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A HELPING HAND IN OUTDOOR MATHEMATICS — THE ROLE
OF GESTURES IN MATHEMATICS TRAILS

Simone Jablonski'!, Sandy Bakos?®

!Goethe University Frankfurt, Germany

2Simon Fraser University, Canada

Mathematics trails provide learners with opportunities to leave the classroom to
discover and engage with mathematics outdoors, using real-world objects and
structures. Students are immersed in mathematical problems that require them to think
about and make connections between the mathematics learned in the classroom and
how this knowledge can be applied in a novel context. In this qualitative study,
participants engaged in a mathematics trail, during which we observed a significant
use of gestures in the interactions between group members and the physical objects
that formed the basis of the mathematical problems. Seeing a connection to the idea of
embodiment, we pay particular attention to the types and functions of those gestures
that emerged in the outdoor mathematics trail context.

INTRODUCTION

Compared to the confines of the classroom where students often remain seated while
working at their desks, outdoor mathematics, a form of mathematics education that
occurs in an outdoor environment, provides students with both movement and a less
familiar context for doing mathematics. Mathematics trails are an approach to this that
guide students along a predetermined route of mathematics tasks that use real objects
along the trail (Gurjanow & Ludwig, 2018). By solving mathematics tasks outdoors,
using real-world, physical objects, students engage in first-hand, out-of-class
experiences of mathematics, which play a “central role [...] in the learning process”
(Kolb et al., 2000, p. 1) according to the Experiential Learning Theory (ELT). Given
that gestures have been shown to be important to foster student learning (Sinclair & de
Freitas, 2014), we wanted to study students’ gesturing in this new, less constrained
mathematics trails environment.

THEORETICAL BACKGROUND
Outdoor mathematics in the context of modelling and experiential learning

To solve a mathematics trail task, it is necessary to consider the object’s outdoor
context and to transfer it into the mathematical world. These processes are described
in the modelling cycle outlined by Blum & Leiss (2007), where learners must first
engage in “understanding” and “‘structuring/simplifying” the outdoor context before
“mathematising” in order to transfer from the real-life object to the mathematical
model. After students use the necessary procedures to solve the mathematics, the
results must then be retransferred back to reality. This is referred to as “interpreting”
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the results before being subsequently “validated” and “presented” at the real object. To
highlight the two domains, “Reality” and “Mathematics”, Figure 1 shows a modified
version of the modelling cycle which emphasises these transfer processes specifically
in the context of an outdoor mathematics task.

| TransferR > M

‘ Mathematise simplified
context and create a
‘ mathematical model

(" Reality (R) e _
Understand, simplify and Mathematics (M)

structure outdoor context Work mathematically
_____________________________ with the data from the

Validate and present outdoor context

results in outdoor context /

N — 7

‘ Transfer M > R

Interpret mathematical
‘ results

Figure 1: Modified modelling cycle for the outdoor context (Blum & Leiss, 2007).

In relation to ELT, activities that are linked to “Reality” seem especially relevant, since
these first-hand experiences must necessarily take place at a physical object.

The role of gestures in outdoor mathematics education

From an embodied perspective, gestures, i.e. “hand movements that co-occur with
speech” (Goldin-Meadow, 2003, p. 4), play an important role in learning and teaching
mathematics concepts. “Children can express thoughts in gesture that they don’t even
know they have. And those thoughts tend to be on the cutting edge of their knowledge”
(p. 116). Hereby, gestures can occur in different forms, which McNeill (1992)
categorised into four different types (see Table 1).

Gesture Explanation
Iconic Movements and shapes of body, objects, people in space
Metaphoric ~ Gestures that represent abstract ideas rather than concrete objects
Deictic Indicate people, objects and locations in the real world
Beat Gestures that beat musical time

Table 1: Types of gestures according to McNeill (1992).

Gestures, independent of their type, often occur unconsciously. However, in relation
to mathematical concepts, they are used for different purposes, which Kita et al. (2017)

3.4 PME 45 — 2022
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summarised as the four functions of gestures:

e Activating Spatial Information, i.e. focus on new/different information
e Manipulating Spatial Information, i.e. rearrange, translate, rotate, invert
e Structuring Spatial Information, i.e. organise information for the act of
speaking
e Exploring Spatial Information, 1.e. explore more complex situations and
distinguish relevant and non-relevant information
Together with these functions, “gesturing may make it easier to link a speaker’s words
to the world. [...] linking words and phrases to real-world objects, is required for
comprehension” (Goldin-Meadow, 2003, p. 163). Finally, the positive impact of
content-related movements and gestures in relation to learning and thinking about
mathematical concepts are well known (e.g., Sinclair & de Freitas, 2014). In particular,
these authors look at manipulating gestures in the context of a touchscreen
environment. In addition to in-the-air movements, the authors also consider contact
and touching gestures to be actual gestures. We follow this understanding of gestures.

From the connection between ELT and embodiment, we assume that gestures will be
observed while learners engage in the solution process for mathematics trail tasks. Prior
observations in the outdoor context confirm this hypothesis and show that deictic
(particularly pointing) and iconic gestures in particular, seem to be relevant during the
modelling steps of simplifying and structuring (Jablonski, 2021). Therefore, we assume
that most gestures in the outdoor context are linked to “Reality” (see Figure 1) and to
the work occurring at that task’s object. The physical presence of the object at the task’s
location may influence the occurrence of gestures, which will be investigated in more
detail.

Though in a different material-based mathematical context, the observations of Menz
(2015) and Hare & Sinclair (2015) allow the hypothesis that the presence of real-world
outdoor objects might extend the pointing, especially for deictic gestures, to an actual
touching gesture. Therefore, we formulate the following research question for the
outdoor mathematics context: /[RQ1] Does the presence of physical objects extend the
use of deictic gestures from pointing to touching gestures during outdoor mathematics?

The outdoor context makes it possible to interact with a task’s object that is physically
present. Therefore, students encounter a material-based situation, though the material
object itself is not variable in its position and situation. This may lead to a more intense
use of manipulating gestures in activities that are linked to “Reality” and prepare the
actual “Transfer R > M”. Based on this hypothesis, a second research question is taken
into consideration: [RQ2] What role do manipulating gestures play during activities
linked to the real object of a mathematics trail task?

METHODOLOGY

A qualitative study was conducted at Simon Fraser University (SFU), Canada during
September and October 2021 to investigate the role of gestures in mathematics trails.

PME 45 —2022 3-5
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The sample is comprised of eleven participants (doctoral or master students and a
professor) from the field of mathematics education at SFU, who volunteered to take
part in the project. Each group of two to three participants solved eight tasks along a
mathematics trail located on campus. The mathematics trail was created in the
MathCityMap system, which guides students along the outdoor tasks, includes optional
hints and provides immediate feedback on the quality of the entered solution (see
Gurjanow & Ludwig, 2018). The groups required 60—90 minutes to solve all of the
tasks and were accompanied by one of the researchers, who filmed the solving process
and recorded observations relevant to the research questions.

The eight math trail tasks cover various topics of secondary school mathematics and
required participants to gather the information necessary to solve the problem while at
the outdoor location. Table 2 presents two tasks concerning outdoor objects, the task
formulation and mathematical activities that could be useful for solving each task.

Object/Situation Task Formulation Mathematical Activities

Choose mathematical model (regular
pyramid) and data (height and base
length), take necessary
measurements, use a formula

What is the volume of
this pyramid? Give the
result in m>.

Determine the height Choose mathematical model (fotal
you will cover when height as sum of height of each step)

you run up the hill. Give  and take necessary measurements
the result in meters. (individual steps), addition

Table 2: Two mathematics trail tasks from the study.

The recordings of the solution processes used by each group resulted in more than four
hours of video. For this paper, we chose the “Pyramid” and “Hill” tasks outlined in
Table 2. These tasks were chosen for a comparative analysis due to the different foci
on mathematics necessary to solve each task: the “Pyramid” task focuses on a
characteristic of a physical object (i.e. its volume) and the “Hill” task is based on a
real-life situation (i.e. running up the hill). In the first step, there were 37 sequences of
gestures selected for analysis. Hereby, all noticeable hand movements are considered
sequences and a single hand movement represents one sequence.

In the second step, the selected sequences of gestures, in conjunction with their
accompanying speech between group members, were analysed in terms of the
mathematical content (description of the task solution process) and outdoor context
(categorisation of the sequence according to Figure 1). The latter identifies whether a
sequence contains an activity that is either linked to “Reality”, to “Mathematics” or to
the “Transfer from Reality to Mathematics” or vice versa.

3-6 PME 45 —2022
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In the third step, the gestures within each sequence were coded using the categories
from McNeill’s (1992) Type of Gesture (iconic, metaphoric, deictic and beat) and Kita
et al.’s (2017) Function of Gesture (activate, manipulate, structure and explore).
Deictic gestures were further coded as pointing or touching. It seems legitimate to
make reference to already existing categories of schemes, since gestures occurring
outside should, hypothetically, be completely assignable. The categorisations were
empirically confirmed in the context of the study with good values (Kappa between
.72 and .8) of intercoder reliability. Finally, all analysed units are connected and taken
into consideration for deeper analysis with regard to the research questions.

RESULTS

In the first part of the results presentation, we summarise the data for all identified
sequences, while in the second part, we take individual sequences with either deictic
(touching) and manipulating gestures into account.

General description of gestures

Analysis of the outdoor context shows that the majority of gestures occurred during
activities that are linked to “Reality” (56.8%), followed by activities in the “Transfer
from Reality to Mathematics” (37.8%), though they also played a minor role in
“Mathematics” and “Transfer from Mathematics to Reality”. These results are
consistent with previous research findings in the outdoor context where gesturing
occurred particularly while students were in the simplifying/structuring stage and
during the mathematising stage of the modelling cycle (Jablonski, 2021). The different
types and functions of the gestures that occurred during the 37 identified sequences are
summarised in Figure 2.

Types of Gestures Functions of Gestures

= Iconic = Deictic = Metaphoric = Beat = Activating = Structuring = Manipulating = Exploring

Figure 2: Type and function of the gestures.

The overall occurrence of gesture types also confirms Jablonski’s (2021) previous
findings of mainly iconic (27%) and deictic (62%) gestures used in the outdoor
mathematics context, whereby deictic gestures, which contain both pointing (80%) and
touching (20%) gestures, occur more than expected. The hypothesis that touching the

PME 45 —2022 3-7
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real-world, physical object might be relevant in outdoor mathematics can be confirmed,
however, it remains unclear in which situations and contexts that this gesturing occurs.

Before moving to a detailed analysis of individual sequences, we will consider the
functions of gestures. The results show that most gestures are used for activating spatial
information (59%), followed by gestures for manipulating (19%), gestures for
structuring (16%) and gestures for exploring (5%) spatial information. As in the
previous category, we can confirm the hypothetical relevance of gestures-for-
manipulating through their occurrence in 19% of all sequences. Together with the
deictic, touching gestures, we will focus on these gestures in more detail in the second
part of the results presentation.

The role of deictic gestures

From the general overview, deictic gestures appear to play a major role while solving
mathematics tasks with real-world, physical objects. Most deictic pointing gestures can
be observed when participants are identifying relevant points, i.e. the pyramid’s apex,
and mainly occur in relation to activities related to reality, i.e. simplifying and
structuring. Still, about 20% of the analysed deictic gestures involve physically
touching the real object as described in this sequence from the “Pyramid” task. As the
participants searched for a way to identify the height of the pyramid by using its
characteristics, one participant’s verbal proposal is accompanied by different deictic
gestures (summarised in Table 3).

Act of Speech Description of the Gesture Analysis of the Gesture

Student moves left hand down Deictic (both touching and

We could the arm of the pyramid and taps  pointing) indicating the arm

measure this

It. of the pyramid as “this”.
and knowing Student points with the right ~ Deictic (pointing) indicating
half of that hand along the edge of the base the edge of the base as
— to the bottom right corner. “that”.

Student points upwards with the
right hand toward the middle of the
pyramid. With the index finger of Deictic (pointing)
the left hand the student makes a indicating the height of
sweeping point at the bottom area the pyramid as “that”.
of the pyramid towards the middle
of the base.

we could find
that.

Table 3: Analysis of an act of speech with gestures.

Only the combination of the participant’s act of speech, with the deictic gesture, makes
his proposal — using the Theorem of Pythagoras to calculate the pyramid’s height with
only lengths that can be measured precisely — understandable. Instead of using the
verbal mathematical expressions for identification, the participant touches and points

3-8 PME 45 —2022
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while using the expressions, “this” and “that”. In particular, in the first part of the act
of speech, we can observe the use of a touching deictic gesture when the participant
refers to the arm of the pyramid. It seems like the participant wanted to highlight the
actual physical appearance of this side length, which makes it easy to be measured
precisely — in contrast to the height of the pyramid, which can only be imagined.

The role of manipulating gestures

Finally, we demonstrate the use of manipulating gestures in the following sequences
related to the “Pyramid” task. The participants — we call them Kate and Paul — tried to
figure out whether they could combine multiple pyramids into a rectangular prism
using several in-the-air gestures to manipulate the object and situation.

Kate: If you put it in the middle [motions up and down with an open palm, thumb
up] and flip this over [using both hands parallel to each other, palms open,
motions flipping the shape 90 degrees to the left], does it not [using right
index finger, traces the left, top and right side of a rectangle shape] follow
a rectangular prism or am [ way off?

Paul: It does not. Because that point [points towards the apex with right index
finger] ends up down here [points towards the bottom left corner of the
pyramid’s base with right index finger].

Kate: Down there [points towards apex and then gestures down to the left base
with her right index finger] and then [gestures back towards the apex and
then moves her index finger across to the left] it will cut right.

Paul: And the wide [points both hands, index fingers towards the sky, hands and
arms close together. Gestures outwards with both hands] ends up there and
you get this weird shape [Moves index fingers down and inwards at an
angle, then down and outwards at an angle, mimicking the hourglass shape
made by two pyramids stacked on top of each other, apex to apex] there.

We observe a series of manipulating gestures in this sequence. The rotation of the
pyramid in particular, is explored through several manipulating gestures. Even though
this idea is no longer relevant for their modelling process, we can observe similar
considerations in relation to the geometric task of the pyramid’s volume. In contrast,
the “Hill” task does not provoke manipulating gestures. Therefore, the role of
manipulating gestures may depend on the context of the actual task and does not only
rely on the existence of a real-world, physical object outside the classroom.

CONCLUSION AND OUTLOOK

The analysis of gestures that occurred in two different outdoor mathematics tasks
provide insight into the embodiment nature of working mathematically with real-world
objects. First, we can observe the overall appearance of gestures and conclude that
embodiment and gestures are particularly relevant for the work in “Reality” and the
“Transfer from Reality to Mathematics”. With deictic gestures being the majority, it
can be seen that not only pointing, but also touching gestures appear (cf. RQ1).

PME 45 —2022 3-9
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Hypothetically, this happens in situations where the students want to bring the focus to
the actual existence of the object and the use of its real, touchable characteristics. With
the modelling process becoming more complex, i.e. imagining an altered or enriched
situation, manipulating gestures can be observed (cf. RQ2). In our analysis, these
occurred primarily during the geometric task. Additional work, however, is required to
confirm this and should also be compared to similar task formulations inside the
classroom without real-world objects.
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ENGAGING WITH ONLINE ELABORATED FEEDBACK AS A
MEDIATION TOOL IN THE MATHEMATICAL
ARGUMENTATION PROCESS

Amal Kadan-Tabaja, Michal Yerushalmy
University of Haifa

Feedback may be more effective if students engage with its content. Almost no studies
have examined the potential of online elaborated feedback to enhance students’
mathematical argumentation. We designed a set of tasks requiring argumentation that
must be supported by constructing examples in an interactive diagram using automatic
verbal characteristics suggested by the technological environment. We explored
whether and how a 7th-grade student's engagement with the mediation tools supports
her mathematical argumentation of claims on the topic of comparing fractions. Our
data were derived from a task-based interview and automatic analyses that the
technological environment provides. The results show that there was an improvement
in the student's argumentation in response to the feedback process.

INTRODUCTION

Feedback is a term most often used to describe information provided by agents in
response to submitted work. It is considered as one of the most powerful ways of
supporting learning processes (Hattie and Timperley, 2007). Shute (2008) pointed out
that elaborated feedback, which addresses students’ responses, particular errors, and
examples, and provides guidance toward a correct answer, appears to enhance students'
learning more than other types of feedback. Shute’s review indicated that presenting
too much information may result in superficial learning and cognitive overload.
Feedback can support learners effectively if it is part of a process in which learners
play a central role in sense making and use comments to improve their work or learning
strategies (Carless and Boud, 2018). We distinguish between two meanings of
feedback. Feedback as an object, which refers to the contents of feedback itself (the
information), and the feedback process, which describes the student's interactions with
the task and the feedback information. In this study, we used STEP (Seeing the Entire
Picture) as a formative assessment environment. STEP tasks provide elaborated
information presented as automatic verbal characteristics in the form of immediate
feedback in response to the student’s dragging action in the interactive diagram (ID)
(Harel and Yerushalmy, 2021). To help students become aware and reflect on the
provided feedback report, the same characteristics appear as claims in the tasks
designed for the activity.

Mathematic argumentation is one of the meta-cognitive strategies, and it is defined
as a process of drawing conclusions with the aim of demonstrating that a claim is true
or false based on a set of relevant information. Argumentation has the potential to help
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students modify their understanding and refute misconceptions (Oh and Jonassen,
2007). Toulmin (1958) presented a model for analyzing arguments that consists of six
statement types, each playing a different role in the argumentation process: the
conclusion (C) is the statement that must be proven true or false; the data (D), which
is relevant evidence for the claim; the warrant (W), which justifies the connection
between the data and the conclusion (by appealing to a rule or a definition); the warrant
is supported by the backing (B), which presents further evidence; the qualifier (Q),
which qualifies the conclusion by expressing degrees of confidence; and the rebuttal
(R), which potentially refutes the conclusion by stating the conditions under which it
does not hold. Not all of these components must be explicitly verbalized in every
argument. In our study, we used this model to identify the argumentation components
in the student’s transcribed interview while the student engaged in the feedback
process.

Fractions are a central topic in the mathematical curriculum. Learning the concept of
fractions poses a significant challenge, and it has been for a long time a focus of
research of the mathematics education community. Students tend to develop
misconceptions about fractions for the following reasons: (a) dealing with fractions as
natural numbers, they compare fractions by looking at the values of the numerator and
the denominator rather than considering the whole fraction, and assume that if the
values of the numerator and the denominator are greater, the fraction is also greater
than the other; (b) generalizing a given strategy to all fractions, for example, comparing
fractions by comparing them with 1 is a strategy that students should use differently
with fractions that are smaller or greater than one (Alacaci, 2014; Behr, Wachsmuth,
Post, and Lesh, 1984). These misconceptions were the basis of argumentation claims
that the student had to justify by constructing an example in the ID.

The novelty of this study lies in the type of designed feedback process stemming from
interaction with online elaborated information and from the request for mathematical
argumentation to be provided by the student. To this end, we designed a set of tasks
requiring argumentation that must be supported by constructing examples in an
interactive diagram using automatic verbal characteristics suggested by STEP. We
conducted an empirical study to explore how students engage with such feedback, and
we sought to identify the argumentation components reflected in this engagement. Our
main research question was: How is the engagement of the student with the online
elaborated feedback reflected in the student’s examples and her mathematical
argumentation?

METHODOLOGICAL CONSIDERATIONS

This study is part of a larger study in which we explore the use of online elaborated
feedback by students and describes a small-scale experiment that enables qualitative
analysis. One 7th-grade student worked on the tasks within the framework of a task-
based interview. The student had learned fractions according to the national curriculum
in a regular classroom. She was presented with a sequence of tasks delivered on STEP.
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The interactive diagram (Figure 1) that the student used to solve each task is based
on a representation similar to that described in the Arnon, Nesher, and Nirenburg’s
(2001) study. It displayed points in the coordinate system representing a fraction. The
numerator was represented by the number that appears on the vertical axis, and the
denominator by the number that appears on the horizontal axis. The student was asked
to construct fractions by dragging the green and the red points only along the grey lines,
where all the fractions reside for which the difference between the numerator and the
denominator in absolute value is 1: fractions smaller than 1 on the lower line (labeled
I) and fractions greater than 1 on the higher line (labeled II). Such fractions are given
as an example of a fraction comparison strategy in the mathematics curriculum and
books. The strategy requires the student to decide which fraction is greater depending
on its distance from the 1 whole. This strategy is normally used in the case of fractions
smaller than 1 and formulated as “the fraction that is closer to 1 is greater.” Some
students have a misconception that this formulation applies to all fractions, including
to those greater than 1. Throughout the activity, the ID shows automatically which
fraction is closer to 1 (Figure 1%%).

The feedback that was reported automatically was generated in response to the
dragging of the points in the ID. The characteristics were designed to reflect the ideas
of the activity and the pedagogical mathematical goals of the task. Five characteristics,
labeled 1-5, were included (Figure 1). They have the potential to be helpful in the
student’s attempts to explain and argue that the construction meets the requirements of
the task: mathematical (characteristics 1 and 4); visual representation (characteristic
2); and the method for comparing two fractions (characteristics 3 and 5). If STEP
identifies any characteristic in the example while the student performs a dragging
action in the interactive diagram, it is highlighted in blue; otherwise, it is highlighted
in grey. These characteristics were designed to reflect the curricular foci of the task
and the basis for the student's engagement with the task, which may help students
identify their misconceptions. The criteria for assessing changes between the examples
in the course of the activity were based on a comparison of the automatically assessed
characteristics, assuming that the change in the example space indicates changes in the
student’s concept of comparing fractions.

The flow of the activity. Each of the tasks 1-3 (Figure 1) contained the same four
claims (labeled a-d), regarding which the student had to decide whether they are true,
and support each true claim by constructing an example. In all tasks, claim d was true.
The other claims reflected misconceptions stemming from the wrong generalization of
the strategies for comparing fractions that the students had learned. Task 1, designed
to reflect the initial conception, did not contain online elaborated feedback. Tasks 2
and 3 included five sets of mathematical characteristics each, which were given as
online elaborated feedback. To help the student engage with the online feedback
process, she was asked to characterize her example using this set of characteristics.
Task 2 was formulated as follows: “Choose which are the true claims and support every
true claim by an example. Below the interactive diagram, five characteristics can help
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you characterize the two fractions you have created. Check each characteristic that is
present in your example before submitting it. Try to submit two fractions in a way that
your submission should comply with as many characteristics as possible.” If the student
chose the true claim, the maximum number of characteristics was 3 (characteristics 1,
2, and 3). In task 3, the student was asked to submit examples that comply with as few
characteristics as possible; the minimum number of -characteristics was 2
(characteristics 1 and 3).

The representation line is a tool that student could choose whether to use (Figure 1%);
it did not appear automatically. When the fractions were not equivalent, two distinct
lines appeared, green and red; the line of the greater fraction was higher than that of
the smaller fraction; the lines coincided when the fractions were equivalent. The use of
the representation line could help the student connect it with the correctness of her
answers.

The interactive diagram Claims

Q)

a. The fraction that is
closer to 1 whole is always the
FaFVisual representaioﬁ line The fractions have greater fraction. (If you agree

the same distance with the claim, choose the green
from 1 whole . .
fraction as the greater fraction.)

Denominator
| *x K

4 )

5 b. The fraction with the
greater numerator and
denominator is always the
greater fraction. (If you agree
with the claim, choose the green
fraction as the greater fraction.)

Numerator

Online elaborated feedback The fracti
C. e fractions are

1. The green fraction is greater than the red one always equal in this case.

9]

T d. It is possible to find a
fraction with a  smaller
numerator and denominator
that is greater than the other
fraction. (If you agree with the
claim, choose the green fraction
as the greater fraction.)

2. The green line higher than the red one

3. One fraction is greater than 1, and the other fraction is
smaller than 1

4. You chose two fractions that are smaller than one

5. The two fractions have equal numerators or
denominators

Figure 1. The interactive diagram, online elaborated feedback, and claims.

Data sources and analysis. The data were based on automatic information analysis by
STEP, which we correlated with the segments of the student’s transcribed interview
that we analyzed qualitatively. Using Toulmin’s model (1958), we sought indications
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of a connection between the student’s engagement with the online feedback and the
process of argumentation.

FINDINGS

After reading the instructions of task 1, the student chose Claim a (C), The fraction that
is closer to 1 whole is always the greater fraction, and constructed the example 7/6>6/5
(D) (Figure 2-a). The student declared that she was confident in her choice (Q), she did
not look for other true claims. The student did not realize that her choice of the claim
was incorrect and that her submission did not meet the requirement of the claim she
chose (the green fraction was not the greater one). The example that the student chose
shows that the strategy she used stems from incorrectly generalizing a rule in Claim a.
The student went on to task 2 and again chose Claim a. To meet the requirement of the
task, she tried to support her claim by constructing an example that has as many
characteristics as possible, based on the elaborated feedback. She chose two fractions
that are smaller than 1, activated the line representation, and compared the
characteristics in the elaborated feedback with the positions of the lines (Figure 2-b).

Claim a Claim a Claimd

6 The green 6 The green fraction %7 The red fraction
5 fraction is 7 iscloserto 1 is closer to 1
closer to 1 whole. whole. whole.

Figure 2-a. Submission
of task 1

Figure 2-b. Submission of
task 2

Figure 2-c. Submission
of task 3

Below are some of the student's interactions with the feedback and her self-reflections:

(Dragging the two points and looking at the feedback characteristics) I see!
When the green fraction is greater than the red one, the green line is higher
than the red one. They (the characteristics 1 and 2 in the feedback) turn on
and turn off together (means changing colors).

How do you know that the green fraction is greater?

It's written in characteristic 1, and I can see here (points to the statement
that shows which fraction is closer to 1. The student chose 7/8>6/7).

Why did you choose these fractions?

Because this (points to characteristic 3) and this (points to characteristic 4)
cannot turn on together (cannot be that both fractions are smaller than one,
and at the same time one of them is greater than 1). I have to choose one of
them. (The student ignored characteristic 5 in the feedback and submitted

1 S:

2 I:

3 S:

4 I:

5 S:
PME 45 — 2022
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her a)nswer. The characteristics that were turned on in the feedback were 1,

2,4.
In line 1, the student realized that the connection between the representation lines and
the value of the fraction provided her with a way to support Claim a (W). She chose an
example that was suitable for the claim she thought was true and identified
characteristics 1 and 2 in the feedback (D). In line 5, she realized that characteristic 3
and 4 were contradictory. She based her justification of the claim on evidence that
supported it, but did not try to find examples that could refute her claim. The conclusion
followed from the data. Although the student believed that it was not possible to refute
the claim, there is way to do so by suggesting fractions greater than 1.

The student continued to task 3. She chose Claim a as true, read the characteristics

trying to construct an example that would meet the task requirement of as few as

possible characteristics, then dragged the points to 9/8>6/5. All the characteristics in

the feedback were turned off. Below are some of the student's reactions to the
elaborated feedback (Figure 2-c):

1 S: How it can be? The green fraction is closer to 1whole, but the characteristic

1 was turned off. (She activated the line representation.) The red line is also

higher than the green one! (She wrote in the notebook.) If [ do a common
denominator for both fractions 9x5/8x5=45/40 and 6x8/5x8=48/40. The red

is greater!

2 S (She drags the green fraction to 8/7, then drags the red one over the grey
line I). I understand now (changes her choice to Claim d).

3 L Understand what?

4 S I put the green fraction to be always greater than 1 (on the grey line II) and

the red to be always smaller than 1 (on the grey line I). In this case the green
will never be smaller than the red one. I thought that the green should
always be closer to 1 but when I drag the red one, look, it's not the case here
(the fraction that is closer to 1 changes color). Claim a is not true.

5 L Why did you choose Claim d?

S: Claim c is not true for sure; the fractions are equal only when the two points
are together. If Claim d is true, then Claim b for sure is not true because
they are contradictory (chose 3/2>17/18; the characteristics that were
turned on in the feedback were 1, 2, 3).

In line 1, the student constructed an example that supports her claim. She noticed that
this example was refuted by the elaborated feedback characteristic (D). In line 1, the
student calculated a common denominator for both fractions as an alternative strategy
of comparing fractions (W) to check that the characteristic in the feedback was
working. By this strategy, she discovered that her example was not correct (D), as the
feedback showed, and refuted her claim, which made her decide that the Claim a was
not true. The student tried another strategy to find the true claim: she used her previous
knowledge about comparing fractions to 1 whole. This was the warrant (W), and the
student tried to explain and investigate by dragging in the interactive diagram,
simultaneously following the changes in the characteristics of the feedback (B) (lines
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3-6). She chose Claim d as true (C). She could explain her argument by dragging the
points and finding the relation between the examples (D), which were at the same time
refuting the other claims (R). The conclusion regarding Claim d being true follows
from the data that the feedback provided to the dragging action in the ID (Q). The
student, however, did not mention specifically how a counterexample refuted the
generalization in Claims a-c.

DISCUSSION AND CONCLUSIONS

The aim of this study was to examine the way the student engaged with online
elaborated feedback on mathematical argumentation. One challenge was to help the
student interact with the feedback information. To this end, we designed an activity
based on a rationale for feedback and immediate linguistic mathematical characteristics
offered by STEP, derived from argumentation requirements. The empirical results
show that we could identify statements and student examples that were a response to
the student's engagement with the feedback process. Through the feedback process the
student changed her choice of true claims and examples. Mathematical argumentation
was improved in response to engaging in the online feedback process. This
improvement was apparent in the student's work and explanations based on the
feedback process: she constructed examples as evidence or explanation for the
requirement of the task and to the elaborated feedback that was part of it. The
elaborated feedback helped her find the true claim; she refuted other claims by
counterexamples, identified features that characterized her answers, compared
characteristics, understood the relation between them, and connected them to other
claims by way of a reasoning (for example, the connection between the comparison of
the fractions and the representation line). The student used new strategies for
comparing fractions to modify her choices (the representation line tool) and supported
her argumentation by a warrant from her previous knowledge (the common
denominator strategy). Engaging with the feedback process led the student to modify
her concept and refute misconceptions. The feedback process served as an indicator
that gave the student confidence with respect to the way she thought about and chose
her claims.

The findings are consistent with the literature, which reported a strong potential for
online feedback in the learning process (Harel and Yerushalmy, 2021). This is
especially true for the improvement of mathematical argumentation (Gaona and
Menares, 2021). To engage the student with the feedback process, we designed an
activity in STEP that provided special elaborated feedback that was part of the task
requirements. The student's engagement with the feedback activated her ability to raise
questions, construct supporting or refuting examples, to find explanations connected
to her existing knowledge, and to compare arguments. The engagement with the online
feedback process led to improvement in the student's mathematical
argumentation. These findings can serve as a basis for further research in the field of
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online elaborated feedback. The study was limited by one participant and should be
reproduced with larger groups.

Acknowledgment: This research was supported by the Israel Science Foundation
(grant 147/18).
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We present a study of a model for professional development of mathematics teachers,
based on their participation in a collaborative problem solving in online discussion
forums, in two roles. At the first stage of the study, 47 high-school mathematics
teachers participated in the forums as students. At the second stage, they mediated
forums as mentors. The first stage of the study showed gradual development of group
synergy among the teachers-as-students. The second stage showed that the experience
of group synergy gained by the teachers at the first stage has supported the
development of their mathematical fluency in teaching.

INTRODUCTION

There is a broad consensus in the mathematics education community that mathematical
reasoning in problem solving, critical thinking, and the ability to work collaboratively
are the key components of students’ learning (OECD, 2019). This approach to
students’ learning implies that teachers should develop knowledge and skills of
mathematical communication with students in real time, including the ability to listen,
interpret and respond to the student's reasoning, and conduct effective mathematical
discussion in the learning process. The proficiency in these skills is referred to as
mathematical fluency in teaching (MFT) (Ball et al., 2008). In addition, MFT assumes
the teacher ability to evaluate alternative solutions, understand students' unfinished
ideas, and identify sources of their mistakes.

Studying the forms of teacher professional development (PD) that can contribute to the
development of MFT is one of the priorities in the field of research on teaching
mathematics (Hoover et al., 2016). Several studies have demonstrated the potential of
PD models, in which teachers act as learners while tasting and developing the skills
they would like to develop in students (e.g. Kramarski & Kohen, 2017). The current
study makes one step further and examines a PD model based on teachers’ participation
in collaborative problem solving in online discussion forums while assuming two roles.
At the first stage, the teachers participate in the forums as students. At this stage we
target the growth of group synergy (Clark, et al., 2014; Stahl, 2021), which is referred
to as continuous interaction among problem solvers who monitor and develop each
other 's problem-solving ideas. At the second stage, the same participants assume the
role of leaders of problem-solving forums (PSF henceforth). This study aims at testing
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the following hypothesis: the development of group synergy among teachers in the
process of their participation in collaborative problem solving in PSF contributes to the
development of their MFT.

THEORETICAL FRAMEWORK

In the last decades, many studies explored knowledge and skills that mathematics
teachers need to develop (Chapman, 2015). Mathematical fluency in teaching (MFT)
has been identified as one of the most important teaching skills (Ball, et al., 2008;
Hoover, et al., 2016). It is broadly agreed that for the development of the MFT, it is
necessary for the teachers to deepen their mathematical knowledge, in order to be in
position to quickly navigate among approaches to understanding and solving
mathematical problems that students may have. One of the methods of deepening
mathematical knowledge 1is systematic engagement in solving challenging
mathematical problems (Polya, 1945). Additionally, experiencing problem solving by
teachers is necessary in order to strengthen their pedagogical skills for better
understanding how students think (Chapman, 2015).

A number of PD models developed for deepening mathematical and pedagogical
knowledge of teachers is described in the professional literature. For example, Koellner
et al. (2007) described a PD model consisting of the following cycle: the teachers first
solve mathematical problems, then analyse videotaped problem solving by school
students who are given the same problems, and then discuss how they would use the
problems in their classrooms. Koellner et al. (2007) showed that this model has
undeniable potential for strengthening the link between the mathematical knowledge
for teaching and teaching practice. However, the study did not attend to the exchange
of mathematical ideas among the teachers in the problem-solving process, as well as
to the enactment of the accumulated knowledge with students in real time.

A number of studies have demonstrated the potential of PD models, in which teachers
act as learners, testing and developing skills that they would like to develop in learners
(e.g., Kramarski & Kohen, 2017). The present study continues both of these directions:
the development of mathematical knowledge of in-service teachers through problem
solving and the testing of new teaching methods by teachers, on themselves as students.
This article discusses the model of the PD of teachers in the process of their
participation in the joint solution of mathematical problems in small groups in the role
of students, with the subsequent transfer of the accumulated experience to teaching.
According to many researchers, synchronous online forums are a conducive
environment for successful group interaction due to more precise wording of
arguments and a greater willingness of participants to express alternative views and
critical ideas (e.g., Asterhan & Eisenmann, 2009; Stahl, 2021). For this reason, PSF
were chosen as the environment in which two-stages discussions of mathematical
problems took place in our study.
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The question of the necessary conditions for productive collaborative work on tasks is
broadly studied. In particular, Stahl (2021) studied interactions aimed at involving
learners in "research participation" (Stahl, 2021, p. 493). In addition, the importance of
interactions, in which learners attempt to understand each other thinking — so-called
"other-monitoring" (Goos et all, 2002) has been pointed out. Over time, these types of
interactions can lead to the emergence of group synergy. Interaction is considered a
group synergy if it is a series of interrelated messages from different participants, in
which they either continue and develop each other's ideas, or test the ideas expressed,
based on theoretical knowledge and logical conclusions drawn from them. The result
of such interaction is progress in understanding the problem and its solution, expressed
in new ideas on the way to solving the problem or in the recognition of the fallacy of
the proposed idea (Clark et al., 2014). Such cooperation presupposes the ability to
delve into the mathematical ideas of colleagues in real time, quick reaction and the
desire to reach mutual understanding about the ways of solving problems, that is, those
qualities that determine MFT in communication with students and are the key to
improving the mathematical education of teachers (Hoover, et al., 2016).

This study answers the following questions: (1) How does group synergy develop in
interactions among teachers during their continued involvement in PSF as problem
solvers? (2) How is teachers' own experience of group synergy reflected in the MFT
of when the teachers interact with students as PSF mentors?

METHODOLOGY
Participants and research progress

The study was conducted as part of a PD program for mathematics teachers at the
Faculty of Education in Science and Technology, Technion, Israel. The study involved
47 high school teachers with an experience of 5 to 20 years. At the first stage of the
study, as part of the course "Foundations of Geometry. Plane Transformations”, each
teacher participated as a student in a group of 3-5 in six PSF meetings, mentored by
the first author of this article. Each meeting was devoted to collaborative discussion
and solving one challenging geometry problem. The second stage took place in the
course "Methods of teaching mathematics", when each of the participants acted as a
mentor (teacher) at two PSFs. The learners in these forums were students studying for
B.Sc. in mathematics education. They also solved complex geometric problems. At
this stage, the teachers were tasked with organizing and leading a discussion at the
PSF. This article analyses the activities of one of the groups, consisting of 5 teachers.
The group consisted of the same participants in all six PSF of the first stage. Then, the
experience of one teacher from that group is tracked in his capacity of a PSF mentor.
This group is quite representative of the other groups, as the data obtained for this
group reflect similar learning processes.
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PSF

The technological platform for the PSF in this study was the social network WhatsApp.
A WhatsApp group was opened for each group of teachers in which meetings took
place. The duration of each meeting was about one and a half hours. Each online
meeting approximately consisted of 180 messages with an average frequency of 5
messages per minute. Most of the messages were text messages. Participants also
posted photographs of drawings and, in some cases, resorted to short voice messages.

Data and data analysis

In the course of the study, 96 PSF protocols were obtained and analysed. Of these, 72
forum protocols in which teachers acted as students (12 groups with a permanent
membership) and 24 forum protocols in which teachers acted as mentors. When
analysing the protocols, the unit of interaction was a message (post) sent by one of the
participants. In order to answer the first question of the study, the protocols of the
forums in which teachers acted as students were analysed. To assess the dynamics of
group synergy, we have defined the concept of "synergetic chain", which is understood
as a block of interrelated posts of various participants concerning the discussion of one
mathematical issue. An example of a synergistic chain is the following episode of the
forum during the discussion of a geometric problem:

33 A I think BE = EC

34 B.: This is true since they are chords from equal inscribed angles

35 A And also, triangle EHC is isosceles

36 C.: Yes, because in it the height coincides with the median

37 B.: Means BHCE kite. How have I not seen this before? This will help us a lot.

This episode refers to group synergy, as it contains several interrelated messages
containing an element of monitoring (34, 36), the development of each other's ideas by
the participants (37) and the progress of the group in understanding the task, since B.
expresses his conclusions aloud, referring to the whole group (37). Each synergistic
chain has its own length (the number of messages included in it). The length of the
chain reflects the duration of the interaction between the participants. We use the
average length of all synergy chains included in this forum as one of the characteristics
of group synergy in it. In our study, this characteristic was named Synl. So, in the
given example, the length of the synergistic chain is 5. If four threads are found on the
forum, containing respectively 5, 2, 7, 4 messages, then the Synl characteristic will
receive the value Synl = 4.5, which shows the group's ability to long-term interaction.
An additional characteristic Syn2 characterizes the share of group synergy among other
interactions and is calculated as the ratio of the total number of messages included in a
particular synergy chain and the number of messages in a given forum. So, if a forum
containing 187 posts, contains 4 synergistic chains, 5, 2, 7 and 4 posts long, the Syn2
characteristic is calculated as follows: Syn2 = (5 +2 + 7 + 4) /187=0.096 (9.6%).
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To answer the second question of the study, a qualitative analysis of the content of the
messages that the teacher published in the PSF, in which he was a mentor, was carried
out. The situation in which the group was at the moment of the mentor's intervention
was characterized. Examples of characteristics attended to are as follows: lack of
activity in the discussion, the development of a wrong idea, or presence of a right idea
that escapes the attention of the students. Then we inductively deduced from the above
analysis which qualities of the MFT the teacher showed in his intervention. Finally, the
forums in which the teacher-mentor acted as a student were characterized in order to
identify situations that could be the prototypes of this intervention. Examples follow.

FINDINGS

Below are graphs showing the change in the indicators of group synergy in the selected
group in the process of its participation in six PSFs as learners.

Dynamics of development of characteristics Syn 1

15

10
5
PSF 1 PSF 2 PSF 3 PSF 4 PSF 5 PSF 6

Figure 1. The development of group synergy (Synl) in six forums

Dynamics of development of characteristics Syn 2
08
0,6
0,4
0,2

PSF1 PSF 2 PSF 3 PSF 4 PSF 5 PSF 6

Figure 2. The development of group synergy (Syn2) in six forums

The graphs show an increase in the indicators of group synergy in this group, both in
terms of the share of group synergy among the interactions of forum participants, and
in terms of increasing the length of synergistic chains. In the last forum, group synergy
becomes the main type of interaction, where 70% of messages are in synergy chains,
that is, they are part of a brainstorming session. A similar pattern was observed in the
other groups participating in the study.

