correctness of a 
solution might decrease the relation between performance and situational interest in 
solving open problems in our study. A qualitative analysis of students’ task processing 
and perceptions of the correctness of solutions to open problems is important to clarify 
this possibility. One important limitation of this study is that high- and low-achieving 
students can differ not only in their performance but also in other factors (e.g., learning 
materials distributed in the classroom) because they attend different types of schools. 
The novel contribution of this study is that we addressed students’ situational interest 
in open modelling problems. One theoretical implication of our study is the importance 
of individual interest in mathematics for the emergence of situational interest in 
different types of real-world problems and for students at different performance levels. 
Practical implications might be the possibility to evoke situational interest in low-
achieving students by offering open modelling problems in the classroom.    
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ASYNCHRONOUS MATHEMATICS PD: DESIGN AND 
FACILITATION FORMAT EFFECTS ON TEACHER LEARNING 

Nanette Seago, Angela Knotts, Jill Neumayer DePiper 
WestEd 

 
In this paper, we share the design and effects on teacher learning of a set of two-hour 
online mathematics professional development modules adapted from face-to-face 
video-based materials. The modules are designed to be used in three facilitation 
formats: project staff- facilitated, district leader-facilitated, or structured independent. 
The modules aim to impact teachers’ mathematical knowledge for teaching linear 
functions and effective mathematics teaching practices (MTPs; NCTM, 2014). Analysis 
of teacher learning, as related to evidence of the MTPs in teachers’ written reflections, 
found teachers demonstrated learning of key MTPs, and in particular, there were not 
significant differences by facilitation format. Results and implications are discussed. 
INTRODUCTION 
Incorporating video within a professional learning environment offers great potential 
for mathematics teacher educators to support teachers in unpacking the relationships 
among pedagogical decisions and practices, students’ thinking, and the disciplinary 
content (Borko et al., 2011). With video, teachers can observe and study the complexity 
of classroom life, reflect on their own instructional decisions, and integrate multiple 
domains of knowledge to solve problems of practice (Blomberg et al., 2013). Recent 
reviews of the literature on video use in professional development (PD) point to the 
value of video as a tool for improving instructional practice (Major & Watson, 2018).  
As video technology and online video sharing have become more accessible and 
widespread, video-based PD is well-positioned to leverage the benefits of digital 
platforms (Teräs & Kartoglu, 2017). Online platforms can allow teachers access to 
professional learning resources that may not be available to them locally. 
Asynchronous PD allows participants flexible access to PD, with choice of schedule 
and location, and teachers report that the ability to access online PD anytime is very or 
extremely important (Parsons et al., 2019). Online PD may also be more scalable than 
comparable face-to-face PD and may have fewer monetary and logistical constraints 
(Killion, 2013). Asynchronous forms of online PD have resulted in positive findings 
related to teachers’ attitude and self-efficacy (An, 2018) as well as high satisfaction 
and relatively high levels of information sharing (Yoon et al., 2020). In the research 
reported here, we investigate how asynchronous PD participation can support 
secondary mathematics teachers’ mathematical knowledge for teaching. 
THEORETICAL FRAMEWORK 
Ball and colleagues have identified and elucidated “mathematical knowledge for 
teaching” (MKT) as the professional knowledge that mathematics teachers must have 
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to do the mathematical work of teaching effectively (Ball & Bass, 2002). This 
conception of knowledge of mathematics for teaching is multifaceted and includes both 
content and pedagogical content knowledge. MKT includes a sophisticated 
understanding of effective instructional practices and student thinking related to 
specific mathematical content. Incorporating video within a professional learning 
environment supports opportunities for teachers to develop their MKT by designing 
opportunities for teachers to examine the relationships among pedagogical decisions 
and practices, students’ thinking, and the disciplinary content (Bloomberg et al., 2013). 
Viewing video clips allows for the complexities of classroom practice to be stopped in 
time, unpacked, and thoughtfully analyzed, helping to bridge the theory-to-practice 
divide and support instructional reflection and improvement.  
MODULE STRUCTURE AND DESIGN  
The Video in the Middle (VIM) project is adapting a face-to-face video-based PD to 
online 40 two-hour modules asynchronous PD modules designed to expand teachers’ 
MKT. The modules incorporate MKT as a design principle by creating multiple and 
varied experiences for teachers to examine and compare a variety of mathematical 
methods and representations, and to analyze the complex relations between content, 
pedagogy, and student thinking. The bite-sized modules offer flexibility by allowing 
mathematics educators the opportunity to design a variety of module sequences to fit 
their learning needs and have the potential to eliminate common roadblocks to 
participation such as scheduling difficulties and geographic distance. 
Each module contains a common set of structured activities, where a video clip is at 
the center, or “in the middle,” of professional learning as teachers take part in an online 
experience of mathematical problem solving, video analysis of classroom practice, and 
pedagogical reflection (Seago et al., 2018; Figure 1). This structure is intended to 
support teachers’ professional learning related to mathematical knowledge for teaching 
(Ball & Bass, 2002) and NCTM’s (2014) Mathematical Teaching practices (MTPs), a 
research-driven “core set of high-leverage practices and essential teaching skills 
necessary to promote deep learning of mathematics” (p. 9). The VIM modules 
emphasize six of the eight MTPs, as noted below:  

1. Establishing mathematics goals to focus learning 
2. Implementing tasks that promote reasoning & problem solving 
3. Using and connecting mathematical representations 
4. Facilitate meaningful mathematical discourse  
5. Pose purposeful questions  
8. Elicit and use evidence of student thinking. 

