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This empirical study applies the analytical apparatus of Mason’s shifts of attention 
theory to investigate why and how using physical models of different scales can 
facilitate learning of (spatial) geometry. In the presented case study, six high school 
students learned the properties of icosahedron by constructing and exploring physical 
models. Shifts in the focus and structures of attention were associated with multimodal 
perception and collaborative physical actions of students with and through the models. 
Models of different scales landed students different affordances for exploration, 
facilitating noticing of invariant scale-free features of a geometric object and 
influencing the dynamic of student collaboration.  
INTRODUCTION AND THEORETICAL FRAMEWORK 
According to Goldenberg et al. (1998), geometry is “an ideal intellectual territory 
within which to perform experiments, develop visually based reasoning styles, learn to 
search for invariants, and use these and other reasoning styles to spawn constructive 
arguments” (p. 5). This claim concurs both with Freudenthal’s view on geometry as 
“one of the best opportunities which exist to learn how to mathematize reality” 
(Freudenthal, 1973, p. 407) and with tenets of embodied design for mathematics 
instruction (Abrahamson et al., 2020) supporting primacy of students’ enactment of 
conceptually oriented movement forms and gradual formalization of gestures and 
actions in disciplinary formats. Embodied learning is rooted in an ecological approach 
in cognitive psychology (Gibson, 1986/2015), capitalizing on organism-environment 
relations. In particular, Gibson conceived perception as an active, embodied process in 
which we notice optical invariances of the object under the movement of the source of 
light, movement of the observer, movement of an observer’s head, and manipulations 
and local transformations of the object itself. Students facing tasks in realistic 3D 
contexts can be introduced to the language of geometry, its objects and constructions 
(Doorman et al., 2020). They conduct mathematical modeling of their experiential 
world and then are invited to use informal strategies (horizontal mathematization) and 
further develop them into normative forms and practices of mathematics (vertical 
mathematization) (Gravemeijer, 1998). Several scholars suggested that mathematical 
modeling of geometric figures should take into account four distinct perceptual systems 
of the figure(s): (a) as physical navigation of macrospace (objects more than 50 times 
the size of an individual); (b) as capturing an object in mesospace (0.5 to 50 times); (c) 
as constructions of small objects in microspace (less than 0.5 times); and (d) as 
descriptions and manipulations of small objects in microspace (e.g. Herbst et al., 2017). 
Still, why and how physical models of different scales can facilitate learning of 
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(spatial) geometry remains an open question. This empirical study seeks to provide an 
answer using the analytic apparatus of Mason’s shifts of attention theory. 
Learning as shifts of attention 
Mason (2010) claims that learning is a transformation of attention involving “shifts in 
the form as well as the focus of attention” (p. 24). Thus, to characterize learning, Mason 
considers what is attended to and how the objects are attended to. Per Mason (2008), 
there are five different forms or structures of attention. One may hold the wholes 
without focusing on particularities or discern details among the rest of the elements of 
the attended object. From there, one may recognize relationships between discerned 
elements and even perceive properties by actively searching for additional elements 
fitting the relationship. The ultimate structure of attention is reasoning based on 
perceived properties. The shifts in attention structures are not necessarily sequential, 
and one may return to holding the whole to reassess the situation.    
In Mason’s works (2008, 2010), these theoretical constructs were suggested for use in 
teachers’ education. In more recent studies, the theory of shifts of attention was applied 
as an analytical framework to study students’ problem-solving efforts (Palatnik & 
Koichu, 2015) and assess individual changes in children’s communication and 
conceptualization of arithmetical tasks (Voutsina et al., 2019). Palatnik and Sigler 
(2019) suggested that shifts in form and focus of attention can also be applied to 
analyzing geometric tasks and activities, particularly when introducing an auxiliary 
element is necessary. The current study expands the application of shifts of attention 
as an analytical framework for investigating spatial geometry learning. In this report, 
the analytical lens of shifts of attention is applied to collaborative geometric activity in 
which students explore tangible models of a geometric object on different scales. 
Research questions 
When students study 3D geometrical objects by exploring physical models, which 
shifts of attention do they experience? What role do physical features of the models 
(i.e., their relative size and their orientation in space) play in the process of student 
exploration? 
METHOD 
Context 
This study is a part of a research project Learning Geometry as Negotiating 
Perspectival Complementarities studying activities that foster conceptually productive 
discursive and pragmatic tension between differing perspectives on sensorial features 
of shared displays of geometric objects (Benally et al., 2022). A distinctive feature of 
the empirical context of the current study is that students explore the same geometric 
objects at different scales. In one of the tasks, students are given a 2D diagram and 
written instruction (see Figure 1) to construct an icosahedron—a polyhedron whose 
exterior is composed of twenty equilateral triangular faces. They have to build 
relatively small as well as human-scale models using wooden rods and silicone joints. 
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Once both models are built, students are asked questions concerning the icosahedron’s 
properties, for example, “How many vertices and edges does an icosahedron have?”, 
“How many parallel edges?”, “If the icosahedron were standing on its triangular base 
and filled halfway up with water, what would be the water’s surface shape?” 