The analysis of the content of messages included in various synergistic chains led to
the identification of different types of synergies. For example, the above episode
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demonstrates the complementarity of participants' mathematical ideas that propelled
the group forward in solving the problem. As a result, together with other members of
the group, everyone achieves more than he could achieve himself. Another type of
group synergy refers to the case when one of the participants explains his idea, and
other members of the group monitor it. Often, as a result of such a discussion, it turns
out that the idea requires development or turns out to be incorrect. An example is the
following snippet of the discussion:

62 A.: I have proved the similarity of triangles in two corners.

63 B.: What angles are equal?

64 A.: There are two inscribed, resting on equal arcs

65 C.: That's right, they are equal

66 A More right angles. One inscribed at the diameter, and the second at the
tangent point

67 B.: Wait a minute, but, after all, we do not know whether the radius comes to
the point of tangency.

68 C.: It is definitely not a radius; it cannot go through the centre.

69 A But then the angle is not right either. I think I was wrong.

Group synergy also arises when a group makes a collective effort to explain ideas it
finds to a straggler or misunderstood comrade. Often during such an explanation,
shorter paths are found or details are clarified. The final stage of the work is
characterized by a group via reflective discussion of the problem.

The results of the analysis of messages, which supported the work of the PSF by teacher
A. from the described group in the role of a mentor, illustrate the answer to the second
question of the research. The following task was proposed for discussion in the forum:

A circle of radius R is given (see drawing). BC is the diameter of the circle, AB is the
tangent to the circle at point B, D is the midpoint of the segment AB. The ACB angle is
p. It is required to express the ratio of the areas of triangles ADE and ABC using R
and p.

A
E

D

B C

The following exchange of ideas took place between the students:
21 M. DE is the middle line of the triangle.
22  N.: The figure shows that DE is equal to BD by the two-tangent theorem
23 K. Then B can be found. It is equal to 45 °.
All messages were received within one minute. The teacher was required to understand

and evaluate the statements made in real time. That is, to show MFT skills. He should
have noticed that N.'s statement (22) is true but requires proof. And the assertion M.
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(21) is true only in the case B =45 ° and cannot be the basis for solving the problem in
general. K.'s assertion (23) was based on trust in previous allegations, which could later
lead the group in the wrong direction. After assessing the situation, the teacher had to
make a decision about the usefulness and form of the intervention. He decided to
intervene and sent a message: | don't fully understand why DE = DB? The success of
the question from the point of view of organizing a mathematical discussion was
proved by the subsequent reasoning of the students, during which they proved that DE
is a tangent, but not necessarily a middle line. Between this episode and the episode
described earlier, when the joint observation of A.'s statement (62) in the role of a
student about the similarity of triangles led to an understanding of the fallacy of
reasoning. It can be assumed that this experience was used by A. to stimulate discussion
and monitoring of ideas while working as a mentor. Working in a group in the role of
students, A. and his colleagues did not know whether the statement he proposed was
true, and only a joint analysis led them to understand. In the role of a teacher, A. did
not point out to the students that the ideas were correct or erroneous. Instead, he asked
a specific question (similar to the way colleagues asked him why the angles he named
were equal). Thus, with the help of a specific question, A. created a situation that
entailed discussion and progress in understanding. One of the components of the MFT
is the ability to conduct a mathematical discussion. In particular, it is necessary to
involve students in the conversation, to push them to participate in the discussion. A.
supported the discussion, using his own experience of participation in the PSF. For
example, when there was a long pause at the beginning of the forum, A. stimulated the
activity of the participants with the message: “Throw in ideas. The more ideas there
are in the discussion, the more chances that some of them will lead to a solution”. A
similar proposal was addressed to each other by members of group A. when they
participated in the FOP as students. A.'s experience of participating in PSF as a student
was also reflected in the fact that he supported and guided the discussion, using
encouraging and guiding comments, which the instructor in his group encouraged the
discussion. For example: “This is a great idea. You should discuss it "or" This is a good
idea, but worth discussing if it is always correct. "

CONCLUDING REMARKS

Based on our findings, we concluded that PSFs are a conducive environment not only
for collaborative learning, as shown in previous studies (Stahl, 2021), but also for the
PD of teachers. Various forms of group synergy have been found to grow and develop
with the continued participation of teachers in PSF as learners, demonstrating
improvements in listening, critically analysing and developing others’ ideas in real
time. Thus, teachers develop MFT skills, which are a necessary component of
successful teaching of mathematics in the modern world (Ball et al., 2008; Chapman,
2015). The experience of mathematical communication acquired in the forums was
used in the work of teachers as mentors of the forums, where MFT manifested itself in
the ability to delve into students' ideas in real time, interpret them, and quickly choose
the reaction that was most useful for learning. This study responds to a request for the

PME 45 —2022 3-25




Keller, Koichu, Kohen

need to study models of mathematics teacher PD that, on the one hand, will be relevant
for teachers in terms of their work, and on the other hand, will correspond to the goals
set for the mathematical education of teachers (Hoover, et al., 2016). The
methodological contribution of this study is the quantitative method presented in this
study for assessing group synergy in the joint solution of mathematical problems,
which adds to methods of qualitative analysis developed in the past studies (Goos et
al., 2002; Clark et al., 2014; Stahl, 2021).
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DEFINITIONAL AMBIGUITY: A CASE OF CONTINUOUS
FUNCTION

Andrew Kercher, Anna Marie Bergman, Rina Zazkis

Simon Fraser University

Definitions are an integral aspect of mathematics. In particular, they form the
backbone of deductive reasoning and facilitate precision in mathematical
communication. However, when an agreed-upon definition is not established, its
ability to serve these purposes can be called into question. While ambiguity can be
productive, the existence of multiple non-equivalent definitions for the same term can
make the truth value of certain mathematical statements unclear. In this study, we
asked mathematics educators to determine the truth of a definitionally ambiguous
mathematical claim. Based on their responses, we identified several factors that
influenced the teachers’ choice of definitions. Finally, we consider the pedagogical
implications of employing such a task in teacher preparation programs.

INTRODUCTION

In mathematics, definitions are paramount. As Edwards and Ward (2008) write, “the
words of the formal definition embody the essence of and completely specify the
concept being defined” (p. 223). Mathematics fixates on definitions for their
importance in logical argumentation and proof. To make conclusive statements about
mathematical objects, it is necessary that “we do not leave the meaning of a term to
contextual interpretation; we declare our definition and expect there to be no variance
in its interpretation in that particular work” (ibid., p. 224, emphasis in original).

Despite the widely acknowledged significance of definitions in mathematics, different
definitions often exist for the same term. Ideally, these definitions are equivalent and
any one of them may be chosen as “the” definition from which the others follow as
theorems (Winicki-Landman & Leikin, 2000). Sometimes, however, the same term has
different definitions that do not encompass the same class of objects. This introduces
ambiguity into mathematical tasks. For example, the recent work of Mirin et al. (2021)
discusses two different definitions of function, both acceptable in the mathematics
community, that lead to opposite conclusions when one must decide whether a given
function is invertible. In this paper, we present multiple, mathematically acceptable
definitions of continuous function that can likewise lead to ambiguity. We then present
the results of a study in which we asked teachers to decide on the truth value of a
statement concerning this term, including the considerations they attended to when
making their decisions.
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DEFINITIONS AND DEFINITIONAL AMBIGUITY IN MATHEMATICS
On the importance of definitions and their features.

Mathematicians and mathematics educators alike acknowledge the importance of
definitions in teaching, learning, and exploring mathematics. One important feature of
definitions is that they facilitate communication within a mathematical community;
that is, they specify how a term is used in order to assure that interlocutors refer to the
same concept when using that term (e.g., Borasi, 1992). Mathematical definitions are
used to introduce new objects, to determine properties of what was defined and to
assess the validity of statements related to the defined objects (Martin-Molina et. al,
2018). As such, mathematical definitions serve as a basis for mathematical proofs (e.g.,
Weber, 2002). Importantly, mathematical definitions are also used to classify—to
distinguish between what 1s or is not a particular entity (e.g., Zaslavsky & Shir, 2005).

Within the disciplinary practice of mathematics, definitions are dynamic and adaptive
and may undergo refinements in light of counterexamples and further developments
(e.g., Martin-Molina et. al, 2018). However, in school, students are either presented
with precisely worded existing definitions (e.g., Edwards & Ward, 2004) or work with
mathematical notions in the absence of any provided definitions. To account for these
two cases, drawing on the work of philosophers and lexicographers, Edwards and Ward
(2004, 2008) distinguished between extracted definitions and stipulated definitions.
Extracted definitions are deduced from the inspection of a body of evidence. Stipulated
definitions are handed down to learners from a knowledgeable expert. This distinction
is eloquently summarized by Edwards and Ward (2008) when they observe that
“extracted definitions report usage while stipulated definitions create usage” (p. 224).

According to Leikin and Winicki-Landman (2000), equivalent definitions generate the
same set of objects that satisfy the definition. However, when one set of objects
satisfied by Definition-A is a proper subset of objects satisfied by Definition-B, then
the two definitions are consequent definitions. Other times, when the sets of objects
generated by two definitions have a nonempty intersection, but neither is a proper
subset of the other, Leikin and Winicki-Landman (ibid.) refer to the definitions as
competing.

Van Dormolen and Zaslavsky (2003) specify that a criterion of equivalence is
necessary for equivalent definitions to be a fundamental part of a deductive system.
That is,

when one gives more than one formulation for the same concept, one must prove that they
are equivalent. In practice this means that one has to choose one of the formulations as the
definition and consider the other formulations as theorems that have to be proved. (p. 95).

However, we find no explicit direction for how, in practice, non-equivalent definitions
of the same concept are to be handled. When consequent or competing definitions exist
for the same mathematical term, the truth value of statements related to that term may
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become ambiguous. The focus of our study is on teachers’ mathematical decision-
making when faced with such ambiguity.

On ambiguity and definitional ambiguity

According to Byers (2007), “ambiguity involves a single situation or idea that is
perceived in two self-consistent but mutually incompatible frames of reference” (p. 2).
Byers considered ambiguity in mathematics as a source of creative development and
argued against the popular perception that the logical structure of mathematics is
definitive. Building on Byers’ definition but interpreting it in the context of teaching
and learning mathematics, Foster (2011) argued that productive ambiguity is an
essential component of learners’ engagement with mathematics. In particular,
“ambiguity 1s necessary for ideas to move forward because it creates an instability in
what i1s currently known that allows the formation of new knowledge” (p. 3). Foster
also categorized different appearances of ambiguity. He distinguished between
symbolic ambiguity, multiple-solution ambiguity, paradigmatic ambiguity, linguistic
ambiguity and definitional ambiguity; the latter is of our interest in this study.

Definitional ambiguity, according to Foster (2011), arises “where there is more than
one way of interpreting the meaning of a mathematical term.” His example is the term
“radius,” which may refer to a geometric object or its length. In these cases, whether
the reference is to a geometric object (as in a construction) or its size (as in the task,
find the radius of a circle with a circumference of 5 cm) is clear in context. However,
there are also situations in which definitional ambiguity is the result of different but
non-equivalent definitions. We wondered how teachers resolve such situations. This
led to the following research question: What guides teachers’ decision making in cases
of definitional ambiguity?

Definitional ambiguity: the case of “continuous function”

When searching for a definition of continuous function, either online or in calculus
books, the most common results are definitions of continuity at a point or continuity
on an interval. From these stipulated definitions, a possible extracted definition of a
continuous function is “a function that is continuous everywhere.” However, the
meaning of “everywhere” can be interpreted differently and depends on which
stipulated definitions this definition is extracted from.

Definition-1: A continuous function is a function that is continuous on all the points of
the function domain.

Definition-2: A continuous function is a function that is continuous on all the real
numbers.

We purposefully do not comment here on which definition we consider as correct. We
do note that, using Definition-2, f(x) = 1/x is not a continuous function as there is
a discontinuity at x = 0. This interpretation corresponds to the naive concept image of
a continuous function that requires it to be drawn without lifting pen from paper. Using
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Definition-1, f(x) is a continuous function as it is continuous at all points of its
domain, which excludes x = 0. Jayakody and Zazkis (2015) elaborated in detail on the
inconsistent conclusions that can be reached by examining definitions of continuity in
different sources. In particular, they noted inconsistency in referring to discontinuity at
points where a function is not defined.

THEORETICAL UNDERPINNING: CONDITIONAL CONSTRUALS

Milewski et al. (2021) introduced the notion of conditional construals to describe
teacher decision making in ambiguous situations that arose in mathematics classrooms.
Conditional construals are described as “moments when teachers require additional
context in order to judge whether a given teaching action is appropriate.” Milewski et
al. (ibid.) used linguistic indicators, such as “it depends,” to identify instances of
conditional construal. We note that, in these instances, the provided examples attended
to teachers’ pedagogical decisions related to pedagogical scenarios. For example, in
the exemplified responses, teachers conditioned their choices as depending on time
constraints, the instructional sequence, or their familiarity with students.

We extend the notion of conditional construal to cases where a mathematical decision
depends on implicit mathematical assumptions. To illustrate, consider the following
statement: In division of 13 by 5, the quotient is 2. Do you agree? Your decision
depends on your definition of a quotient, which in turn depends on the kind of division
you consider. The statement is true when the division is of whole numbers, which
implies a whole number quotient and remainder. The statement is not true if the
division is of rational numbers, and the definition of quotient is taken to be the result
of that division. The conditional construal is mathematical in nature. One may argue
that this conditional construal also requires pedagogical context—however, we note
that conversations about both whole number and rational division might occur in the
same pedagogical context: a middle school classroom.

METHODS

Participants in this study were prospective teachers in the last term of their teacher
certification program and practicing teachers enrolled in a professional development
course (n = 29, referred to as T-1 to T-29). They were asked to respond, in writing, to
the claim that f (x) = 1/x is a continuous function. This response required the teachers
to indicate their evaluation of whether the claim is true or false; to provide a
justification, indicating any sources that informed their decisions; and to provide any
hypothetical arguments that might be used by someone who disagreed with their
evaluation. These responses served as a starting point to initiate a subsequent classroom
discussion on definitions in mathematics.

Analysis of the written responses was conducted using the phases of reflexive thematic
analysis. In particular, an inductive thematic analysis allowed for coding and theme
development to be directed by the content of the data (Braun et al., 2019). In the first
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phase of analysis, each member of the research team familiarized themselves with the
data. That is, they read and re-read the teachers’ responses in order to become
immersed in and intimately familiar with how they qualified both their justifications
and any hypothetical disagreements. Then, each response was coded by multiple
members of the research team to identify the conditional construals used as respondents
conditioned their decisions. Initial codes were primarily semantic in that their creation
was instigated by a teacher’s explicit language choice—for example, the use of
linguistic markers for conditionality such as “it depends.” Later, these semantic codes
were supplemented with latent codes that captured those instances in which conditional
construals were implicit in the text (Braun et al., 2019). Members of the research team
met regularly to discuss the generation and application of codes.

Next, the research team identified collections of codes—and, in some cases, especially
prevalent single codes—that might constitute themes. These preliminary themes were
examined in light of their ability to both answer the research question and meaningfully
describe the dataset. Throughout this process, the research team members collaborated
to refine ambiguous themes, merge redundant themes, and otherwise ensure that each
theme contributed to the narrative of the data.

FINDINGS

A total of 12 out of 29 respondents identified the claim as a true statement, whereas 14
identified it as false. The final 3 respondents remarked that the claim could be
interpreted as either true or false depending on additional assumptions made by the
reader. Respondents’ conditional construals were primarily centered on choosing a
domain over which the continuity of the function should be considered. This decision
was sometimes, but not always, tied to their choice of definition.

Choice of domain is dependent on the definition

Most often, participants chose a domain by choosing one definition of continuous
function over another. To make this choice, many participants first chose a definition
for continuity at a point, from which they extracted a definition of continuous function;
this extracted definition tended to inherit its domain from the chosen stipulated
definition. The definition would then prompt them to attend to either the entire real line
or only those points where f(x) is defined, in line with either Definition-2 or
Definition-1 described above. Regardless of which definition they chose, respondents
almost always acknowledged the alternative view as part of a hypothetical
counterargument. For example, T-23 began her explanation of why the claim is false
by “presuming that by continuous function we mean an everywhere continuous
function.” She later acknowledged that another reader might come to the opposite
conclusion if they do not consider continuity at x = 0.
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Choice of domain is dependent on mathematical convention

When deciding on a domain, some participants attempted to align with what they
perceived to be mathematical convention. For example, T-5 first presented a naive
conceptualization of continuity as a single unbroken line—but added that “we usually
look at the domain (x-axis values) and or the range (y-axis values) of the function.”
Consequently, T-5 argued that the claim was true because f(x) could be drawn as a
single unbroken curve on each half of its domain. Of note is the fact that participants
who appealed to a standard mathematical consensus sometimes disagreed about what
exactly that consensus is. T-24 argued that the claim was false unless one disregards
the discontinuity at zero, but that “by convention we do not restrict the domain in this
manner, unless explicatively stated.” T-25 made a similar assessment, adding that
“since the domain in the claim is unspecified, it is assumed that we are talking about
all real numbers.” However, when considering hypothetical counterarguments to his
conclusion that the claim was true, T-2 explained that only “purists would argue that
all points —oo to oo should be shown to be continuous for a function to be continuous.”

Choice of definition is dependent on personal preference

Some respondents selected from possible stipulated definitions based off of an
underlying personal belief of what constitutes a continuous function. For example, T-
11 examined multiple textbook definitions related to continuity. He admitted that he
does not “like a definition of a continuous function that allows functions that are not
continuous at all points,” and ultimately rejected the Definition-1 as “overly-
accepting.” In contrast, T-9 chose Definition-1 because “I don't believe it makes sense
to consider properties of functions when they are not defined.” Finally, T-10 stated that
“my understanding of a continuous function is that the function is continuous in its
domain,” but that someone might disagree because, “from their perspective, a
continuous function must be continuous everywhere.”

Choice of definition is dependent on visual intuition

Prevalent in responses to the claim were participants’ underlying intuitions about what
a continuous function should look like; such as when T-2 described a continuous
function as “a function that does not have any abrupt changes in value across its
domain.” More often, participants described the naive conceptualization of a
continuous function as one that can be drawn without lifting one’s pencil—although
they did not often hold this conceptualization themselves, and instead acknowledged it
as a hypothetical argument someone else might employ. For example, both T-13 and
T-15 concluded that the claim was true but recognized that a counterargument might
stem from the perspective that “it is obvious to the eyes of the reader that the function
is not ‘connected.’”

T-13 noted that the naive conceptualization of continuity is “often an instructional
language used by teachers and online to try and help students decide whether a function
is continuous or not.” Similarly, T-12 recognized that “the determination of continuity
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by drawing without lifting your pencil is an informal, practical way to determine the
continuity of a function.” Despite initially using this method herself, T-12 later used
Definition-1 to argue that the claim is true. She found this to be “a more precise
mathematical method which lends mathematical rigor to backing up the truth of the
claim.”

DISCUSSION AND IMPLICATIONS

Definitions are a pillar of mathematics, yet the notion of definitional ambiguity has not
yet received significant attention in mathematics education research. Lack of an
agreed-upon, formal definition can lead to cases of definitional ambiguity. In this study
we focused on the existence of non-equivalent definitions for continuous function that
could be extracted from related stipulated definitions for continuity at a point. The
following observation made by T-28 summarizes, in part, the pedagogical implications
from our study:

As we were discussing a lot about how there is no agreed upon definition for many math
claims and that different definitions can come up depending on where you are located for
your learning. I never thought about this before. I always thought math was the one thing
that was the same everywhere. But | am now seeing that math definitions change over time
and location.

Participants reflected on their involvement with the task as an ‘“eye-opening”
experience, which, for some, changed their perceptions of mathematics. Several
participants reported on their search for a “correct” definition, and their dissatisfaction
with the ambiguity that they instead discovered.

As noted in previous studies (Foster, 2011; Marmur & Zazkis, 2021), productive
ambiguity can be used to foster learners’ knowledge and enrich classroom discussions.
Involving teachers with cases of productive ambiguity, such as in the task described in
this study, is a valuable pedagogical activity that can expand teachers’ knowledge as
well as enrich their appreciation of mathematics as a discipline. It can be used not only
as a prelude for clarifying definitions and the importance of definitions in mathematical
activity, but also lead up to a discussion on the nature of mathematics as a human
endeavor and on ambiguity as a driving force in mathematical creativity.
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WHAT IS CONVINCING? — PRIMARY STUDENT TEACHERS
UNDERSTANDING OF MATHEMATICAL ARGUMENTS

Peter M. Klopping

University of Potsdam, Germany

A guideline for a semi-structured interview was developed that aims at understanding
primary teachers’ knowledge and conceptions towards the field of argumentation and
reasoning mathematically. Apart from open questions, a repertory grid was
implemented to evaluate students’ reasons and arguments. This approach aims at
connecting the teachers’ evaluations of given students’ arguments with their
knowledge and conceptions of argumentation. The data analysis of 14 German student
teachers for primary education focuses on the question: “What makes a convincing
argument?” The student teachers’ views of a convincing argument vary from
mathematical correctness and rigour; understandable and clear statements to
explanations and illustrations of mathematical phenomena within the argument.

THE CONTEXT OF THE STUDY IN THE FIELD OF ARGUMENTATION

Arguing, reasoning, conjecturing, and proving amongst others are essential activities
in mathematics as a discipline and in mathematics in educational settings as they
contribute to a strong foundation for understanding and learning mathematics. All of
these activities describe ways of thinking mathematically and encountering
mathematical problems. Fostering mathematical thinking in contrast to focus on mere
calculation skills should therefore be one of the main aims in mathematics classrooms.

In the last decades, these cognitive processes and their role have been widely examined
in educational settings, which underpins further their importance for teaching and
learning mathematics. Each one of these habits show broad fields in the research of
mathematical education. Besides mathematical proofs, argumentations or reasons (or
the processes leading to these products) as objects of research, understanding and
explaining the cognitions, affects, and behaviors of the persons involved are some of
the main aims of research in these areas.

Regarding mathematical argumentation in school settings, the specifics of teachers’
role in argumentation and proof is still object of discussion. Nevertheless, there is
enough evidence showing that teachers are playing a significant part in argumentative
processes taking place in the classroom. Teachers show responsibility for managing
students’ participation in an argument and in primary education especially, they initiate
classroom argumentation. Educational settings that foster argumentative opportunities
highly depend on the teachers. Consequently, examining teacher conceptions and their
professional knowledge of argumentation is relevant to educational research.

Following an exploratory case study, a guideline for a semi-structured interview was
developed that aims at understanding primary teacher conceptions towards the field of
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argumentation and reasoning mathematically. Apart from open questions in this
direction, a repertory grid (Kelly, 1955) was implemented to gather criteria used by
teachers to evaluate and discuss students’ reasons and arguments. The structure of the
interviews aims to highlight the connection between the conception, the knowledge
and the classroom practice carried out by the teachers in argumentative settings as one
facet of this complex phenomenon (Klopping & Kuzle, 2019). The presented data
analysis focuses on an essential component of argumentation. More precisely, it will be
examined what the interviewees believe to be a convincing argument.

Therefore, the theoretical foundation of this study can be found in two different fields.
On the one hand, teachers’ mental structures are of importance especially regarding
professional knowledge and conceptions of mathematical argumentation. On the other
hand, paying attention to mathematical arguments, their structures, and their quality is
inevitable for the methodological design and analysis of the data.

TEACHERS’ PROFESSIONAL KNOWLEDGE AND CONCEPTIONS

When it comes to professional knowledge of mathematics teachers, there exist enough
theoretical and empirical based models that adequately describe different facets of this
construct. Under the assumption that the varying aspects of teachers’ professional
knowledge are interdependent, Kuntze (2012) elaborated a pragmatic notion of
professional knowledge where beliefs and convictions are included. This
understanding of professional knowledge suits the purpose of this study because
socio-mathematical norms (Yackel & Cobb, 1996), and more specifically the
acceptance of mathematical arguments, don’t rely on either knowledge or beliefs
alone. Rather than considering beliefs alone, an even broader structure like
conceptions seems to be fruitful here. The term conception can be described as “a
general notion or mental structure encompassing beliefs, meanings, concepts,
propositions, rules, mental images, and preferences” (Philipp, 2007, p. 259).

Related research has focused on teacher knowledge and beliefs in the domain of proof
and proving, the teaching of conjecturing, and argumentation (e.g., Knuth, 2002). All
of this research merely considers secondary and tertiary education showing a lack of
recognizing the importance of teacher views for primary education.

Investigating the role of primary teachers on argumentative processes in the
mathematics classroom, the combination and interplay of mental structures,
knowledge and conceptions, is key to understanding this complex field.

ARGUMENTATION IN THE MATHEMATICS CLASSROOM

Considering a mathematical conjecture whose validity is yet uncertain, two main
aspects lay in the interest of mathematicians. Firstly, verifying the conjecture and
therefore examine if it holds true. Secondly, explaining why the validity holds to
further make sense of the statement and the mathematics behind it. Both aspects seize
on two fundamental functions of mathematical proofs: the verification of a statement
and its explanation (Hanna, 2000). Hence, a mathematical proof considers primarily

3-36 PME 45 —2022



Klopping

the validity of a statement. In the specific communication about this validity, both in
dialogue with others and as an interior monologue, verification and explanation is
expanded by the intention to convince somebody.

Deductive proofs certainly convince in most mathematical discourses. Nevertheless,
“pre-formal” types of proof exist such as “action proofs” or pragmatic proofs
(Balacheftf, 1988) which present convincing arguments as well, especially at the level
of primary education. The communication process about the validity of a mathematical
conjecture shows a strong argumentative nature and conviction can be reached even
without “rigorous” proofs. This is seen primarily in communication and argumentation
processes observed in mathematics classroom. As these processes depend highly on
the interaction of the persons involved, the acceptance of valid arguments is yet to be
discussed in classrooms (Krummbheuer, 1995). The acceptance of an argumentation,
and this includes proving, and the persuasive power of the used arguments depend on
the social context, on the persons interacting with one another. Such
socio-mathematical norms are constituted in the classrooms but depend on the
interaction of students and teacher, especially at the primary level (Yackel & Cobb,
1996). Representation, structure or correctness are therefore not the only factors of
convincing proofs, arguments or reasons. The teacher’s view, their conception of
argumentation and their knowledge, influences the socio-mathematical norm in the
classroom and therefore the acceptance or refutation of an argument.

Assuming an influential role of teachers in argumentative processes and specifically in
the acceptance of an argument, raises the question what qualities or characteristics,
according to teachers, an argument should have to be convincing in the classroom. The
research question focuses on the teachers’ perspectives and investigates what a
convincing argument consists of.

METHODOLOGICAL CONSIDERATIONS AND DATA PROCESSING

The socio-mathematical norm (Yackel & Cobb, 1996), reflected in the acceptance of
mathematical arguments, is formed by a personal understanding, experience, and
conception of argumentation, reasoning, and proving in mathematics. In order to cope
with this complex field a qualitative approach was chosen. Because of this, an
interview guide was developed and later on, re-structured, and expanded
methodologically based on the experience of a previous case study on mathematical
argumentation. As knowledge, beliefs and attitudes as cognitive structures are
intertwined and interdependent (Kuntze, 2012; Philipp, 2007), the methodological
expansion led to a search for an adequate approach which then ended in the
psychological theory of personal constructs by Kelly (1955). From his theory, Kelly
(1995) derived a research instrument to describe “his” personal constructs: the
so-called Role Construct Repertory Test (REP-test or repertory grid). In a repertory
grid, persons, objects or situations, so called elements, are evaluated using constructs.
Via a linking mechanism elements and constructs are connected. Integrating Kelly’s
ideas to established approaches of qualitative research and adapting them for research
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on mathematics education doesn’t mean to reject other methods, it should be rather
seen as a synergy.

Structure of the interview and repertory grid

Hence, the interview guide consists of two main parts. Starting with open questions
about argumentation in mathematics as a discipline (e.g., “What is the object of
argumentation in mathematics?”), the subjects is narrowed to argumentation in the
mathematics classroom (e.g., “When should students start to work argumentation
tasks?”’). Further on, the interviewees are invited to talk about their own experience
with reasoning tasks and classroom argumentation (e.g., “Please talk about a situation
you experienced in your lessons in which students had to justify their answers.”). And
lastly, the interviewees are asked to evaluate student explanations referring to the
following mathematical statement on parity: For any positive integers a and b, if one of
them is odd and the other summand is even then the sum a+b is an odd number. Healy
and Hoyles (2000) followed a similar approach to explore students’ views on given
arguments but as a quantitative study it missed the opportunity to explain how the
students’ choices were made.

Adapting Kelly’s theory (1955) for this particular study, it must be specified what the
elements and what the constructs should be. Six student explanations and a self-written
argument of the interviewed person comprise the elements of the grid. They are
supplied and should show a broad variety. To reach this variety, Healy and Hoyles
(2000) included in their questionnaire for instance three types of arguments: empirical
arguments, narrative arguments, and algebraic arguments. Their theoretical framework
is based on the taxonomy of proofs by Balacheff (1988) which can be applied to
arguments and reasons as well. It distinguishes between naive empiricism, crucial
experiment, generic example, thought experiment, and calculation on statements
which fall into two categories: Pragmatic proofs and conceptual proofs (Balacheff,
1988). The elements selected for the repertory grid in this study are based on these
categories. To incorporate a broad variety of arguments, at least one element covers
each category. As an example, Figure 1 illustrates two provided elements.

Cosima’s explanation lda’s explanation

This is even: And this is an odd: You can divide all even numbers by 2 and odd numbers
0000 (X X ] not. So, 2 is not a divisor of both.
o000 o0

But if you want to break up the result in 2 then both

Together it is odd because one is left alone. - . .
numbers must be divided by 2. That is why the sum is
. . . . . . . always odd.
000000

Figure 1: Student explanations as elements of the grid
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The constructs can be understood as evaluation criteria consisting of two opposing
poles, two contrasts. They are elicited using triads of the given arguments. With this
triad, the participants are asked what two of these arguments have in common which
differs from the third. These common characteristics are then employed as evaluation
criteria. However, if possible constructs emerge already during the open question part
of the interview they can be included as well. Finally, for each construct all
explanations are evaluated on a five-point rating scale (see Figure 2).

Fiona
elements
- o
°z
c = c c c c <
kel il il o ® il Rl o s
constructs o E’ - ‘é § E 5 E § ‘é g opposing pole
S35 E T <35 25 235 0 S S E pposing p
(5) S5 B a ca ol ca 23 S o (1)
c x o X > X £ x o X O X x &
< o (I L o S o T o T o [
with tiles 1 5 - 1 3 1 3 digits/numbers
specific 3 5 1 3 5 1 5 abstract
a few examples 3 3 1 5 3 1 5 no example
universal validity 1 3 5 2 1 5 4 a single
situation
logical math. 2 3 1 2 2 5 4 no mgth.
chain chain
comprehensible 5 5 3 5 5 3 2 more complex to
comprehend

Figure 2: Fiona’s filled-out grid

As the evaluation criteria vary from one interviewee to another, the participants are
asked to explain their decisions during the evaluation, which in addition simplifies the
analysis as it is less open for interpretation.

Data sample

14 German student teachers for primary education, all of whom having at least some
teaching experiences in primary mathematics, were interviewed. The recorded
interviews lasted between 45 and 90 minutes, were transcribed and analyzed using
computer supported qualitative content analysis. The repertory grids were digitalized
as well and underwent a separate analysis. Combining both findings from the open
section of the interview and from the grids is a key idea in the methodological
approach.

WHAT IS CONVINCING? - RESULTS

Central to the research question is the data regarding the interview question: “What
makes a convincing argument?” Before presenting all results, Fiona’s and Greg’s cases
are given as an example of the data analysis and interpretation.
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Interviewer: In general, what makes a convincing argument?

Fiona: First of all, others should be able to follow the thoughts, the persons to
whom I’m presenting it. ... So yes, I can take something from one topic and
transfer it to a different topic. And it has to be logical, it has to make sense.

Fiona’s remark on convincing arguments relates to the audience and depends therefore
on the social context. What she means by “be able to follow the thoughts” is not further
explained at this point. The other aspect in her understanding of convincing arguments
refers to more abstract structures of an argument. A similar focus on the argument’s
structure can be found in Greg’s answer:

Greg: Well, I believe, an argument convinces in the way that it is, as we call it,
falsifiable. In the sense that no counter argument exists. So, an
argumentation is appropriate, if it is logically structured, so that the
argumentation is completely logical. And against this logical structure no
counter argument can be found. Then it is for me convincing.

Later in the interview, when the interviewees are asked to evaluate the students’
arguments, the constructs of the grid can refer back to those statements. Fiona picks up
the notion of “following the thoughts™ in arguments and explains her rating:

Fiona: Exactly, they all are totally easy to follow. For me, Hannah’s, Gina’s,
Cosima’s and Anton’s reasons are all at 5.

Interviewer: Why?

Fiona: Because they are written with a lot of examples. In each given reason there
is at least ... one example. That makes it easy for me to follow.

If the argument consists of “a lot of examples™ it is with Fiona’s understanding “easy to
follow” and fulfils one aspect of a convincing argument. During the evaluation with
the grid she names this construct “comprehensible” whereas the contrasting pole is
“more complex to comprehend” (see last row in Fiona’s repertory grid, Figure 2).
Fiona further clarifies that her own argument is still “hard to follow” because little
explanation is given. Here it seems that a convincing argument for Fiona should
include not only examples but also explanations.

Greg’s understanding of a convincing argument is illustrated quite well with the data
from his grid (Figure 3). The construct “convincing” is rated almost identical to the
criterion “completely logical (generalization)” which is not surprising as his previously
answer confirms exactly this. Interestingly, “justified terms” has a very similar rating,
indicating that for him the proper use of mathematical terms is part of a convincing
argument with a logical structure. On the other hand, the representation of an
argument, whether it is “visual” or “symbolic”, doesn’t in Greg’s understanding
contribute to the conviction.

If Fiona would present a convincing argument in a classroom situation, one can from
the data in the grid assume that this argument most likely considers different
representations, is abstract, gives an explanation, consists of deductions, exemplifies
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its reason, and is “easy to follow” for the students. Distinctively, Greg would focus on
the logical structure of an argument being general in nature and would justify the
mathematical terms in use.

Greg
elements
L
° 3
c c c c c c c o
o 0 o 0 o 2 pe o s
constructs - E © E E E 5 E E’ E g opposing pole
€5 ES .3 0 5 25 05 S E pPosing p
(5} S5 0 o c o S o c o -~ o Q g (7)
c X o X SN £ x o X 3 % x 2
< o o o o [CAY) T o T o (=]
visual 1 5 2 1 4 2 5 symbolic/
convincing 1 5 2 4 3 5 5 not convincing
completely logical 1 5 2 4 372 5 5 case/example
(generalization)
justified terms 2 5 1 4 4 5 5 Zzhljssmxifg:

Figure 3: Greg’s filled-out grid

Looking at the other participants, they can be grouped to similar aspects of convincing
arguments. Fiona and three other student teachers highlight the idea of
comprehensibility, where an argument is convincing if the train of thought can be
followed. A group of four participants show a close understanding to the former, but
demand an explicit explanation and justification of the given argument. Greg and
another student teacher focus on the logical structure and on a sound reasoning. This
might be the closest perspective to a general understanding of proofs. Mathematical
correctness, the use of mathematical “facts” and “rules” is dominant in a group of three
interviewees. Finally, there is one person stating that a convincing argument needs to
give an insight in and illustrate the mathematical phenomena at hand.

FINAL THOUHGTS AND CONCLUSION

The general remarks on a convincing argument include comprehensibility, logical
structures, mathematically correctness and even illustrations of the mathematics within
the argument. Nevertheless, there are different approaches in each of the participants’
answer. The analysis shows how the idea of a convincing argument is reflected in
evaluating student explanations. More generally, it can be assumed that what is
convincing differs, even if it is subtle, from teacher to teacher depending on their
professional knowledge and conceptions of argumentation.

Furthermore, the analysis is an example of how a repertory grid might enrich existing
research approaches. In a semi-structured interview, teachers’ professional knowledge
and conceptions can be explored but the repertory grid technique offers additional and
helpful data to deepen the understanding of this complex field.
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This study captured middle and high school teachers’ perceptions of what they learned

from professional development 3-4 years after participating in one of three NSF funded
year-long professional development (PD) projects. We surveyed teachers (n=66) from
three different PD projects on the types of content, pedagogy, and resources that they
remembered learning and continue to use when teaching mathematics. Results indicate
that teachers remember and use many aspects from PD experiences 3-4 years down
the road especially those they find relevant to their current teaching position. Most
residual learnings from PD also appear to be highly aligned with the goals and
intentions of the PD developers and researchers and these learnings have evolved
through colleague collaboration and other PD opportunities.

INTRODUCTION

One central challenge for the field of teacher professional development (PD) is how to
design interventions that target teacher knowledge, while also maintaining a focus on
instructional practice and student learning (Jacobs, Koellner, Seago, Garnier & Wang,
2020). A number of researchers have worked to address this challenge and there is now
a strong research base delineating critical design features of effective PD (e.g., Borko,
Jacobs & Koellner, 2010). The consensus in the current PD discourse about features of
effective PD include a focus on mathematics content, student learning of content,
active learning opportunities for teachers, coherence, duration, and collective
participation (Sztajn, Borko, & Smith, 2017). Although some PD programs that adhere
to design recommendations by the literature have produced encouraging results (e.g.
Franke, Carpenter, Levi & Fennema, 2001), others have proven less successful (e.g.
Jacob, Hill & Corey, 2017).

It is not clear why there have been mixed results from rigorous empirical studies of PD
incorporating these design recommendation that contradict conventional wisdom
among the field. There are many reasons that potentially could account for these
varying results such as: the content of the specific programs evaluated may have been
inefficacious, fidelity to the materials or pedagogical practices may have deviated from
the identified goals and practices, difficulties may have resulted from scaling the
program to multiple sites with different facilitators, or issues may have arisen with the
research design and methodology. An alternate perspective is most, if not all, of the
impact studies that have been funded recently have been large-scale quantitative
studies. Many have shown incremental change in teacher knowledge and practice one
year following the intervention (Murata et al., 2012). This need for clarity may rest in
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an often-ignored issue related to the time allowed for funded projects to study the
impact of PD on teachers and students. Many large randomized controlled designed
studies look at pre post data across one year and at most, use a post-post measure one
year out. We hypothesize this is not enough time to measure PD impact. We argue that
for teachers incorporate new ideas and then to plan, implement, reflect and modify
instruction may require more time to be reflected in practice and in research results
than the typical one-year that is often related to funding cycles.

The Taking a Deep Dive (TaDD) research study examines the residual impacts of three
different professional development models on teacher learning, specifically 3-4 years
after the actual PD experiences. The project is conducting a rigorous cross case analysis
across participants from the different projects across the US. This paper is focused on
a survey that was given to participants in May 2019 which was 3-4 years after their PD
experience. Although this study focuses on self-report survey data, findings contribute
to the PD landscape of PD design and survey design. Findings identify indicators that
seem to provide evidence of why some teachers might learn and implement more from
a given PD compared to another (others). Our analysis also elucidates how a carefully
designed survey focused on the constructs of content, resources, and pedagogy tell an
important story related to the similarities and differences of the PD and some potential
limitations.

THEORETICAL FRAMEWORK

PD models fall on a continuum from adaptive to specified (Borko, Koellner, Jacobs &
Seago, 2011). On one end of the continuum are adaptive models, in which the learning
goals and resources are derived from the local context and shared artefacts are
generally from the classrooms of the participating teachers. In these models, the
artefact is selected and sequenced by the facilitator and/or the participating teachers,
and the related activities are based on general guidelines that take into account the
perceived needs and interests of the group. On the other, specified models of PD
typically incorporate published materials that specify in advance teacher learning goals
and provide resources and guides to implement the PD. In video-based specified PD,
the video clips are typically pre-selected and come from other teachers’ classrooms.

The nature of what teachers take up and use across the continuum has the potential to
shed light on factors that are associated with the teacher learning related to content and
pedagogy. This study examines three professional developments that fall on different
parts of the continuum. The goal is not to determine which types of PD are “best”
because each has its affordances and challenges, but rather to better understand the
variance of teacher uptake and use (in their classroom contexts) within and across these
PD experiences. Understanding and unpacking variance among and between types of
PD offers the potential to identify the factors that impact uptake and use from PD. This
paper examines how teachers’ self-reported uptake differs across PDs located at
different points on the adaptive-specified continuum. Specifically, one is highly
adaptive, one is highly specified, and one lands in the middle. We believe conducting
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a cross-case comparison aids in helping us understand the factors associated with
uptake related to content, pedagogy, and resources.

OVERVIEW OF TaDD PROJECT

This three-year impact study, Taking a Deep Dive (TaDD), collects qualitative data
from three large U.S. National Science Foundation PD projects in order to use cross
case analysis to further inform what teachers take up in their classrooms 3-4 years after
the initial professional development experiences. We want to explore how certain PDs
get applied in specific educational contexts in different geographical locations. This
paper uses a comparative case analysis and focuses on the portion of the TaDD study
that investigates self-reported learning related to pedagogy, content and resources
taken up and used from the following three NSF PD projects one to two years after the
project and funding ended. In the next section, we briefly describe the three different
PD projects.

Learning and Teaching Geometry (LTG) LTG is an efficacy study of the learning and
teaching geometry professional development materials: Examining impact and
context-based adaptations, sought to improve teacher’s own knowledge and
instructional strategies in transformations-based geometry. This PD consists of 54
hours of highly specified video-based PD grounded in modules of dynamic
transformations-based geometry which is aligned with the Common Core State
Standards in mathematics (CCSSM). Through video analysis, teachers work together
to solve problems and further their knowledge in mathematics teaching in geometry.
The PD allows teachers to better support students in their attempt to gain a deeper
understanding of transformations-based geometry through activities like rate of change
on a graph, scaling activities, and similarity tools to name a few. LTG is a specified
PD as the content and pedagogical goals of the PD are clearly articulated for each
workshop.