Two additional design principles are also reflected: 1) All materials are rooted in the 
activities and materials of practice—authentic, unedited videos of classroom 
interactions, representing a practice-based theory of professional learning (Ball & 
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Cohen, 2002), and 2) there are multiple opportunities for teachers to access alternative 
perspectives from students, peers, mathematicians and educators, following the 
principle of promoting multiple perspectives and accessing expert knowledge 
(Herrington et al., 2010). While the overall module structure and these design 
principles may not be new to mathematics teacher PD, we seek to label this structure 
and investigate how it supports teacher learning in asynchronous teacher PD. 

 
Figure 1: Video in the middle consistent set of activities. 

METHODOLOGY 
During Spring 2020, middle and high school teachers were recruited across California 
to participate in a pilot study to address the following research question: How does VIM 
participation support teacher learning outcomes related to instructional practice, and 
how do they differ by facilitation format?  
Intervention. All teachers experienced the same four sequenced, two-hour modules for 
a total of eight hours of professional development over the course of eight weeks 
(February-March 2020). The four modules shared a common set of design principles, 
structure, and resources. Modules were offered in three formats: (1) project staff-
facilitated, (2) district leader-facilitated, and (3) structured independent. Teachers in 
each of the two district leader-facilitated cohorts were all from the same district, while 
the other two groups included teachers from many different districts. The study 
intended to test if and how different facilitation formats impact teacher learning to meet 
the demand for scalable, high-quality PD (Koellner et al., in press). All three 
facilitation formats reflect what is known about effective teacher PD (Darling-
Hammond et al., 2017) and particularly mathematics PD (Heck et al., 2019). Key 
features of effective PD were embedded in all conditions (Table 1). 
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PD feature Project staff-facilitated  District leader-facilitated  Structured independent  
Duration Four sequenced two-hour modules (a total of eight hours) 

spread over the course of eight weeks; teachers compete one 
module per week. 

Four sequenced two-hour 
modules (a total of eight hours); 
teachers work at their own pace 
and on their own time schedule. 

Content focus Each module is designed around mathematical content and pedagogical content knowledge goals. 

Coherence Each module contains a “Bridge to Practice” activity at the end of the module that connects the module 
goals to instruction and their own teaching context. 

Active & 
Practice-
Based 

Participating teachers complete a mathematics task and share their work asynchronously with 
colleagues, then review a video of the mathematics task as a part of an instructional sequence in a 
classroom, write reflections on the classroom interactions, and then describe in writing their plan for 
integrating their learning into their own instructional practice. 

Collective 
Participation 

Teachers share their solution methods and reflections on the classroom video with colleagues by 
posting them on an online discussion board. Teachers were asked to comment on other teachers’ 
solution methods and engage in dialogue on their written reflections. 

Expert 
Facilitation 

The structure of each nodule and the sequence of the four VIM modules were designed by experts in 
mathematics content and pedagogy and reflected research on teacher learning, attention to student 
thinking, and the importance of teacher reflection. 

 A project team member with 
expertise in mathematics teaching 
and learning led teacher 
participation (e.g., encouraged 
teachers to complete modules, post 
on their work, and respond to 
journal reflections) and answered 
teacher questions during their 
experiences. 

A member of the school 
district with expertise in 
mathematics teaching and 
with knowledge of school 
and district contexts and 
goals led teacher 
participation and answered 
teacher questions during 
their experiences. 

While the participants in this 
condition did not have an 
additional facilitator directing 
their participation, the structure of 
each module and the pacing 
across modules was explained and 
detailed. 