Your team has to construct two three-
dimensional models (one large, one small) 
of a geometric solid, a polyhedron.  
The polyhedron has the following 
properties: 

• All the faces are congruent equilateral 
triangles. 

• The same number of edges converges 
at each vertex. 

 

 

Figure 1: The icosahedron construction task and materials.  
Data collection and analysis 
The case presented in the paper provides an account of an outdoor implementation of 
the activity with a group of six tenth-grade students. This activity was a part of an 
enrichment program for the students at the beginning of their first year in the new high 
school. This case was chosen from the data collected (14 cases)for two reasons: First, 
the way this group constructed the models and answered the questions was typical of 
this activity. Second, the students were more verbal than other groups, making 
indications of their attention shifts more distinguishable.  
The activity was video-audio recorded. To analyze the data, we combined multimodal 
analysis of students’ interactions (Abrahamson et al., 2020) with microgenetic analysis 
of shifts of attention (Voutsina et al., 2019) in the following way. We prepared a 
complete transcription of the activity, overlaid with a description of students’ actions, 
gestures, and movements. The resulting protocol was divided into episodes (i.e., 
construction of the large-scale model, construction of the hand-held model, the answer 
to the first question, etc.) In each episode, we looked for the indicators of the shifts in 
focus (what is attended to) and structures of attention (how it is attended to). Marking 
the objects directly mentioned in the conversation, the direction of the gestures and 
gaze (where available) helped us identify the focus of attention. To identify shifts in 
structures of attention, we, following Gibson’s approach, interpreted changes in 
students’ movement in space, manipulations with and local transformations of the 
object itself (for instance, change in the model’s orientation). Particular attention was 
paid to the actions, gestures, and utterances that preceded students’ advancements in 
the task. At the subsequent analysis stage, we compared how students interacted within 
the team and with models in different episodes. Due to the page limitation, we focus 
here on two episodes: finding the number of vertices and the number of edges. 
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Figure 2: (a) Students discuss a small-scale model resting on a triangular face; (b) the 
student examines a small-scale model while holding it on a vertex; (c-d) different 

points of view on the same model. 
Having constructed both the large and small models, the students used the small model 
to find the number of vertices (Participants are referred to by the color of their t-shirts; 
transcription translated from Hebrew by the author). 

Grey [holds a model on its vertex, starts counting] One, two, three, four, five. 
[touches an upper vertex, touches two additional vertices] 

Black How many vertices? [Reaches out for the model and touches it]. We already 
counted (them). It is a number of joints.  

Yellow [takes the model, starts to count by touching silicon joints] One, two. 
Grey Twelve. Times five. Sixty. 
Yellow How (it can be) twelve times five? How (it can be) sixty? [looks at the 

model]. 
Grey [tries to take a model from Yellow] Ah, vertices… Twelve. Put it (the 

model) like this [tries to orient the model on the vertex] 
Yellow Give it (the model) to me for a moment. I know what I’m doing [takes the 

model away from Gray]. 
Grey But, but…It’s… Ohhh… 
Yellow [starts counting the joints from two facing her]. One, two. [continues 

counting] One, two, three…ten. It is twelve! [puts a model on a floor to 
write an answer] 

Grey [takes a model and tilts it on a vertex] Look [addressing Yellow] at it this 
way. [Starts counting from a lower basis] One, two… 

Yellow There are twelve!!! 

In this episode, Gray and Yellow answer the question by counting the silicon joints of 
the small-scale model. The small size of the model allowed the students to group 
around it. The model became the focus of their joint attention. The model’s size also 
enables students to simultaneously grasp most of its features, holding the whole. Both 
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students physically touched the joints while counting vertices which helped them to 
discern these relevant details of the model (separating it from edges and faces). Both 
students were successful in counting 12 vertices. However, the ways of counting were 
qualitatively different. By orienting the model in a particular way (Figure 2 b, d), Grey 
recognized a relationship between several groups of vertices of the icosahedron. 
Grey’s persistence to explain his point of view and his frustration when he was denied 
the explanation can indicate that he perceived this orientation as the property of an 
icosahedron, and it served as the base for his reasoning. Yellow was also successful in 
her attempt to count the vertices, which she separated into two groups of two and ten 
and did not see the value in the alternative orientation of the model in space. The next 
episode will demonstrate that Gray’s unappreciated know-how of holding an 
icosahedron on its vertex will help answer how many edges an icosahedron has while 
Yellow’s attempt will fail. 