Collaborative research TRUmath and Lesson Study (LS) is a project that supports
fundamental and sustainable improvement in high school mathematics teaching. LS is
aimed to engage in design research to develop and implement a replicable model of
teaching for a coherent, department-wide approach. In the PD, teachers collaboratively
created focused and coherent lesson plans from their curriculum aimed at providing
students the opportunity to gain a deep understanding of mathematics and the ability
to make connections. The PD took a unique twist on lesson study by using the TruMath
framework as a common observation tool that could guide teacher noticing and anchor
discussions related to the lab lessons. The lab lessons are one teacher volunteers to
teach a lesson and other participants in the LS observe quietly in the back of the
classroom. The TruMath framework focused discussion and analysis of classroom
interactions across five dimensions. Teacher teams identified a goal from one of the
dimensions of the framework that they wanted to focus more deeply on. LS is an
adaptive form of PD that utilized the TRU framework but allowed for teachers’ ideas
to guide the workshops.
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Visual Access to Mathematics: Professional development for teachers of English
Learners (VAM). The VAM PD, the focus PD of this paper, is a “60-hour blended,
face to face and online course to build teachers’ knowledge of and self-efficacy about
LRT strategies to strengthen English Learners (Els) problem solving and discourse in
middle grades” (De Piper et al., 2021 p. 491). The goals and intentions of VAM were
to cultivate in teachers the fluent use of representations, anticipation of students’
strategies, the ability to interpret and construct various mathematical solutions, and to
reason with and across representations. Teachers learned how to strategically select
and align VRs with their instructional goals, anticipate student thinking and
misconceptions, and then implement lessons using these strategies in their classrooms.
Once implemented they would share experiences and student work, and collaboratively
and independently reflect on the teaching cycle in the VAM PD online workshops.
VAM falls in the middle of the adaptive-specified framework as the face-to-face
workshops had specified and intentional goals, and the online professional learning
meetings were guided by the teachers using artefacts of practice to guide their
discussions.

METHODOLOGY AND METHODS

Sixty-six participants took a 32-question survey (28 LTG, 25 VAM and 13 LS).
Teachers also provided background information. All teachers held an undergraduate
degree and 88% held a graduate degree, on average, but larger proportions of LTG
(93%) and VAM (96%) teachers held graduate degrees compared to LS teachers (62%;
t=3.29, p<.01). In addition, VAM teachers reported over 16 years of experience
teaching, significantly more than LS and LTG teachers who reported approximately 10
and 12 years, respectively (t=2.81, p<.05 and t=2.57, p<.05, respectively). On average,
15% of teachers were currently teaching Geometry with no differences between
groups.

The survey included both closed and open-ended questions that asked participants to
reflect on their PD experience and characterize their past and/or current use of the PD
content, pedagogy and materials as well as the support they received to implement new
content and instructional practices. The survey included seven Likert scale questions.
Participants responded to statements on a scale of 1-10, as well as eighteen follow up
questions that allowed the participants to provide more details about their responses.

We coded the 18 questions on the survey from all 66 participants. We created a coding
manual starting with apriori codes. The apriori codes were aspects of effective
professional development from the literature (e.g. analysing student thinking, specific
content, and representations used), supporting diverse learners. We then included
emergent codes that appeared frequently and appeared relevant to the programs. We
began with three researchers coding one survey from each project. We came together
to discuss codes, add codes to the manual, and reconcile differences. We then
continued this process with seven surveys from each project to achieve inter-rater
agreement at 91%.
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Once all surveys were coded, we calculated the amount of time a participant mentioned
each code in their survey responses. For each of the four domains, we identified and
averaged the specific codes included within that domain. For instance, we identified
four codes that were related to content; these codes included GCSL (general content
student learning), GCTL (general content teacher learning), SCSL(specific content
student learning), and SCTL(specific content teacher learning). SCSL would refer to a
comment on the survey that indicated specific content (e.g. dilations) and discussed a
focus on student learning. Then we identified three codes related to pedagogy; these
codes include MS (multiple solution strategies), SSDL(student strategies for diverse
learners), and ST (student thinking). We identified six codes that were related to
resources; these codes included GR (general resources), RSDL (resource to support
diverse learners), RTL (resource for teacher learning), SR (student resource), TSML
(technology support math learning), and V (mention of video to support noticing).
Lastly, we identified four codes related to support; these codes include C
(collaboration), FI (facilitator impact), CS (coach support), and PS (principal support).
Finally, percentages of comments were created from the four domain averages and
percentages of comments of the individual codes within domains were calculated for a
deeper understanding of teacher responses.

ANALYSES

To analyse the data, we used descriptive statistics, paired samples t-tests, and analyses
of variance and covariance with pairwise comparisons using the Bonferroni test to
identify and understand the differences and similarities between uptake by project (LS,
LTG, VAM). To control for pre-existing differences, graduate degree and years of
experience teaching were included as covariates in the analyses of covariance.
Measures of teacher undergraduate and graduate degrees and currently teaching
geometry were included in preliminary analyses but found to be non-significant and
dropped from subsequent analyses.

RESULTS

To identify what teachers remembered from their PD experiences 3 to 4 years ago and
what they have continued to use related to that PD, we analysed the average
percentages of comments made by teachers. Table 1 presents the percentages of
comments within domains and across projects and the results of the analyses of
covariance adjusted for teacher years of experience teaching.

Types of comments within projects. Within projects, paired samples comparisons
within the LS group identified a significantly larger percent of comments focused on
support compared to content (t=6.70, p<.001), pedagogy (t=4.76, p<.001), and
resources (t=4.62, p<.01). While this group also commented more on resources than
on content (t=3.38, p<.01), both LTG and VAM emphasized resources more than all
other domains: content (t=2.86, p<.01 and t=14.21, p<.001, respectively), pedagogy
(t=10.70, p<.001 and t=17.89, p<.001, respectively), and support (t=4.14, p<.001 and
t=12.82, p<.001, respectively). LTG and VAM also focused more on content (t=9.90,
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p<.001 and t=3.80, p<.01, respectively) and support (t=8.29, p<.001 and t=9.48,
p<.001, respectively) than on pedagogy.

To summarize, although the domain resources was somewhat emphasized in the LS
project, content and pedagogy were emphasized far less. The LTG project, a specified
PD, had the largest percentage of comments that were distributed among the categories.
The largest percentage was related to resources and then percentages were fairly evenly
distributed between content and support, but less so for pedagogy. The VAM teachers
mostly emphasized resources followed by support and content and pedagogy.

Types of comments across projects. Comparing teacher comments across projects,
results of the analyses of covariance identified distinct patterns of comments about PD
experiences for each group (see Table 3). LS participants were significantly more likely
to mention support and pedagogy compared to both the LTG (t=7.81, p<.001 and
t=3.71, p<.01, respectively) and VAM participants (t=8.28, p<.001 and t=3.17, p<.01,
respectively). Their comments included principal and coach support as well as
colleague support. Support was the domain qualitatively discussed most throughout
the survey.

LTG participants emphasized content significantly more than both LS (t=5.51, p<.001)
and VAM participants (t=6.22, p<.001) and resources more than LS participants
(t=4.35, p<.001). On the other hand, VAM participants mostly emphasized resources
and did so significantly more than both LS (t=8.55, p<.001) and LTG participants
(t=5.62, p<.001).

Visual
LTG PD Access for
Lesson Efficacy ELLs in

Domains of Study PD  Study Math PD
teacher (LS, (LTG, (VAM, Pairwise
comments n=13) n=28) n=25) F comparisons
LTG>LS***
Content 10% 29% 10% 25.76*¥*%*  LTG>VAM***
LS>LTG**
Pedagogy 13% 3% 4% 7.34%* LS>VAM**
LTG>LS***
VAM>LS***
Resources 23% 43% 65% 37.56%*%*  VAM>LTG***
LS>LTG***
Support 54% 25% 21% 38.89%** [ S>SVAM***
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Total 100% 100% 100%

Note. Results from ANCOV A adjusted for years of experience teaching.
*Ep <.01; *¥**p <.001.

Table 1: Results of ANCOVA on percent of teacher comments across the four
domain averages, by project (N=66)

Results indicate that the teachers’ perceived uptake after 3-4 years was highly related
to the goals and intentions of the PD projects. As the PD projects’ goals and intentions
were identified at different points on the adaptive — specified continuum, differences
were highlighted based on comments related to content, pedagogy, resources, and
support. In some ways this is not surprising that the different PD programs had different
emphases, and these were revealed in the clusters of codes related to content, pedagogy,
use of resources, and support yet it provides promising evidence that PD learning held
residual value.

DISCUSSION

This study reveals that the teachers that participated in the three NSF funded PDs, 3-4
years before taking this survey, highlighted and wrote about the main goals and
intentions of the PD that they attended. Although this may not be surprising that the
teachers remember what the facilitator and PD developers intended, it shows promise
that the PD’s yielded high residue of teacher learning 3-4 years after the PD workshops
especially when the content and the pedagogy of the PD were relevant, useable, and
transferrable across the daily lessons of the teachers.

The LS teachers generally tended not to emphasize content, and when they did, they
mostly discussed aspects of content that were generally related to teacher or student
learning. In fact, they mentioned teacher learning more than VAM (t=3.06, p<.01) and
student learning more than LTG (t=2.50, p<.05). When discussing pedagogy, most
comments were related to working with diverse learners. If they were discussing a
resource, they typically were discussing a specific resource, and did so more often than
LTG (t=3.71, p<.001). Most likely, the specific resource they discussed was the TRU
framework which was the centre piece of this project. LS teachers were significantly
more likely to discuss specific resources. When talking about support, they mostly
emphasized support from colleagues and more so than VAM (t=2.71, p<.05). Although
only 21% of their comments were about coach support, this percentage was still
significantly larger than for LTG (t=3.05, p<.05) and VAM (t=3.09, p<.01).

The LTG project, the most specified PD, had the most distribution between the four
categories. Resources, both general and specific, were provided to participants
including rich tasks, videotapes and applets to support the implementation of
transformations-based geometry in middle and high school classrooms. LTG teachers
commented specifically on the geometry content they learned and used in their
classrooms which is not surprising since the PD was specified and the content new to
many participants.
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The VAM PD, is also a specified PD but the specificity did not only lie in the content
but in the strategies, specifically using representations, to support emergent bilinguals.
The VAM teachers commented on resources more than the other areas - content,
pedagogy and support, and commented on resources more than teachers in the LS and
the LTG PDs. The LTG and VAM projects did not solicit support from principals and
coaches and these categories of support were not mentioned often by either group, but
they did discuss the support they received from their colleagues and from the
facilitators during the PD experience.

This study has a small sample size and results need to be taken with caution. The
findings do provide some evidence that teachers remember and use aspects from a PD
that they participated overtime and that there is residual knowledge that has endured.
More research is needed to understand teacher learning over longer periods of time and
perhaps to increase funding cycles for this to happen. Our next steps are to continue in
this line of inquiry by conducting the cross case analyses from these projects. We will
analyse how classroom practices related to the goals and intentions of the PD project
are reflected in their teaching. We will conduct think aloud protocol interviews to
understand teacher learning more fully and how this learning is evidenced in daily
classroom practice through their voices.
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ANALYSING PROCESSES OF TRANSFER IN LEARNING BASIC
FRACTION CONCEPTS: A DIDACTICALAPPROACH TO
TRANSFER

Sebastian Kollhoff
Bielefeld University

This paper reports selected findings from a study investigating processes of transfer in
the development of basic fraction concepts. For this study transfer is conceptualised
as a process based on the didactical model of Grundvorstellungen. This approach
enables the analysis from both a normative and a descriptive perspective. Comparative
interaction analyses of students working in dyads provide deep insight into the
development of basic fraction concepts.

INTRODUCTION

Mathematical content is typically introduced by building on concrete experience with
real-world activities that become progressively more abstract and symbolic (Scheiner,
2016). Thus, the learning of fractions usually starts with the idea of sharing or dividing
real-world objects or their depictions into equal parts. This is supposed to form the
basis for understanding the general concept of a fraction as a part of a whole. Learning
then usually proceeds by sharing and dividing various other objects and their depictions
in multiple ways. By varying the objects, representations, and distributions the learners
are supposed to abstract the elementary production activity for any fraction, that is
dividing a whole into n equal parts and duplicating a part m times to get a fraction Z.
This concept is then applied to various wholes, e.g. quantities (area, weight, length,
money, etc.) and various iconic representations to extend the validity and applicability
of this concept to a multitude of different situations (Behr et al, 1983; vom Hofe &
Blum, 2016). Learning progressions like this are particularly based on processes of
transfer in the sense that students are required throughout to transfer and connect their
prior learning to new situations and applications and in this way extend and further
develop their understanding of the concepts they are learning.

From this didactical perspective mathematics learning requires transfer of concepts,
procedures, and structures in predominantly three types of situation (Kollhoff, 2021):

e Transfer between subject-related contexts and applications.
e  Transfer between different representations and modes of representation.

e Transfer of concepts, procedures and structures to create, substantiate and
justify mathematical connections.

The study reported in this paper investigates such processes of transfer. Research has
provided rich evidence that the development of fraction understanding is difficult in
general, requiring conceptual changes and a broader understanding of number and
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operation concepts (Gabriel et al., 2013). In particular, it can be highlighted that
important obstacles in the learning process can be explained by a lack of transfer as
well as negative and overzealous transfer that lead to misconceptions (e.g. “natural
number bias, N1 & Zhou, 2005) as a consequence. However, very little is known about
the underlying processes of concept development and to what extent these explanatory
models for learning fractions apply to authentic classroom contexts.

A main aim of this study was to investigate processes of transfer in authentic student
interactions in class. For this reason, a didactical approach to transfer was developed
that builds on the model of Grundvorstellungen (vom Hofe & Blum, 2016). The applied
conceptualisation of transfer will be introduced in the next section.

GRUNDVORSTELLUNGEN AND PROCESSES OF TRANSFER

Research on transfer has historically and epistemologically been predominantly
conducted in controlled teaching experiments to compare and evaluate the efficiency
of instructional methods. The mathematical content of these teaching experiments is
often restricted to procedural skills and techniques that can be applied algorithmically.
Only recently (cf. Hohensee & Lobato, 2021) research on transfer in mathematics-
related contexts has focused more on semantically rich learning content, like the
concept of proportionality (Lobato, 2012) or the empirical law of large numbers
(Wagner, 2006) as well as investigating mathematics learning in school. Consequently,
most theoretical perspectives on transfer are intended for application in research rather
than teaching contexts und thus yield only limited guidance and directions for
mathematics teaching and learning in school. In this respect, within the model of
Grundvorstellungen (vom Hofe & Blum, 2016) transfer can be conceptualised in both
didactical and empirical contexts.

Grundvorstellungen: Normative and Descriptive Perspectives

The concept of “Grundvorstellungen” (GVs) is deeply rooted in the German tradition
of “Stoffdidaktik™. GVs as didactical categories formulate prototypical mental models
of mathematical concepts and procedures, which are supposed to: (1) Give meaning to
a mathematical concept or procedure through connecting it to familiar knowledge and
experience, or mentally represented activities; (i1) help learners develop adequate
mental representations of a mathematical concept or procedure; and (iii) support the
application of a concept or procedure in subject-related contexts, e.g. modelling or
problem solving (vom Hofe & Blum, 2016). Thereby, GVs as normative categories
characterise a mathematical concept or procedure and provide interpretations in
various contexts (Kollhoff, 2021; Salle & Cliiver, 2021).

Based on this normative perspective GVs provide a framework to characterise and
describe didactically intended processes of transfer with respect to (Kollhoff, 2021):

e  The conceptual core of a transfer, i.e. what concept, procedure or structure is
supposed to be transferred?
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e The required connections to be made between contexts, representations,
modes of representation, or activities.

e  The expected difficulties, mistakes, and errors based on empirical results and
didactical experience.

Vom Hofe and Blum (2016) differentiate between two types of GVs: Primary and
secondary GVs. Primary GVs are based on concrete activities with real-world objects.
The corresponding concepts can thus be semi-isomorphically represented by real-
world activities and hence have a representational character. In contrast, secondary
GVs are based on mathematical operations with symbolic objects. The constituents of
the corresponding mathematical structures are not real-world activities but imagined
activities with (abstract) mathematical objects and means of representing these objects
(e.g. number line, terms, function graphs). Therefore, secondary GVs have a symbolic
character. This differentiation accounts for the didactical progression from concrete
activities with real world objects to activities with abstract representations in the
development of mathematical concepts.

The normative perspective of GVs 1s complemented by a descriptive perspective to
reconstruct and analyse students’ thinking and investigate their individual
conceptualisations of mathematical concepts and procedures. As descriptive categories
GVs build on Bauersfeld’s (1988) theory of “domains of subjective experience” (DSE).
This theory describes mathematics learning as a non-hierarchical, cumulative, and
separated storing of an individual’s experience in correspondence to their situated
connections. DSE accumulate everything an individual has experienced and processed
as subjectively important. For this reason, DSE are not static entities but are subject to
a dynamic development through activation in various situations. Since DSE are
characterised by very specific elements, e.g. meanings, language, affordances for
activities, available routines, etc., learning can be described as the development of new
DSE or mental models respectively. From this perspective, knowledge is cognitively
and emotionally inseparable from the learning situation. In new situations DSE
compete for activation and the dominant DSE is decisive for the interpretation of the
situation. Although DSE are not organised hierarchically they can be connected to each
other through the construction of a new coordinating DSE and form a network of “self-
referential systems” (Bauersfeld, 1988). Transfer can thus be described as the process
of connecting DSE and forming a new coordinative DSE. The dynamic nature of
establishing these connections leads to the conceptualisation of transfer as a process
(Kollhoft, 2021).

With respect to the normatively formulated Grundvorstellungen and the intended
processes of transfer, the descriptive analysis and reconstruction of students’ thinking
regarding their explanatory models in use provide a ground for comparison to identify
deviations. This enables detailed analyses of transfer processes from an empirical
perspective on one hand, but also allows to consider specific measures of support for
learning (in class).
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The described approach to transfer is highly comparable to the Actor-Oriented Transfer
(AOT) framework (Lobato, 2012) concerning the descriptive perspective. Like the
AOT approach, it conceptualises transfer based on the learners’ individual and
subjective generalisations and interpretations of the learning content in contrast to
expert models to reconstruct and analyse the learners’ explanatory models in use.
However, the Grundvorstellungen approach makes use of the expert models as
normative guidelines that are applied in the construction of the learning materials and
thus describe didactical intentions. This way, it extends the AOT framework by using
expert models as a level of comparison, which therefore allows an evaluation of the
normative models themselves.

INVESTIGATING PROCESSES OF TRANSFER IN FRACTION LEARNING

The study that is reported in this paper investigates processes of transfer in the
progressive development of fraction understanding in an authentic classroom
environment over the period of six weeks (Kollhoff, 2021). Within the limited frame
of this paper, selected aspects of the study will be presented to illustrate the
methodology and discuss selected results.

Research Questions

Among others, the main research questions were: (1) How do processes of transfer that
are intended on a normative level project to the individual learning processes of the
students? (i1) How are the students’ processes of transfer related to their development
of individual conceptualisations of fractions?

Methods

The study was conducted in an introduction to fractional numbers in grade 5 over the
period of six weeks. Based on the normative perspective of Grundvorstellungen a
curriculum with learning materials has been carefully constructed along a series of
intended processes of transfer. Framed by a pre- and post-test, three learning sessions
in which the students worked in dyads (28 students in 14 dyads) were filmed to record
their interaction with each other. The data collection was spread over the six weeks to
enable the reconstruction of the students’ development in the progress of learning. In
these sessions, the students worked on two initiating worked-out examples that were
followed fade-out examples, in which the students had to reproduce the content on the
worked-example. This was followed by a series of transfer problems that required
transfer on various levels.

The qualitative data was analysed in interaction analyses (Cobb & Bauersfeld, 1995)
based on transcripts of the students’ interactions. The analyses primarily focused on
the reconstruction and description of the individual students’ processes of transfer and
their explanatory models in use (Kollhoff, 2021). The results of these analyses were
then taken into a comparative analysis on three levels: (i) The relation of the
reconstructed and the intended processes of transfer, (ii) the results of other

3-54 PME 45 —2022



Kollhoff

students/dyads, and (ii1) processes of transfer in the context of different procedures and
concepts over the period of the course.

RESULTS: TRANSFER OF THE PRODUCTION PROCEDURE OF
FRACTIONS

The following samples illustrate the applied methodology as well as selected findings
of the study.

In the beginning of the session the students worked on two worked-out examples that
explained the production of the fractions 2 and : illustrated with the division of a circle
and a rectangle. In the fade-out examples the students were expected to reproduce the
production procedure for £ with a circle representation (“Explain how £ is produced

and use the circle for illustration.”). The intended processes of transfer were the
application of the two production operators : n and - m together with their illustrative
meaning of dividing the whole into n parts and multiplying one part m times, which is
represented by dividing the iconic representation into n equally sized parts and
colouring m parts of the diagram. With respect to the development of
Grundvorstellungen, this production process is prototypical for the production of any
fraction and can be used as an illustrative model for the interpretation of fractions in
various contexts.

As a transfer problem the students are later required to transfer this production
procedure to represent fractions on a line segment. This representational transfer
requires an adaption of the illustrative activity, because in circles and rectangles
fractions are represented as areas while they are represented as lengths on a line
segment. This means that the line segment needs to be divided into parts of equal length
while circles or rectangles are usually divided into parts that are congruent or rather
have the same area. Didactically, the representation of fractions on a line segment
constitutes a first step to representing fractions on a number line.

Please note that the following transcripts are originally in German and have been
translated into English.

Bennet & Julius

1 B: Ah, look here, you have to divide this [a circle] by eight ... you have to write
divided by eight, because then you have one eighth, and then you have to
multiply by six, then you have six eighths.

2 I Minus six.
3 B: Why minus six? You have to multiply by six.
4 I But when you divide ... let’s say you divide a cake into eight parts of equal

size and you want to have six of them, you have to do minus six, because
otherwise you wouldn’t have them.

B: But you don’t know of what you have to do minus six.

J: Ha? But you first divide it by eight and then you have to take six away —
thus minus six.
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7 B: Yes, but we have to write it down in these steps. First, we divide by eight
and get one eighth, then multiply one eighth by six, and get six eighths.

In this episode Bennet and Julius discuss the production of ¢. While Bennet transfers

the procedure analogically to the new set of numbers and interprets the production
operators with their illustrative meaning as intended (1), his partner Julius does not. In
contrast to his partner, Julius interprets the production process in the frame of the real-
live activity of dividing a cake. He shares his partner’s interpretation of the first
operator to divide the whole (the circle) into eight parts, but then interprets the second
production operator with the activity of “taking away” six parts or pieces, respectively
(2). He thus wants “to do minus 6, because otherwise you wouldn’t have them” (4).
The interpretation of the second production operator as a minuend can be interpreted
as a result of overzealously transferring the linguistic expression “divide by n and take
m away”’, which is often used to illustrate the production procedure in the context of
sharing a concrete object like a pizza, or in this case a cake. The students are thereby
expected to differentiate between the mathematical and the real-world expression,
which is likely to be misunderstood. This creates a conflict between two DSE, the real-
world activity and the mathematical operation, that needs to be resolved by connecting
the two DSE. Such a connection can probably only be established by reformulating and
reframing the real-world activity without the idea of “taking parts away”. Bennet refers
to this conflict by questioning “of what you have to do minus six” (5). As Julius does
not deviate from his perspective (6), Bennet tries to convince him by referring to the
worked-out examples as he explains, that they have to write down the production
procedure “in these steps™ (7). By “steps” he refers to the production operators as he
highlights their individual function on an abstract level, that eliminates the notion of
“taking away”’.

After the first episode that is discussed above, Bennet and Julius worked on further
fade-out examples in which they explained the production procedure for three other
fractions and illustrated them in circles and rectangles. The conflict appears not to be
resolved, yet, but Julius trusts his partner’s explanations and seems to accept that he
was wrong by interpreting the second operator as a minuend, although he shows no
signs that he has understood the difference. In a later episode from the same learning
session Bennet and Julius work on the representation of the fractions ; and 2 on a line

segment:

1 J: That’s easy. You just need to divide this [the line segment] in four and then
take one part. And then divide in six and take five of them.

2 B: Yes.
3 U We first have to measure how long the line is. How long is it? [...]

Julius refers to this task as “easy” (1). By “easy” he might indicate that he
spontaneously has a solution plan in mind. He then uses a similar expression of “taking
away” to describe the function of the second production operator as he did before (1).
In contrast to the first task, the students are not required to describe the production

3-56 PME 45 —2022



Kollhoff

process symbolically and are only asked to represent the fractions iconically on a given
line segment. In this representational context Julius then correctly divides the line
segment into four parts and colours one of them to represent ;. He also proceeds as

intended with the representation of 2 and two other fractions. Since there is no

calculation required in this task, the conflicted meanings of the second production
operator remain hidden. Instead, the production operator is interpreted within the DSE
of representing fractions iconically, in which it can be understood as colouring a
specific number of parts. Julius’ repeated use of the expression “taking away” can be
interpreted as a means of not having resolved the cognitive conflict. Instead, the
activity of representing fractions iconically offers a third interpretation of the operator
as colouring a specific number of parts.

DISCUSSION

The selected samples in this paper illustrate two major findings from the study.
Concerning the first research question, the study shows that the intended processes of
transfer project to the learning processes of the students, but in a highly individual and
subjective way. The single sample of the dyad Bennet and Julius shows a strong
divergence of intended and not intended processes of transfer even at the very
beginning of the learning progression. This finding becomes even more apparent in the
comparative analyses on multiple levels (Kollhoff, 2021). Compared to his partner,
Bennet does make all intended connections more or less spontaneously without any
apparent difficulties. In contrast, the case of Julius is representative of a second major
finding of the study concerning the second research question: Numerical procedures
and the activities that are supposed to represent them appear to be treated, stored, and
developed as separated DSE. The example of Julius illustrates the need to coordinate
the separated DSE in the construction of a coordinative DSE that requires an active
construction by the learner. Comparisons to other dyads in the study describe the
consequences if no such coordinative DSE is being constructed (Kollhoff, 2021). In
these cases, the students tend to develop robust misconceptions that interfere with their
further learning. These students appear to not fully understand the procedures and
concepts and as a consequence rely mainly on the numerical procedures that they try
to apply algorithmically and often incorrectly in various situations. In later stages, the
dominance of the numeric procedures and the lack of illustrative understanding of them
lead to errors that can be compared to findings of studies that investigate the “natural
number bias” (Ni & Zhou, 2005).

The conceptualisation of transfer as a process within the didactical model of
Grundvorstellungen proved to be useful. The comparison of the normatively intended
processes of transfer and the descriptive reconstruction of the students’ actual
processes of transfer revealed patterns of deviation that have to be taken into account
in the design and planning of learning environments and progressions. In particular, it
has been described that the connection of numerical procedures and their illustrative
representations have to be actively supported since they will often not be constructed
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by the learners themselves. Furthermore, the findings point out specific difficulties of
the representational models themselves (Kollhoff, 2021) that have to be accounted for
in teaching fractions.
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Making realistic assumptions is an important part of solving open modelling problems
and also a potential source of errors. But little is known about the difficulties that result
from the openness of modelling problems and how they can be addressed in
interventions. Here, we focus on two central solution steps that are necessary for
making assumptions: noticing the openness and estimating the missing quantities. In a
qualitative study with four ninth graders, we asked students to solve a modelling
problem after informing them about the openness of the problem. We identified
barriers that expand the two-step model (e.g., trouble integrating assumptions into the
model). In addition, informing students about the openness of the problem improved
their solution to the problem at hand but did not help them solve subsequent problems.

INTRODUCTION

Mathematics can help people solve problems from every day or professional life. These
problems typically do not contain all of the information required to obtain a solution.
To replace missing values and simplify the situation, it is often necessary to make
assumptions so that a mathematical model can be set up and used to solve the problem.
Hence, specific skills (e.g., estimation skills) are needed, and mathematics classrooms
should foster these skills to prepare students to apply their mathematical knowledge in
order to solve real-world problems. Galbraith and Stillman (2001) highlighted the
importance of making assumptions as a genuine but underrated aspect of successful
modelling and stressed the need for systematic research in this area. This need was
recently recalled (Schukajlow et al., 2021) and is addressed in the present study. We
analyzed (1) the difficulties students experience when making assumptions to solve
open modelling problems and (2) how information about the openness of the problem
helps them overcome these difficulties. Our findings contribute to a better
understanding of the process of making assumptions and the kinds of information that
might help students overcome their difficulties with regard to making assumptions.

THEORETICAL BACKROUND AND RESEARCH QUESTIONS
Making assumptions

Making an assumption means proposing that a statement is temporally true as a
productive basis for subsequent activities (Djepaxhija et al., 2015). Assumptions are
necessary to solve open problems because important aspects of the problem situation
are not specified, and additional information is needed. Assumptions specify the
missing information and help the problem solver find a solution under the restrictive
conditions that come along with making assumptions. Two broad types of assumptions
3-59
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can be distinguished: Non-numerical and numerical assumptions. Non-numerical
assumptions refer to assumptions about situational conditions, whereas numerical
assumptions refer to assumptions about missing quantities. Both types require realistic
considerations and extra-mathematical knowledge, but in order to make numerical
assumptions, estimation skills may also be necessary (Chang et al., 2020). Estimations,
which are rough calculations or judgments, can refer to different objects, including
measurements (e.g., estimating length, height, or weight) and numerosity (e.g.,
estimating the quantity of objects) (Hogan & Brezinski, 2003). A number of studies
indicate that estimation skills are difficult for students to acquire, and students often
fail to estimate measurements with the appropriate accuracy (Jones et al., 2012).

Mathematical modelling competence and making assumptions

Mathematical modelling refers to the use of mathematics to solve real-world problems
(Niss et al., 2007). The key aspect of modelling is that a real-world problem must be
converted into a mathematical model that allows mathematical procedures to be
applied to solve the problem. The mathematical result needs to be interpreted and
validated with regard to the initial real-world situation. Thus, modelling can be
considered a cyclic process that begins and ends in reality and passes through the
mathematical domain. In mathematics classrooms, modelling problems are used to
foster students’ modelling competence. Figure 1 presents an example of a modelling
problem.

Speaker

Maria bought the Ultimate Ears BOOM

Speaker for 149.95 €. It has 360° sound

with deep and precise bass. The speaker is Lw-\i_,‘_
18.4 cm high. "’, ﬁ‘
Maria looks for a box with a cover for her \
speaker. On the web, she found a Hhjem

beautiful box. It is 14 cm wide, 10 cm high, and 14 cm deep.

Will the speaker fit in the box?

10 cm

Figure 1: Modelling problem that requires assumptions to be made.

A characteristic feature of modelling problems is their openness as they often do not
include all of the necessary information. To solve open modelling problems, two
different solution steps are necessary (Krawitz et al., 2018): First, students need to
notice the openness of the problem, and second, they have to estimate the missing
quantities. For example, in the Speaker problem (Figure 1), students need to notice that
the diameter of the speaker has to be taken into account and replace the missing
quantity with an estimate (e.g., about 5 cm because, in the picture, the diameter is about
one fourth of the height). Prior modelling research has shown that many students have
trouble understanding, structuring, and simplifying the information given in modelling
problems (Krawitz et al., 2021). Some of these challenges might result from the
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openness of modelling problems and the cognitive demands of making assumptions
(Arlebick, 2009). An impressive body of research on word problems has demonstrated
that students tend to neglect the realistic context of the problems, including the
necessity of making assumptions, even if this leads to unrealistic responses
(Verschaffel et al., 2000). In the Speaker problem, for example, an unrealistic response
would be to ignore the fact that the diameter of the speaker has to be taken into account,
calculate the diagonal of the box (d = /(142 + 142) + 102 = 22.18), and conclude that
the speaker fits because the speaker is shorter than the length of the diagonal. One
potential reason for students’ unrealistic responses is that they fail to notice the
openness of the problem (Krawitz et al., 2018). In several interventions, researchers
have tried to help students notice the openness, for example, by informing the students
that the problems are tricky and cannot be solved in a straightforward way or by adding
pictures to the problems (Dewolf et al., 2013), with little to no success. Students’
restricted beliefs about word problems were found to be a reason for their difficulties
(Djepaxhija et al., 2015). This finding indicates that the difficulties are persistent and
hard to change. Initial indications for difficulties in noticing the openness of modelling
problems came from a study conducted by Chang et al. (2020) where the failure to
notice the openness was found to be a major barrier, whereas estimation skills seemed
to play a minor role.

PRESENT STUDY AND RESEARCH QUESTIONS

The present study was conducted within the framework of the Open Modelling
Problems in Self-Regulated Teaching (OModA) project, which is aimed at
investigating cognitive, strategic, and affective conditions for the teaching and learning
of open modelling problems. The research questions in the present study were:

RQ 1: What difficulties do students experience with respect to making assumptions
when they solve open modelling problems?

RQ 2: How does providing information about the openness of the problems help
students overcome these difficulties?

METHOD
Participants and Data Collection

The sample involved four ninth graders (one female, all 16 years old) from two high-
track schools (German Gymnasium). The students participated voluntarily in the study.
Three of the participants were high achievers in mathematics (excellent grades), and
one of them was an average achiever (average grades). In the following, the
participants are referred to with pseudonyms. One of the participants (Andreas) stated
that he had prior experience with open modelling problems, whereas the others did not.
We used a qualitative approach to gather information on the underlying reasons for
students’ difficulties with open modelling problems and conducted individual sessions.
The sessions consisted of three stages: problem solving, stimulated-recall interview,
and semi-structured interview. In the problem-solving stage, participants were first
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given an open modelling problem (Shortcut Route Problem, Table 1) without
information about the openness of the problem, a subsequent problem (Speaker
Problem, Figure 1) with information about the openness (“To solve the problem, you
must estimate the diameter of the speaker”), and finally another problem without such
information (Tree Problem, Table 1).

Shortcut Route Problem: Mrs. Mai drives home on route B 47
and is running late. Fortunately, there is little traffic on the &
streets at night. She will soon come to the junction where the
Street named Querallee branches off to the left. From there it
would be another 1.5 km on B47 straight ahead, and from the
roundabout another 2 km after turning left on B11 until she is =& O
home. Is the drive through the residential area worth it for Mrs. 1 [
Mai so that she can get home earlier?

Tree Problem: Freshly planted trees are not yet rooted in the earth and
need help attaching for the first few years. Support poles are often used
to help. One end of the pole is hammered obliquely into the ground. A
distance of 1.25 m from the tree is maintained so that the pole does not
damage the roots of the fresh tree. The other end of the pole is tied to the -
tree with a rope at a height of 1.5 m. What is the length of the pole?

Table 1: Open modelling problems used in the study.

A quantitative pilot study with 143 students revealed that students rarely make realistic
assumptions when solving these open modelling problems (percentage of solutions
with realistic assumptions: 4.1% (Abbreviation problem), 3.2% (Speaker problem),
0.8% (Tree problem)).

Data Analysis

The video material was transcribed and sequenced. Sequences of the stimulated recall
interviews were assigned to the related problem-solving sequences in order to collect
more information about students’ assumption-making processes. The sequences were
categorized using qualitative content analysis (Mayring, 2014). In the coding process,
noticing the openness and making assumptions were used as the main categories, and
subcategories were inductively identified. Thereby, different types of assumptions
(situational assumptions, numerical assumptions), purposes of assumption-making
(simplify the situation, estimate missing quantities, interpret the result), and difficulties
that could be attributed to the openness (noticing the openness, recognizing the
possibility and necessity of making assumptions, integrating assumptions into the
mathematical model) were distinguished. For example, the sequence “What is the
diameter of the speaker? I would say, about as large as my water bottle. [...] Okay, it
is about 7 cm.” Was paraphrased as “Estimated the length of the diameter of the
speaker (7 cm),” and this was coded as a realistic numerical assumption.
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FINDINGS

We analyzed students’ difficulties that could be attributed to the openness of the
problems. Table 2 gives an overview of the categories developed in the coding process.

Difficulties with: Description

Noticing the openness Not noticing the openness and consequently not
making assumptions

Recognizing that assumptions Noticing the openness but not recognizing that
might need to be made making assumptions is a way to deal with it

Recognizing the need to make Noticing the openness but thinking that it is not
assumptions necessary to make assumptions

Integrating assumptions into Not being able to set up an appropriate mathematical
the mathematical model model that takes the missing quantities into account

Table 2. Overview of the difficulties that were attributed to the openness of the
problem.

To answer the first research question, we analyzed students’ solution processes for the
first open modelling problem (Shortcut Route problem). Two of the participants (Tabea
and Niklas) did not make any assumptions. Both calculated the distance without taking
into account the different speed limits for the routes. Tabea did not notice the openness
of the problem, whereas Niklas commented that he thought about the speed limits in
his solution process but thought they were not important for the solution. Andreas
directly recognized the need to make assumptions in the Shortcut Route problem. He
made situational assumptions in order to simplify the real-world situation (“under the
assumption that the street is perpendicular to the junction™”) and to specify his
estimations (“because there are houses next to the road, the car has to look for
pedestrians and cannot drive 100 km/h”). On this basis, he made realistic numerical
assumptions about the speed limits (main road: 80 km/h; housing area: 30 km/h) and
also defined situational requirements that did not need to be considered (“the speed
while turning at the junction can be ignored”). Further, he used his assumptions to
calculate the time that was needed to take the shortcut and to take the main road and
completed the process by providing a realistic answer to the problem (“It is not worth
it because of the speed limits”). In Christian’s solution process, it was not clear at what
point he noticed the openness of the problem. Christian did not make any assumptions
and calculated the distances of both routes without considering the different speed
limits. But his answer to the problem shows that he was aware of the fact that he
neglected to consider this aspect in his solution (“The way through the housing area
would be shorter but not necessarily faster”). His way of dealing with the openness of
the problem was to acknowledge that his answer might not be valid. For Christian,
noticing the openness did not lead him to make assumptions. Thus, simply noticing the
openness is not enough for students to also recognize the need to make assumptions.
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To address the second research question, we analyzed students’ solution processes after
they were given information about the openness of the problem (Speaker problem). We
found that informing the students that a quantity was missing helped all participants in
our study notice the openness. Two of four participants, Christian and Andreas, made
assumptions about the missing quantity (here, the diameter of the speaker) and used
their estimates to set up a mathematical model. One participant, Tabea, did not estimate
the length of the diameter but took this quantity into account when interpreting her
result (“It depends on the width of the speaker [...] the maximum width would be 1.4
cm. I think this is too narrow.”). Niklas also noticed that the diameter of the speaker
was important but did not know how to use this information to solve the problem.
Instead of estimating the diameter, he ended his solution process by simply guessing
that the speaker would not fit into the box. His solution process exemplifies that
integrating the missing quantities into a mathematical model can also be a barrier, in
particular if the mathematical model becomes more complex when the additional
information is included, as was the case for the Speaker problem.

To find out if the information also helps students notice openness while solving
additional open modelling problems, the participants were given a third open
modelling problem (Tree problem) without any information about the openness of the
problem. None of the four participants noticed the openness of the problem. All of
them neglected the fact that an assumption had to be made about the additional length
of the support pole needed to fasten it to the ground in order to obtain a realistic solution
(see Christian’s solution in Figure 1). Consequently, the participants did not transfer
their experience with the previous open modelling problem to the next one.

C b= 4,5_/~\
O\??‘éz: Qz
4/2542*4‘(2: 2
A,5625+ 225 =2

e A, 250 3 s =< AT
A952%6 <~ <

D SlLLJZfQU bad e'ne éz;‘née, Lon U“\yﬁ"‘ 4, 95 metera.
e

The length of the pole is about 1.95 meters.
Figure 1. Christian’s solution to the Tree problem.
Interestingly, Andreas and Bettina assigned the best value to their unrealistic solution:
Interviewer: Which of your solutions did you find the best?

Andreas: Best means that it is correct. Therefore, I would say the last one [Tree problem].
Because this is the one that really is correct. With the other, you have a
greater inaccuracy because of the estimation.

In this excerpt, Andreas, who had previous experience with open modelling problems
and was able to solve the Shortcut Route problem and the Speaker problem by making
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assumptions, states that he believes that his realistic solutions, which included
assumptions, were less correct than his last unrealistic solution. He thinks the realistic
solutions were less accurate due to estimation errors.

SUMMARY AND DISCUSSION

In line with previous research (Chang et al., 2020), noticing the openness of problems
was revealed as a key difficulty. Further, noticing the openness did not automatically
result in making assumptions. We identified three difficulties that prevented students
from making assumptions after noticing the openness. First, making assumptions was
not assumed to be necessary. Second, strategies or knowledge about how to deal with
open problems were missing. Third, it was difficult to set up a mathematical model that
took the missing quantities into account. Hence, our findings expand on the proposed
two-step model for solving open modelling problems involving the steps of noticing
the openness and estimating the missing quantities (Krawitz et al., 2018). These
additional barriers should be taken into account in future studies investigating the role
that making assumptions plays in mathematical modelling.

Contrary to studies that have revealed students’ difficulties with estimation tasks (Jones
et al., 2012), estimating the missing quantities did not hinder problem solving. Maybe
the problems did not challenge our participants’ estimation skills, or perhaps they failed
at earlier stages in their solution processes so that we could not detect these difficulties.