Table 1: How three facilitation formats reflect key features of mathematics PD. 
Facilitator training. In January 2020, project and district facilitators participated in a 
90-minute video-conference orientation with project staff, including an overview of 
the study and timeline, VIM module structure, and online tools. Facilitators also had 
access to a web-based facilitator guide and video tutorial demonstrating how to respond 
to participants. 
Participants. Participating teachers taught middle school math, Algebra 1, or first-year 
high school math. Teachers in the district leader-facilitated condition were recruited by 
mathematics leaders from each of two school districts. Each of the two leaders then 
served as the facilitator for their district group. Additional teachers were recruited from 
districts across California and randomized into either the structured independent 
condition or the project staff-facilitated condition. Where multiple teachers were 
recruited from the same district, teachers were randomly split between the two 
conditions. Where single teachers were recruited from a site, singleton teachers were 
matched by similar site location or demographics; matched pairs were then randomized 
into the two conditions. Of the 68 teachers who began the study, 82% completed all or 
nearly all study activities across the four modules. 
Measures. Multiple measures were used to gather impact data on teachers, including 
teachers’ pre-post analysis of student work, their work on the mathematics tasks, 
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module reflections, and post-study interviews. The focus of this paper is the analysis 
of teachers’ responses to two end-of-module reflection prompts: What did you learn 
from this module? What new ideas do you intend to take/use from this professional 
learning? Although the prompts were originally designed as a PD activity to support 
teacher learning and not a research measure, they offer insights into how teachers made 
sense of their learning and how the VIM modules supported teachers’ MKT. 
Analysis. 61 teachers (18 district-leader facilitated, 17 project-staff facilitated, 26 
structured independent) responded to at least one of the eight prompts, resulting in 446 
end-of-module reflections, and 54 to 59 teachers responding to each prompt. Responses 
were loaded into MAXQDA in order to organize and facilitate coding. Responses were 
coded using the MTPs (NCTM, 2014), as in addition to being a valueable set of 
mathematics teaching practices and skills, the MTPs offer a valuable framework for 
conceptualizing and identifying teachers’ MKT growth and intended shifts in 
classroom practice. Coding for MTPs was as a means to identify evidence of and 
differences in teachers’ MKT across conditions. Two coders, blind to teacher 
condition, coded responses in small batches of 10 to 15 teachers, adding details to the 
coding document and reaching consensus for coding of all responses. 
RESULTS 
Figure 2 presents the the percent of teachers in each facilitation format that showed 
evidence of MTPs in their responses, suggesting MKT growth by MTP. As shown in 
Figure 2, there is overall little difference in evidence of MTPs by teacher condition; 
for example, the percent of teachers that demonstrated evidence of MTP-4 (facilitate 
meaningful mathematical discourse), ranged from 30.8 to 41.2%, with 7 or 8 teachers 
per group respectively. Analyses using chi-square tests were completed when the chi-
square test assumption of minimum number of expected values in all cells was met 
(MTP 2, 3, 4, 5, and 8). Results showed that the differences across groups were not 
statistically significant for these outcomes (e.g. MTP-2 (implementing tasks that 
promote problem-solving and reasoning), X2 = 1.89, p = 0.39; MTP-8, eliciting and 
using student thinking, X2 = 3.38, p = 0.16). As analyses demonstrate that the 
differences in MTPs were not significant, we can suggest that the differences by 
condition for MTPs are not significant at this time and further research is needed before 
more conclusions can be made. 
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Figure 2. Evidence of MTPs in teachers’ refelctions, percent by facilitation format. 

DISCUSSION 
Across conditions, teachers showed evidence of learning consistent with the VIM 
modules. Over 92% of the 61 participants who responded to the reflection questions 
gave at least one response indicating meaningful learning related to an MTP. This is 
notable given the open-ended nature of the prompts and that they were not written as a 
research instrument but rather as PD activities. High percentages of teachers across 
conditions showed evidence of learning related to MTP-2 (46.7%), MTP-3 (39.3%), 
MTP-5 (67.2%) and MTP-8 (32.8%), areas that were emphasized in the VIM modules.  
The evidence of MTP-related learnings after VIM participation, as designed and 
hypothesized,  emphasizes how the VIM modules supported all teachers across 
condition, and particularly statistical analyses do not show differences in evidence of 
MTPs by condition. That is, while the number of teachers who evidenced learning 
about a particular MTP did vary across facilitation formats, these differences were not 
statically significant and thus suggest that at this time there was no differential impact 
for one  facilitation format over another.  
CONCLUSION 
High-quality professional learning is widely accepted as a core component of 
meaningful school reform (Borko et al., 2014); however, if schools and districts are to 
scale quality PD in a cost-effective and widely accessible manner, innovative tools and 
strategies that do not rely on individual providers spending extensive face-to-face time 
with small groups of teachers are needed (Cai et al., 2017).  
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These results support those of Heck et al. (2019), which suggest that the participation 
format of a PD experience is less critical than the presence of the key design features 
described in Table 1. As noted above, all three formats of VIM module facilitation 
were designed and structured following researched-based structure and design 
principles. The trends in analyses of the MTPs in teachers’ written responses show 
promising preliminary evidence of teacher learning related to MTPs and emphasizes 
the strength of all three facilitation formats. This analysis also provides initial evidence 
of impact of independent, asynchronous PD, when it is well designed and structured. 
Responses also offer opportunities for further analyses of trends and additional themes, 
as teachers’ responses from each condition were detailed, while varied. 
There may be a bias towards face-to-face PD and localized PD contexts with an 
underlying assumption that they are more likely to lead to teacher learning than 
asynchronous PD. While local and face-to-face experiences may support teacher 
learning, it may be that they include key features of high-quality PD, and the format 
itself is less important.  The preliminary findings we highlight in this paper suggest 
that future research is needed to study the relationship between PD design structures, 
PD format and context, and teacher learning of mathematical teaching practices and 
further understand the benefits of research-based, structured asynchronous PD.  
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