Further, students’ difficulties with noticing the openness could be overcome by
providing information. However, the information helped only for the problem at hand,
but it did not help students notice the openness of subsequent problems. Similar to
research findings on word problems (Dewolf et al., 2013), students’ difficulties with
noticing the openness of a modelling problem seem to be persistent. Future studies
should examine how the difficulties identified in the present study can be addressed in
teaching methods. Students’ restricted beliefs about word problems, in particular, the
belief that every problem has a single numerical answer, were also found in our data
and may have prevented students from making assumptions (Djepaxhija et al., 2015).

On a theoretical level, our study contributes to a better understanding of the process of
solving open modelling problems and the challenges that are induced by the openness.
Our findings provide a basis for developing teaching methods that address these
difficulties in future research. A practical implication might be to provide more
learning opportunities to deal with open problems in class so that students can acquire
the knowledge and strategies that are necessary to deal with open modelling problems.

Acknowledgments: This study was financially supported by the German Research
Foundation (GZs: RA 1940/2-1 and SCHU 2629/5-1).
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The use of simulation-based learning environments to foster professional competences

attracts more and more research. The role of participants’ interest for learning is quite
undisputable also in this context. Recent research findings emphasize that interest may
trigger the activation of professional knowledge during participation in a simulation.

Using data from N = 81 pre-service teachers who participated in four simulations over
one semester, this contribution investigates how characteristics of the simulation (role-

play vs. video) and participants’ perception of the simulation affect the development of
participants’ interests. Results reveal that, beyond the perception of the simulation,

development of participants’ interests is weakly related to simulation characteristics.

INTRODUCTION

Diagnosing students’ thinking is an important practice in teachers’ professional life. In
teacher education, learning environments based on role-play- or video-based
simulations are applied to link conceptual knowledge with procedural components
(Marczynski et al., in press). As learners’ interests relevant in the simulation content
can be seen as a “door-opener” for knowledge activation in such simulation-based
learning environments (Kron et al., under review), the development of participants’
interest becomes a crucial issue. The presentation may play a role here: While highly
interactive simulation designs may increase interest, they run at danger of putting
cognitive demand on participants, reducing the positive effects of interactivity.

Approximations of practice (AoPs) in pre-service teacher education

Simulation-based learning environments are special forms of approximations of
practice (AoPs, Grossman et al., 2009). AoPs are intended to trigger knowledge
activation in authentic, yet controlled situations. For example by using simulations,
real-life situations are reconstructed to provide learning experiences, which are less
cognitive demanding than real classroom situations, and reduce disruptive factors
(Grossman et al., 2009). Especially in teacher education, AoPs are recommended to
foster pre-service teachers’ competences by allowing an application and extension of
professional knowledge in authentic, yet not overwhelming situations (Codreanu et al.,
2020). These competences entail cognitive as well as affective components, such as
learners’ interests (Heitzmann et al., 2019). As such, AoPs are discussed being
effective tools for teacher training (Meletiou-Mavrotheris & Mavrou, 2013), for
example to engage in the diagnosis of student thinking (Marczynski et al., in press).

3-67
2022. In C. Fernandez, S. Llinares, A. Gutiérrez, & N. Planas (Eds.). Proceedings of the 45th Conference of the
International Group for the Psychology of Mathematics Education (Vol. 3, pp. 67-74). PME.



Kron, Sommerhoff, Achtner, Stiirmer, Wecker, Siebeck, Ufer

For the design of AoPs as learning environments, two criteria are highlighted to be
relevant for learning: (1) the AoPs should be perceived as being authentic and (2) they
should allow the learners to immerse themselves into the simulated situation (Goeze et
al., 2014). However, the design of such authentic and immersive simulations is often
at danger of increasing the extraneous cognitive load, which may impede their
effectiveness (Sweller, 2010). Whereas teacher education commonly uses video-based
simulations (e.g., Seidel et al., 2011), medical education has focused on role-play
simulations, with trained actors as simulated patients (e.g., Stegmann et al., 2012).
While role-plays may offer more opportunities for interaction and may thus be
perceived as more authentic and immersive, video-based simulations with pre-
structured options for action may lead to lower cognitive load during learning.

Development of learners’ relevant interests in AoPs

Pre-service teachers’ interest likely affect how they engage in such AoPs or other
learning opportunities in university-based teacher education. Following Krapp (2002),
interest is a relatively stable relation between a person and an object, reflecting the
“tendency to occupy oneself with an object of interest” (intrinsic component, Krapp,
2002). Besides this “intrinsic component”, interest also comprises a positive emotional
relation to the object (Krapp, 2002), and ascribes a certain value to the object of interest
(Schiefele et al., 1992). This person-object relation may change or develop whenever
an individual encounters the object (Hidi & Renninger, 2006). An object of interest can
be any entity from the individuals’ “life-space” (Krapp, 2002), such as a professional
practice, or a field of study. Relevant interests of pre-service mathematics teachers
may, for example, address mathematics education content, or professional practices
such as diagnosing student thinking.

Hidi and Renninger (2006) argue, that interest “as a motivational variable refers to the
psychological state of engaging or the predisposition to reengage with particular
classes of objects, events, or ideas over time”. Research distinguishes between
individual interest and situational interest (Hidi, 1990). Whereas situational interest is
a temporary experience in a specific moment (Hidi, 1990), that results from “[...] an
interaction of learners’ and situational features™ (Rach, 2021), individual interest refers
to a relatively stable motivational trait. As such, situational interest has been found to
enhance learning (Wade, 1992), whereas individual interest had positive effects on
attention, recognition, and recall (Hidi & Renninger, 2006).

Thus, diagnostically relevant interests may play an important role when engaging pre-
service teachers with AoPs on diagnosis, for example by playing the role of a “door-
opener” for the activation of professional knowledge: Kron et al. (under review) report
that the relation between pre-service teachers’ professional knowledge and their
performance in simulated one-on-one diagnostic interviews depended on their interest
in mathematics education and diagnosis, This leads to the question how these interests
may be developed in pre-service teacher education. Meaningful experiences in
simulations may strengthen the person-object relation and lead to more intense interest
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in contents of the simulation and the simulated activities. However, research about how
such learning environments contribute to the development of interest, is scarce.

Regarding this development, also Hidi and Renninger (2006) argue that experiences
during a learning situation might trigger situational interest, if the learning
environments are authentic and immersive, and “provide meaningful and personally
involving activities”. Beyond authenticity and immersion, cognitive load has been
found to affect learners’ situational interest negatively (Park et al., 2015). If sustained
over time, situational interest may contribute to the development of individual interest
(Hidi & Renninger, 2006). However, it is quite unclear how pre-service teachers’
interest develops during repeated participation in simulation-based learning
environments beyond short term effects of the simulation.

THE PRESENT STUDY

Despite the increasing research focus on interest development and the use of AoPs in
teacher education, research linking these two fields is scare. We investigate the
development of pre-service teachers’ relevant situational interests during repeated
participation in a simulation-based learning environment on diagnosis of student
thinking. We compare role-play- and video-based presentation formats. Since role-play
simulations may offer more opportunities for authentic and immersive experiences, but
may also result in a higher cognitive load, we did not have specific hypotheses which
presentation format would be more beneficial for interest development. We addressed
the following questions:

RQ1: Does the presentation format of a simulation-based learning environment affect
participants’ relevant situational interests reported after the simulation?

RQ2: How do participants’ initial individual interests and their perception of the
simulation affect participants’ situational interests after the simulation? We expected
that higher initial interest, as well as perceiving the simulation as authentic and
immersive, would go along with higher interest after the simulation, whereas higher
extraneous cognitive load would decrease interest.

RQ3: Does the presentation format influence the development of situational interest
over multiple simulations, after controlling for the perception of the simulation?

METHOD

To answer these questions, we used simulated diagnostic one-on-one interviews. Pre-
service secondary school mathematics teachers at a large university in Germany were
randomly allocated to one of the two parallel presentation formats (role-play: N = 39;
video: N = 42). During summer term 2021, every participant participated in four
simulations with a constant presentation format (N = 324 interviews, in total). The
simulations were embedded in a web-based interview system. Initial individual
interests were assessed before the first simulation. During each simulation, participants
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reported their perception of the AoP. We applied scales for situational interests directly
at the end of each simulation session.

Simulation

Simulated diagnostic one-on-one interviews were developed (Marczynski et al., in
press) as an AoP for mathematics teacher education. Pre-service teachers act in the role
of a teacher, diagnosing the mathematical thinking of a 6™ grader in the field of decimal
fractions, by using a given set of diagnostic tasks. Four different student case profiles
were constructed, with different profiles of mathematical understanding in the field of
decimal fractions. Trained research assistants played the student role in the role-play
format, while scripted videos of 6™ graders were prepared for the video simulation.
Whereas the participants of the role-play simulation interacted with the simulated
student directly, participants of the video-version watched the provided videos. Each
simulation contains four phases: (1) The participants got familiarized with the
interview system, their role as the teacher, and reviewed the given set of diagnostic
tasks (only first simulation). (2) The participants had 25 minutes time to interview the
simulated student. They chose tasks from the given task-set, observed the student’s
response, and posed probing questions (in the video-simulation they selected from a
range of possible probing questions). (3) After the interview, they prepared a diagnostic
report about the interviewed student’s mathematical thinking. (4) The simulation ended
with a debriefing, providing informing about an expert’s diagnosis of the student. Each
participant conducted four simulations, one every two weeks.

Instruments

Interest: To assess participants’ relevant interests, we adopted scales of Rotgans and
Schmidt (2011), considering interest in mathematics education and interest in diagnosis
to be relevant in the context of the simulation (three items per scale, five-point Likert
scales from 0 = not true at all; 4 = very true for me; amatn.ea = -89; Agiagnosis = -76)-

Perception of the simulation: Participants’ perception of the simulation was assessed
by established scales (e.g., Seidel et al., 2010) using three items for authenticity and
four items for immersion on a five-point Likert scale (0 = not true at all; 4 = very true
for me; aguen = -88; Aimmers = -67). Extraneous cognitive load was assessed by
three items (five-point Likert scale; 0 = very easy; 4 = very difficult; &ertr10aa = -75).

Statistical analyses: All data were collected in log files by the web-based interview
system. Due to the nested structure of the dataset (multiple simulations per participant),
we used linear mixed models to estimate effects of the perception of the simulation, its
presentation format, and repeated participation, on interest reports after each
simulation. In a first step, only the effect of the presentation format was investigated.
Then, participants’ initial reported interest and the perception of the simulation were
included. Finally, we added the number of the simulation (0 = first — 3 = last) as a
metric covariate and its interaction with the presentation format. We used planned
contrasts of estimated marginal means to investigate our research questions.

3-70 PME 45 —2022



Kron, Sommerhoff, Achtner, Stiirmer, Wecker, Siebeck, Ufer

RESULTS

Average interest ratings after all four simulations were above the midpoint of the scale
for mathematics education (M = 2.44, SD = 0.81) and diagnosis (M = 2.78, SD = 0.66).

Interest in mathematics education: (RQI) Participants reported significantly higher
interest in mathematics education after the video (M =2.61, SE = 0.11) than after the
role-play simulation (M =2.25, SE=0.11; B=0.36, p <.05). (RQ2) These interest
ratings were positively influenced by perceived authenticity (B =0.18, p <.001) and
immersion (B = 0.15, p <.01), and negatively by extraneous cognitive load (B =-0.21,
p <.001). Initial interest in mathematics education did not predict the interest reported
after the simulations significantly (B =0.04, p =.67). Controlling for effects of the
perception of the simulation, the difference in interest between the presentation
formats, averaged over four simulations, was not significant anymore (B =0.20,
p =.12). (RQ3) Controlling for those effects of perception, the difference between the
presentation formats was significant in the first (M, =2.32, SE,, =0.11, M,; = 2.61,
SE,i=0.10; B=0.29, p <.05), but not for the last simulation (M,, = 2.35, SE,, =0.11,
M,;=2.46, SE,;=0.10; B=0.11, p = .44) due to declining interest in video simulation.

Interest in diagnosis: (RQ1) Participants did not report significantly different interest
in diagnosis after the video simulation (M = 2.83, SE = 0.09) than after the role-play
simulation (M = 2.73, SE = 0.09; B=0.10, p = .42). (RQ2) These interest ratings were
positively influenced by the perceived authenticity (B =0.13, p <.01) and immersion
(B=0.11, p <.05), and negatively by extraneous cognitive load (B =-0.13, p <.01).
Initial interest in diagnosis positively predicted the interest reported after the
simulations (B=0.42, p<.001). (RQ3) Controlling for the perception of the
simulation, we observed a significant decline of interest ratings over the four
simulations (B = -0.04, p < .05), which corresponds to a difference of B = 0.13 on the
interest scale (0-4) over all four simulations. This decline did not differ significantly
between the two presentation formats (B = -0.03, p = .36).

DISCUSSION

The aim of this contribution was to provide insights, how the presentation format of an
AoP and the participants’ perception of that presentation format affect their situational
interest and its development, considering two different objects of interest. We intended
to disentangle effects of situational experiences and developments of interest over time.

Pre-service teachers, who perceived the simulation as authentic and immersing,
reported a higher level of interest directly after participation in the simulation (RQ?2).
These relations between authenticity and immersion and interest are in line with
assumptions based on work by Hidi and Renninger (2006) on interest development.
The negative relation of extraneous cognitive load and interest development confirmed
results of Park et al. (2015). This highlights, that AoPs need to be designed in an
authentic and immersing way, also considering potential sources of extraneous
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cognitive load. In fact, these requirements may run contrary to each other, as described
on our assumptions about the two presentation formats (see also Codreanu et al., 2020).

While prior interest in diagnosis was substantially related to post-simulation interest in
diagnosis, this was not the case for interest in mathematics education. Authentic
encounters with the object of interest are assumed to contribute to interest development
(Hidi & Renninger, 2006). Beyond lectures and exercise sessions, this was one of the
first opportunities for the participants to apply their mathematics education knowledge
in an authentic (though simulated) situation. These results may indicate, that
participants re-evaluated their interest in mathematics education more strongly based
on the situational perception of the AoP than their interest in diagnosis.

Without consideration of other factors, the video simulation triggered more positive
ratings of interest in mathematics education than the role-play simulation (RQ1).
According to our assumptions, this indicates that potential advantages of the video
simulation in terms of lower extraneous cognitive load may have exceeded advantages
of the role-play simulation in terms of higher authenticity and immersion (Hidi &
Renninger, 2006; Park et al., 2015). Indeed, these situational perceptions explained
almost all differences between the presentation formats. For interest in diagnosis, no
differences in post-simulation interest by presentation format occurred. One
interpretation of this finding could be that the presentation format was neutral
regarding the emergence of situational interest in diagnosis, but not so for situational
interest in mathematics education. The more structured interaction format of the video
simulation (e.g., selecting from provided probing questions, instead of asking questions
freely) might have helped participants to apply their knowledge from mathematics
education and to experience it as helpful and valuable. In line with the idea of AoPs
(Grossman et al., 2009) this result points to the importance of finding an appropriate
level of complexity when designing AoPs.

Considering interest development under control of situational factors (RQ3), only one
significant difference between the presentation formats occurred. The initially positive
effect of the video-based simulation on interest in mathematics education vanished
until the last simulation. This short-term effect may be due to the novelty of the video-
based simulation format, which is rarely used at the university under study. Firstly, this
indicates that the presentation format mostly affected situational interest, but that these
effects did not transfer to long-term development. Apart from this decline for the video
format, interest in mathematics education was stable over four simulations. In light of
other studies usually finding declining interest in repeated measures designs (e.g.,
Rotgans & Schmidt, 2011), we take this stability of interest in mathematics education
in our study as an encouraging sign. As in other studies on interest, we find a general
decline of interest in diagnosis over the four simulations. Explicating the value of
diagnosing student thinking was briefly addressed in the simulation activities, but more
directed interventions, such as explicitly experiencing the value of diagnosis to design
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individual support, and reflecting on this value (Hulleman et al., 2010) might be
necessary to develop pre-service teachers' interests in diagnostic activities.

The role of interest as a “door-opener* for deep learning in general (Hidi & Renninger,
2006) as well as for knowledge activation in AoPs (Kron et al., under review) is
undisputed. We contribute to understanding the emergence of situational interest
during AoPs on the diagnosis students’ mathematical thinking. Systematic changes in
situational interest over a longer time, under control of situational factors, can point
towards possible developments of individual interest. Our findings indicate that current
learning experiences shape participants’ interests, but that it is possible to identify
developments over the course of a semester beyond these situational factors. It is
crucial to disentangle pure novelty effects of new simulation formats from long-term
developments of situational, and potentially also individual, interests. Further research
should investigate effects of AoPs, but also explicit interventions regarding their
potential to sustain and develop pre-service teachers’ relevant interests.

References

Codreanu, E., Sommerhoff, D., Huber, S., Ufer, S., & Seidel, T. (2020). Between authenticity
and cognitive demand: Finding a balance in designing a video-based simulation in the
context of mathematics teacher education. Teaching and Teacher Education, 95, 103146.

Goeze, A., Zottmann, J. M., Vogel, F., Fischer, F., & Schrader, J. (2014). Getting immersed
in teacher and student perspectives? Facilitating analytical competence using video cases
in teacher education. Instructional Science, 42(1), 91-114.

Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. (2009).
Teaching Practice: A Cross-Professional Perspective. Teachers College Record, 111(9).

Heitzmann, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M., . . . Fischer, F.
(2019). Facilitating diagnostic competences in simulations: A conceptual framework and

a research agenda for medical and teacher education. Frontline Learning Research, 7, 1-
24.

Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of
Educational Research, 60(4), 549-571.

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development.
Educational Psychologist, 41(2), 111-127.

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing
interest and performance with a utility value intervention. Journal of Educational
Psychology, 102(4), 880.

Krapp, A. (2002). Structural and dynamic aspects of interest development: Theoretical
considerations from an ontogenetic perspective. Learning and Instruction, 12(4).

Kron, S., Sommerhoff, D., Achtner, M., Stiirmer, J., Wecker, C., Siebeck, M., & Ufer, S.
(under review). Cognitive and motivational person characteristics as predictors of
diagnostic performance: Combined effects on pre-service teachers’ diagnostic task
selection and accuracy. Journal fiir Mathematikdidaktik.

PME 45 —2022 3-73



Kron, Sommerhoff, Achtner, Stiirmer, Wecker, Siebeck, Ufer

Marczynski, B., Kaltefleiter, L. J., Siebeck, M., Wecker, C., Stiirmer, K., & Ufer, S. (in press).
Diagnosing 6th graders” understanding of decimal fractions. Fostering mathematics pre-
service teachers’ diagnostic competences with simulated one-to-one interviews. In F.
Fischer & A. Opitz (Eds.), Learning to diagnose with simulations - examples from teacher
education and medical education. Heidelberg: Springer.

Meletiou-Mavrotheris, M., & Mavrou, K. (2013). Virtual simulations for mathematics teacher
training: Prospects and considerations. In A. M. Lindmeier & A. Heinze (Eds.),
Proceedings of the 37th Conference of the International Group for the Psychology of
Mathematics Education (Vol. 3, pp. 321-328). Kiel, Germany: PME.

Park, B., Flowerday, T., & Briinken, R. (2015). Cognitive and affective effects of seductive
details in multimedia learning. Computers in Human Behavior, 44, 267-278.

Rach, S. (2021). Relations between individual interest, experiences in learning situations and
situational interest In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.), Proceedings of
the 44th Conference of the International Group for the Psychology of Mathematics
Education (Vol. 3, pp. 491-499). Khon Kaen, Thailand: PME.

Rotgans, J. I., & Schmidt, H. G. (2011). Situational interest in academic achievement in the
active-learning classroom. Learning and Instruction, 21(1), 58-67.

Schiefele, U., Krapp, A., & Winteler, A. (1992). Interest as a predictor of academic
achievement: A meta-analysis of research. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.),
The role of interest in learning and development (pp. 183-212). Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Seidel, T., Blomberg, G., & Stiirmer, K. (2010). Observer: Validierung eines videobasierten
Instruments zur Erfassung der professionellen Wahrnehmung von Unterricht. Zeitschrift
fiir Pddagogik, 56, 296-306.

Seidel, T., Stiirmer, K., Blomberg, G., Kobarg, M., & Schwindt, K. (2011). Teacher learning
from analysis of videotaped classroom situations: Does it make a difference whether
teachers observe their own teaching or that of others? Teaching and Teacher Education,
27,259-267.

Sweller, J. (2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive
Load. Educational Psychology Review, 22(2), 123-138.

Wade, S. E. (1992). How interest affects learning from text. In K. A. Renninger, S. Hidi, &
A. Krapp (Eds.), The role ofinterest in learning and development (pp. 27-41). Hillsdale,
NIJ: Lawrence Erlbaum Associates, Inc.

3-74 PME 45 —2022
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Although students’ argumentation is subject of high interest in mathematics
educational research, specific studies on argumentation based on statistical data are
still scarce, especially with a focus on young students at the beginning of primary
school. Therefore, relatively little is known so far to what extent children starting
school may already be able to engage in argumentation based on statistical data.
Addressing this research need, evidence is reported from two empirical studies, which
were conducted with N = 11 and N = 29 students during their first weeks in school.
The results show that data-based argumentation is possible for many students from the
beginning of primary school on, and provide insight into the broad spectrum of
students’ data-based arguments.

INTRODUCTION

From the beginning of primary school on, fostering students’ argumentation is
considered as an important aim of the mathematics classroom, which is reflected in
several empirical studies (Sommerhoff et al., 2015), in a variety of literature promoting
suggestions on how to foster students’ argumentation in the mathematics classroom
(Stylianides et al., 2016), as well as in curricula of many countries (e.g. NCTM, 2000).
Even if the importance of argumentation is also highlighted frequently in the context of
statistics education (e.g. Ben-Zvi & Sharett-Amir, 2005), it appears that data-based
argumentation received relatively little attention so far, in particular in the discourse on
primary mathematics education. In prior studies (e.g. Krummenauer & Kuntze, 2018,
2019), we have found that many older primary students were able to evaluate
interpretations of data and to develop corresponding data-based arguments in different
task contexts, including even relatively complex tasks which require considering
statistical variation when developing data-based arguments. This raises the question, to
what extent data-based argumentation is possible for younger students; in particular,
what prerequisites related to data-based argumentation students have when starting
school.

Addressing this research need, this paper is focused on the extent to which primary
students are able to develop data-based arguments in different task contexts at the
beginning of their first year in school. The empirical evidence reflected on in this paper
has been gathered in two studies, applying an innovative study design. The results
presented in this paper substantiate that data-based argumentation is possible for many
3-75
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students, in appropriate task contexts, already at the beginning of primary school, and
give insight into the spectrum of complexity in students’ data-based arguments.

In the following, the theoretical background of the research reported in this paper is
presented, and the research interest is specified. Subsequently, the methodological
background and empirical evidence from two studies are reported. The results and
implications of both studies are discussed in the concluding section.

THEORETICAL BACKGROUND

When students encounter statistical data in real-life contexts, these data often are
accompanied by different and sometimes conflicting interpretations. For dealing with
statistical data and related interpretations it is, therefore, crucial that students are able
to evaluate whether or not interpretations of data indeed can be substantiated by the
respective data, and that students are able to justify their position based on data. We
refer to this by the term data-based argumentation, which is considered as a specific
case of argumentation in which statistical data are used to convince others that certain
statements are true or false (Krummenauer & Kuntze, 2019). As presented in detail in a
research report at PME 42 (Krummenauer & Kuntze, 2018), key requirements of
data-based argumentation can be described from a theoretical perspective building up
on psychological theories on children’s scientific reasoning (e.g. Kuhn, 2011; Sodian
et al., 1991; Zimmerman, 2007). In this perspective, interpretations of data have the
status of hypotheses (in a broader sense, theories), while the statistical data these
interpretations refer to represent the available evidence. When students develop
data-based arguments, they are required to coordinate interpretations of data with the
status of a theory and the statistical data with the status of evidence with each other, e.g.
when evaluating whether interpretations are consistent with corresponding data or
when basing own interpretations on data. In the literature, several strategies for
coordinating theory and evidence (e.g. Zimmerman, 2007) are described, which are
highly relevant for data-based argumentation: a fundamental strategy for coordinating
theory and evidence is, for instance, to distinguish elements representing theory, such
as claims or own beliefs, strictly from elements representing evidence (e.g. Kuhn,
2011); another scientific reasoning strategy, which is particularly helpful for
data-based argumentation, is to search intentionally for counter-evidence (e.g. Sodian
et al., 1991), instead of primarily searching for supporting evidence.

During the past decades, a large body of research on the development of scientific
reasoning has emerged (Zimmerman, 2007). Several studies have shown that already
children in kindergarten and primary school can be able to master tasks on
coordinating theory and evidence (e.g. Koerber et al. 2005). However, at the same
time, there is frequent evidence of insufficient strategies hindering the coordination of
theory and evidence. For instance, Koerber and colleagues reported in the mentioned
study that kindergarten children showed a tendency to be influenced by own
assumptions when coordinating theory and evidence. Further, there are studies
implying that young students tend to have difficulties to consider statistical variation
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when coordinating theory and evidence (Masnick & Morris, 2008). In conclusion, the
available studies on scientific reasoning imply that students at the beginning of
primary school may already have some cognitive preconditions for data-based
argumentation; at the same time, it needs to be expected that difficulties regarding the
coordination of theory and evidence may cause difficulties in data-based
argumentation.

In empirical studies with older primary students specifically targeting on students’
data-based argumentation (e.g. Krummenauer & Kuntze, 2018, 2019), many
participants were able to evaluate interpretations of data and to develop arguments
based on the data for substantiating their evaluation; in the case of the study reported in
Krummenauer and Kuntze (2018), this required students even to take into account
statistical variation of the data. These studies also revealed that some students gave
answers indicating specific difficulties, which appear to be interrelated with
difficulties in students’ scientific reasoning; for instance, some students used only
aspects of data for argumentation which were in line with their assumptions but did not
consider disconfirming data (Krummenauer & Kuntze, 2019).

RESEARCH INTEREST

Building up on the research with older primary students, the studies reported on in this
paper were conducted in order to investigate the extent to which data-based
argumentation is possible already for primary students starting school. In particular,
the research presented in this paper is targeted on the following research question:

To what extent is it possible for students at the beginning of the first grade to evaluate
data-related statements and to develop data-based arguments in order to justify their
evaluation?

STUDY 1
Design of the Study

As there had been hardly any specific research on young primary students’ data-based
argumentation so far, a first exploratory interview study has been conducted
(Krummenauer et al., 2020). In preparation for this study, an interview design needed
to be developed, which addresses the specific needs of young students. As it cannot be
expected that children produce data-based arguments spontaneously, an elicitation
method was developed, implemented in a one-to-one interview design. For that, a set
of tasks had been adapted specifically to the needs of students at the beginning of
primary school. In the interviews, the tasks were presented to the students one after
another, following a highly standardised interview guideline. Each task consists of a
data set (two examples are given in Figure 3) visualised by means of pictograms, in
combination with corresponding statements expressing interpretations of the data (e.g.
“Most students like chocolate ice cream” in case of the data set in part b) of Figure 3).
In the interviews, the task context and the data as well as a statement to be evaluated
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were presented to the students. Subsequently, the students were asked to evaluate the
statements and to justify their evaluation, so that the students were required to develop
data-based arguments. In this first study, N = 11 students (6 girls, 5 boys) were
interviewed during their first weeks in school. There had been no prior intervention
and the interviewer carefully avoided giving any examples or hints. The transcribed
interview data were subjected to a dichotomous top-down coding in order to find out
whether the students developed consistent data-based arguments in respondence to the
tasks. To be rated as “consistent data-based argument”, answers had to contain a
correct evaluation of the statement (e.g. “no, that’s not true”) and a reference to aspects
of the data which allow to substantiate the given evaluation; sample answers fulfilling
these criteria are presented below in detail. Answers not meeting these requirements
were subjected to a further bottom-up analysis (overall inter-rater reliability: k = .96)
investigating types of students’ difficulties, which is reported in Krummenauer et al.
(2020); in the present report, we deepen the analysis regarding the top-down analysis
in order to gain deeper insight into the qualitative spectrum of students’ successful
data-based arguments identified in the top-down analysis.

Results

Figure 1 gives an overview of the number of consistent data-based arguments for each
student. All participants were able to develop at least one consistent data-based
argument, and most of the students developed consistent data-based arguments in more
than half of the tasks. In one case (S6), a student provided consistent data-based
arguments for almost all 11 tasks. To give insight into the coding and into the spectrum
of students’ successful answers, two sample answers differing in their complexity are
discussed in the following, beginning with an example with relatively low complexity,
but still fulfilling all above-mentioned criteria of data-based arguments.

9
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4
3
2
1
., |
S1 S2 S3 sS4 S5 S6 S7 S8 S9

S10 s11

W consinstent answer non-consistent answer

Figure 1: number of answers containing data-based arguments per student (cf.
Krummenauer & Kuntze, 2020)

The following transcript (translated from German) is related to a task, which is about a
fictive competition in which the drivers of four cars meet once a week for a race. The
diagram in part a) of Figure 3 displays the number of trophies won by each driver. The
transcript starts after the interviewer had introduced the data set and its context. In (1),
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the interviewer presents (by means of and in the name of a hand puppet) the statement
which shall be evaluated based on the data.

(1) hand puppet: If I would take part in the race, then I would take the red car, it looks the
fastest.

(2) student: But it isn’t. The green car is the fastest, because it has the most trophies.

In (2), the student rejects the hand puppet’s statement (“But it isn’t”), i.e. the student
gives a negative evaluation of the statement. The student then substantiates this
evaluation by correcting the statement (“The green car is the fastest™) and connecting it
with the term “because” to the number of trophies, i.e. aspects of the data which
support the student’s evaluation of the hand puppet’s statement.

The next sample answer refers to a — in terms of coordinating theory and evidence —
more complex task, which is about a school excursion with two participating classes
(“hedgehog class” and “mouse class”). During the excursion, each student was allowed
to order one scoop of ice cream; the two data sets (part b) of Figure 3 represent the
number of scoops of ice cream ordered in each class.

.
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Figure 3: task examples (Krummenauer et al., 2020, p. 5; 7)

The transcript starts after the task context was introduced.
(1) hand puppet: In the hedgehog class are more children than in the mouse class.
(2) interviewer: Is this true?
(3) student: (agrees).
(4) interviewer: How do you know that?
(5) student: (points to the data in the diagram) look, here are two. Then here are two.
Look, both are five, that is both five / So, this is two times five, this is two

times five, this has one times two and this [the bar of chocolate scoops] has
this height, but this here [the bar of melon scoops] is a bit higher.

After the statement to be evaluated was presented in (1), the student indicates in (3) a
positive evaluation of the statement. After the interviewer asked for a justification, the
student substantiates the evaluation in (5) based on the data: the student identifies and
matches bars with the same height in both data sets (bars with the height 2 and bars
with the height 5) and shows that the remaining bar in the diagram of the hedgehog
class is higher than the remaining bar in the diagram of the mouse class, so that more
students need to be in the hedgehog class than in the mouse class. In comparison to the
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first sample answer, this argument has a much higher complexity in terms of
coordinating theory and evidence, as the student needs to relate the data for all sorts of
ice cream to each other. This results in an argumentation with multiple steps, while
developing an argument in the first example only requires to relate fewer elements of
the data with the statement being evaluated.

STUDY II

Based on the first study, which had shown a relatively broad spectrum in students’
data-based argumentation — both in regard to the number of data-based arguments per
student as well as in regard to the complexity of students’ arguments — a second study
was conducted recently in order to investigate in more detail and with a larger sample
size the qualitative spectrum of students’ data-based argumentation at the beginning of
primary school.

Design of the Study

For this, the methodology of the first study was further developed. In order to make the
full spectrum of students’ data-based argumentation visible, the set of tasks was
systematically further developed in order to be able to provide a spectrum of tasks to
students, differing in their complexity under the perspective of coordinating theory and
evidence. The tasks were implemented in a similar interview design as in the first study
and were administered to N =29 primary students at the beginning of their first year in
school, again without any prior intervention. In the following, we reflect in detail on
the quantitative results related to three tasks, which provide further insight into the
spectrum of students’ data-based argumentation at the beginning of primary school.
The inter-rater reliability of the top-down coding conducted for this analysis is k = .88.

Results

At first, we would like to put the focus on the task in part a) of Figure 3, which had the
highest rate of successful answers in the study; 82.8% of the students were able to
develop a consistent data-based argument in respondence to this task. The task is about
the number of marbles of three children displayed in the diagram. The statement to be
evaluated in this task by the students is “Jana has got three marbles”. Compared with
the tasks presented above, the complexity in terms of coordinating theory and evidence
is reduced, as the data which is needed for evaluating the claim can directly be taken
from the diagram; no further steps, such as comparing different data sets, as required in
the case of the task on ice scream scoops shown above, are necessary.

The data set on ice cream scoops had also been used in the second study, combined
with a modified statement (“in the mouse class, more children like chocolate ice cream
than in the hedgehog class”). In contrast to the marble task, this task requires to
compare data from two data sets in order to gain the relevant evidence for evaluating
the statement. Empirically, the increased complexity is reflected in a lower success rate
of 48.3%.
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Beyond such tasks, we implemented further, more complex tasks in which
coordinating theory and evidence does not only require to take into account and to
compare several data points, but also to consider that the given data may vary to some
extent. A sample task is shown in part b) of Figure 3. The task includes two diagrams
displaying how many deers have been observed during the past five days in a forest
(right diagram) and in a city park (left diagram). In the task context, the students had to
evaluate the statement (claimed by a character of the context story) “If I really want to
see a deer, I should go to the park®. As the data imply that the number of deers can
change from day to day, and as the statement is about the future, the task requires
students to take into account that the data may vary, which needs to be addressed when
developing a corresponding data-based argument. In our study, several students
compared the number of deers and argued, that it would be better to go to the forest as
the number of deers in this diagram is higher; however, no student in the sample
considered that the data may vary, which appears to be a challenging requirement for
the participating students.
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Figure 3: sample tasks

DISCUSSION AND CONCLUSIONS

Both studies have shown that the participating school starters were in many cases able
to evaluate given interpretations of data and to develop consistent arguments based on
the data in order to substantiate their evaluation. Although the samples of the studies
are clearly not representative, the qualitative and quantitative analyses revealed a broad
spectrum of students’ data-based argumentation, both regarding the frequency as well
as the complexity of their arguments. Against the background that both studies had
been conducted without any prior intervention, it appears that young primary students
have a high potential related to data-based argumentation, which should be addressed
and fostered in the mathematics classroom during primary school (and beyond). As
implied by research on children’s scientific reasoning (Masnick & Morris, 2008), the
students showed difficulties in tasks which require considering statistical variation
when developing data-based arguments. Fostering students in this regard, e.g. by
providing learning opportunities which allow for experiences in dealing with statistical
variation, may therefore be a promising approach for fostering students’ data-based
argumentation, which is planned to be evaluated in an intervention study.
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An eight-month-long intervention based on the idea of using a structural approach to
addition and subtraction, and particularly bridging through ten, was implemented in
Swedish Grade 1. A goal was that at the end of Grade 1, students would solve tasks
like 15—7= using part-whole relations of numbers. In this paper, we report on learning
outcomes from task-based interviews with intervention and control groups before,
immediately after and one year after the intervention, to investigate long-term effects
and whether students used a structural approach when solving tasks in Grade 2.
Results show that students in the intervention group increased their learning outcomes
the most and to a larger extent solved tasks in higher number ranges using a structural
approach.

INTRODUCTION

A structural approach in arithmetic has been advocated by several scholars as means
to facilitate students in developing powerful and sustainable ways of solving arithmetic
problems (e.g., Cheng, 2012; Ellemor-Collins & Wright, 2009). It is, however, not only
the way arithmetic is taught, but how the student experiences arithmetic tasks as
structure based in part-whole relations, that is highlighted. For example, Ahlberg
(1997) concludes from empirical research that “[w]hen children handle numbers by
structuring they do not count on the number sequence in order to keep track of the
numbers, but rather structure the numbers in the problem in parts and the whole in
order to arrive at an answer” (p. 70). This way of seeing arithmetic learning and
understanding challenges the view dominated by cognitive science (Baroody, 2016;
Fuson, 1992) that young students learn addition and subtraction through acquisition of
basic counting strategies, e.g., counting from the first addend, emphasizing counting
as a primary arithmetic strategy. To bring clarity to the long-term effects of these
differing approaches to arithmetic learning, we implemented an intervention program
based on the idea of using a structural approach to addition and subtraction and
particularly emphasizing part-whole relations and the ten-base unit in four Grade 1
classes in Sweden during one school year. The research question we answer in this
paper is: What are the effects of a structural teaching approach on students’ learning of
addition and subtraction?
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LEARNING ADDITION AND SUBTRACTION BRIDGING THROUGH TEN

Experiencing numbers as part-whole relations is considered to be critical for
development of arithmetic skills (Cheng, 2012; Resnick, 1983), since being aware of
part-whole relations may allow students to make use of powerful strategies, such as
decomposition (c=at+b), commutativity (a+b=b+a), and the complement principle
(atb=c then c—a=b), when solving addition and subtraction tasks (Zhou & Peverly,
2005). Piaget (1952) states that “[a]dditive and multiplicative operations are already
implied in numbers as such, since a number is an additive union of units, and one-one
correspondence between two sets entails multiplication. The real problem, if we wish
to reach the roots of these operations, is to discover how the child becomes aware,
when he discovers that they exist within numerical compositions” (p. 161). Empirical
research has however shown that this discovery of numbers’ part-whole relations and
how to operate with them, especially when bridging through ten, is not easily done by
young students. A substantial number of students frequently and successfully use
counting strategies instead of retrieval-based strategies for simple addition (Hopkins,
Russo, & Siegler, 2020). Furthermore, there are hardly any reports of students using
for instance the “subtraction by addition” strategy (e.g., Heinze, Marschick, &
Lipowsky, 2009; Selter, 2001), which is considered to be a powerful and sustainable
way of completing arithmetic tasks, building on conceptual understanding of numbers’
part-whole relations. The scarce use of retrieval-based and structure-based strategies
among students has been explained in terms of a lack of understanding of the
underlying complement principle between addition and subtraction, i.e., if students do
not understand that one part—part—whole combination refers both to the components of
a subtraction problem a—b=c and to its complementary addition problem c+b=a, it
hinders their discovery and use of the subtraction by addition strategy and other
structure-based ways of reasoning (Torbeyns, De Smedt, Stassens, Ghesquicre, &
Verschaffel, 2009). In a study on three-digit addition and subtraction, Selter (2001)
concluded that many students appear to be “blind” to the relations between given
numbers in a task, and execute a stable pattern of methods and strategies, regardless of
the task. Selter further suggests that students’ sense for number relations does not
develop independently of instruction. Consequently, students should be encouraged to
consider the nature of the problem type before trying to solve the problem. Young
students’ ways of experiencing or “seeing” a task have also been shown in a recent
study (Kullberg & Bjorklund, 2020) to be related to their developing arithmetic skills.
Those who experienced numbers represented both as one set (e.g., a finger pattern of
five fingers on one hand) and a composed set (e.g., composed of two and three fingers
on different hands) were more likely to develop known number facts from a long-term
perspective. Thus, there does seem to be more to solving arithmetic tasks in powerful
ways than making use of certain strategies — it seems to include a way of experiencing
the task and numbers in the task as relational.
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THE INTERVENTION

The intervention was built on findings from previous studies with 5-6-year-olds
(Kullberg, Bjorklund, Brkovic, & Runesson Kempe, 2020) and on principles from
phenomenography and its extension, variation theory (Marton, 2015). Results from
these studies demonstrate that there are certain aspects that must be discerned to be
able to experience and handle elementary arithmetic: modes of number representations,
ordinality, cardinality, and part-whole relations (the latter has four subcategories:
differentiating parts and whole, decomposing numbers, commutativity, and inverse
relationship between addition and subtraction). The discernment of these critical
aspects presupposes an experience of variation in the focused aspect against a
background of invariance. A goal was that students would be able to structure numbers
and solve tasks like 15—7= using part-whole relations and ten as a benchmark, at the
end of Grade 1. Finger patterns, as a way to represent numbers, were used by teachers
and students from the start, and played an important role in the intervention to show
numbers and part-whole relations. The teachers were told to avoid single unit counting
in their teaching. Throughout the intervention, the teachers elicited parts and wholes of
number relations. Aspects assumed to be critical for student learning, identified from
Interview 1 and previous research, that were elicited in activities were: 1) Seeing
numbers (seeing finger patterns or an amount of objects without counting), 2)
Understanding the ordinal and cardinal aspect of numbers, 3) Experiencing that
numbers can be partitioned, 4) Understanding that numbers can be represented in
different ways (e.g., by different finger patterns), 5) Experiencing place value, 6)
Experiencing operations as part-whole relations, 7) Experiencing commutativity in
addition, but seeing that it is not true for subtraction, 8) Experiencing the complement
principle (at+b=c, c—a=b), 9) Seeing 10 as a benchmark in an operation, 10) Seeing
parts in parts, 11) Experiencing counting “up to ten” or “down to ten” when solving a
subtraction task bridging through ten (e.g., 13—5= could be solved as 5+5+3=13, or 13—
3-2=8). Ten activities were enacted several times in each class during the eight-month-
long intervention and were video recorded, so it was possible to analyze whether the
aspects were elicited in the activities. Two of the activities are described briefly to
exemplify features of the intervention. The activity “Partition numbers”, into two and
three parts in many different ways, was a key activity, since this was seen as
foundational for being able to solve addition and subtraction tasks bridging ten.

Figure 1: The same number (12), partitioned into two and three parts, was made
possible to experience simultaneously by means of numerals and finger patterns.
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Hence, in order to subtract 12—7=, students need to be able to partition one part (7) into
two smaller parts (2 and 5) in order to bridge 10. Figure 1 shows how students (in pairs)
work with partitioning 12 into two and three parts (with numerals and with pictures of
finger patterns), in different ways on the same assignment. This makes it possible for
the students to experience how the same number (invariant) can be partitioned
differently (parts varied). Another activity “Subtraction bridging through ten using the
15-snake” involved discussions about tasks bridging ten, 13—8= and 13—5= (as well as
a task not bridging ten, 13—2=), and the part-whole relations illustrated on the board
using ten as a benchmark. Based on discussions of how the students solved the tasks,
primarily two different ways (“up to ten” and “down to ten’’) of bridging ten were made
possible to experience (13—8= as 8+2+3=13 and 13-3-5=5), where the subtrahend (8)
and the difference (5) were shown as composed/decomposed units at different places
(varied) on the 15-snake on the board, although the task remained invariant.

Figure 2: The subtrahend in 13—8=, was made possible to perceive as 13—-3-5=.

METHOD

Four experienced teachers from three different schools and their students participated
in the Intervention group. The teachers met three researchers every other week during
a period of eight months to plan, analyze and revise lessons in the intervention. The
teachers enacted the collaboratively planned lessons in their classes and video recorded
them. Three experienced teachers from two other schools and their students were part
of the Control group. One of the researchers met with the teachers from the Control
group (six times) and video recordings from their teaching were collected and
discussed at meetings in their schools. The participating teachers and the legal
guardians of the students had signed a written consent for participation. In this paper,
results of analysis of 363 video-recorded interviews, from three points in time (before,
immediately after, and one year after the intervention), conducted individually with
each student are reported (Intervention group N=86, Control group N=35). Each
interview lasted for 20-30 minutes. The interview tasks were a mix of orally presented
story problems (8+5=, 15-7=, 6+ =13, 24— =15, e.g., A baker baked 24 buns, and left
the buns on a tray. When he came back there were only 15 buns left. How many buns
were missing?) and tasks with numerals (11=5+ , 6+ =13,16+ =23, 14— =6). Follow-
up questions were posed to the students on all tasks, e.g., “How do you know it is x
[the answer]?” and “Please show me what you did when you solved the task?”. The
interview tasks were coded in two ways: for correct and incorrect answers and
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according to the strategy used (structure or single unit counting). For example, we
coded it as single unit counting when a student counted backwards: “15-7, fourteen,
thirteen, twelve...”. It was coded as structure when a student used larger parts (than
ones) of number to arrive at an answer, saying e.g., “I have 15 and take away 7, then I
have 3, because I thought about the 10 there, then I have 3 left and 5 from the other [5
in 15], and then I take 5+3”.

RESULTS

The Intervention and Control groups showed similar results on eight tasks on addition
and subtraction bridging through ten before the intervention started (Interview 1). In
order to test the effectiveness of the intervention, we conducted mixed ANOVA
analysis, with Interview occasion (Interview 1, Interview 2, Interview 3) as within- and
Group (Intervention-Control) as between-group factor. The interaction (Figure 3)
between Group and Interview occasion was significant (F(2,239) = 4.579, p=.011)
showing that the profile of change in results was different for control and intervention
groups, 1.e. that the Intervention group results over time increased more than those of
the Control group. This suggests that the intervention had a positive effect on the results
of the Intervention group.
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Figure 3: The average number of correctly solved tasks for Intervention and Control
groups across three interview occasions.

Figure 4 shows the percentage of students with correct answers from Interview 3 on
ten items for the Intervention and Control groups. We see a small difference in
percentage of correct answers between the groups on 8+5= and 15-7=, two
straightforward tasks in a lower number range that were used in all three interviews.
However, when the number range increases, more pronounced differences between the
Intervention and Control group are visible. The largest differences are found on the
subtraction tasks, 32-25= and 83—7=, solved by 51% and 73% of the students in the
Intervention group, compared to 31% and 49% of the Control group. We also find large
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differences on the addition tasks 15+17= and 28+44=, and items with a large
subtrahend, 204-193= and 132-78=.
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60% —
50% ]
40%

30%

20%

10% H I
0% M

8+5 15-7 24— =15 15+17 32-25 28+44 837 204—-193 204-12 132-78
mntervention OControl

Figure 4: Percentage correct answers on orally presented story problem tasks (first
five items) and tasks with numerals (last five items) in Interview 3.

Figure 5 shows how students solved 83—7=. It was coded as structure if a student was
able to partition 7 into two parts to solve the task (83—3=80, 80—4=76). We found that
more than 60% of the students in the Intervention group used structure to solve the task
and ended up with the correct answer, compared to about 30% in the Control group.
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N I |—’
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Correct Incorrect Correct Incorrect Correct Incorrect No question
Structure Structure Single units ~ Single units No code No code

EIntervention @ Control

Figure 5: How students in Intervention and Control groups solved 83—7, using
structure or single unit counting in Interview 3. Not possible to code=No code.

There were also students who tried to structure the task but did not end up with a correct
answer as their first answer, or not at all (Figure 5, Incorrect structure). For example,
Mia (Intervention group) first answered “66”, but when explaining how she solved the
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task she changed her mind. “I had 83 and then I took away 3, and then I had only 80
left, then I took away 4, and then I saw that it was, no, 76”. Hence, she was able to
partition 7 but did not get the ten right from the start. Students from both groups
counted in single units backwards to solve the task, 9% from the Intervention group
and 17% from the Control group, and succeeded in solving the task. However, 20% of
the students in the Control group used single unit counting and failed to solve the task.
This is most likely due to difficulties counting seven steps backwards and at the same
time keeping track of the counting sequence.

DISCUSSION

Our research question concerned what effects a structural teaching approach can have
on students’ learning of addition and subtraction. We suggest that the improvement in
results on student learning outcomes for the Intervention group in Grade 1, and on more
difficult tasks in Grade 2, is most likely an effect of the intervention. Students in the
Intervention group were taught to structure numbers, and used this knowledge to solve
tasks, in higher number ranges also. When encountering a higher number range,
students in the intervention group seemed to be able to generalize what they had learned
about (e.g., number relations, decomposition of numbers and using ten as a benchmark)
in a lower number range. Although more students in the Control group (89%) were
able to solve 15—7= compared to the Intervention group (83%), more students in the
Intervention group (72%) were able to solve 83—7= compared to the Control group
(49%). We also find a greater span of strategies used in the Control group than in the
Intervention group, where a majority of the students used structure. We find it striking
that almost 40% (20% incorrect) of the students in the Control group used single unit
counting for solving a task like 83—7= in Grade 2. Students using single unit counting
most likely do not experience numbers in the same way as students who are able to use
structure to arrive at the answer. The results of our intervention suggest that learning
to experience numbers as structural relations from the start seems to be helpful. Our
findings support previous studies suggesting that a structural approach is beneficial for
student learning (Ellemor-Collins & Wright, 2009; Venkat, Askew, Watson, & Mason,
2019). In addition, our findings indicate that counting as an arithmetic strategy may
hinder students’ ability to solve tasks in a higher number range (cf. Cheng, 2012;
Hopkins et al., 2020). Further research is needed to investigate how students’ ways of
solving arithmetic tasks affect future learning.
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Learning support is a key aspect of the teaching profession. In particular, promoting
mathematics-related learning is a goal when mathematics teachers respond to
students’ questions or comments during their work on tasks. “Helping” learners in this
sense should be (A) adaptive to the learner’s needs and (B) carry the potential to elicit
further learning - both core aspects of learning support informed by a teacher’s
noticing in the interaction with the learner. Pre-service teachers’ noticing in this area
can be assumed to be still under development and there is hence a need of empirical
studies investigating the learning support they suggest to provide. Consequently, this
paper presents results from a vignette-based study with n=116 pre-service teachers,
providing insight into their difficulties and also perspectives for improvement.

INTRODUCTION

Mathematics teachers should be able to help learners in building mathematical
knowledge and in using such knowledge for solving tasks. “Help” in this sense can be
described as individual learning support (e.g. Krammer, 2009; cf. Schnebel, 2013). A
reaction to the learner should at least (A) take into account the specific individual needs
of the learner (i.e., adaptiveness aspect of learning support) and (B) carry the potential
of facilitating and/or eliciting further individual learning (i.e., progress aspect of
learning support). Providing individual learning support hence requires mathematics
teachers to analyse the learner’s mathematical thinking in order to identify potential
individual difficulties, in order to find stimuli for further learning and understanding in
an adaptive way and to communicate them to the learner. Such analysing (Dreher &
Kuntze, 2015) can be understood in the framework of teacher noticing (Amador et al.,
2021; Choy, 2014; Fernandez, & Choy, 2020) as a knowledge-based reasoning process
(Sherin et al., 2011; Berliner, 1991; Dreher & Kuntze, 2015). Accordingly, the teacher
has to notice possible difficulties in the student’s understanding, such as incomplete
conceptual knowledge, for instance, and to identify a reaction which can support the
individual learner to build up or strengthen the mathematical knowledge needed. For
this complex and multi-step process, professional knowledge (Shulman, 1986; Kuntze,
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2012, cf. Kuntze, Dreher, & Friesen, 2015) is needed, including content knowledge
(CK) and pedagogical content knowledge (PCK).

All in all, being able to provide effective individual learning support in classroom
situations can be seen as a key aspect of mathematics teacher expertise. The
requirements of adaptiveness and (content-specific) progress as introduced above show
that the particular classroom situation plays a key role — also for research which aims
at finding out about how competent teachers are in providing individual learning
support. Vignette-based research can help to investigate such situation-specific
noticing and to respond to a need of empirical studies in this area. In particular,
evidence about pre-service teachers’ analysis and their ability of providing adequate
learning support is highly relevant, in order to find out about professional development
needs and to describe pre-service teachers’ growth empirically.

Consequently, this paper focuses on whether and how pre-service teachers can provide
learning support in a learning situation in the context of divisibility, which is a content
area from the pre-service teachers’ training in a university course. Through the lens of
the pre-service teachers’ noticing, i.e. analysis and their suggested learning support,
the results can also give insight into how they conceive of “help” to learners.

THEORETICAL BACKGROUND

There is a large consensus that mathematics teachers’ reactions to learners’ questions
or comments should support them in their further learning (e.g. Krammer, 2009;
Schnebel, 2013), such reactions should hence respond adaptively to learners’ needs
and provide them with stimuli for their further construction of mathematical knowledge
and understanding. Research about teachers’ noticing and analysis (e.g. Sherin, Jacobs,
& Philipp, 2011; Amador et al., 2021; Choy, 2014; Fernandez, & Choy, 2020; Dreher
& Kuntze, 2015; cf. Kersting et al., 2012) has focused continuously on aspects of
mathematics teacher expertise related to these requirements: in such research, the
teachers’ situation-adaptive knowledge-based reasoning and decision-making related
to possible situated reactions is typically in the focus. Methodologically, related
empirical studies mostly use representations of practice (Buchbinder & Kuntze, 2018),
1.e. vignettes (Skilling & Stylianides, 2020; Kuntze et al., in press), for eliciting the
teachers’ noticing. Beyond a situated scope, there are studies which describe ways of
inferring from teachers’ situated noticing to more general aspects of their expertise
(e.g. Kersting et al., 2012; Friesen & Kuntze, 2016).

For successful noticing, teachers need to draw on their professional knowledge
(Shulman, 1986); their instruction-related views, which are also considered as
components of their professional knowledge (Kuntze, 2012), can interfere in this
process. For providing adaptive learning support, both CK and PCK is needed in order
to mathematically analyse requirements of a task, a learner’s thinking, and possibilities
to provide learning support (Vondrova & Zalska, 2013). In the noticing process,
teachers can draw on professional knowledge components from different levels of
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situatedness (Dreher & Kuntze, 2015; Kuntze, 2012). Figure 1 gives a model-like
overview of noticing related to providing learning support in the sense of the
framework introduced above. In an analysis cycle as described in Kuntze and Friesen
(2018), the task requirements, the learner’s thinking (Fernandez et al., 2018), and
potential difficulties or needs of the learner have to be analysed against the background
of the teacher’s professional knowledge and situation-related observations. Based on
this analysis cycle and again drawing on professional knowledge, possible reaction(s)
have to be identified and a reaction which corresponds to an optimal adaptive learning
support (Hardy et al., 2019) has to be chosen.

(2) Identifying possible reaction(s), / M
decision-making for optimal learning support U7 maths

fratpe
F Ui

Situation, Professional
as represented in knowledge,

vignette _ including views
(Buchbinder & (1) Analysis cycle:

Kuntze, 2018: (Kuntze & Friesen, 2018)

Skilling &
Stylianides, 2020)

Knowledge-based

reasoning (Kuntze, 2012)

Noticing leading to adaptive learning support

(cf. Sherin, Jacobs, & Philipp, 2011)

Figure 1: Model-like overview of noticing related to providing learning support.

Teachers’ views related to “helping learners” i.e. to forms of learning support are
assumed to influence this process and its results. When a learner struggles with finding
a correct solution to a problem, learning support may consist of directly providing
information such as the task solution, parts of it or a standard solution algorithm or
rule, so that the learner can learn from this solution, rule or algorithm. However,
learning support may also take the form of feedback, for example telling the learner
that her/his reasoning is not correct or providing a counter-example, with or without
indicating a further pathway for a correct solution. Moreover, rather procedural
learning support can focus on stimuli to the learner for discovering a correct solution
on her/his own, such as encouraging the learner to try out specific strategies or to
challenge and check her/his thoughts on her/his own by using example values. A
teacher’s preference for such different forms of learning support may indicate this

PME 45 —2022 3-93



Kuntze et al.

teacher’s views about learning support. For pre-service teachers in particular, such
views may influence in which direction they develop their professional knowledge and
instruction-related experience further (cf. e.g. Kuntze, 2012). In conclusion,
mathematics teachers’ views can be reflected in their noticing and analysis of vignettes.

RESEARCH INTEREST AND RESEARCH QUESTIONS

In particular for pre-service mathematics teachers — who are in the process of their
professional development — relatively little is known from vignette-based empirical
studies about how they provide learning support and to which extent they encounter
obstacles when having to “help” learners, such as lacking CK. Such vignette-based
research can not only indicate potential pre-service teachers’ professional development
needs, but also inform vignette use in pre-service teacher education and related
evaluation research. This corresponds also to the aims of the Erasmus+ project
coReflect@maths (“Digital Support for Teachers’ Collaborative Reflection on
Mathematics Classroom Situations”, www.coreflect.eu).

For this reason, this study aims at analysing pre-service teachers’ answers to a vignette
in the content area of divisibility with respect of the following research questions:

(1) To what extent are pre-service teachers able to provide learning support in a
vignette-based setting showing a fictitious situation in the content area of divisibility?

(2) What role does their content knowledge (CK) play in this context?

(3) In which form do they suggest to provide learning support and is it possible to infer
to their conceptions of “helping learners” from the findings?

DESIGN AND METHODS

In order to answer the research questions introduced above, a vignette-based
questionnaire was designed by the team of co-authors of this paper, using
representations of practice (Buchbinder & Kuntze, 2018). For the vignettes, the style
of concept cartoons (Samkova, 2020) was chosen, in order to be able to present
different learners’ thoughts and to implement a variety of learning support
requirements. The instrument focused on problems from the content area of divisibility,
in line with the learning content of the target group. In this way, it could be assured
that beyond their prior CK, all pre-service teachers had been given a set of
opportunities for CK-related learning in the topic area of divisibility beforehand. One
of the vignettes in concept cartoon style is shown in Figure 2. The research instrument
with this vignette was administered to n=116 pre-service teachers preparing to teach at
primary schools (18% male, all in their first year of studying mathematics) enrolled at
a University of Education in southern Germany.

This study is part of a larger set of empirical studies carried out in the framework of
the Erasmus+ project coReflect@maths. In the case of the results reported here, more
analyses will be carried out in the future on the base of more data, also from groups of
Spanish and Czech pre-service teachers who had worked with vignettes from the
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questionnaire as well, in the framework of an international research approach in
coReflect@maths.

This number Since 18 =3 - 6, itis
is divisible by 18, because enough to check whether
the sum of its digits is the number is divisible
divisible by 18. by 3 and by 6.

No, 3and 6 .
is not enough. You have
to check divisibility
by 9 and by 2.

/") This number is 1800 - 36,
Q 6 é 9 it must be divisible by 18.
M CELEST

ADELE BEN g \
DAVID o i(
‘,(> i maths

Is 1764 divisible by 18?

‘hm

Figure 2: Vignette in the style of a concept cartoon (translated).

The participating pre-service teachers were first asked to analyse the thinking of the
persons in the cartoon (Fig. 2). Then, they were asked to think of a reaction: The key
vignette question for the analysis corresponding to the research aims of this paper was
“How could you help the student teachers (1) to correct their answers or (2) to improve
their argumentation?”. In this way, the questions required analysing the vignette
learners’ thinking and providing the vignette learners with adaptive individual learning
support.

The vignette in Figure 2 contains two answers with a mistake (Adele, Ben) and two
answers that can be interpreted as incomplete (Celest, David) in the sense that the
corresponding argumentations can be improved. As the above-mentioned question
requires that “help” should be provided to all persons represented in the vignette, the
learning support (A) should fit to the needs of the respective person (adaptiveness
aspect of learning support) and the (B) “help” should lead further on the content level
(progress aspect of learning support). Consequently, a top-down coding (cf. Mayring,
2015) was applied according to these two aspects: For each vignette person,

e code (A) describes whether there is an adaptive content-specific connection
of the answer with the given vignette person’s comment (dysfunctional
attempts of adaptive connections with an observable aim of connecting to the
cartoon character’s thinking were coded as such, e.g. in case of
mathematically inadequate connections or (partial) misinterpretations of the
cartoon characters’ thinking),

e code (B) describes whether the content of the answer could somehow advance
the vignette person’s learning or understanding.

Additionally, the form of suggested learning support was coded in a bottom-up
approach (cf. Mayring, 2015), in which a set of different categories emerged, which
will be reported together with the respective frequencies in the results section.
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RESULTS

Figures 1 and 2 display results of the coding introduced above and the relative
frequencies of the respective categories. Research question (1) focuses on the extent to
which the 116 pre-service teachers were able to provide learning support to the four
vignette persons. The results indicate
that a considerable number of pre-

service teachers struggled with CK 5
difficulties, which inhibited both the 40
adaptiveness (code A) and progress 30
20
10
6 . sl w0l i o
Adele Ben Carla David
40 0: No answer
B 1: Answer without opportunity of further individual learning
20 2: Answer based on mathematical mistake or lack in CK
I I . . . I . 3: Answer leading further from the learner’s thoughts
0 M 4: Answer leading further in the sense of providing standard solution
Adele Ben Carla David B 5: Answer (only) providing counter-example
0: No specific connection with learner's thinking detectable , W 6: Answer (only) telling that reasoning is wrong as rule does not apply
- % ?;Jr;]ctijfgccf:);::;Eltrilgnd\?vtif}:tlzz‘ren‘:r?sméi\il:l:i:;sj:?eczgg?el connection 7: Answer providing counter-example and telling that rule does not apply
Figure 3: Relative frequencies Figure 4: Relative frequencies
for Code (A) (in per cent). for Code (B) (in per cent).
aspect (code B) of the individual 40
learning support they suggested. »
For research question (2), there is
. 20
more than half of the answers with
evidence of CK difficulties, except 10 | I I I I I I
for answers to David with a lower 0 i L -
Adele Ben Carla David

frequency of CK difficulty codes.

No help detectable in answer

. Mathematically incorrect “help” (due to error(s)/misunderstanding(s))
ResearCh queStlon (3) Concentrates Prot/idingtincoryrect infor:natioFr: (e.g. atbout incorrect ”rule")t ’
. Providing information (e.g. about divisibility rule)
on forms Of SuggeSted leamlng M Providing counter-example (only)
1 B Providing standard algorithm/standard solution
Support.' In Partlcul_ar t.he results W Providing counter-example and standard algorithm
Shown 1mn Flgure 5 lndlcate that the Telling that wrong rule was applied and to search for correct solution

B Procedural help (e.g. try other numbers, discover mistake)

pre-service teachers mainly chose
forms of presenting or providing
information, even if incorrect.
Only in around 10% of the cases, procedural help, emphasising a comparably more
active role of the learner, was suggested. The large majority of answers falls into
categories that reflect a conception of “help” that consists in providing information
about rules, standard solutions, or feedback in the form of counter-examples.

DISCUSSION AND CONCLUSIONS

Even if the evidence should be interpreted with care, given that the sample is not
representative for German pre-service teachers, the research questions could be

Figure 5: Relative code frequencies for the
form of learning support provided (in per cent).
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answered and provide insight into the participants’ noticing and professional
knowledge, especially as far as CK-related needs for professional development are
concerned. More than half of the answers to the cartoon characters Adele, Ben and
Carla were marked by CK deficits, so that the ability of providing learning support
appears in need of improvement for many pre-service teachers.

As far as forms of learning support are concerned, the data shows a predominance of
telling the learners about rules (including attempts with evidence of mathematical, i.e.
CK deficits) or standard solutions and algorithms. This might be a consequence of the
pre-service teachers still being in a learning process related to divisibility contents,
possibly leading them to rather focus on evaluating the vignette persons’ thinking and
on newly learned rules and standard procedures. The evidence however also might
reflect the pre-service teachers’ conceptions of “helping learners” through the lens of
their noticing: For many of them, “help” might rather consist in directly providing
information or hints related to procedures than in stimulating the learner’s thinking and
activities in the direction of learner-centred experience and reasoning. This differs from
conceptions of learning support in literature (e.g. Schnebel, 2013; cf. Krammer, 2009).
In this sense, the results also point to needs in the development of pre-service teachers’
instruction-related views (cf. Kuntze, 2012). Future further analysis also of additional
data from Spanish and Czech pre-service teachers promises further insight here, also
on a cross-cultural level.

As far as methodological approaches are concerned, the study highlights the potential
of vignettes to elicit mathematics teachers’ noticing: On a situation and content-
specific level, pre-service teachers’ analysis of learners’ thinking and decision-making
related to learning support can be made accessible to research and evaluation by teacher
educators by asking the pre-service teachers to comment on vignettes. In line with the
potential of vignette-based formats for pre- and in-service mathematics teacher
professional development, the project coReflect@maths will further focus on
corresponding research and development needs.
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UNDERSTANDING THE ,AUXILIARY TASK’ CONCEPTUALLY -
DISCRETE VERSUS CONTINUOUS CARDINAL OBJECTS

Taha Ertugrul Kuzu

TU Dortmund University, Germany

For conceptually understanding the ,Auxiliary Task’, learners have to understand the
compensation process. Yet, since the strategy is highly complex compared to other
mental calculation strategies, an important question is how the conceptual
understanding of the strategy can be fostered and for this purpose, ordinal as well as
cardinal learning environments were developed and evaluated in a design-based-study
(which is part of the mixed-methods MaG-Project). Prior analyzes showed that
especially the cardinal learning environment leads to more thorough conceptual
discourses. In this paper, qualitative insights into the use of specific forms of cardinal
representation — discrete versus continuous — and its interpretations by four
1 I-year-old German primary school learners’ will be given.

STARTING POINTS AND THEORETICAL BACKGROUNDS
The ,Auxiliary Task’ and its relevance as a mental calculation strategy

In the last decades, there has been a shift in the perception of the importance of mental
calculation strategies: Mental calculation strategies are not seen as mere pre-steps for
the full algorithms anymore but have an important role in the emergence of flexible
calculation processes (Heinze, Marschick & Lipowsky 2009). At the same time, a
problem of over-emphasizing specific mental calculation strategies is visible: Students
tend to use the HundredsTensUnits(HTU)-strategy, where they calculate in an order
being structured by the hundreds, tens and units of the first and the second number, or
the Stepwise-strategy, where they calculate by dividing the second number into
hundreds, tens and units (see Selter 2001). Different and more complex mental
calculation strategies like the ,Auxiliary Task’ are mostly not activated by learners.
The ,Auxiliary Task’ differs from the HTU- and Stepwise-strategy insofar as that
learners have to utilize compensation rules and have to see specific numerical
properties before using the strategy, leading to a so-called ,analytical noticing’
(Threlfall 2002): When calculating 332 — 118 for example, learners using the
,Auxiliary Task’ have to recognize the proximity of the 118 to 120, thus modifying the
second number by rounding it up to 120 through adding + 2 and compensating the
modification at the interim result by adding back what was taken away too much (+ 2)
(see figure 1).
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Figure 1: The ,Auxiliary Task’ as sequenced task and non-numbered line (Kuzu 2021).

Thus, the ,Auxilary Task’ is complex in terms of processing and mental noticing since
the learners have to see the option to modify and compensate, but it also mediates a
crucially different view on numbers: They have to be perceived as flexible,
modificable objects, where one is allowed to change them, if every modification is
compensated (equally) by adding the modification amount to the (interim) result — a
different view on numbers which is fostering (pre-)algebraic aspects like the
perception of indeterminant, flexible parameters (see Kuzu & Niihrenborger 2021).

Cardinal versus ordinal ways of teaching the ,Auxiliary Task’

From a didactical standpoint, the teaching of the ,Auxiliary Task’ thus seems to be of
high relevance in the transition from primary to secondary school, but there is a need
for explorative research especially concerning the design-related question on zow to
teach the ,Auxiliary Task’ conceptually (see ibid.): In most learning environments, the
conceptual understanding is fostered by using ordinal representations (f.e. through the
use of non-numbered lines, see figure 1) and only very few learning environments do
utilize cardinal means of representation, although conceptual aspects — like the
compensation process — can be represented through cardinal manipulatives in a more
meaning-related way, for example when taking-away and putting-back an equal
amount of objects (see Britt & Irwin 2011). This leads to a specific, design-related
research gap: The development and evaluation of a learning environment utilizing a
cardinal representation of the ,Auxiliary Task’. Prior analyzes conducted in Kuzu &
Niihrenborger (2021) indicate specific hurdles on the conceptual as well as linguistic
level: Interpreting and explaining a cardinally represented compensational process is
highly complex due to the sequence of steps, which have to be visualized in a coherent,
intuitive and relational way, but it is worthwhile to do so since interestingly, the
cardinal representation led to more and thorough conceptual discourses. In
comparison, the ordinal representation led to a faster transition to procedural
discourses (with non-viable notions not being discussed as much as with the cardinal
representation) (see ibid.). What is yet unclear is the effect of using different cardinal
representations of the ,Auxiliary Task’ — discrete versus continuous — since both forms
of representing a cardinal amount are of relevance in primary school (see Greer 1992).
This is the research question to be focussed in this paper: How do learners interpret
discrete versus continous ways of cardinally representing conceptual facets of the
JAuxiliary Task’ in the context of the designed learning environment?
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METHODS OF THE LEARNING-PROCESS STUDY

Research context and data corpus of the study. The research question was pursued
in a design-based-study (see Prediger, Gravemeijer & Confrey 2015) that was part of
the larger mixed-methods project MaG. The aim of the study was to develop a learning
environment fostering the conceptual understanding of the ,Auxiliary Task’ for all four
arithmetics and to generate local theories about the effects of the design principles and
design elements by analyzing students’ learning processes (see ibid.). In groups of 2-3
learners and with an iterative research design, a learning environment consisting of two
60 minutes sessions was developed and conducted. The data corpus consisted of n= 18
learners from age 11-14 and at the end of the second iteration, a total of 520 minutes of
video material was cumulated (the learners being analyzed in this paper were 11 years
old). The use of a continuous cardinal representation was a design element of the
learning-environment from the first iteration, whereas the discrete representation was
an adaption made for the second iteration.

Methods for qualitative data analysis. The transcripts were analyzed with respect to
students’ epistemological processes when interpreting and explaining the ,Auxiliary
Task’ with cardinal manipulatives and representation. For this purpose, two analytical
steps were followed: In the first step, a turn-by-turn interpretative analysis was
conducted, in which the researcher analyzed students’ utterances and interactions
being based on the research questions of the study. These analyzes were discussed in
teams of researchers and the main aim was to get carfully reflected insights into
students’ processes of interpretation (Schiitte, Friesen & Jung 2019). In a second,
complementary step, an epistemological analysis was conducted for deepening the
analysis in specific transcript sections with so-called epistemological triangles
(Steinbring 2006). In this paper, mainly the turn-by-turn analyzes will be focussed and
sign-related utterances will be interpreted verbally without depicting the full
epistemological triangles.

The design of the learning environment. The learning environment was designed
based on two design principles: 1. Fostering of a conceptual understanding through a
content-and-language-integrated approach preceding procedural calculation and the 2.
Fostering of generalization processes through demanding verbal explanations. For the
research question of this paper, especially the first design principle is of relevance
since the use of different cardinal representations for fostering the conceptual
understanding is focussed (see figure 2).
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Figure 2: The continuous-cardinal representation from iteration 1 (left side) versus the
discrete-cardinal representation from iteration 2 (right side).

On the left side of figure 2, a mainly continuous cardinal representation with continous
tens and hundreds and discrete ones being based on Oehl (1962) is visible. The
representation focussed the rounding-up of the second number and three colors were
used: Blue for the task, red for the added number and grey for taking away the
rounded-up number. On the right side, a discrete cardinal form of representation,
where tens, hundreds and ones are discretely depicted, is visible and was used with a
similar color coding (red for the task, a black rectangle for the added number and grey
for taking away the rounded-up number). The cardinal objects in both variants are
visible in an iconized form on the worksheet, but they were also available in form of
manipulatives and for discussing the meaning of the ,Auxiliary Task’, an enactive
approach with manipulatives was the first step to re-understand the fictive student
Max’ use of the ,Auxiliary Task’.

EMPIRICAL INSIGHTS INTO STUDENTS’ INTERPRETATIONS
Sequence 1: Insights into the interpretation of the continous cardinal material

The students S1 and S2 try to explain the ,Auxiliary Task’ for the task 135 — 18 with
continuous cardinal objects. The task sheet with the iconic representation of Max’
procedure (see figure 2) is laid visibily on the table. They have available the continious
cardinal material consisting of a hundreds-square, tens-lines and ones-dots.

2 1 Okay, sorry- let’s put it on the table again as it was earlier so that it looks as
in Max’ picture [the Interviewer had nudged the objects by mistake].
3 S1 Yes [puts two ones-dots on the right side of
the second tens-stripe]
4 1 And then, and the we have learned not to oo
relocate the material [smiling]. Yes, like that,
thank you.
5 SI: Two he takes on it. But then he takes away o i
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these two [pointing at the two red dots]. And the twenty, he takes away

also.
6 L Abha.
[Turn 7-13: Organizational discourse. Continuation in Turn 14.]
14 S2 So, he also takes away these two? [pointing at the last two blue dots]
15 SI No. He has, one, these are five. Then he has seven [pointing at the five blue

dots first and then on the two red dots]. And then, when he as eighteen, plus
two makes twenty. Then he takes away the twenty. And then it is ten minus
two I believe.

From Turn 3 to 19, the learners S1 and S2 try to interpret the continuous cardinal
material. In Turn 3, they put it on the table as it was depicted on the task sheet (see
figure 2). After that, in Turn 5, a first individual interpretation of the cardinal material
becoms visible: S1 interprets the two blue-tens lines with the two red dots on it, as
visible on the picture in Turn 5 (the grey box being not visible very good), as twenty,
where “two he takes on it... then takes away these two. And the twenty, he takes away
also”. It seems that she infers a double-subtraction process, a non-related tie between
the two red ones-dots and the two blue tens-lines since she uses a paratactic structure in
her sentence and verbalizes the sequence with the language means “then” and “and”,
indicating non-related processes instead of interpreting the two red dots (the rounding
amount) as an integral part of the twenty (18 + 2 = 20), the rounded-up number. S2
seems to be irritated and asks in Turn 14, if he (possibly the fictive student Max from
the task) also takes away the red ones-dots. S1 at first neglects the presumption from
S2 in Turn 15 and hints at the total number of dots on the table (five blue dots and two
red dots), but after that she gives a similar answer to her explanation from Turn 5: That
it is eighteen plus two, which makes twenty to take away, and then ten minus two.
Especially the last part of her utterance, with the emphasis of a last following step
(“and then”), where she describes the taking-away of another two (10 — 2) beside of the
two being taken away within the twenty, shows again a double-subtractional notion.

From an epistemological perspective, the mathematical signs being interpreted here
are mainly the continuous cardinal representation on the task sheet, the objects on the
table and the numerical representation. Especially the objects on the table are discussed
and interpreted in a mathematically non-viable way, but S1s interpretation seems to be
rooted in the ambiguity being related to the material-design: The placement of two
ones-dots on a continuous tens-line seems not self-explanatory and leads to a
perturbation (irritation): Instead of interpreting the two red ones-dots as part of the
twenty, thus as being part of the whole of the second number, a distinct interpretation
of the ones-dots and tens-lines becomes fostered.

Sequence 2: Insights into the interpretation of the discrete cardinal material

The students S3 and S4 try to explain the way the ,Auxiliary Task’ is used for
calculating the task 165 — 38 with the given discrete cardinal material. While doing so,
they try to explain the ,Auxiliary Task’ (which was demonstrated by the fictive student
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Max, see figure 2). They have ones-dots, stripes of tens-dots and squares of
hundreds-dots (consisting of ten stripes of tens-dots). The iconic representation of
Max’ procedure (see figure 2) is visibly beside the amount on the table.

21 1 Which number did you now put on the table?
22 S3 Ehm these /points at the amount on the table]
23 S4 165 [puts the laste ones-dots to the discrete
amount]
24 S3 Yes.
25 1 Okay, very good. So, what does Max do now? How does he proceed?

26 S3 38 plus 2 [takes stripe of tens into his hand]

27 S4 That is 40. Well- I’1l just make it like this, plus two /puts two ones-dots on
the right side of the hundreds-dots]- although, more like under it /indicates
to put the ones-dots beside the other ones-dots under the amount]

28 S3 Let’s just do the result.
29 S4 Well okay. Then it is 40.

30 S3 And then 40 minus [has four stripes of tens-dots in his hand and holds them
next to the stripes of tens-dots on the table] five [looks at the five ones-dots]
now this comes away [takes away four of the stripes of tens-dots and
pushes the ones up right under the hundreds-dots] Plus... these two [puts
two ones to the ones under the 165] that makes hundred- /5 seconds] 117.

In sequence 2, a similar interactional process to sequence 1 is visible: The learners S3
and S4 discuss the meaning of the ,Auxiliary Task’ with cardinal means, but S3 and S4
discuss a discrete representation here (see figure 2). Being asked what they put down
on the table in Turn 21 by the Interviewer, S3 deictically points at the cardinal
representation of 165, which S4 verbalizes and finalizes in Turn 22 by putting down
the last ones-dots. In Turn 26 then, after being asked what the fictive student Max may
have thought in Turn 25 by the Interviewer, S3 and S4 begin to verbalize their
interpretation: S3 verbalizes the numerical task (38 plus 2) but at the same time takes
stripes of tens-dots into his hands. S4 then finishes S3s task in Turn 27 by saying “that
is 40", but more importantly, S4 here also adds two ones-dots on the right side of the
material on the table, an action matching the rounding amount of “plus two " in the task
(38 + 2). The numerical utterance thus is accompanied by the analoguous enactive
action of putting down the matching number of discrete cardinal material. From Turn
28 to 30 then, especially in Turn 30, S3 shows again enactively, what he seems to have
meant in Turn 26: By holding four stripes of tens-dots, which he took into his hand
already in Turn 26, beside of four stripes of tens-dots already on the table, he indicates
first, how many stripes have to be taken away (minus 40), and then takes away these.
After that, he pushes the ones-dots up so that there is no gap, whereafter he finalizes his
calculation.

From an epistemological viewpoint, the mathematical signs being interpreted here
seem less ambiguous when compared to the signs from sequence 1: The ones-dots and
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stripes of tens-dots as well as squares of hundreds-dots are interpreted by S3 and S4 in
a more coherent and relational way, visible by the utterances being accompanied by
parallel and matching enactive action (see Turn 27 and 30). It seems that S3s and S4s
interpretation does not differ from the task as S1s interpretation in sequence 1: The two
ones being put down on the table in Turn 26 and 27 are not taken away twice but once.
The extra ones-dots thus seem to be interpreted by the learners as part of a viable
compensative thinking being analoguous to the cardinal and numerical representation
on the task sheet. Generally, the learners seem not to be perturbed through the cardinal
material and representation if compared to the interaction in sequence 1.

DISCUSSION OF RESULTS AND LIMITATIONS

With regard of the research question of this paper, the analysis of both sequences
shows an important difference in the interpretation of the ,Auxiliary Task’ with
discrete versus continuous cardinal material: The continuous cardinal objects seem to
be ambiguous in terms of their meaning since putting two dots onto the continuous
tens-line leads to a non-relational, non-integral interpretion of the rounding amount
(+2) and the rounded-up number (18 + 2 = 20), resulting in a non-viable interpretation
of the ,Auxiliary Task’ as a double-subtraction. In contrast, with the discrete
continuous material, the rounding amount and the rounded-up number seem to be
interpreted in a more integral way by verbalizing the compensation process more
directly in an unequivocal way and by accompanying it with analoguous enactive
actions (see sequence 2). This hypothesis can be verified by broadening the analysis to
all n = 18 learners: The learners from iteration 2, where the discrete cardinal material
was used, seem to understand the compensation process more viably than the learners
from iteration 1, where a lot of sign-related irritations could be reconstructed in the
qualitative analyzes. An important local theory for designing a learning environment,
which is utilizing a cardinal approach to explaining the ,Auxiliary Task’, thus is that
the use of discrete material may lead to a more relational, more viable interpretation of
the compensation process due to lesser sign-related ambiguities. For the continuous
material, at least a redesign of the double layered objects with hidden versus visible
elements seems to be necessary, for example by using shortened tens-lines, where the
ones-dots are not on the line, hiding a part beneath it, but beside it, but then another
ambiguity would occurs: Tens-lines with a shorter and a “normal” length. This leads to
the conclusion that the use of discrete objects seems to be more adequate for explaining
the ,Auxiliary Task’ with cardinal means.

What the analyzes do not show is if a discrete representation is better than a continuous
representation generally: The insights are local, meaning they are closely connected to
the designed learning-environment about the ,Auxiliary Task’.
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STUDENTS WORKING ON MODELS; AN ON-GOING
EXPERIMENTATION IN MATHEMATICS AND CHEMISTRY

Jean-Baptiste Lagrange
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This paper focuses on modelling at upper secondary level. The objective is to give
students an understanding of mathematical concepts and methods in close
relationship to a domain of reality, as well as to give them insight into the
contribution of models of different kinds. This has led to the development of a
framework for modeling activities based on the Mathematical Working Spaces
theory. The questions at stake concern the operationality of this framework. To what
teaching situations can it lead? How do students work in these situations? We
examine these questions through an on-going experimentation on models of acid-
base transformations.

APPROACHES TO MODELING IN MATHEMATICS EDUCATION AND
SCIENCE DIDACTICS

Beginning in the 2000s, interest in involving real-world contexts has grown in
mathematics education. The ICMI 14 study (Bloom 2002) kicked off a lively stream
of research and focused on mathematics as an important activity in society. This
stream seems to us marked by two lines of force, problem solving and the modeling
cycle as a theorization of the modeling activity. Many authors indeed characterize
modeling activities as solving authentic problems, but the activities they propose
focus more on the solution to a contextualized problem than on models. For example,
in Blum and Ferri (2009), the task involves a lighthouse of a given height and
students have to find a value for the visibility distance that is valid specifically for
that height. The authors identify steps in students’ problem solving consistent with
the modeling cycle, but these steps lead to the solution rather than to a model.
Overall, the modeling cycle remains close to a classical resolution scheme where the
problem and the solution are expressed at the extra-mathematical level and solving is
done at the mathematical level. The cycle specifies steps and transitions and this
allows, among other things, the interpretation of students' trajectories in their
complexity. Nevertheless, the "real" and the "mathematical" remain two levels
insufficiently intertwined to account for how working on a model articulates
mathematics and real-world objects and phenomena (Czocher 2018).

In experimental science didactics, the main concern is the relationship between an
"empirical referent" (Sanchez 2008) made up of objects and phenomena as they are
perceived and spontaneously mobilized by the students, and a "scientific referent"
consisting of theoretical elements. By appropriating a model, the students can relate
these two referents and thus progress both in their perception of everyday objects and
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phenomena and in their understanding of scientific concepts. Nevertheless, the
mathematical aspects of the model are generally not questioned as such, and science
didactics privileges models where these aspects are minor for fear of complexity.

Thus, dominant approaches in mathematics education emphasize problem solving
rather than working on models, and science didactics favors appropriation of a model
while leaving aside mathematical aspects. Drawing on science didactics, we aim to
engage students in explicit work on models, but we also want to include mathematics
in this work. The experimentation we are carrying out starts from a laboratory
technique taught in the chapter about acid-base reactions of the chemistry course in
the non-vocational upper secondary stream in France. Students often describe this
technique as “a cooking recipe”, since mathematical methods are used, but not
explained with reference to acid-base reaction models. The purpose of the
experimentation is then to look for ways to make students study models both in their
chemical and mathematical aspects and get a better understanding of these aspects.

APPROACH AND FRAMEWORK

Lagrange et al. (forthcoming) distinguish between modelling and mathematization of
a domain. While mathematization is global in scope, modeling aims to account for
certain aspects of the domain in order to understand it, even partially, and to act on it.
A corollary is that there is not a single model: several models are as many ways to
approach a reality. Modeling thus has a subjective and social dimension: all models
can be useful, but each one must be discussed and confronted with others. In each
model, the contribution of mathematics results from a specific mathematical work, in
collaboration with experts in the field, in order to make the model more intelligible
and facilitate its use. Thus, there i1s not a real model on one side and a mathematical
model on the other side, but a plurality of models, each with a specific implication of
mathematics into the same domain of reality. We consider students’ activity in
modelling as a work of appropriation of two or more models, and as a work of
uncovering relationships between models, in order both to get better insight into the
domain and to progress in the mathematical concepts used; for instance Lagrange
(2018) proposed to consider four models of a suspension bridge for a high school
teaching project, one based on a study of tensions, a second one on arithmetical
relationships, a third one being a computer simulation, and finally a fourth model
based on notions in real analysis (functions, integration, etc.).

Modelling implies collaboration between experts with different viewpoints (Lagrange
et al. forthcoming) and that is why the above approach has led to organizing students’
work in a "jigsaw classroom". The work starts from a question. For the present study,
the question will be about how a model of the reaction justifies the laboratory
technique. There are four phases: (1) Presentation of the question and work on
prerequisite concepts (2) Expert groups: each group works on a model from a specific
viewpoint (3) Jigsaw groups: each group gathers experts from each expert group and
progress in understanding the models (4) Whole class discussion and conclusion by
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the teacher.

Regarding the notion of work in educational settings, we refer to the theory of
Mathematical Working Spaces (MWS). According to Kuzniak et al. (2016), a MWS
is an abstract space that is organized to support mathematical work in an educational
setting'. The theory of MWS distinguishes three levels:

e A reference working space (WS) is a space in which somebody educated in a
specific domain is expected to do the work in this domain.

e A suitable WS helps manage the work for beginners in a teaching project.

e A personal WS is particular to individuals.

As Menares-Espinoza and Vivier (forthcoming) explain, beginners approach a new
domain with their prior knowledge and cognitive processes. Teaching must design
tasks to help students' personal WSs evolve towards the reference level and this
requires designing suitable WSs. Here a reference WS is what allows for scientific
thinking about the laboratory technique. Models on which this thinking can be based
are described below. This paper focuses on suitable WSs, both a priori with reference
to models of the reaction and a posteriori from student observation, leaving for
further research a study of personal WSs.

The research question follows. RQ: What are the suitable WSs that provide a
conceptual basis for a mathematical-chemical approach of acid-base reaction models?
How do they predict students’ behavior and cognitive processes?

MODELS, WORKING SPACES AND TASKS

H
o J
2 .

B

Table 1: The laboratory technique. Empirical procedure and tangent method.

The laboratory technique we start with is titration, i.e. the use of a solution of known
concentration (titrant) to determine the unknown concentration of another solution
(analyte). The titrant is added from a graduated buret to a known quantity of analyte.
In case of an acid-base reaction, the analyte is an acidic solution, characterized by a
preponderance of oxonium ions and the titrant is a basic solution characterized by a
preponderance of hydroxides ions. During the titration, the oxoniums and the
hydroxides react and then the pH (minus the decimal logarithm of the concentration

1 Because of limited space, we do not insist on the three dimensions that structure a MWS: semiotic,
instrumental and discursive. However they are important in the domain of modelling, ensuring that mathematics
are not simply considered as a "language".
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in oxonium) of the mixture increases and a table of values (volume added, pH) is
obtained (Table 1 on the left). The experimental curve is a sigmoid whose inflection
point (called neutralization point) corresponds to a volume added for which the
mixture is neutral, i.e. has equal concentration in oxoniums and hydroxides
corresponding to pH 7. The position of the neutralization point allows to know the
quantity of hydroxides added and consequently the concentration in oxoniums of the
analyte. A geometrical technique (method of tangents) is used to determine this
position. It is based on the quasi-symmetry of the experimental curve with respect to
the inflection point (Table 1 on the right). As said before, no theoretical justification
in chemistry and mathematics is given to students. The underlying model of the
reaction is the evolution of the pH based on empirical observation, increasing and
almost symmetrical with regard to the neutralization point. This is Model 1.

Titrant: 8 ml acid, oxinium concentration 0.0125 mole/liter.
Analyte: base, hydroxide concentration 0.01 mole/liter.

Oxinium concentration for x ml base< 10:
Cal) = 10—4—r.10-% 10—z
- (8+$:|-1U_3' _1UU(I+8) D7)y =087 x +1.24

pH for x ml base < 10: D9}y = 0.89 x-1.90

)= - Tog(10-x)+log(8+x)+2 ‘

Hydroxide concentration for x ml base> 10:
Chlz) = r10—5%—10—-4  r—10

= (841)10—F T 100-(z48)
pH for x ml base> 10: /|

flx)=log(x-10) — log(8+x) + 12

Table 2: Mathematical function based on assumption: mixture contains only one type
of ions.

Model 2 is another model in which the titration curve is obtained by the calculation of
a mathematical function (Table 2). It is based on a simplifying assumption: hydroxide
and oxonium ions neutralize so that the mixture contains only one of the two types of
ions. This assumption allows to obtain a function whose curve is coherent with the
empirical curve, except in the vicinity of the neutralization point where the function
tends towards infinity. This is a consequence of a phenomenon called partial
dissociation of water, that contradicts the assumption: acidic solutions contain
hydroxides and basic solutions contain oxoniums, but this is negligible except in the
vicinity of the neutralization point. Because tangents are drawn at a distance from the
neutralization point, the model is a basis for a mathematical work to justify the
method. Mathematics also allows to question the simplifying assumption, and thus
students working on the models should progress both in chemistry and mathematics.

In accordance with the RQ, the experimentation aimed to build and evaluate suitable

3-110 PME 45 —2022



Lagrange

WSs thanks to which students could recognize Model 1 and 2 as the foundations of
the titration technique, and compare the two models. These WSs are designed for the
two group phases (expert groups and jigsaw groups). There are three expert groups.
Students in group Ea should become experts in Model 1, students in Eb should
become experts of the mathematical component of Model 2 and students Ec should
develop an expertise in quantifying the evolution of concentrations throughout the
titration. WSEa, WSEb and WSEc are suitable WS, each representing the respective
expertise targeted in each group and WSJ is the suitable WS pour the Jigsaw groups.
A presentation of the WSs and associated tasks follows, summarized in Table 3.

WSEa: Task Ea: Appropriate a simulation

Acid, base, neutralization (visual), software. Simulate for given data. Operate

pH (reading), measure, proportion, the tangent method for varied positions and

curve (experimental), tangents (visual). |compare accuracy.

WSEDb: Task Eb: Study the function f'(Table 1);

Functions (symbolic), curve, tangents |growth, limits. Trace the curve and tangents

(software), decimal logarithms. at abscissas 10-x and 10-+x for varied values
of x ; observe the mid-lines.

WSEc: Task Ec: Calculate hydroxides and oxynium

Ions, concentration, neutralization, pH. |concentration for varied added volume.

Volumes, ratios, formula. Calculate pH for these values and draw curve.

WSJ: Task J: Compare curves (Tasks Ea, Eb,Ec).

Idem Ec + symbolic calculations Show how f (Task Eb) models the pH as a

function of the added volume.
Justify the tangent method.

Table 3: Suitable working spaces and tasks in the group works.

WSEa is suitable to work on Model 1 and thus includes elements of chemistry (ions,
pH, concentration, etc.) but also of mathematics (measurements, curve, tangents,
ratios, etc.) We choose to have Ea students work on computer software simulating
titrations. The purpose of the software is to help systematize and reflect on the
method: students must enter the data of a given titration; they obtain a curve
simulating the empirical curve, they can choose points to perform the tangent method
and observe the accuracy of the method (Task Ea).

WSEDb is the space for a complete mathematical study of the Model 2 function. The
signs, the theoretical frame of reference as well as the use of a software for functions
belong to high school calculus, with the exception of decimal logarithms and the
piece-wise function which are unfamiliar. Task Eb is a study of properties of the
function. It is classical in the form, but the function is unusual.

WSEc is the space for students to numerically compute concentrations along the
titration, using the assumption of complete neutralization. The elements of chemistry
are the same as in Model 1, but they must be systematically quantified; pH formulas
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must be used. From a mathematical point of view it is an arithmetic space. Task Ec
requires students to have a good mastering of chemistry notions, as well as ratios and
unit conversion. The calculation of the concentration must take into account the
quantity of ions, but also the increase of the volume along the titration.

WSIJ correspond to the jigsaw groups in Phase 3. This is the space for students to
understand Model 2, make the connection to the assumption that the mixture contains
only one type of ions and make sense of the tangent method at a symbolic level.
Task J should lead students to perform a computation similar to Task EC, but at a
symbolic level as in Table 2, and to justify that two parallel tangents, one on each
branch, are nearly symmetrical with regard to the neutralization point.

IMPLEMENTATION AND ANALYSIS

In the context of the pandemic in 2020, the experimentation was carried out in the
form of a "lock-down online jigsaw classroom", i.e. the six participants were
physically separated, communicating on a platform that allowed either all students to
be gathered together (Phases 1 and 4) or split into groups (three groups of two in
Phases 2, and two groups of three in Phase 3). The students were of average level,
some more proficient in mathematics, other more in experimental sciences. They had
previously performed titrations on real solutions. The platform allowed the recording
of exchanges and productions. This data was completed by a e-mail survey. In the
analysis of the data we leave aside the aspects related to the online work, underlining
only that even online, the jigsaw classroom kept its potential for collaborative work.

This is the analysis of the group work phases (about one hour each). Table 4 presents
extracts of the reports made by the three experts groups (Ea, Eb, Ec, Phase 2) and the
two jigsaw groups (J1, J2, Phase 3). Ea appropriated the simulation software after
having difficulty understanding menus and data needed. They were able to use the
tangent method for several values and compare the accuracy. Eb’s study of the
function remained partial as the log decimal function was unfamiliar. As shown in
their report they were also not comfortable with a piece-wise function. They noted an
undefinitness, but did not mention infinite limits that would have shown
inconsistency with the experimental curve. Pseudo-symmetry and use of parallel
tangents for the position of the center were discussed. Ec was comfortable with the
chemistry concepts and the various calculations, but had difficulty taking into
account the variation in the volume of the solution. They made the connection with
the titration curve. Overall, Ea and Ec’s work can be seen as fitting in the suitable
WSEa and WSEc after initial difficulties. This is not the case for Eb. The students
were not comfortable with the function of Model 2, which is different from routine
functions they had been trained with. They were able to draw curves and tangents
thanks to the software. It was consistent with WSEc only for the use of software.

Group Ea  We used a software to enter the data, and we got curves for
concentration and pH . We saw clearly the turning point that makes it
go from acidic to basic. We used the tangent method to get the pH.
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Group Eb  We had two functions, one for x<10 and the other for x>10, but it was
the same function. The two functions are not defined in 10.
We drew the curves with GeoGebra. The pH curve, was symmetrical
with regard to the neutralization point. We placed the points A and B
according to the given abscissas then we traced the tangents and the mid
line on the computer to find the neutralization point.

Group Ec  We calculated the quantity of oxoniums for each added volume. Then
we applied the formula m/V after converting the volume into liters to
get the concentrations, and the formula -log(Ca) for the pH values. We
did similar calculations for the hydroxides after neutralization. We saw
that values increased and that it looked like the empirical curve.

GroupsJ  J1 We observed that when we apply the formulas of group Eb, we
obtain the data found by group C. We can therefore deduce that the
curve representing pH are related to the function of group Eb.

We calculated the derivatives to get the slopes of the tangents. When
the difference between these is close to 0, we get more accurate results.
J2 We had to develop a formula that actually calculates everything at
once. We made calculations like Ec did but with a variable x and we got
the function of group Eb for the acidic part.

Table 4: Extracts of reports of students' group work.

Both J groups observed that the curves obtained by the three experts groups were
similar. Group Eb’s remark (the two functions are not defined in 10) did not lead
students to observe a discrepancy between models near neutralization. Group J1
concluded that the similarity of curves is sufficient evidence that f'is a model of pH
evolution. They started a study of the slope of the tangents with regard to the
accuracy of the method, using the derivative of f with difficulty. Group J2 looked for
a an analytic proof that f is a model and succeeded only for the acid part. The
behaviors in both groups show students’ partial appropriation of WSJ, the suitable
working space that should provide mastery of Model 2. One shortcoming is that
students' symbolic calculation skills taught in math class were poorly enacted.
Another shortcoming is that they were not able to recognize a discrepancy between
the models. In Phase 4, after the J groups reported on their work, the teacher
emphasized the use symbolic computation and the discrepancy between models near
neutralization, which he explained by the dissociation of water. Answers to post-
questions by email showed that these points were partially understood by students.

CONCLUSION AND PERSPECTIVES FOR RESEARCH

The suitable WSs prepared for this experimentation allowed the students some
appropriation of the models both in their chemical and mathematical dimensions. A
critical look highlights achievements and gaps. WSEa did not help students
distinguish Model 1 from Model 2. WSEb was too demanding in symbolic
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calculation. WSEc seemed appropriate, with students Ec completing the task and
contributing to the work in Phase 3. WSJ was affected by Ea and Eb’s shortcomings.

Another implementation was then carried out in 2021 with a variation of the tasks. In
Task Ea the simulation was a computer program that the students could read and
interpret. In all tasks it was asked to get values of the pH (Tasks Ea and Ec) or of the
function (Task Eb) very close to the neutralization point. The discrepancy between
values obtained by Ea on one side and by Eb and Ec on the other side brought a
discussion in groups J. The students did not reach a consensus. Some students
emphasized the validity of the model underlying the computer program and its
conformity with empirical observations, and others maintained that Model 2 was
more reliable, stressing the inaccuracy of empirical observations compared to
mathematics. These results may be somewhat surprising and unsatisfaying but they
confirm the interest of this situation and provide insights for further experimentation.
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Judgments are part of teachers’ daily practice and crucial for students’ educational
careers. Previous evidence indicated that judgments are informed by various criteria.
But how pre-service teachers (PSTs) judge student solutions and how these judgments
are structured are still open questions. In two studies we shed light on the construct.
First, we investigated PSTs’ judgements of an exemplary student solution regarding
the applied categories (n1=110). Based on the results, we then constructed items and
investigated the structure of the construct by applying EFA and CFA (n22=168, na,=
209). The results revealed the following judgment dimensions: understanding, solution
quality, presentation of procedure, and motivation. In addition to evidence on the
structure of the construct, we gained an instrument to measure PSTs’ judgments.

INTRODUCTION

When planning lessons and making daily decisions regarding instruction, teachers rely
on their diagnostic judgment of students’ knowledge and potential. Diagnostic
judgment informs not only the assessment of students’ performances, but also their
grades and transition recommendations and is therefore crucial for students’ academic
development (Zhu et al., 2018) and their educational careers (Fischbach et al., 2013).
Thus, teachers’ diagnostic judgment plays an important role and must be given special
attention during teacher education (Ready & Wright, 2011). Judging student solutions
against the background of learning goals, such as gaining conceptual and procedural
knowledge, is crucial in all school subjects. Especially in mathematics, teachers often
struggle with judging the variety of student solutions as tasks allow for multiple
solution pathways (Durking et al., 2017). During teacher education, emphasis is thus
put on pre-service teachers’ (PSTs) judgments with respect to identifying the potential
in students’ solutions. Up to now, some evidence on how PSTs notice students’
mathematical thinking as a pre-requisite of their judgments (Crespo, 2000; Talanquer
et al., 2015; Baldinger, 2020) exists. Also, Loibl et al. (2020) contributed a framework
focussing on the cognitive processes underlying diagnostic judgments. So far, no
studies examined what teacher diagnostic judgments of student solutions are actually
based on and how they are structured. Particularly, we are interested in exploring
whether a content-related perspective is taken or, rather, a generic viewpoint.

In our first study, we utilized an open response instrument to assess the variety of
criteria PSTs used to judge an exemplary student solution and reconstructed judgment
criteria by content analysis. In our second study, we developed items based on the
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aforementioned results that were assumed to represent the criteria. We then equipped
the student solution with these rating scales and assessed two different groups of PSTs
to examine the dimensional structure of PSTs’ diagnostic judgments.

THEORETICAL FRAMEWORK

As indicated by social cognitive (dual process) models (Grawonski & Creighton, 2013,
Loibl et al., 2020), judgments can arise from automatic and spontaneous or from
controlled and reflected strategies of processing information. In many countries,
educational standards postulate competencies that students should acquire and thus can
serve as a normative framework against which teachers judge student solutions. For
the learning of mathematics, gaining conceptual and procedural knowledge is
important (Goldin, 2018). Students need to acquire procedural knowledge, thus
knowledge about how procedures, algorithms, or methods are to be applied, as well as
conceptual knowledge, in the sense of a content-related understanding of essential
concepts and procedures and their interrelationships (Rittle-Johnson & Schneider,
2015). Thus, mathematics teachers are requested to assess students’ products with
regard to the extent to which procedures were applied appropriately and correctly to
the tasks and whether conceptual knowledge has been acquired.

Previous research on PSTs’ judgments of students’ products revealed that PSTs use
three strategies when judging students’ products: mathematical reasoning, pedagogical
(content) reasoning, and reasoning through self-comparison (Baldinger, 2020).
Furthermore, judgments are often restricted to describing students’ work instead of
sense making of students’ ideas (Talanquer et al., 2015), merely evaluating instead of
interpreting, and not building inferences on students thinking (Crespo, 2000). Also,
studies showed that students’ errors resulting from a lack of conceptual understanding
were interpreted by PSTs as lacking procedural understanding (Son, 2013). As a
consequence, PSTs tended to directly respond to students’ utterances or to correct their
mistakes instead of asking questions to reveal their mathematical thinking (Cai et al.,
2021). However, findings from intervention studies imply that learning opportunities
can strengthen PSTs’ judgments towards a more detailed investigation of students’
thinking (Monson et al., 2018).

In sum, previous studies revealed that PSTs seem to focus on content-related aspects,
but base their judgement on rather surface characteristics as describing students’
solution instead of drawing on deep structure characteristics such as student
understanding. That is, the evidence provides insights into the variety of judgment
criteria and suggests a multidimensional structure of the construct. Against that
background our study was guided by the following aims and research question.

AIMS AND RESEARCH QUESTION

To investigate the dimensions of PSTs’ diagnostic judgments of student solutions we
combined a qualitative and a quantitative approach. We first approached possible
dimensions inductively (study 1). Based on these findings, we then constructed scales
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and checked the dimensionality of the construct (study 2). Particularly, we pursued the
following research questions: RQ1: What judgment criteria can be detected from PSTs’
diagnostic judgments of an exemplary student solution? RQ2: What dimensions
structure PSTs’ diagnostic judgments of an exemplary student solution?

METHODOLOGY

To reveal the variety of judgment criteria, in study 1 we used an exemplary student
solution of a probability task (see Figure 1) that allows for a diagnostic judgment with
different focuses and by using different categories.

Task

There are 5 balls in a box. Four balls are red, one ball is black.
Sarah pulls two balls out of the box with her eyes closed. What is
the likelihood that Sarah will pull out the black ball?

Student solution

Trandation of the solution:
10-6= 4 10-6=4
abo Y = oy thus 4/10=40%
N N ‘\‘ Mo Lrdbommt You get the
N N ' ot 1O % cle sduar=e | black ball
Kugak o with 40%.

Figure 1. Task and student solution.

The task was submitted to a sample of ny = 110 PSTs of a primary teacher education
program, who attended a lecture on probability and stochastics.

The PSTs were asked to judge the result as well as the solution process and to justify
their judgments. The open response data were analyzed by means of a step-wise
inductive approach. First, the data-set was split into three subsets. One researcher
analyzed one subset to identify a first set of categories that the PSTs used to rationalize
their judgments. The research group then intensively discussed the categories. Second,
code labels, definitions and examples were applied and revised through three rounds
of coding and recoding, to identify the coding scheme that fits the data best (Kuckartz
& Radiker, 2019). Four categories of criteria were finally derived to code the whole
dataset by two researchers. One sentence or more sentences with consistent meaning
served as idea units and were coded to one category, if possible, or several categories,
wherever necessary.

As a next step, items were constructed by extracting the most typical statements of
each category. In study 2, we then combined the constructed items with a six-point
response scale (from completely agree to completely disagree) to rate the student
solution and submitted it to n,; = 168 PSTs of two universities, enrolled in a master’s
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program and who previously attended a lecture of probabilities and stochastics. To
analyze the dimensional structure of the items, we first conducted an exploratory factor
analysis (EFA) and, second, cross-checked the structure by applying confirmatory
factor analyses (CFA). As factor loadings implied to add items, we constructed
additional items based on the findings gained in study 1, and repeated the data analysis.
The revised itemset was submitted to another sample of nz, = 209 PSTs at the end of
their bachelor teacher education program to validate the gained dimensionality. Again,
CFA was carried out to analyze the structure of the construct. Quality of model fit was
investigated by interpreting common fit indices (Hu & Bentler, 1999). Thereby,
McDonalds w was estimated as indicator for reliability (Hayes & Coutts, 2020).

RESULTS

The analysis of the open response data (RQ of study 1) revealed four categories PSTs
used when judging the student solution. They pursued a focus on understanding,
procedure, presentation, or motivation. PSTs with a focus on understanding usually
emphasized that the student was able or not able to grasp the problem correctly (e.g.
“student’s solution shows that he or she understood the problem well””). PSTs who
showed a focus on procedure pointed to details of how the student proceeded in either
a correct or incorrect way or in a complete or incomplete way (e.g., “calculates
correctly, converts to fractions, and gives correct percentages”). A focus on
presentation was coded for judgments based on how the solution process was
presented, arguing that the student created a picture of the problem, or wrote down a
solution path and an answer or did not (e.g., “solution is not clearly arranged”). When
PSTs recognized merely the student’s effort to solve the problem, we coded it as focus
on motivation (e.g., considering that he or she has a solution, and strained him- or
herself). The four categories were thus coded regardless whether the PSTs pursued a
deficit- or strength-based perspective.

In study 2, the EFA of the items constructed based on the most typical statements of
each category indicated a three-dimensional model, that was proved by CFA against a
four-dimensional structure (presentation and procedure modeled as two different
factors in the second model, AIC =5411,88, BIC = 5546,21, X2 =111.88, df =47, p =
.00; CFI = .89; RMSEA = .09 [.07 ; .11]; SRMR = .08). The results revealed a three-
dimensional model as more appropriate than a four-dimensional model (AIC =
3812,44, BIC = 3909,28, X2 = 37.25, df = 23, p =.03; CFIl =.96; RMSEA = .06 [.02 ;
.09]; SRMR =.06). Hence, presentation and procedure were building one factor which
we labeled presentation of procedure, showing a high reliability (McDonalds w =.80),
in addition to the factors understanding (McDonalds w = .78) and motivation
(McDonalds w =.79).

Each factor was presented by items with substantial loadings higher than .57. However,
a closer look at item quality and loadings led to a revision of the dimension
understanding. Two of the items of the dimension rather addressed the quality of the
student’s solution, e.g., “the solution is a smart one”, with high loading on the factor.
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Consequently, we added items based on the data gained by study 1 to test whether an
additional dimension needs to be modelled.

Again, we conducted a CFA with an additional data set that revealed a four-
dimensional model (see table 1) to fit the data best (see table 1). Understanding and
quality of solution were building two different factors in addition to the factors
presentation of procedure and motivation (X2 = 86.10, df = 48, p < .01; CFI = .97,
RMSEA = .06 [.04 ; .08]; SRMR = .05). The model fit was considered good. That is,
the four dimensions each showed high reliability (McDonalds w between .85 and .97).
Also, they were represented by three items with a loading higher than .55.

The factors correlate moderately with each other (fromr=.21, p<.0l1tor=59, p <
.01), except for understanding and quality of solution with a high correlation (r = .82,
p < .01). Nevertheless, the CFA confirmed a four-dimensional model as more
appropriate than a three-dimensional model (ACFI = .14).

Dimensions Items

Understanding The student’s solution shows that he or she understood the

w = .97 problem well.
The student’s solution indicates that he or she delved the
problem.
The student grasped the problem.

Quality of The student carefully considered the solution.

solution The student solution is smart.

w =.94 The student skilfully solved the problem.

Presentation of The student should have structured the solution better.

procedure The student should have chosen a different notation.

w = .85 The student solution does not show how he or she
proceeded.

Motivation The student tried hard to understand the task.

w =.90 The student strained to solve the task.

The student gave thought to find a solution.

Table 1: Dimensions of PSTs’ diagnostic judgment.

DISCUSSION AND CONCLUSION

In two studies, we shed light on the “black box” of PSTs’ diagnostic judgments when
confronted with an exemplary student solution — which will later be an important part
of their daily practice. First, we could show that they pursued a focus on understanding,
procedure, presentation or motivation. The results are in line with previous research,
indicating the relevance of content-related aspects (Baldinger, 2020). However, some
PSTs restricted their judgements to rather generic aspects when elaborating on how the
solution was presented (Talanquer et al., 2015) or merely acknowledging motivational
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aspects such as the effort the student made. Thus, the diagnostic judgment criteria PSTs
applied are of different quality with respect to fostering students’ learning.

In the second study, we used the results of the qualitative study to further explore the
dimensions of the construct. The results confirmed a multi-dimensional factor
structure. Beyond the results of previous studies that identified content-related
dimensions, our studies revealed that students’ motivation as a generic dimension
needs also to be considered as representing PSTs’ judgments. Our results further
revealed that the focus on procedure and on presenting the solution formed one
dimension, in line with previous evidence on PSTs’ judgments, showing that PSTs who
focus on procedure take a rather descriptive than an interpretative view, not building
inferences on students’ thinking (Crespo, 2000). Furthermore, we discovered that the
factor quality of solution needs to be considered in addition to the factor understanding.
The factors presentation of procedure and motivation indicate a more surface view on
student solutions as it was implicated by prior research (Talanquer et al., 2015). In
contrast, the two content-related factors of understanding and quality of solution
indicate a rather deep structure view, meeting the requirement to build inferences on
students thinking (Rittle-Johnson & Schneider, 2015).

Our study on the one hand contributes to the field of teacher education by
understanding the diagnostic judgment criteria PSTs use and how the construct is
structured. On the other hand, we gained a standardized instrument to measure
diagnostic judgment criteria PSTs apply when they judge an exemplary student
solution. So far, we could conduct an additional study to test whether the identified
diagnostic judgment dimensions fit the judgment of a student solving an arithmetic
solution, proving the independency of the dimensions from the concrete task used. As
a next step, starting from the study of Monson et al. (2020) who could show that PST
learning opportunities can contribute to a stronger focus on students’ thinking, we will
apply the instrument to examine whether and what learning opportunities can affect a
shift from focusing on surface to deep structure and content-related characteristics.
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This article describes an example of research-informed teaching to help students to
understand the operations with integers. The approach used is that of Inquiry and
Embodied cognition in outdoor context, with the help of sagittal axis. The activity
involved 15, eight grades (aged 13/14), students from a middle school in Trieste, Italy.
The results were tested by proposing to the same students’ different types of exercises
and problems. 73% have obtained positive results with 72% of which very good.
Finally, we investigated through Mentimeter the students’ appreciation of the outdoor
activity. 100% of students found the activity fun and helpful.

INTRODUCTION AND THEORETICAL BACKGROUND

Learning outside the classroom essentially can be defined as use of resources out of
the classroom to achieve the goals and objectives of learning (Knapp, 2010; Smith &
Walkington, 2020). Recently there has been an increased interest in the development
of outdoor and adventure education programmes (Fagerstam & Samuelsson, 2012).
The constant focus on textbooks and formal mathematical practice might invoke a view
among students that mathematics is abstract, distanced and only useful in a in
classroom context. Existing research on outdoor learning in mathematics indicates
positive affective outcomes and possible academic benefits from learning mathematics
in an out-of-school context (Daher & Baya’a, 2012; Moffett, 2011). Moreover, outdoor
environments, are real-life contexts enabling children to internalise, transfer and apply
mathematical ideas and provides direct experience, the students need to be active in
the learning process (Moffett, 2011). It lends itself to the Inquiry-based mathematics
education, a student-centred form of teaching whose guiding principle is that the
students are supposed to work in ways like how professional mathematicians work
(Artigue & Blomhgj, 2013; Dorier & Maass, 2014): they must observe phenomena,
ask questions, look for mathematical and scientific ways of answer these questions,
interpret, and evaluate their solutions, and communicate and discuss their solutions
effectively. Cooperative learning gives the opportunity to discuss and reason with
others and justify one’s mathematical thoughts on how to solve different mathematical
problems. Cooperative outdoor learning in mathematics gives the possibility to observe
that a task at hand can be solved in more than one way and that more than one “right”
solution to the problem may exist. The sensorimotor experiences arising from the
environment also play a paramount role in learning (Wilson, 2002).

Embodied cognition is described as a bodily sense of knowing, expressed through
physical movement and sensory exploration with environments (Merleau-Ponty, 2002;
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Varela et al., 1991). There is complexity in the processes that may be involved in the
development of embodied cognition as “knowledge depends on being in a world that
is inseparable from our bodies, our language, our social history” (Varela et al., 1991,
p. 173). According to Glenberg (2010) perception and how memory works is affected
by how people move their bodies. The role of gestures as semiotic tools, contributing
to deeper understanding of mathematical concepts (Arzarello et al., 2009).

Fluidity with integer operations marks a transition from arithmetic to abstract algebra.
They do not correspond to any of the pre-existing cognitive structures and destabilize
the perceptions - established since elementary school - of students on numbers and
operations. It is difficult for them to perceive that -27 is less than -1 or that addition
can cause a reduction, while subtraction can cause an increase. Moreover, negative
numbers are conceptually difficult because students spend much less time learning
them. Not being able to attribute natural objects or quantities to them, they try to recall
the rules that do not guarantee the validity of their results (Vlassis, 2002; Bofferding,
2014; Badarudin & Khalid, 2008). The key to a successful method is not to let them
memorize a bunch of rules before they understand. Instead, students' understanding can
be enhanced by using images or manipulating tools, to enable them to translate
concepts into images. Additionally, giving students the opportunity to explore multiple
representations of a particular mathematical concept can strengthen their conceptual
understanding.

Numbers are closely related to space both in action and in thought. A now classic
finding is the “spatial numerical association of response codes (SNARC) effect™:
among literate individuals from cultures who read from left to right, smaller numbers
induce dispositions to act in the left space and larger numbers in the right space.
Negative integers also induce spatial arrangements, although the task requires
influence whether they are “left” of zero, in line with their relative numerical
magnitude, or mixed with positive integers based on their absolute value. Spatial
arrangements can also play a role in more complex tasks: mental arithmetic, for
example, induces systematic arrangements to respond spatially, with addition-bias
responses to the right and subtraction bias responses to the left (Knops at al. 2009;
Marghetis & Youngstrom, 2014). Anelli at al. (2014) found a significant “congruency
effect” where subjects performed more correct addition operations when moving
horizontally rightward (the inferred orientation for addition in cultures that read left to
right). Citing earlier work on bodily movement and mathematical processes, these
researchers offer more “evidence about the influence of active body movements on the
calculation processes of additions and subtractions,” evidence which reveals, “...the
direction of body motion can influence not only number magnitude in a number
generation task, but also the more complex process of calculations that leads to a
numerical magnitude” (2014, p. 4).

Typically, negative numbers are interpreted as a continuation of a horizontal number
line, or number sequence, where numbers to the left of zero are negative and numbers
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to the right of zero are positive. Sometimes, they can mimic vertical number lines for
example, a temperature gauge. Additionally, the meaning of the minus sign, the symbol
most fundamental to integers, is ambiguous. Common meanings include the meaning
of an operation (take away), a value (negative), and “the opposite of,” and learners
often apply multiple meanings during manipulation (Lamb et al., 2012).

Little attention has been given to the arrangements along the sagittal axis, which runs
from behind the body forward. Things ahead can be seen, heard, touched; the things
behind it are much more difficult to access. Furthermore, the sagittal axis is associated
with another abstract domain: Time. Recent studies have shown that negative numbers
are spontaneously associated with the space behind the body and positive numbers with
the space in front. These spatial arrangements were evident only when the task
involved both the positive and negative numbers. Whole reasoning, therefore, is not
entirely abstract, but induces systematic dispositions to action (Marghetis &
Youngstrom, 2014).

The purpose of this article is twofold: it is intended to show how an outdoor activity
should be presented with a view to the Embodiment, the Inquiry and with the use of
sagittal axis; to test, as first exploratory study, whether an hour and a half of outdoor
activity was enough for the students to understand concepts and if the activity was
appreciated by them. The study involved 15 students, eight grades (aged 13/14) 8 boys
and 7 girls, from a middle school in Trieste, Italy.

THE METHODOLOGY

In the first part we describe those steps that led students to the discovery of properties
regarding the addition and subtraction with integers. The approach used is that of
Inquiry and Embodied cognition in an outdoor context. The activity takes place in the
“Classroom under the sky” https://www.youtube.com/watch?v=1GJbz_d70Us&t=80s
(for another example see Lepellere & Gasparo 2021). The environment is already
welcoming in itself: a small pond right on the edge of a laurel grove, an open lawn that
converges to the maple tree in the centre of the space, under which a blackboard and
seats for students are placed. The students can also make use of portable shelves, to
support books and notebooks. The activity middle school in Trieste, Italy. The results
were tested by proposing, to the same 15 students, just after an hour and half of outdoor
activity 72 exercises on operations and five different problems. Finally, we investigated
through Mentimeter the students’ appreciation of the outdoor activity.

THE ACTIVITY

The straight line of numbers is represented by the stairs, the increasing direction to the
right is not as intuitive as climbing the steps (positive numbers) or descending them
(negative numbers). After having identified the zero point on the landing, we start by
drawing positive and negative numbers on the wall next to the stairs. To further help
visualization and memory, it is possible to paint negative numbers in red and positive
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numbers in blue, placing the relative sign in front of them. The students take their
chosen position on the various stairs, after which we introduce some rules.

Figure 1: Stairs real and imaginary.

We invite students to discover the first oddity: how is it possible that by subtracting
two numbers we get a larger number? I point out that subtracting means making a
difference, so we invite students to calculate the difference between the +2 step and -4
step, that is, let’s see how many steps we must do to go down from +2 to -4. We
discover that there are 6! So, +2 - (-4) = + 6. Now we establish another rule that we
have to do with the starting position that a student must take. Upon departure, a student
stands in a neutral position, towards the teacher or fellow who gives the commands.
Then he or she behaves like this: to add something they must turn upwards (positive
numbers) and to subtract they must turn downwards. In Figure 1 on the right, we see
the first student who passes from -3 to -2: he is turned upwards in the addition
operation: -3 + (+1) = -2. The second stays in neutral position on 0, the third drops
from +2 to +1, i.e., it is turned down in the subtraction position +2 - (+1) = +1. The
fourth is neutral on +3 and wait instructions. It is time for the second rule: in front of a
number there are two signs, one for the operation and one that indicates whether the
number is positive or negative. If the number following the first is positive, we move
forward and if the number is negative, we move backwards. We invite the students to
move like fleas, amplifying the gesture with a jump. During the first calculations we
often see some pupils simulating these jumps with their fingers in the notebook.

Figure 2: From step +2, we can get to step -4 with two methods.

Together we discover that starting from step +2, we can get to step -4 with two
methods: turn left (-) and go forward (+) doing +2 - (+6) = -4 (Figure 2 on the left) or
turn right (+) and go back (-) doing +2 + (-6) = -4 (Figure 2 on the right). At this point
a series of games began: a team assigns an operation to the opponents who must solve
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problems such as -2 - (- 3). Then we ask how, starting from -1, we can get to +4. They
start with simpler procedure; they turn left and go forward by 5. Then the students also
discover the other system: they turn right, down, and go up to shrimp back by -5. The
variations to the game are many: it is left to the students to find some. The whole
outdoor activity lasted an hour and a half.

THE TEST

The next day and without any prior notice, students were offered a challenging test
consisting of 72 operations to perform and 5 problems to set and solve. The operations
were of type: —20 + 15 =[]; 12 + (—16) =[1; —4 +[1=10; =7 +[1= —-2; []
+(—3) =7; [[1+13 = =5 and so on in such a way as to cover all possibilities.
Moreover, we give them the following 5 problems involving a vertical schema as
temperature and sea level, horizontal schema as movement and timeline and finally a
neutral schema as loans. Problem 1. Temperature: Lara looks at the thermometer: the
temperature is -2. In the afternoon, however, the temperature rises by 11 degrees. What
temperature do we have now? Write down the operation you did. Problem 2.
Movement: Cristian walks 20 meters ahead and then returns 14 meters back. Where is
he in relation to the starting point? Write down the operation you did. Problem 3. Sea
level: Sofia is in a submarine with her friend Matteo. They are 150 meters below sea
level! If the submarine rises 100 meters, what level is it now? Write down the operation
you did. Problem 4. Timeline: Luca was a prominent Roman emperor, before
reincarnating as a student of the Caprin. He was born in 510 BC. In the twentieth
reincarnation he became a swallow, which died in 220 AD. How many years has he
lived in these 20 reincarnations? Write down the operation you did. Problem 5. Loans:
Isabel and Giada go to buy a sweatshirt from Scarface. Giada has 15 euros with her,
but the sweatshirt costs 23. How much money does Isabel have to lend her for the
purchase? In other words, how much money does Giada owe? Do you have to put + or
- in front of the number? Write down the operation you did.

In Table 1. we show the results obtained. The 15 students numbered from 1 to 15 are
placed in the column. The scores obtained from the operations are represented in the
column “Operation Scores”. One point has been assigned to each operation. The scores
on the problems are reported from the third to the eighth column: 1 if it was correct
and 0.5 if it was formulated correctly but the operation was wrongly made. The
“Difficulty” column also shows the difficulty perceived by the students of the test (0
easy to 5 very difficult) and in the subsequent ones the preference between the schemes
used (0 dislike 3 like very much), horizontal, vertical, scaled or the use of the rules.
The last 2 columns contain the total score and the grade (in tenths) achieved by each
individual student. The last row of the table contains the arithmetic means of the
various results.
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Operation Problems Difficulty (1-5) Preference Schemas or Rules (1-3)
Scores 1 2 3 4 5 Orizzontal | Vertical | Stairs | Rules| TOTAL SCORE
Total Score 72 1 1 1 1 1 77
1 33 1 1 1 1 0 3 2 1 2 3 37 5-
2 46 1 1 1 1 1 3 51 6/7
3 12 1 0,5 0 0 0 13,5 3
4 35 1 0 0 0,5 0,5 3 3 2 3 1 37 5-
5 71 1 1 0,5 0 0 3 3 0 2 3 73,5 9/10
6 60 1 1 1 0,5 1 3 2 2 3 3 64,5 8/9
7 61 1 1 1 1 1 3 3 3 0 66 8/9
8 66 1 1 1 1 1 2,5 0 2 1 2 71 9+
9 57 1 1 1 0 0 2,5 1 1 3 0 63 8
10 55 1 1 1 0,5 0 2 1 0 3 0 58,5 7/8
11 66 1 1 1 1 1 1 3 3 3 3 71 9+
12 72 1 1 1 1 1 1 1 2 3 77 10
13 72 1 1 1 1 1 1 3 3 3 3 77 10
14 66 1 1 0,5 1 1 2 1 0 0 3 70,5 9
15 41 1 1 0,5 0 0,5 0 0 3 0 44 6-
Avarage 54 1 0,9 0,8 0,7 0,6 2,2 1,8 1,5 2,5 1,9 54,1 7

Table 1: Results.

Immediately it is noted that only 3 out of 15 students obtained an insufficient total
grade of which only one very negative (6/7 stands for 6.75 and so on). The first
temperature problem, which is also what students must do most in real life, was solved
correctly by all students, following the movement and sea level problem. The timeline
exercise had an additional difficulty related to intrinsic knowledge of the subject and
therefore less skill was expected. More unexpected is the result on the problem about
loan and would need further study. The test was perceived as not very difficult even if
4 students did not answer to the question about it. As for the use of the schemes, the
scale scheme (10 students gave preference grade 3), was appreciated more than the
scheme in the horizontal (5 students gave preference grade 3) and vertical (3 students
they gave preference grade 3). Finally, the use of the rules received some appreciation
(6 students gave preference grade 3). Cases of non-response were not taken into
consideration in the calculation of the mean.

Mentimeter was used to test student appreciation of the activity. First, they were asked
to write the first 5 words that came to mind when thinking about the outdoor activity.
Figure 3a shows the results. The words funny combined with fun, nice, beautiful are
the most used. But understanding-related words such as interesting, simple, focus, ease,
easy, and intelligence were also highly rated. We find the words numbers, scales,
errors, comparison too. When asked to indicate on a scale from 0 to 5 (0 not at all and
5 very much) how much they liked the activity 6 students gave score 5, 5 students score
4 and 1 score 3, scores 0, 1 and 2 are not been voted on (Figure 3b.).
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Inserisci 5 parole che ti vengono in mente pensando  “*™ Quanto ti & piaciuta I'attivita? 0 per niente, 5 tantissimo
allattivita che hai svolto

concetrazione

: numeri
divertente

errori facile
movimentato

o

Figure 2: Mentimeter results.

It was also asked to indicate from 0 (not at all) to 5 (a lot) how much the activity on
the stairs was of help compared to the study in class on the blackboard and the
notebook. Here, too, 11 out of 13 young people who replied said that the activity was
very helpful. Finally, it was asked whether by carrying out this activity the student was
able to discover some rules on his own. 6 students voted yes and 7 no.

CONCLUSIONS

The lack of cognitive prerequisites based on personal experience, sensory deprivation,
the lack of direct experiences are elements of risk that we detect in today's young
people and that lead them to have difficulties even when they need to analyse, deduce,
abstract. The term “educate” derives from the Latin ex ducere, “to lead out”, in the
sense of trying to get the best out of each student but it can also be interpreted as “to
lead out” from the classroom. Here, movement can represent a stimulus to learning if
practiced in serenity and even more in an open environment (Moss, 2009). Covid-19
launches a challenge to schools today in a strong crisis and that of outdoor schools is a
real way that connects students with reality, nature, dexterity, art and a new
responsibility towards creation, others, themselves. The reduction of opportunities for
socialization has led to various psychological disorders in adolescents: panic attacks
and anxiety. It should therefore come as no surprise that fun and socializing activities
are of interest and approval. The survey carried out anonymously at the end of the
outdoor lesson shows that 100% of students found the activity fun. Several used terms
such as “beautiful, joy, happiness”. After only an hour and a half of outdoor lessons
most of the students obtained a very high score in a demanding test consisting of 72
operations of different types and 5 problems. This is a first investigative intervention
that will lay the foundations for future experimental work.
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We focused on both prospective teachers’ (PTs) confidence about their knowledge
preparation and the extent of their knowledge of the specific topic of fraction division.
The results revealed how these PTs’ confidence may or may not be supported by their
knowledge preparation for teaching fraction division, a concept they would be
expected to teach as part of the country's curriculum standards. The results also
illustrated the importance of specifying knowledge components in mathematics in
order to help build or support PTs’ confidence for classroom instruction.

Accumulated research findings in past decades have led to the understanding that
teachers’ knowing mathematics for teaching is essential to effective classroom
instruction (e.g., Li & Howe, 2021; Li & Kaiser, 2011). Corresponding efforts have
also been reflected in teacher preparation programs that call for more emphasis on
prospective teachers’ learning of mathematics for teaching (CBMS, 2012; Li, Ma &
Pang, 2008; L1, Pang, Zhang & Song, 2020). Such efforts can presumably increase the
quality of teacher preparation and prospective teachers' confidence and ultimate
success in their future teaching careers. However, previous studies (Li & Kulm, 2008;
Li & Smith, 2007) revealed a wide gap between sampled prospective middle school
teachers’ high confidence and their limited mathematics knowledge needed for
teaching fraction division in the U.S.. Much remains to be learned about the extent of
knowledge in mathematics and pedagogy that prospective teachers have and what else
they may need to know for building or supporting their confidence. As part of a large
research study of elementary school teachers’ mathematical preparation, this paper
focused on a group of PTs’ confidence and knowledge of mathematics and pedagogy
on the topic of fraction division in South Korea.

The topic of fraction division is difficult in school mathematics not only for students
(L1, 2008), but also for prospective teachers (Li & Kulm, 2008; Simon, 1993).
Mathematically, fraction division can be presented as an algorithmic procedure that
can be easily taught and learned as “invert and multiply.” However, the topic is
conceptually rich and difficult, as its meaning requires explanation through
connections with other mathematical knowledge, various representations, or real world
contexts (Greer, 1992; Li, 2008). The selection of the topic of fraction division, as a
special case, can provide a rich context for exploring possible depth and limitations in
prospective teachers’ knowledge in mathematics and pedagogy. Specifically, this
study focused on the following two research questions:
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(1) What is the confidence of prospective elementary school teachers regarding
their knowledge preparation for teaching?

(2) What is the extent of prospective elementary school teachers’ knowledge in
mathematics and pedagogy for teaching fraction division?

CONCEPTUAL FRAMEWORK

To be able to help students learn mathematics with understanding, teachers need to
have mathematics conceptual knowledge for teaching (MCKT; Li et al., 2020). By
MCKT we mean topic-based conceptual knowledge packages that are needed for
understanding, explaining, as well as teaching specific mathematics content topics
with connections. It can be specified as containing the following three topic-based
knowledge components that can and should be acquired by mathematics teachers:

(a) Having knowledge and skills directly associated with a specific content topic;

(b) Being able to connect and justify the main points of a content topic, and to
place it in wider contexts;

(c) Knowing and being able to use various representations for teaching the
content topic, and being able to teach the relations between them.

Clearly, specific MCKT varies from one content topic to another. The task of
specifying MCKT is needed but enormous for different content topics. Nevertheless,
teachers’ acquisition of MCKT would enable them to develop a profound
understanding of mathematics content topics they teach as termed by Ma (1999). Given
the dramatic variations across mathematical content topics, we focus on the MCKT
that teachers would need to have for teaching fraction division.

The conceptual complexity of the topic of fraction division is evidenced in a number
of studies that documented relevant difficulties prospective and practicing teachers
have experienced (e.g., Borko et al., 1992; Simon, 1993; Tirosh, 2000). Although both
prospective and practicing teachers can perform the computation for fraction division,
it is difficult for teachers, at least in the United States, to explain the computation of
fraction division conceptually with appropriate representations or connections with
other mathematical knowledge (Ma, 1999; Simon, 1993). Teachers’ knowledge of
fraction division is often limited to the invert-and-multiply procedure, which restricts
teachers’ ability to provide a conceptual explanation of the procedure in classrooms
(e.g., Borko et al., 1992). Because the meaning of division alone is not easy for
prospective teachers (e.g., Simon, 1993), fraction division is even more difficult (Li &
Kulm, 2008; Ma, 1999). The findings from previous studies help provide specifics of
these three components of MCKT as follows:

(a) Having knowledge and skills about fraction division, including conceptual
and procedural knowledge (e.g., Borko et al., 1992), and solving problems
involving fraction division (e.g., Greer, 1992).
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(b) Mathematical connections and justifications of main points related to fraction
division, including fraction concept; addition, subtraction, and multiplication
of fractions (e.g., Ma, 1999; Tirosh, 2000).

(c) Representational variations and connections for teaching fraction division
such as explaining the computational procedure for “division of fraction” with
different representations (e.g., Li & Huang, 2008; Li & Kulm, 2008).

The specifications of these three components of knowledge provided a framework for
the current study and served as a guideline for selecting items to examine the extent of
PTs’ knowledge and specific difficulties with fraction division.

METHODOLOGY
Subjects

The participants were prospective elementary school teachers sampled from four
national universities that offer 4-year B.A. or B.Sc. teacher preparation programs in
South Korea. They had already taken the required mathematics courses and were
completing the mathematics methods course at the time of their participation in this
study. A total of 221 responses were collected and used for analyses and reporting,
with 135 (61%) of responses from juniors, 86 (39%) responses from seniors.

Instruments and data collection

A survey was developed for this study, containing two main parts with three items for
Part 1 and seven items for Part 2. Part 1 contains items on elementary teachers’
knowledge of mathematics curriculum and their confidence in their readiness for
teaching. Part 2 has seven main items that assess elementary teachers’ three knowledge
components of MCKT on the topic of fraction division. Most items were taken from
previous studies (Li, Ma, & Pang, 2008; Li & Smith, 2007), with some items adapted
from school mathematics textbooks and others’ studies (e.g., Tirosh, 2000). Given the
limited page space, only three items (note: each item containing two questions) from
Part 2 and PTs’ responses to these items are included for analyses to provide a glimpse
of sampled PTs’ confidence and MCKT.

The survey was administrated at regular class time by instructors in four institutions.
Participants were notified that the survey was for research purposes only and should
be completed anonymously.

Data analysis

Both quantitative and qualitative methods were used in analysing and reporting the
participants' responses. Specifically, responses to the items in Part 1 were directly
recorded and summarized to calculate the frequencies and percentages of participants’
choices for each category. To analyse participants’ solutions to the items in Part 2,
specific rubrics were first developed for coding each item, and subsequently, the
participants’ responses were coded and analysed to examine their solutions/answers.
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RESULTS AND DISCUSSION

In general, the results showed interesting relationships between PTs’ confidence and
their mathematical preparation for teaching fraction division, which illustrates the
importance of specifying knowledge components in mathematical preparation in order
to help build or support PTs’ confidence for classroom instruction.

For PT’s confidence, the results from the survey indicated that (1) participating PTs in
South Korea did not know well about their national curriculum standards in general;
(2) the majority of these PTs were confident in the knowledge preparation they
received for future teaching careers; but (3) they knew very well about the topic
placement of “multiplication and division of fractions” in mathematics curriculum. The
results suggested that these PTs tend not to feel over confident.

For specific knowledge components of MCKT, these PTs’ performance revealed that
their mathematical preparation was sound in the content topic itself, especially in the
procedural and pedagogical aspects, and relatively weak conceptually in connecting
the content topic with other topics mathematically. The seemingly mixed results in
their responses actually suggest that these PTs’ confidence was built upon or supported
by what they know that can and should be specified in concrete terms or knowledge
components. The following sections are organized to present more detailed findings
corresponding to the two research questions.

Prospective teachers’ confidence in elementary school mathematics

The following items are from Part 1 of the survey to illustrate PTs’ confidence of their
knowledge preparation needed for teaching, as related to fraction division.

For item 1: How would you rate yourself in terms of the degree of your understanding
of the National Mathematics Standards? On a scale of four choices (High; Proficient;
Limited; Low), 55% and 9% of the participants chose "Limited" and "Low",
respectively. Relatively small percentages of the prospective teachers felt to have high
(8%) or proficient (29%) understanding of their national mathematics standards.

For item 2-(2): Choose the response that best describes whether elementary school
students have been taught the topic — Multiplication and division of fractions. On a
scale of five choices (Mostly taught before grade 5; Mostly taught during grades 5-6;
Not yet taught or just introduced during grades 5-6; Not included in the National
Mathematics Standards; Not sure), 93% participants indicated that the topic is “mostly
taught during grades 5-6" (a correct choice), and most of the remaining (5%) chose the
first response ("Mostly taught before grade 5", a partially correct choice if only fraction
multiplication is considered). The results, in contrast to the participants’ response to
item 1, suggested that these PTs know very well about the content topic placement in
mathematics curriculum, although the majority did not feel confident in knowing about
their national mathematics standards.

For item 3-(2): Considering your training and experience in both mathematics and
instruction, how ready do you feel you are to teach the topic of “Number —
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Representing and explaining computations with fractions using words, numbers, or
models?” On a scale of three (Very ready; Ready; Not ready), 67% of the participants
thought they were "ready", while 7% chose “very ready,” and 25% “not ready.” The
results indicated that the majority of these PTs were confident in their preparation for
teaching fraction computations, including fraction division. There was also a large
percentage of PTs who are not confident. The diversity in responses suggested the need
of learning more about their confidence and possible connections with their knowledge
preparation.

Taking together, PTs’ responses to the Part 1 suggested that these PTs in South Korea
tend not to feel over confident, although they actually knew very well about some
specifics. In fact, the results are consistent with what has been reported about in-service
mathematics teachers in East Asian countries (Mullis, Martin, Gonzalez, &
Chrostowski, 2004) and PTs in China (Li, Zhang & Song, 2019). The consistency in
the general response pattern between PTs in the current study and elementary teachers
in other studies suggested that culture likely plays an important role in expressing
confidence by teachers in East Asia including South Korea.

The extent of prospective elementary school teachers’ preparation in MCKT for
teaching fraction division

These PTs’ responses to Part 2 allowed a closer look at the participants’ three
knowledge components of MCKT, especially on the topic of fraction division. Results
indicated that these PTs do very well on items related to fraction division computation
and problem solving (MCKT knowledge component 1). For example, for the problem

“Say whether % +§ 1s greater than or less than %—% without solving. Explain your

reasoning.”, 96% of these PTs answered the problem correctly (i.e., the first numerical
expression is greater than the second one). The most common explanation is that 2/3
is smaller than 3/4. Some showed why 2/3 is smaller than 3/4 by comparing these
fractions with 1 (i.e., 1- 1/3 vs 1- 1/4), converting them to equivalent fractions with
the same denominator (i.e., 8/12 and 9/12), or drawing a picture to represent 2/3 and %
for comparison, etc. About 26% mentioned, “If the divisor is the smaller, the result of
the division (or quotient) is bigger.” About 5% who got the correct answer changed the
division of the given numerical expressions into multiplication and mentioned that 3/2
is greater than 4/3, implying “the greater the multiplier, the larger the product.”

Moreover, these PTs also had great performance in solving multi-step word problems
that involve fraction division. For example, 93% participants solved the following
problem correctly.

Johnny’s Pizza Express sells several different flavour large-size pizzas. One day, it sold 24
pepperoni pizzas. The number of plain cheese pizzas sold on that day was 3/4 of the number
of pepperoni pizzas sold, and 2/3 of the number of deluxe pizzas sold. How many deluxe
pizzas did the pizza express sell on that day?
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Specifically, 70% used a multi-step computation method to get the answer (e.g.,

24x A=18, OxL=18 O=18x =, O=27 : :
4 3 2 ), about 6% used a combined computation

method (e.g., 24 x ¥4+ 2/3 =27), 5% adopted an algebraic approach to set up and solve
an equation for solution, 6% provided a correct answer with no explanation, 5%
provided simple explanation without variables (e.g., 3/4 of 24 is 18, 2/3 of Deluxe is
18, so (the answer is) 27), and about 1% (2 respondents) provided something else. The
remaining PTs either did incorrectly (15, 7%) or provided no answer at all (1 PT).

For the knowledge component 2 of MCKT, PTs were asked to explain “the meaning
of fraction division, and how fraction division relates to other content topics” that aims
to assess their knowledge of fraction division and ability of connecting and justifying
possible association between fraction division and other content topics. The results
suggested that 41% provided correct explanations to the first sub-question. the most
common explanation was the measurement interpretation of fraction division (39%),
followed by partitive interpretation (29%). In addition, more than 10% of sampled PTs
were able to provide other meanings of fraction division such as the inverse of
multiplication (10%) or determination of a unit rate (15%). Note that 28% of the PTs
were able to explain the meanings of fraction division in two ways or more. Among
the incorrect answers (46%), the most common explanation (32%) was to describe the
meaning of fraction division as division with fraction (i.e., division with the divisor
and/or the dividend as fractions). About 13% provided no answer or simply stated “I
don’t know”. For the second sub-question, about 69% were able to relate fraction
division to other content topics. The most common content topic related to was fraction
multiplication mainly because the multiplicative inverse of the divisor is used in
fraction division. Note that both measurement interpretation and partitive
interpretations used in answering the first sub-question are related to the meaning of
division and more than 29% of the PTs were able to provide these interpretations. In
contrast, only 15% of the PTs related fraction division to whole number division and
13% related it to the division of decimal numbers. About 8% PTs failed to provide a
correct explanation, and 22% provided no answer or simply stated “I don’t know”.

There were several items used to assess PTs” knowledge component 3 of MCKT. As
an example, PTs were asked to explain how to explain/teach given computations of
fraction division. In particular, the problem of “How would you explain to your

students why §+2 = %?; Why %—é =47 (adapted from Tirosh, 2000) was included

in the survey. For the first fraction division (i.e., explaining why 2/3 +2 = 1/37), 99%
provided valid explanations for dividing a fraction by a whole number (i.e., 2/3 +2 =
1/3). The dominant explanation (>54%) used drawing to show that if you equally
divide 2/3 into 2 pieces, you get 1/3. Other respondents (11%) used the meaning of
division or fraction without drawing. Some respondents (5%) used the common
denominator and others (5%) used an algorithmic approach (i.e., dividing a number
equals to multiplying its reciprocal). About 11% of these PTs provided valid
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explanations in two or more ways. In doing so, drawing was often used as a basic
approach. For the second fraction division (i.e., explaining why 2/3 + 1/6 =47), 97%
provided valid explanations and the dominant explanation was based on drawing to
show the meaning of measurement division. Even though the drawings were different
from explaining the first fraction division, the main idea was to display how many 1/6s
are included in 2/3 (or 4/6). Additionally, 19% of these PTs explained the meaning of
the measurement division in words or numerical expressions without drawing. 15% of
these respondents used an algorithmic approach of using the inverse number. About
10% of these PTs were able to provide two or more kinds of explanations. Again,
drawing was the most prevalent approach included.

The results from these PTs’ responses on MCKT items revealed their strengths in many
aspects of MCKT, as specified in the framework. However, PTs’ strengths across these
aspects varied to a certain degree. It appeared that these PTs have solid performance
on items related to fraction division computation itself, especially in the procedural
aspect and pedagogical explanation, but relatively weak conceptually in connecting the
content topic with other topics mathematically.

CONCLUSION

The findings from this study helped shed a light on the relationships between these
PTs’ confidence and their mathematical preparation for teaching fraction division.
Specifically, these PTs didn’t feel over-confident about their understanding of national
mathematics standards, but they knew very well about the curriculum placement of
selected content topics. They also had better confidence in terms of their readiness to
teach elementary school mathematics. Such confidence was likely supported by their
solid knowledge and skill directly associated with fraction division, a knowledge
component that is also typically required for school students. At the same time, their
relatively weak performance on items that are conceptually demanding in mathematics
likely failed to support their confidence in readiness for teaching. Such knowledge
differentiations, as specified in the MCKT framework, help provide an important and
feasible lens for us to know the strength and weakness of teachers’ knowledge. For the
case of South Korea in this paper, the results suggested that PTs likely gain much more
on mathematics and mathematical pedagogy, and certain limits on connections of
mathematical ideas through their program studies. In turn, such results helped illustrate
what teacher preparation programs need to do more in mathematical preparation in
order to help build or support PTs’ confidence for classroom instruction.

References

Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992).
Learning to teach hard mathematics: Do novice teachers and their instructors give up too
easily? Journal for Research in Mathematics Education, 23(3), 194-222.

Conference Board of the Mathematical Sciences [CBMS]. (2012). The Mathematical
Education of Teachers 11, CBMS Issues in Mathematics Education, Volume 17.
Providence, RI and Washington DC: AMS and MAA.

PME 45 —2022 3-137



Li, Pang

Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 276-295). New York:
Macmillan.

Li, Y. (2008). What do students need to learn about division of fractions? Mathematics
Teaching in the Middle School, 13, 546-552.

Li, Y. & Howe, R. E. (2021). Toward a thinking-oriented training in mathematics for
elementary school teachers. In Y. Li, R. E. Howe, J. Lewis, & J. J. Madden (Eds.).
Developing mathematical proficiency for elementary instruction. (pp. 13-49). Cham,
Switzerland: Springer.

Li, Y., & Huang, R. (2008). Chinese elementary mathematics teachers’ knowledge in
mathematics and pedagogy for teaching: The case of fraction division. ZDM - The
International Journal on Mathematics Education, 40, 845-859.

L1, Y. & Kaiser, G. (Eds.) (2011). Expertise in math instruction. New Y ork: Springer.

L1, Y., & Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teacher:
The case of fraction division. ZDM - The International Journal on Mathematics Education,
40, 833-843.

Li, Y., Ma, Y., & Pang, J. (2008). Mathematical preparation of prospective elementary
teachers. In P. Sullivan & T. Wood (Eds.), International handbook of mathematics teacher
education: Knowledge and beliefs in mathematics teaching and teaching development. (pp.
37-62). Rotterdam, The Netherlands: Sense.

Li, Y., Pang, J. S., Zhang, H., & Song, N. (2020). Mathematics Conceptual Knowledge for
Teaching. In D. Potari & O. Chapman (Eds.), International Handbook of Mathematics
Teacher Education, Volume 1: Knowledge, beliefs and identity in mathematics teaching
and teaching development. pp. 77-104. Leiden, The Netherlands: Brill|Sense Publishers.

Li, Y., & Smith, D. (2007). Prospective middle school teachers’ knowledge in mathematics
and pedagogy for teaching — The case of fraction division. In J. H. Woo, H. C. Lew, K. S.
Park, & D. Y. Seo (Eds.), Proceedings of the 31°' Conference of the International Group
for the Psychology of Mathematics Education, (Vol. 3, pp. 185-192). Seoul, The Republic
of Korea: Psychology of Mathematics Education.

Li, Y., Zhang, H., & Song, N. (2019). Mathematical preparation and confidence of
prospective elementary teachers in China. In M. Graven, H. Venkat, A. Essien & P. Vale
(Eds.). Proceedings of the 43rd Conference of the International Group for the Psychology
of Mathematics Education (Vol. 3, pp. 33-40). Pretoria, South Africa: PME.

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Erlbaum.

Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings from IEA’s
trends in international mathematics and science study at the fourth and eighth grades.
Chestnut Hill, MA: TIMSS &PIRLS International Study Center, Boston College.

Simon, M. A. (1993). Prospective elementary teachers’ knowledge of division. Journal for
Research in Mathematics Education, 24(3), 233-254.

Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The
case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5-25.

3-138 PME 45 —2022




THE POTENTIAL OF TASKS FOR MATHEMATICAL LEARNING
AND ITS USE IN INSTRUCTION -PERSPECTIVES OF EXPERTS
FROM GERMANY AND TAIWAN

Anke Lindmeier!, Ting-Ying Wang?, Feng-Jui Hsieh?, Anika Dreher’
'FSU Jena, Germany, 2NTNU Taipei, Taiwan, *PH Freiburg, Germany

The potential of tasks to stimulate students’ mathematical thinking and the adequate
use of this potential in instruction are prominent indicators for instructional quality.
Since the assessment of a task’s potential depends on the aims of instruction, it may be
argued that corresponding perspectives vary between cultural contexts. However, so
far, this has not been systematically investigated in cross-cultural comparisons. In this
study, we investigate whether Western (German, N=17) and East Asian (Taiwanese;
N=19) professors of mathematics education have different perspectives on the
potential of word problems for students’ learning and the use of this potential in
instruction by means of vignettes from a cross-cultural research project. We illustrate
how differences reflect cultural aspects of mathematics instruction.

THEORETICAL BACKGROUND

The potential of tasks for students’ mathematical learning and the use of this potential
in teaching (the potential of tasks and its use) have been shown to be crucial factors for
students’ learning. Across cultures, there is a consensus that competent teachers are
able to identify tasks with high learning potential, and, in addition, implement them in
a way that uses this potential (e.g., Stein & Lane, 1996). However, it is well known that
Western and East Asian perspectives on mathematics teaching and learning are
different in many aspects (Leung, 2001). Hence, it is questionable whether research
focusing on the evaluation of a task’s potential and its use can be cross-culturally valid
(Clarke, 2013) and it is thus important in our inter-cultural research community to seek
corresponding evidence. Consequently, this research report investigates how
professors of mathematics education (experts) from Taiwan and Germany
(representing an East Asian and a Western perspective) evaluate the potential of tasks
and its use in instructional situations. We focus on a very common kind of task that is
used in mathematics instruction across grades and cultures: word problems with links
to real-life situations.

Word problems, their learning potential and use in Germany and Taiwan

Generally, mathematical tasks are considered to have a high potential for students’
learning, if they are focused on the instructional content, aligned with the teaching
aims, and suited to stimulate students to work mathematically. Word problems, in
particular, often have features that are considered to promote learning, such as their
potential to provoke multiple solutions or require explanations (Stein & Lane, 1996).
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However, word problems are used with many different functions (e.g., Verschaffel et
al., 2020). For example, word problems can be used to practice mathematical
procedures, to discover new mathematical concepts, or to engage in mathematical
modeling. Hence, it is an interesting question whether a certain word problem’s
potential for supporting students’ learning may be evaluated differently. As it is known
that the use of word problems varies between cultural contexts (e.g., Chang et al.,
2020), this question is especially relevant for cross-cultural comparative research.

Mathematics teaching in Germany and Taiwan has typically different priorities such as
meaningful learning vs. high procedural fluency (Leung, 2001), which may impact the
perspective on word problems and their potential for learning. The German curriculum
is literacy-oriented and clearly stands in a Western tradition. Engaging in mathematical
modeling processes is hence an important practice (Chang et al., 2020). There is a
focus on using real-life situations to encourage students to draw on their
world-knowledge to understand them and validate solutions against the situation
(Verschaffel et al., 2020). In Taiwan, word problems are used with a strong focus on
the application of foundational knowledge and procedures (Chang et al., 2020; Pratt et
al., 1999). Consequently, Taiwanese students were consistently found to outperform
Western students in comparative studies where word problems were used for
assessment, benefiting from a sound knowledge base and flexible use of procedures,
that may result from high perseverance in studying (Leung, 2001).

Based on these differences, it can be assumed that there may be different perspectives
in Germany and Taiwan on what constitutes a high potential of word problems for
students’ mathematical learning, and, consequently, how this potential should be used
in mathematics instruction. Particularly, there are indications that word problems with
real-life contexts are used with different aims in Germany and Taiwan: While in
Taiwan such problems are primarily seen as opportunities to apply mathematical
concepts and procedures to deepen mathematical understanding, in Germany they are
seen as opportunities to learn mathematical modeling as a specific practice.

Eliciting culture-specific norms using of vignettes

To elicit and contrast perspectives on teaching quality across cultures, we follow
approaches that use classroom vignettes to assess professional noticing (Dreher et al.,
2021). Professional noticing with respect to teaching is described as a process of
attending to aspects of classroom situations that are relevant for instructional quality
(selective attention) and interpreting them by drawing on corresponding professional
knowledge and other resources (knowledge-based reasoning) (Sherin, 2007).
Typically, instruments to assess noticing use text- or video-based vignettes as
representations of practice. A common “operational trick” in these approaches is to
design or select vignettes in which something happens that does not meet the
expectations of “good” teaching, i.e., they include a breach of a norm regarding some
aspect of instructional quality (Dreher et al., 2021). The vignettes are shown together
with a prompt to evaluate the depicted classroom situation and to give reasons for the
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evaluation. A person’s reaction to the critical incident serves then as the indicator for
the noticing; the reasoning can be used to infer what knowledge and beliefs guided the
noticing process.

Up to now, such vignettes have mainly been used to assess noticing. One could,
however, also use them to investigate whether the noticing of experts from different
cultures reflects differing norms regarding aspects of instructional quality. To do so,
one would need vignettes that potentially show breaks of culture-specific norms.
However, in comparative studies, such culturally sensitive instruments are usually
avoided as much as possible in order not to jeopardize the comparability of the results.
This does not solve the problem that seeking the highest possible comparability may be
detrimental to the validity of the instruments precisely when conceptions of
instructional quality differ across cultures (Clarke, 2013). To the best of our
knowledge, this has not been systematically investigated for the instructional quality
regarding task potential and its use, as the corresponding instruments were lacking.

RESEARCH QUESTIONS

Against this background, we ask: Do mathematics education experts from Taiwan and
Germany have different perspectives on the potential of word problems and its use as
represented in vignettes authored in Germany or Taiwan?

CONTEXT AND METHODS OF THE STUDY

The reported study is part of the binational research project “Teacher noticing in
Taiwan and Germany” (TaiGer Noticing) aiming at investigating the role of
culture-specific norms regarding aspects of instructional quality. To this end, we
developed a set of text vignettes reflecting potentially culture-specific norms regarding
aspects of instructional quality (Dreher et al., 2021). Due to the prominent role of tasks
in mathematics teaching, one of these aspects is the potential of tasks and its use. To
validate whether the developed vignettes reflect indeed norms regarding this aspect in
the respective countries, all vignettes were evaluated by experts in Germany and
Taiwan. This report uses the responses regarding two of the vignettes (task2, task4).
Vignette task2 was developed in Germany and vignette task4 in Taiwan. Both included
a breach of a norm from the perspective of the authoring national team members. Due
to the sophisticated method of a concurrent vignette development process in the
research project (Dreher et al., 2021), we could ensure that the resulting vignettes
represent classroom situations that may occur in secondary mathematics education of
both countries (ecological validity).

Instruments

The two vignettes have a similar structure: First, a task that is considered to have a high
potential for mathematical learning from the perspective of the authoring national team
is presented. Second, a classroom situation is described (approx. 230 words of a
fictitious transcript).
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In detail, vignette tasks2 builds on a task “cliff-jumping” (topic of quadratic functions,
Figure 1, left). It requires students to understand a real-life situation (presented as
graphically supported text), make an educated guess about the solution based on the
real-life context, and determine the solution with the help of a given mathematical
model. The German authors saw the potential of the task for learning especially in its
clear focus on the known difficulties of students to understand and interpret the
connection between the real-life situation and mathematical models. They would
expect teachers to use the educated guesses or the given visual representation to
validate mathematical solutions and support students’ modeling processes.

Vignette task4 builds on a task “student camp” (topic of systems of linear equations,
Figure 1, right). It requires students to understand a real-life situation (presented as
text) and set up a system of linear equations to determine the solution. The Taiwanese
authors saw a specific potential for students’ learning of this tasks, as it is suited to
discuss pros and cons of different possibilities to assign variables: Assigning x and y to
be the numbers of groups of students leads, for example, to a simpler calculation than
assigning x and y the numbers of students in congruence to the unknowns in the word
problem. The Taiwan team members would hence expect the teacher to discuss how
different ways of variable assignment lead to systems of equations with different
characteristics so that students acquire abilities to use different strategies flexibly for
effective solutions.

CIiff divers jump from high rocks into the In a student camp with a
sea. In order to determine whether it is total of 60 secondary and
safe to jump, itis important to know where primary students, students
they will hit the water (entry point). are grouped with others of
Imagine that the rock is approximately the same school type. If
vertical and 24 m high. every group consists either
1. How far is the entry point from the of 9 secondary students or
cliff? Please make an educated of 4 primary students, then
guess. there is a total of 10
2. An optimal jump trajectory can be groups.
described by the function How many secondary
f(x) = —(x—1)?+ 25. school students and how
How far is the entry point from the cliff many primary students are
in this case? in the student camp?

Figure 1: Task “cliff-jumping” (vignette task2, Germany); Task “student camp”
(vignette task4, Taiwan).

The classroom situations represented by the vignettes task2 and task4 were designed to
depict non-optimal use of the potentials of the tasks from the perspective of the
authoring team (breach of a norm). In the vignette task2, the teacher works in an
interactive manner with the students but makes no advantage of the task’s potential to
focus on mathematical modeling processes. In the vignette task4, the teacher presents
two different ways of assigning variables (x, y groups of students; x, y numbers of
students) and labels the first one as resulting in a simpler calculation, but does not use
the potential of the task to discuss the pros and cons of the different ways of assigning
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variables. During the development of the vignettes, the team members from Germany
as well as the members from Taiwan already experienced that seeing the specific tasks’
learning potentials and, subsequently, their non-optimal use can be difficult for the
members of the other culture.

Sample and procedures

Participants were recruited from professors of mathematics education who were active
in mathematics education research and in preparing future secondary mathematics
teachers. As we aimed for a sample of 15 experts in each country and assumed a
participation rate of at least 50%, in Germany, a random sample of 30 professors out of
the full list of persons meeting these criteria was contacted. In Taiwan, these criteria
yielded a list of only 32 professors and thus all of them were contacted. In total, a
sample of n; = 19 Taiwanese professors (6 female, 13 male) from 10 universities and a
sample of np = 17 German professors (7 female, 10 male) from 13 universities worked
on the vignettes (completion rates were TW 59%, GER 56%). To capture the experts’
perspectives on the tasks’ potentials and their use, the experts were given the following
open-ended prompt: “Please evaluate the teacher’s use of the task in this situation and
give reasons for your answer.”

Both vignettes were administered to experts in both countries online in their native
language (German resp. Chinese). Responses were translated into English as the
common language within the research team and analyzed with respect to two main
aspects: 1) Did the experts evaluate the teachers’ use of task as inadequate? And if so:
2) What were their reasons? We coded whether the experts saw a breach of the same
norm as the authors. In addition, we expected that experts may see further reasons why
the task implementation can be criticized, so we extracted further reasons inductively
from the answers. More than one reason could be assigned to an answer.

RESULTS

In this research report, we summarize the coding as follows (Table 1): First, we give
the number of expert responses showing no negative evaluation of the classroom
situation depicted in the vignette (no breach). We count the number of responses where
experts saw the intended breach of a norm. In the remaining responses, the experts only
gave other reasons for their negative evaluation. To answer our research question, we
focus here on the perspectives of the majority of experts in each culture on the given
vignettes. With this approach, we highlight what can be considered a norm within each
culture (perspective shared by a majority).

N Task2 Task4
No Intended breach of a Only other No Intended breach of a Only other
breach norm reasons breach norm reasons
GER experts 17 4 9 4 2 4 11
TWexperts 19 2 3 14 | 11 7

Table 1: Summary of Coding.
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We present these findings for each vignette, highlight the differences, and illustrate
them with sample answers, as far as this is possible within the space limits of this
report. Regarding vignette task2, the majority of the German experts saw the breach of
a norm as intended and evaluated the vignette negatively as the teacher did not make
optimal use of the opportunity to focus on modeling processes (see GER1 8). In the
Taiwanese sample, only 3 out of the 19 experts saw the intended breach of a norm.
Some German experts, as well as Taiwanese experts, criticized the dealing with the
algebraic demands or the appropriateness of the task implementation in respect to
practical concerns, for example, whether the classroom discussion should better be
complemented by written notes. Unlike any German expert, six experts from Taiwan
were concerned about the structure of the teaching sequence from a content
perspective, for example, whether it is appropriate to mix up questions of quadratic
functions and quadratic equations or whether the teacher managed to focus on flexible
use of different solution strategies (see TW27).

GERI1 8: T focuses obviously on solving the quadratic equation, while the modeling
aspects contained in the task are hardly or not at all addressed. The
following questions are therefore not clarified: - Mark in the illustration
what is to be calculated. - How did you come up with your educated
guesses? Can the illustration be used to justify which educated guess is
particularly realistic? - Why is the approach of S1 correct? - What is
described by the solution -4? What is the difference between the real-life
situation and the descriptive function?

TW2T7: [...] The key message that the problem was to solve a quadratic equation
with one variable and that there is not only one solution strategy was not
delivered.

Regarding the vignette task4, the majority of the Taiwanese experts saw the breach of a
norm as intended and criticized that the teacher did not make optimal use of the
opportunity to discuss the pros and cons of variable assignment (see TW28). In the
German sample, only 4 out of the 17 experts saw the intended breach of a norm. As
other reasons for a negative evaluation, Taiwanese experts, as well as German experts,
mentioned that the teacher does not build enough on students’ thinking or that s/he
works out relevant steps instead of the students. Unlike the Taiwanese experts, 8
German experts saw a lack of focus on the equivalence of the two systems of equations
that resulted from different variable assignments (see GER2 13). As above, we found
hence a kind of reasoning within the German responses that we did not see in the
Taiwanese responses.

TW28: 1. The last line of teacher T’s statements ran too fast. It was obvious that
some students expressed their preference for the second method, the
teacher insisted that everyone uniformly learned the first method, and the
lesson immediately progressed to solving the problem without spending
time on discussing how to choose “groups” to set the unknowns. 2. Some
students preferred the second method, maybe because they could only set
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the unknowns based on what the problem asked. Although the first method
was easy to solve, the students did not know how to choose which variables
in the problem were appropriate to set the unknowns. The teacher must
spend time discussing with the students how to set the unknowns rather
than skipping and proceeding to solve the system of equations.

GER2 13  The teacher discusses the two models exclusively under the aspect of
computational simplicity. The central phenomenon of equivalent modeling
of a situation and the interesting insight that both models are algebraically
identical is not addressed. In addition, the problem arises that the two
systems do not emerge through one of the usual ways of transposing an
equation, but through substitution. This is obscured by the identical naming
[note: the teacher uses X, y in both systems of equations with different
meanings] and is not discussed further.

DISCUSSION

This study shows that despite the international consensus regarding the relevance of
tasks’ potential for mathematical learning and its use, the specific understanding may
differ between cultures. First, our symmetric approach of designing vignettes within
the national research teams in Germany and Taiwan differs significantly from typical
approaches in cross-cultural research, as it is aimed at culturally sensitive vignettes.
The presented study on two such vignettes with a sample of experts from each country
explored whether the vignettes reflected indeed different culture-specific norms (and
not only the particular view of the authors). By means of two vignettes focusing on
word problems, we showed that perspectives of German and Taiwanese experts are
different, but a) within each culture in line with the expectations of the research team
members. Moreover, b) the differences in reasoning between the German and
Taiwanese experts are in line with described cultural differences: In the case of task2,
the concerns exclusively found in Taiwan resonate with the focus of East Asian
mathematics education on the mathematical content and the product-oriented
perspective on establishing flexible solving strategies. In the case of task 4, the unique
German reasoning referred to a perceived potential of the task for the aim of a
meaningful understanding of relations between different mathematical models of a
situation rather than its potential to apply specific strategies of variable assignment.

The study also has some limitations. First, a study based on two vignettes regarding
word problems in secondary algebra is, of course, not generalizable, but may rather
serve as a proof of existence for cultural differences that call for further research.
However, the overarching research project TaiGer Noticing could also uncover
culture-specific norms of responding to students’ thinking between Taiwan and
Germany. Second, the brevity of this report allows only a first analysis based on the
distinction between answers that reflect the intended breaches of norms and other
reasons. An in-depth analysis of professional knowledge and other resources that shape
the experts’ evaluation is still missing and could substantiate our findings.
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Despite these limitations, the study shows that the understanding of the potential of a
task for mathematical learning and its adequate use may be inflicted by cultural
differences. To illustrate possible consequences for research: If we would have used
our data for assessing the noticing of the experts (note: the data was not collected for
this purpose), the German experts would have largely missed the noticing target of
task4, what was easy for their colleagues from Taiwan to notice, and, at the same time,
the Taiwanese experts would have been outperformed by the German experts on task?2.
It should be discussed how these findings can inform future comparative studies, for
example, of instructional quality or teacher noticing, where researchers always face the
challenge of balancing the validity of instruments within cultures and their
comparability across cultures.
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The paper analyses the developing discourse of high school students on transitions
between different representations of linear and quadratic functions. Using a
commognitive perspective, we conducted an exploratory study on how routines and
sense-making could support students in recognizing different visual mediators as
possible realizations of the same function. Results support the hypothesis that fostering
students’ production of narratives on multiple visual mediators could provide an
important entry point to mathematical discourse.

INTRODUCTION

Research in mathematics education has highlighted that considering different
representations as being “the same” mathematical object is central in learning
mathematics, but it is also one of the most challenging learning achievements for
students, especially in the case of functions (Sfard, 2008; Nachlieli & Tabach, 2012).
This difficulty seems connected with the strong procedural emphasis through which
function representations are usually introduced at school (e.g., Thompson & Carlson,
2017). The paper intends to contribute to this line of research by adopting the
commognitive lens (Sfard, 2008). Recently, the discursive approach has been widely
adopted in mathematics education and, especially, in studies focusing on both physical
and digital representations of functions (e.g., Antonini et al., 2020). In particular,
Baccaglini-Frank (2021) has highlighted how the students’ concern of making sense to
scholar procedures triggers a wider participation into the mathematical discourse.
Building on this finding, we present an exploratory case study involving three dyads of
high school students that were interviewed while they were trying to match different
representations of the same function. The fine-grained analyses of students’ discourse
we have conducted show that the dyad who succeeded in making all the transitions
between the proposed representations is the one that was more engaged in an attempt to
making sense of the procedures.

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS

According to the theory of commognition (Sfard, 2008), learning mathematics is the
process of changing one’s mathematical discourse. Lavie and colleagues (2019)
describe this process in terms of routinization of students’ actions. In particular,
students in a given fask situation model their present actions, which constitute the
implemented procedure, on what they learnt and did in the past, and it results in
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patterns of actions called routines. The past situations that are identified as acceptable
and which allow them to act in the new task situation are called precedents.

Taking this perspective, a mathematical object is the signifier together with its
realizations (Sfard, 2008). For example, a Cartesian graph and an algebraic expression
can be two different realizations of the same function. Experts are able to make
transitions between them, that is, to construct a mathematical discourse about the
Cartesian graph and to translate it into a mathematical discourse about the algebraic
expression. Differently, for students entering mathematical discourse on functions
these are not initially realizations of a same signifier, but they play the role of visual
mediators. Visual mediators are objects of symbolic, iconic, gestural nature to which
we refer in mathematical discourse to mediate the communication about discursive
objects (Nachlieli & Tabach, 2012). The evolution of students’ discourse towards
experts’ discourse is the main objective underlying teaching and learning processes.
This evolution can be grasped through the identification of students’ attempt of
sense-making, revealed by their production of “consistent, comprehensive and
cohesive” narratives (Baccaglini-Frank, 2021, p. 295).

The following two research questions led our investigation: a) Do the students succeed
in addressing certain given visual mediators as possible realizations of the same
signifier? b) If so, how do they make transitions between the different realizations of
the functions in focus?

METHODOLOGY

The case study involves a convenience sample of three dyads of students who took part
in an interview as volunteers. The students attended the third year (age 16-17) at a
vocational high school for “economics and commerce”. A specific teaching sequence
was implemented in their class by the regular math teacher, who introduced functions
through the use of interactive dynamic mediators (Antonini et al., 2020). At the end of
this teaching sequence, a researcher, who had never met the students before, conducted
a task-based interview (Goldin, 2000) with the three dyads. The data collected consists
of video recordings, showing what the students write, their gestures and nonverbal
expressions. For this study, we focus on a task in which three lists of different
realizations of functions are presented: list A is made up of Cartesian graphs, list B of
algebraic expressions, and list C of input-output machines. The dyads are asked to
match as many items as possible from the three lists.

The regular math teacher was also interviewed for gaining further information about
the implementation of the teaching sequence on functions and it emerges that students
repeatedly interacted with different realizations of parabola and line. In light of that,
for this paper we select from the task the realizations of a parabola (#1 in Fig.1) and a
line (#2 in Fig.1), since we expected that all dyads could succeed in making the three
expected associations by moving among the given realizations. In particular, the
transition between realizations belonging to list A and list B could be made
recognizing Al as a realization of a parabola with vertical axis of symmetry, whose
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algebraic expression contains x squared, while A2 as a realization of a line, whose
algebraic expression is linear. Therefore, students could manipulate the algebraic
expressions with calculation or work with translations in the Cartesian plane. Another
possible way consists of choosing a point that belongs to the graph in list A and
verifying that its coordinates satisfy the algebraic expression in list B. To make the
transition from realizations belonging to list C and list B, a variable 1’s value could be
selected from a specific entry of a table (list C) and then assigned to the x in an
algebraic expression (list B). The value obtained for y from the calculation should be
equal to the variable 2’s value from the same row of the table; this should be done for
each row. Finally, to make the transition between realizations belonging to list C and
list A, students could verify that each point, whose coordinates are pairs of values of
the form (variable 1, variable 2), taken from the same row of a table (list C) belongs to
the Cartesian graph (list A).

# List A List B List C
1 \ |
variable 1 | variable 2
-1 2
0 -1
1 -2
y=x-1)2-2 > 1
3 2
Al B3 4 7 __Ic3
2
variable 1 | variable 2
-10 14
9 0 32
= 25 77
i b 30 86
40 104
A3 B6 45 13 |cs

Figure 1: Expected triplets of realizations of parabola and line.
How the analyses were conducted

Data were analysed passing through two rounds of analysis of the students’ discourse.
The first round is aimed at identifying the associations between different realizations
made by the three dyads, whose pseudonyms are Sara-Nico, Ida-Lisa, Tina-Lena. We
developed an analytical tool that is a flowchart showing which associations are actually
addressed in the dyad’s discourse. For example, starting from an empty flowchart
composed by the correct triplets of labels for each function (i.e., An, Bn, Cn in Fig.1),
when a dyad’s discourse focuses both on a certain Cartesian graph (list A) and on a
certain algebraic expression (list B) we coloured the corresponding labels and added an
arrow between them (Fig. 2). This phase addresses the first research question, by
looking for emergent recurrent patterns or evident differences among the dyads.

The second round of analysis is aimed at identifying the features of each dyad’s
discourse that are useful for answering the second research question. We adapted the
analytic scheme developed by Baccaglini-Frank (2021), by specializing the focus
according to the specific task the dyads were solving. We concentrated on the
following aspects: objects in focus (What is the conversation about? Which
realizations of the same signifier are used?); routine, as a pair of task (What is the
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association in focus?) and procedure (Are the students able to identify a precedent? Is
this to perform a procedure?); sense-making (Are there signs that the participants were
concerned with the consistency, comprehensiveness, and cohesiveness of their
narratives?). Since space is constrained, we have only reported on the questions
guiding the analysis (in brackets); all the details are available in (Baccaglini-Frank,
2021, p. 299).

CASE ANALYSIS

This section reports on the analysis carried on through the use of flowchart, and the
analysis of students’ discourse that describes some transitions prompted by the task.

Instances of associations of visual mediators in students’ discourse

For constructing the flowchart, we considered all the excerpts of the interviews in
which the students associate different visual mediators from the given lists.

# Sara & Nico Ida & Lisa Tina & Lena

1 E—-E © - (=)
2 [i}/[%}ri] - ()

Figure 2: The ABC flowchart of the three dyads with respect to the two functions.

Looking at the ABC flowchart (Fig. 2), involving a parabola (#1) and a line (#2), we
can notice both instances of complete associations of the triplets and instances of
partial associations. In particular, the transition between the realization of functions as
graphs (list A) and as algebraic expressions (list B) is made by all three dyads, while
the association with the realization of functions as input-output machines (list C) is
carried out only by one dyad. Moreover, the arrows show that in the case of parabola
the graph seems to be the realization that takes on a special role for Sara and Nico,
since all the associations pass through it in their discourse. Whereas in the case of line,
this dyad associates all visual mediators of the triplet, suggesting they perceive them as
different realizations of the same signifier. We further investigate this point in the next
section.

Focusing on some transitions: a description of the dyads’ discourse

By analysing students’ mathematical discourse in more detail, we can describe how the
transitions between the different realizations of the functions in focus occur. The
starting approach to the given task is similar for all the dyads, who look at list A and
choose the parabola or the line, that are described as familiar graphs (“So, let’s start
from this one that is simple [they look at A3]™). So, the fask they are solving consists in
looking for a suitable algebraic expression for a certain Cartesian graph. Moreover, the
students’ discourse shows how the visual mediators from list A (objects in focus) are
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not just unrealized symbols for them. For example, focusing on the first function (#1 in
Fig. 1), the signifier parabola is explicitly mentioned at the very beginning of each
interview (“If meanwhile we look for this function [they point at A1]” “Ok, parabola
function”) and it is then addressed many other times throughout the interview.

All the dyads succeed in identifying a precedent which prompts different procedures.
For example, in the case of parabola, the Cartesian graph plays the role of precedent
identifying classroom experiences involving quadratic expressions containing a term
in the form ax’ (“Like...squared is a parabola”). The same happens in the case of linear
function (“Itis a line [...] so, without x squared”; “It is a line because x is not squared”).
One of the prompted procedures involves translations of elementary functions within
the Cartesian plane. The most telling example is provided by Sara and Nico’s discourse
about the parabola: “We know that x minus one squared was...if it was x squared, it
went through the origin and it is a parabola like this [gesture in Fig. 3a]”; “it should be
moved to the right”. We observe their use of past tense verbs, suggesting that they are
guided by precedent identifiers that are external features of the algebraic expression
and of the graph they see, which in return prescribe specific actions in the given task
situation. A different procedure can be observed in Ida and Lisa’s discourse. After B3
has been identified as a possible match for Al, they mention a “solving procedure”
suggesting their intention of making some calculation on the algebraic expression
(“Then I can try to solve the...the function, the equation, that one, and then see if there
are some points that could fit”). Then, the students manipulate B3, reaching the form
“y=x?-2x-1” (Fig.3b), and go back and forth among A1 and B3 to check the association
(“I try doing...I mean, I replace x with a number that, eventually, we can see on the
parabola, but a bit...[they look at A3]”), thus repeatedly changing the objects in focus.

The procedure of manipulating the algebraic expression is applied also in the case of
linear function. For example, for making the transition between A3 and B6, Tina and
Lena focus on the visual mediator B6 and manipulate the expression to reach the form
y-32=95x:

Lena: “But, wait... It goes that way, it becomes minus thirty-two [see the gesture
on Fig. 3c], plus thirty-two, anyway it should intersect, right? Because it
passes through... I mean... it touches the y-axis at thirty-two [points at (0,
32) on the graph].”

This form seems to be more familiar to the students and it plays the role of precedent
identifier that tells them to enact the procedure of finding the intersection point of the
line with the y-axis. The procedure seems to combine the use of translation of
elementary functions, suggested by the gesture of moving 32 leftwards, and the
associations of pairs of values with points on the Cartesian graph. However, Tina and
Lena check only one value, that is (0, 32). Their effort goes in the direction of
remembering the sought-after procedure for checking the association (“The slope...the
slope of the line with respect to y, mmm x...Which was...I don't remember”), rather
than producing consistent, comprehensive, or cohesive narratives.
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Figure 3: Visual mediators in students’ discourse: Sara (a), Ida (b), and Lena (c¢).

Till now we reported on similarities in the three dyads’ discourse, showing how the
students exploit routines involving a specific realization in order to address another
realization. However, for the transitions from and towards realizations within the list C
things are slightly different. The flowchart (Fig. 2) shows that only one dyad’s
discourse involves the items of list C. We now analyse Sara and Nico’s discourse about
the line to deeper investigate how the transition between the realizations is operated.
Here is the corresponding excerpt which starts right after the students have identified
the pair A3-B6, thanks to considerations on the algebraic expression that are quite
similar to those made by all the other dyads (“It is linear, so a line should fit well”).

1 Nico But, if we wanted to be meticulous
Sara  We check

2

3 Interv. Eh, if you wanted to check better, how could you better check?
4  Nico It should be this [he points at x in B6]
5

Sara  We put an x-value and we check [...] We give zero to the x [Fig. 4a] and it
turns out thirty-two [Fig. 4b]

(@) ®) @

Figure 4: Gestures performed by Sara and Nico during the interview.

Differently from the other dyads, Sara and Nico seem to be concerned with making
sense of the accuracy of the match A3-B6. Indeed, Nico suggests “to be meticulous”
[line 1] and Sara supports this idea, proposing a new task, also endorsed by the
interviewer [line 3], which consists in checking some pairs of values. The procedure of
assigning input values to the x-variable and finding the corresponding outputs [line 5]
seems to be a precedent identifier of the realization of functions as input-output
machines, which were presented during math lessons. For the sake of brevity we do not
report the entire excerpt, but the dyad continues assigning many other values to the
x-variable. Thanks to this procedure they endorse the proposed association A3-B6.
Overall, Sara and Nico’s discourse shows that they recognize the outcome of the
input-output procedure as related to their new task (sense-making). The following
excerpt demonstrates how they complete the triplet of realizations.
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6 Nico Here, for example, we gave twenty and we know that the intersection
would be at sixty-eight, I mean the quantity

7  Sara  Shall we look for twenty and sixty-eight? [...] Zero thirty-two [Fig. 4c],
sorry!

8 Nico Zero thirty-two, that’s true! [enthusiastic tone]

Sara  Twenty-five sixty-seven, we’re already there [points at A3]

10 Nico That’s true, well done!

11 Sara  Minus ten and fourteen, here we are [gesture on Fig. 4d]

12 Nico Yes, yes

13 Sara It should be this [the pen is on B6]

14 Nico Let’s go [writes down A3 next to C5]. That’s all right!

The procedure carried out by Sara and Nico to verify the chosen relation A3-B6 allows
them to make the new transition towards the realization in list C [line 7]. Indeed, they
decide to solve a new task, that consists in comparing the pairs of values previously
calculated [line 6] with the ones given in the tables of list C [line 7]. In this way, they
indirectly associate B6 and C5 by constructively using the outcome of their procedure.
The pair (0, 32) is recognized as a useful outcome to be reinvested in the new task
[lines 7-8], demonstrating the dyad is developing consistent narratives on different
realizations of lines (sense-making). Finally, we also find instances of the association
A3-C5 in the students’ discourse because they check the other values in table C5 with
the corresponding points in the graph A3. At this stage, they complete the triplet [line
14] and fully answer to the task given at the beginning of the interview.

CONCLUDING REMARKS

Although the limited number of students that were interviewed and the narrow focus
on two specific functions, we can draw some promising conclusions that could
represent the starting point for further research.

Analyses reveal that all the dyads succeed in associating a graph with an algebraic
expression of the same function, through the use of several routines that are activated
by a specific realization for recognizing another one. In doing this, a common signifier
(“parabola” and “line”, respectively) is explicitly mentioned as the main object in
focus that allows the dyads to identify a precedent which prompts different procedures
for making the transition. Most of the expected transitions are actually made by the
students, except for the visual mediators of list C that are less addressed in the dyads’
discourse, suggesting that tables are not recognized as realizations of functions by all
the dyads. This is quite surprising, because the teacher claimed that the discourse on
functions was established in the class starting from input-output machines as possible
realizations. In this scenario, the analysis of Sara and Nico’s discourse provides an
interpretation of this emerging finding. Nico's concern of making sense to the
procedures that were established in the class brought the dyads to produce an
intermediate realization that bridges the gap between the Cartesian graph and the
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unrealized numbers of the given table. Despite the routine of constructing input-output
machines seems to be shared by all students, during the interview it is only exploited
by Sara and Nico in their search for sense-making. In other words, in their attempt to
make sense of the procedures they come to recognize the visual mediator of list C as a
realization of the same function realized by the already associated graph and algebraic
expression.

Our findings are in line with the strand of research that considers routines as windows
onto students’ learning (Lavie et al., 2019) and, especially, support the hypothesis that
the necessity of making sense to scholar procedures triggers students’ engagement into
a mathematical discourse closer to the experts’ one (Baccaglini-Frank, 2021).
Moreover, the task designed for the interview revealed to be valuable for fostering
students’ production of meaningful narratives on different realizations of the same
signifier, as demonstrated by the dyads’ rich discourse. Although the learning path of
these students may still be long, discourse about the transitions between different
realizations might constitute a step towards experts’ mathematical discourse and, in
general, a form of participation in this discourse.
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STUDENT INTIMIDATION
IN THE MATHEMATICS CLASSROOM

Mariam Makramalla

NewGiza University

This study adopts the Contextual System Model as it utilises the “Draw your
mathematics classroom” test as a methodology to explore student intimidation in the
mathematics classroom. As part of a larger investigation, the study included thirty
participants, aged 5-7, who attended three different schools located in rural Cairo.
Mathematics students were asked to create drawings in response to the
aforementioned prompt. The drawings were qualitatively analysed according to the
criteria of the toolkit in conjunction with a follow up semi structured student group
interview. Findings indicated student intimidation in classrooms, a process that
seemed to be perceived by students as constructive disciplinary practice. The study
suggests tackling deep rooted questions of agency and perceived teacher authority.

INTRODUCTION

In their work with children, Shumba (2013) presented different forms of emotional
abuse that take place in classrooms as teachers mal-interpret their authority as
educators. Younghusband (2010) also elaborated on different forms of abuse that
happen by teachers in classrooms worldwide. Younghusband (2010) discussed
physical, verbal, administrative and system abuse as ways to intimidate students,
thereby rendering them as easier to govern in the classroom. In the interest of exploring
the context of rural Cairo, this study focuses on early learners’ experiences in the
mathematics classroom. Details of the study are presented in the next sections.

LITERATURE REVIEW

This section outlines the literature stance about student intimidation in the classroom at
early learning stages as resulting from a distorted teacher-student power dynamic. The
impact of student intimidation on the mathematics classroom is then presented. The
Contextual System Model is also presented as a theoretical framework for this study.

Student intimidation in the classroom

Sansanwal (2019) conceptualises three types of teacher-student relationships that are
particular to the early years, namely: warm teacher-child relationships, conflicting
teacher-child relationships and dependent teacher-child relationships. The former
builds on concepts of the attachment theory (Bowlby, 1982) and presents itself as a
relationship where the child feels safe to trust the teacher and where retrospectively
this trust is not abused. The latter two represent relationships, where either one or both
parties express mutual anger (conflicting teacher child relationship) or where one party
takes advantage of its superiority, thereby creating an imbalanced sense of child
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attachment (dependent teacher child relationship). The Ilatter two types of
relationships, when experienced at early learning stages result in a distorted image of
teacher authority, leading to a potential classroom experience of student intimidation.

The impact of student intimidation on the mathematics classroom

According to scholarship (Stylianides & Stylianides, 2014), the mathematics
classroom needs to be a space where students are engaging in problem solving
activities. This process of problem solving entails a series of steps starting from
identifying the problem all the way through finding different routes that are
underpinned by mathematical concepts to analyse and offer alternative solutions in
response to the framed problem statement (Baars, Leopold & Paas, 2018). In order for
this process to happen, the teacher needs to be able to step back to a facilitator role,
thereby enabling the student to assume authority and ownership over the problem at
hand. A recent study conducted in the Egyptian context revealed how a distorted image
of teacher authority might result in a tightly controlled mathematics classroom
experience, where students barely navigate their way through the procedures provided
by the teacher and hence are crippled to act as problem solvers (Makramalla, 2021).

THEORETICAL FRAMEWORK: THE CONTEXTUAL SYSTEM MODEL

In his attempts to unpack how children form patterns of relatedness and interactions,
Pianta (1999) coined the contextual system model. The model brings together two
contextual units; namely the child-family unit and the child-school unit. For the scope
of this paper, I focus on the latter. Pianta (1999) presents the school as a complex
integrated system that a child navigates already at early stages. This complex system
includes multiple strands such as peer relations, teacher relations, school coordinator
relations, school policy and infrastructure and so on. In an attempt, to navigate their
identity within the complex multi-stranded school system, the child at early stages of
their learning, looks up to the teacher as the compass for navigation (Figure 1).

————————————————————————————————————————————————————————————— 1 /a\
® Relation to peers :}. \y/

u
Relation to system

Relation to older students

Relation to self

S ______________________________________________________

Figure 1: Multi-stranded Navigation System.

Figure 1 shows how the child struggles to navigate between the different strands of the
complex schooling system, which is a sub-system of the wider societal system.
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According to Pianta (1999), at the early learning stages, the child cannot be held
responsible for balancing this multiplicity of relations and therefore, the quality of the
interactions that the student has with the school as a system needs to be fostered by the
teacher. In other words, it becomes the teacher’s responsibility to aid the student as
s/he navigates their role, identity, and agency in relating to the different players of the
school system. At the early stages, the teacher frames the student’s sense of relation to
key players in the schooling unit in ways that align with the teacher’s own beliefs and
practices about their own relation to students. As the teacher directs the student to
navigate their way in this complex system, this navigation according to Dewey (2013)
translates into how the learner navigates the wider complex system of society.

RESEARCH DESIGN

In this section, I utilise the drawing toolkit as a methodology for exploring
subconscious student perceptions of the teacher-student relationship. The double
stranded data collection protocol, which utilises semi-structured group interviews as a
build-up on the student drawing activity is also presented along with the context and
the selected sample for the study. Finally, the analytical framework for correlating the
student drawing analysis to form relevant subsequent interview questions is presented.

Analytical Framework: Conceptualising student drawing filters as a toolkit

In their study, Thomas, Pederson and Finson (2017) have identified the act of drawing
as a suitable tool for uncovering how students subconsciously related to their teachers
as authority figures. According to the authors (Thomas et.al., 2017), the act of drawing
lowers the guards in students’ minds and accordingly more accurate data can be
extracted in terms of how they relate to their teachers. Figure 2 presents a student
drawing that has been depicted by a primary stage student in Sweden.

oA
&

Figure : Student Drawings in previous studies (Picker & Berry, 2000).

As evident from Figure 2, the student drew themself as very small compared to teacher
size. Also, the student has depicted the teacher as holding a threatening tool. These two
features have been conceptualised along with other features as part of a drawing filter
analysis toolkit, which in turn acts as an analytical framework to check-mark student
drawings for the purpose of uncovering indicators of student intimidation in the
classroom (Picker & Berry, 2000; Thomas et al., 2017). Based on the drawing analysis,
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a sub-sequent semi-structured student group interview took place to triangulate the
findings of the drawings. For the case of the drawing depicted in Figure 2, for example,
the subsequent interview revealed that there was no physical threatening tool in the
classroom. The student has expressed their sense of intimidation by mentally depicting
the classroom in this way. The analysis of the subsequent semi-structured group
interview utilises the same filtration tool to complement the analysis of the drawings.

Framing the Research Question

The current study utilises children’s drawings as tools to uncover how students relate
to their mathematics teacher as an authority figure in the classroom. The study aims to
answer the following question: How do student drawings inform us about student
intimidation in the mathematics classroom for early learners in rural Cairo?

METHODOLOGY

This section outlines the context of the study, followed by the data collection protocol
and the analytical framework, which has been adjusted to fit the scope of this study.

Context of the study

As part of a larger study (Makramalla, 2021) that investigated student perceptions of
schooling, a group of thirty students, aged five to seven, of mixed genders were asked
to respond to the prompt: Draw your mathematics classroom. The students were not
offered additional elaborations of the prompt and were not assisted during the act of
drawing. This took place at a summer school that brought together students from three
different schools within the same district of rural Cairo. The idea was to capture data
from different sources within the same context for triangulation purposes (Yin, 2011).
Prior to the study, consent was attained of the summer school leadership and of the
students’ legal guardians. Additionally, a semi-structured group interview took place.
Students were at ease throughout the entire data collection process.

Data Collection Protocol

The data was collected over four stages. Firstly, students were provided drawing tools
along with a drawing prompt. Secondly, the drawings were filtered in accordance with
the reduced analytical framework, presented below. Thirdly, based on this preliminary
filtration, a semi-structured group interview re-emphasised the rationale behind the
some drawing features that were depicted by the students and which corresponded to
the filtration features. Finally, students were rewarded for their participation.

Analytical Framework

A previous study (Makramalla, 2016) has conceptualised a sequential double filtration
analytical framework in conjunction to the prompt: Draw your mathematics classroom.
The framework was designed with the target of exploring indicators for student
intimidation in the mathematics classroom. This study utilises this framework as an
underpinning analytical tool for assessing the student drawings and interviews. For the
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scope of this exploration, two particular filtration features will be emphasised, namely
drawing dimensions and symbols indicating physical abuse (such as a cane or the like).

FINDINGS: STUDENT DRAWINGS

As already mentioned, for the scope of this paper, I present the analysis of the drawings
and subsequent student interviews as mapped against two main features:

e Dimensions; i.e. depicted student size reference to depicted teacher size
e  Symbols of physical abuse in the classroom

Figure 3 presents a sample student drawing that depicts the teacher holding a cane and
the students depicted in distorted dimensions reference to teacher size.

Figure 3: Sample of student drawings.

As evident from Figure 3, the students depicted herself as much smaller in size
compared to the teacher and she also depicted the teacher as holding a cane. Traces of
distorted dimensions, similar to the one in this example, were evident in 63% of the
student drawings. A cane was depicted in 82% of student drawings.

When asked, during the follow up group interview, whether the teacher was maybe
utilising the cane as a pointer, students clearly responded that the cane was used “to
beat up the student that gave wrong answers”. Students were asked whether they
thought that being beaten would help them to find the right answer, to which student
responded that it was “the teacher’s role to discipline those who gave wrong answers”.

Students finally indicated that the teacher was the main player in the classroom, that
s/he “knew better” and that therefore they “needed to follow the instructions as given”.
Students seemed to have a sense of inferiority and threat as they think of their
mathematics classroom. This mental depiction would naturally result in a deprivation
from developing problem solving skills as will be further discussed in the next section.

PME 45 —2022 3-159



Makramalla

CONCLUSION

As already noted, the contextual system model acts as a theoretical framework for
discussing the findings of this study. According to this framework, at stages of child
early development, the teacher sets the pace for how the child ought to relate to their
teacher as an authority figure. The findings of this study show how the student relates
to teachers as oppressive and intimidating authority figures. The findings also show
that this abuse of teacher authority is normalised to the extent that students consider it
to be best practice. In line with the contextual system model lens, it seems to be that
teachers set this tone in terms of classroom power dynamics early on, which in turn
could result in a lifelong distorted perception of authority, which replicates itself at
each level of the authority dissemination ladder (Herrera & Torres, 2006).

Violence in the classroom as a form of student discipline.

Given the worldwide attention to violence in the classroom (Pinheiro, 2006), it is not
surprising to find indicators of physical violence, expressed through student drawings.
Despite the advancement of pedagogical practice, different forms of violence
(Younghusband, 2010) are still manifested in different cultures as part of the daily
classroom routine. The more alarming reality is that students identify with violence as
being a form of “discipline”, claiming that the teacher would be doing it with the best
interest of the student in mind. This distorted image of discipline seems to be
penetrating students’ minds, making them unaware of the harm being enforced on
them and making them relate positively to their abusers. Scholars (Solomon & Sekayi,
2010) have studied reproductive cycles of teachers acting in ways that they themselves
experienced as learners. Teachers are often unaware of the harm they are causing as in
their minds; they relate to their own teachers as role models. In other words, there is a
danger that teachers might not even be aware that they are harming the students and
might even themselves believe that this practice was in the best interest of the students.

Violence as normalised practice in the mathematics classroom.

Building on findings from a previous study (Makramalla, 2021) conducted in a
different Egyptian context, it seems that the student relation to the mathematics teacher
as an autocratic authority figure has often been normalised in classroom practice to the
extent that students would have no negative connotation to this authoritarian
relationship but would instead consider it to be normal.

In their study of abuser-abusee relationship, scholars often refer to this as the
Stockholm Syndrome (Fabrique, Romano, Vecchi & Van Hasselt, 2007). In alignment
with the contextual system model, where the teacher sets the pace for how the student
would relate to authority figures, the Stockhom Syndrome refers to the status, where
the victim develops emotions of trust and affection towards the abuser. Building on
this understanding, it becomes clearer, why students relate positively to the teacher
holding a cane. This presents a potential explanation of why the presence of violence
instruments in the classrooms is normalised as part of the classroom infrastructure.
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Drawing as a vehicle to unveil mathematics classroom power dynamics

In response to the research question, this study aligns itself with previous studies in
mathematics education scholarship (Makramalla, 2021; Picker & Berry, 2000) in
confirming the power of the arts to act as a filtration tool for identifying student
perceptions. The wider focus group discussion that resulted from the drawing activity
would have been very difficult to trigger, if the students were not prompted by a
drawing or a similar form of self expression first. Both the drawings and the
subsequent conversation in the group confirm a distorted power balance that is instilled
by the teacher as a trusted authority figure in early years of learning. Based on the
contextual system model, this study also shows how this distorted mental image of
mathematics teacher authority becomes normalised.

Particularly focusing on mathematics instruction, this distorted image of classroom
power dynamics prevents the process of creativity and problem solving as students
perceive themselves as inferior, uncapable to solve problems without the guidance of a
dominant authority figure. This mentality blocks the sense of autonomy at an early
stage, thereby creating learners that can very well recall procedures but that would find
it very hard to analyse problems or create solutions.

IMPLICATIONS

This study aligns itself with previous studies in scholarship as it presents the dominant
case of normalised violence in the classroom. Despite the advancements in pedagogy,
worldwide mathematics students are still intimidated by their teachers. Implications of
this study call for awareness raising, policy formations and training of teachers, in
order to re-envision the creative dimension of the mathematics classroom that is
impossible to foster in an atmosphere where intimidation is normalised.
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DIMENSIONS OF VARIATION IN TEACHERS’ APPLIED
MATHEMATICS PROBLEM POSING
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College of Education

This study suggests eight different dimensions through which products of teachers’
applied mathematics problem posing (AMPP) can be modified to achieve different
pedagogical goals: authenticity, correctness, compactness, mathematical diversity,
multiple data representations, answer format, generalization, and students’ agency
and decision making. The dimensions were identified from a qualitative multiple-case
study using variation theory as a theoretical framework. We compared items and
versions of secondary teachers’ AMPP products during professional development
(PD). The resulting model informs teacher educators and researchers in planning and
implementing AMPP in teacher PD, can serve as a basis for an assessment model of
AMPP product, and enhance teachers’ learning in task design environments.

INTRODUCTION AND THEORETICAL BACKGROUND

Modern teachers are expected to choose and design their instructional resources (Jones
& Pepin, 2016; Remillard & Heck, 2014). Pepin et al. (2015) claimed that adapting,
assimilating, and designing mathematical tasks improve teachers’ pedagogical
knowledge for teaching mathematics. However, a recent literature review on teachers-
as-designers found that while studies on the potential of teacher-designed resources for
student learning in mathematics education are common, studies that focus on teacher
learning are almost absent (Pepin, 2018). We address this lacuna by situating our study
in the context of teacher professional development, where the design of reality-related
and applied mathematics problems for achieving various pedagogical goals is the
primary vehicle for teacher learning.

Teachers’ task design for students in mathematics education can take the form of
problem-posing (PP, Cai & Hwan°g, 2020; Koichu, 2020). Per Koichu, PP of teachers
includes reformulation and generation of new tasks to advance students’ problem-
solving performance (Koichu & Kontorovich, 2013; Koichu, 2020). Our
conceptualization of PP as an activity for teachers is close to Koichu. In our study, PP
of in-service teachers is an authentic mathematical activity that arises from teachers’
pedagogical need to develop students’ mathematical competencies through applying
mathematics to realistic situations (c.f. Gravemeijer, 1999) and from a corresponding
aspiration to develop teachers’ design capacity (Brown, 2009). We focus on teachers’
applied mathematics problem posing (AMPP) products and perceive variations in
designed tasks as indicators of teachers’ learning (Brown, 2009; Pepin, 2018).
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Theoretical foundations for dimensions of applied mathematics problem posing

Maal3 (2010) developed a classification scheme for modeling tasks (i.e., tasks applying
mathematics to realistic, open problems) based on existing theory (e.g. Blum, 2002).
This scheme reflected different features of modeling tasks, offering guidance in the
task design and selection processes for specific aims and predefined objectives and
target groups. The model incorporated nine classifications. Among them, three are
generic (applicable for different types of tasks): openness; cognitive demand (e.g.
mathematical reasoning); mathematical content (topic, level). Six classifications are
pertinent to modeling tasks: the focus of modeling activity (all modeling cycle or part
of it); data (excessive or lacking data); nature of the relationship to reality
(authenticity); situation (e.g. personal, scientific); type of model (descriptive or
normative); type of representation (e.g. textual or pictorial). The classification
developed by Maall (2010) was used to characterize modeling tasks developed by
educational specialists for a particular target group of students. Specifically, these tasks
were not intended to be modified. We used Maal3’s (2010) classification as an initial
framework for characterizing dimensions through which teachers may modify their
AMPP products to achieve different pedagogical goals. To identify more dimensions
of variations in the context of AMPP, we applied variation theory (Lo & Marton, 2012).

Variation theory and research question

Variation theory relies on the premise that learning is always directed at something
(phenomenon, skills, or certain aspects of reality) and conceptualized as a qualitative
shift in the way of perceiving this “something” (Marton & Booth, 2013). To see or
experience an object of learning in a certain way requires the learner to be aware of its
specific aspects and discern these aspects simultaneously. Lo and Marton (2012)
emphasize that awareness 1s stimulated by experiencing difference (variation) between
two values as a contrast. When we become aware of a value by contrasting it with
another value (e.g., large vs small), the value is separated from the object of learning,
and a dimension of variation is realized (e.g., size). Then, the object is perceived with
its value (feature) and its dimension of variation, and the learner can focus on the value
alone, naming it and even changing it (Lo & Marton, 2012). Our study is focused on
teachers’ AMPP products as the objects of learning. We use variation theory as a
methodological tool to discern the dimensions of variations within these products to
discuss further their relationships with pursuing different pedagogical goals.

Therefore, our research question is: Across which dimensions do secondary teachers’
AMPP products vary?

METHODOLOGY

This paper derived its data from the first year of a three-year PD program in which
secondary school teachers designed applied mathematics tasks. The PD was conducted
as a community of practice (Hodges & Cady, 2013) in which teachers, teacher
educators, and researchers collaborate to achieve specific goals (Cooper & Koichu,
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2021). Addressing Israeli students relatively low achievement in OECD’s Programme
for International Student Assessment (PISA; OECD, 2019), the project’s overarching
goal was to improve students’ mathematical competencies by applying mathematics to
realistic situations. We identified that one barrier for students’ success is teachers’
unpreparedness to use AM tasks even if they are provided with them. We hypothesized
that through designing their own AM materials, teachers would (a) develop their
capacity to use mathematics knowledge and skills in real-life challenges; (b) gain
ownership over the materials they develop and an inner motivation to implement them
in their classrooms (Brown, 2009; Koichu, 2020).

There were three cycles of AMPP development in the PD, each constituted of PP initial
design, receiving feedback from the PD community, redesigning, classroom testing,
and final revisions. In the first year, eight experienced teachers participated, each from
a different school in Israel, with teaching experience ranging from 5 to 25 years. The
teachers reported they never engaged in composing tasks independently and used only
textbook problems or tasks found online in their classrooms. Five more participants in
the community were three experienced teachers serving as community leaders (one of
them the first author of this paper), a mathematics education researcher (the second
author), and an assistant researcher. The leading team did not have any formal
experience in AMPP and therefore perceived themselves as part of the learning
community — as facilitators and not as instructors.

Data collection and analysis

The data comprises 22 AMPP products composed by teachers, each including multiple
drafts generated throughout PD community sessions (see examples in Figures 1, 2). In
addition, we collected teachers self-reported considerations on their problem-posing
attempts. We used variation theory to compare different task items within individual
tasks and across different tasks made by different teachers. Since our goal was to
identify the dimensions of variation (Lo & Marton, 2012), whenever we identify a case
of dissimilarity between two items, we categorized it as a potential dimension of
variation upon mutual agreement between the authors. If this dissimilarity repeated
itself throughout the data, we established it as a prominent dimension of variation.
Teachers’ reports during community meetings regarding their considerations and
pedagogical goals they sought to achieve through a particular design decision were
used as complementary data. This process is exemplified by the two tasks (Figures 1,
2) that manifest diversity across all the identified dimensions.

Shira is preparing for a 24-hour annual school trip. She is taking her cellphone, which has
several applications, each consuming different battery life in milliampere-hour (mA-h), as
shown in the table. The capacity of her phone battery is 3000 mA-h.

1. What percentage of the battery will Shira consume if she hears music for one hour?
2. Shira played a game for five minutes, used Instagram for 20 minutes, and listened to
music for two hours. What percentage of battery did she have left?
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3. Shira wants to use all the applications listed in the table during the trip. Suggest a
reasonable usage that will leave Shira with 10% battery life at the end of her trip.

4. At 8:00 p.m., Shira’s mother called her. How long can they chat so that Shira’s phone
will have 8% of the battery charge after the call? Assuming there were 30% of the

battery left at that time.

5. The graph below presents Shira’s battery charge in mA-h during the trip. Write down the
applications in the order she used them.

6. The pie-chart below presents the distribution of Shira’s application use in percentage.
What is the probability that Shira will be playing a game when her mother calls?

3200

Application mA-h 00 o
WhatsApp 300 ! ;§§§
Instagram 400 é 5 Elég

Music player 450 E 1§§§
Phone calls 500 EEE
Gaming 600

.
01234567 8 9101121314151

WhatsApp

TIME (HOURS)

Figure 1: Rona’s task (in italics: text added to a revised version after receiving
community feedback).

A jewelry store owner wants to redesign an 8-meter-wide square ceiling in her store. She received
several alternative designs from the architect, each combining glass panels (blue) and plaster
(brown) with aluminium beams (black) between them.

(a) (b) (0) (d)

Al. The store owner would like to
have as much area under the glass
roof to provide natural light as
possible to save energy. She would
also like to reduce the overall length
of the beams to save their cost.
Which of these designs (a-d) would
you recommend her to choose?

A2. The store owner asked the
architect to relocate the middle
beam in designs (c¢) and (d) to
minimize the cost of the beams. Is
that possible? Justify your answer.

(e)
B1. Calculate the total area of glass panels, plasterboards,
and beams length in the project (a).
B2. In the architect’s second sketch of the store’s ceiling,
four aluminium beams from the corners are connected at a
single point M, which appears three meters from the left side
and one meter from the upper side. Sketch the design using
the grid (e) and calculate the areas of glass and plaster panels
as well as the total length of the beams.
B3. In design (e), are there any other places that point M can
be repositioned so that the total area of the glass and
plasterboard panels will be equal?
B4. The store owner chooses which model is cheaper, (c) or

(d). Which of the following will affect her decision?
(1) The cost of a glass board per square meter.
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A3. If the side of the square ceiling (ii) The cost of a plasterboard per square meter.
was x meters long and the length of (iii) The cost of an aluminium beam per meter.
the middle beam was y meters, what
was the ratio between the glass area
and the plaster area?

Figure 2: Suha’s task. A — an initial task, B — task after reflection and redesign .
RESULTS — THE DIMENSIONS OF TASK VARIATION

We present the task variation dimensions found in products of teachers AMPP and
illustrate them with the analysis of problems composed by the teachers Rona and Suha.

Rona’s task was developed while preparing for her annual school trip. She realized
how worried her students were about their cell phones having enough battery power.
Her task is thus based on a relevant topic for her students. The mathematics it entails
(capacity word problems) arises naturally, and Israeli textbooks do not contain such an
up-to-date context. These considerations were widespread in teachers’ tasks. Thus, the
first dimension is authenticity. This dimension is divided threefold and refers to the
extent to which the context of the problem is (a) relevant, appealing, and motivating
for students; (b) nonartificial, and (c) original and not overused in textbooks.

Many teachers’ tasks, especially early drafts, contained mathematical mistakes,
missing data, or excessive prerequisite students’ mathematical knowledge. For
example, item 4 in Rona’s task is unsolvable without the text added in the revised
version, and Suha’s A2 necessitates knowledge in calculus that her target students do
not yet possess. These items illustrate the dimension of correctness — the requirement
of the task to be solvable without out-of-scope mathematical knowledge, where given
information befits the real-life context.

Comparing Rona’s items 3 and 4, one can see that they both demand almost similar
reasoning and calculations. This phenomenon was commonly observed in our data:
different items invited repeated enactment of the same mathematical procedures. Thus,
we identified the compactness dimension — the extent to which each item stimulates
non-repeating mathematical procedure(s) and processes. Note that, unlike correctness,
compactness is not as crucial and, in some cases, repetition is even worthwhile.

We found that teachers in our study tended to incorporate several and usually distinct
mathematical topics in a single task. For instance, Rona’s task combines percentages,
capacity word problems (items 1-3), the notion of slope (item 5), and probability (item
6). Suha’s task mainly concerns geometric concepts and includes an optimization
problem (A2) and the concept of ratio (A3). We, therefore, identified the mathematical
diversity dimension, which captures the extent to which different and distinct
mathematical sub-domains are combined in the same task.

Some teachers’ tasks included different kinds of data representation, summoning
opportunities for transformations between them. In Rona’s task, the added items (4)
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and (5) diversify the repertoire of data representations to include a graph and a pie
chart. Suha’s item B2 exemplifies a request to transform data from one form to another
(text to diagram). We call this dimension multiple data representations.

The teachers in our study have included items of different formats in their tasks: single
vs multiple correct answer(s) (as Rona’s items 1 vs 3), open-ended items (Suha’s A1)
vs multiple-choice items, (Suha’s B4). The teachers intended their students to solve by
applying exact calculation (B1) aside from evaluating quantities (B4). We identified it
as the answer format dimension.

One can see that Rona’s Items 1 and 2 are calculations of specific cases, and item 3
generalizes them. Suha’s A3 is about producing a generalization formula, and B3 and
B4 strive at generalizing which features of the ceiling design impact its cost. These
items helped us identify the generalization dimension that indicates to what extent
students are requested to formulate a general statement or concept, obtained by
inference from specific cases.

Both teachers present a need for calculations and mathematical reasoning by
positioning students as consultants in decision-making. Suha is recruiting student
mathematical efforts to help a jewelry retailer choose an economical ceiling design for
her store (item A1). Rona asks students to help Shira plan a reasonable usage of her
cellphone battery (item 1-3). However, Suha’s item Bl requests calculations
supporting no apparent decision. These differences led us to identify a dimension of
students’ agency and decision-making.

DISCUSSION

The research question of our study was: Across which dimensions do secondary
teachers” AMPP products vary? We identified eight dimensions through which
products of teachers’ applied mathematics problem posing (AMPP) can be modified to
achieve different pedagogical goals: authenticity, correctness, compactness,
mathematical diversity, multiple data representations, answer format, generalization,
and students’ agency and decision making. We exemplified each dimension based on
two tasks composed by teachers, each with initial and final versions. Six of the
identified dimensions are close to characteristics of modeling problems (see the
classification of Maal3, 2010). However, since our model stemmed from products of
teachers’ and not educational specialists like Maal3’s (2010) classification, it brings
force dimensions such as correctness, compactness, and students’ agency and decision
making. As for dimensions corresponding to some of Maal3’s classifications, they stress
different meanings and aims. For instance, Maal3’s mathematical content class
corresponds to our mathematical diversity dimension. However, while Maal3’s model
only states the mathematical content involved, we stress combining different
mathematical topics in the same task.

Our dimensions of variation enrich the theory of teachers as designers by suggesting
specific considerations teachers can make to compose or adjust mathematical problems
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to fulfil various pedagogical goals. Of the dimensions, correctness is the only one that
is a sine qua non — we cannot afford a final AMPP product that is incorrect. Other
dimensions are less compulsory - variation is allowed and even advantageous. For
instance, not all tasks or items must have multiple data representations. However, those
who have it may be pedagogically richer, containing more opportunities for students
to benefit from their engagement in the task. Rona’s task does not have items that vary
along the generalization dimension (as in Suha’s A3 and B4); this observation can
inform her design, suggesting a direction for adding a generalization item.

Adding variation along one dimension may well be at the expense of another
dimension. For instance, the added items in Rona’s task (items 5 and 6) vary the data
representation and the mathematical diversity dimensions. However, it also demands
more working time (hazarding the correctness dimension) and reduces students’
agency in decision making (the answers requested support no decision). So, when a
teacher-designer varies a task along one dimension, she should also observe the other
dimensions maintained in balance, seeing any change as a potential tradeoff.

Our eightfold dimension model could also be used to assess teachers’ design products
and capabilities (Brown, 2009). These dimensions can constitute a standard for
designers to serve for evaluation. For instance, if one strives to present mathematics as
a unified, powerful toolkit for problem solving, tasks blending various mathematical
topics around the same real-life context with multiple data representations may serve
her pedagogical goal. By setting the mathematical diversity and multiple data
representation dimensions as essential aspects of task design, one could evaluate
teachers’ products to the extent these dimensions are enacted.

Although the perplexity entailed, we deliberately decided to include an initial version
for each teacher’s task. The changes from the initial tasks to the final versions were
made by Rona and Suha themselves after receiving feedback from the PD community.
Behind each change lies a realization about a particular shortcoming in the initial
design to achieve some pedagogical goals. For instance, during a few PD sessions,
Suha gradually realized that A1 was too complex for her students to solve because it
was overloaded with geometric concepts unknown to them (e.g. area preservation,
adding auxiliary constructions). She understood she could break down Al into a
gradual sequence of items (B1-4). Her capacity to modify the task along the
correctness dimension instigated mathematical and didactical insights for her to learn.
We hope that our eight-dimension model would help teachers learn more profoundly
from processes of iteratively designing tasks. It may help them recognize dimensions
across which their items can be composed and modified.
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