Yellow How many edges are there? 
Black Okay, that’s tricky because they’re shared. (i.e., each edge is shared by two 

triangles). 
Blue I’ll put a finger [on the first edge, to Yellow help her monitor the count]. 
Orange You just count the sticks. 
Yellow I’ll go to the big one (i.e., the large-scale model). 
Black The big one is just nicer. 

Figure 3: (a) students’ problem-solving attempt inside and outside a human-scale 
model (standing on a triangular face); (b) having tilted the structure onto a vertex, the 

students soon arrive at a critical breakthrough; (c) partition of an icosahedron. 
Three of the six students rose and walked over to the nearby large-scale model. This 
larger model is advantageous for counting because its edges are more perceptually 
distinct. A model’s greater size, while availing perceptual acuteness, may come with a 
price that its figural elements in question (the to-be-counted edges) are never all in 
one’s arm’s reach—you cannot directly touch or gesture to each edge as you tally it. 
Thus, using structures of attention terminology, greater size afforded students easier 
holding the wholes while impairing discerning detail by a sense of touch. To overcome 
this, Yellow entered inside the model, where all edges are within her reach (Figure 3a). 

	
a	

	
b	 c	
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Still, when you are inside an object, part of it is always behind you, so you might lose 
track of your count. Indeed, Yellow’s initial attempts to count failed.  
The excerpt below demonstrates two phases of student solution. During the first phase, 
Yellow attempted to use some of the icosahedron properties that the team discovered 
during construction, yet again she failed to develop a systematic approach. During the 
second, Grey received an opportunity to demonstrate that his strategy of putting the 
model on a vertex has an advantage. In seconds, his physical action facilitated the 
restructuring of Yellow’s attention leading her to a correct solution. 

Yellow There are five from each vertex. One should be subtracted. Then there are 
four. Two should be subtracted here. It’s three. It doesn’t work that way…3, 
4, 5 [sits on the floor, inside the model, frustrated]. I can’t count this. 
[Stands up]. How many sticks did we use [during the construction stage]? 
Three and another three, and another three, and another three, it’s 12… 

Grey Let’s do it as we did with (inaudible) [Stands up]  
Yellow [referring to triangular faces] …another three, 15, another three… 
Black We need a formula for this… 
Gray I’m tilting it. [starts tilting the model] 
Yellow No, no, no, no! eighteen…No! Why? 
Gray To make it like this (standing on the vertex). It will be easier to count like 

that [holds the model on the vertex] (Figure 3b). 1, 2, 3, 4, 5 [counts the 
edges diverging from the upper base vertex by pointing at them]; 1, 2, 3, 4, 
5 [counts the edges diverging from the lower base vertex] 

Yellow [turns inside the model and counts the edges of a lower base pentagon by 
pointing at them] 1, 2, 3, 4, 5.  

Grey Look, the base is ten. 
Yellow [counts the middle section] 1, 2, 3, 4... Where did I start? (to Grey) Put your 

hand here. [continues to count silently] ... [raises arms to the upper base] 
ten, [lowers arms to the lower base] ten, [makes a circular breaststroke 
movement with both hands indicating a middle part] ten, ...thirty! 

At the beginning of the episode, Yellow discerned relevant details of the model and 
even recognized the relationship between them: five edges meeting at the vertex, three 
edges forming each of the triangular faces. Each of these relationships has the potential 
to become the property leading students to a correct solution. However, these 
properties were not useful for Yellow’s approach of direct counting. While standing 
inside the model and reassessing the situation, she cannot hold the whole. From a 
mathematical point of view, it does not matter how the icosahedron is positioned in 
space—the polyhedron’s mathematical properties remain the same. However, in a 
material gravitational world, the model lay on one of its triangular faces, making it 
difficult to perceive certain structural symmetries. 



Palatnik 
 

PME 45 – 2022 3 - 281 
 

When Grey tilted the model onto a vertex (Figure 3b), he restructured Yellow’s 
attention. Previously this action enabled Grey to count the vertices, and now it helped 
Yellow to perceive an icosahedron as tripartite: two opposing “bases” and a connecting 
“belt” (Figure 3c). Grey also gave Yellow a hand (literally) in counting edges in a 
“belt.” New structures of attention facilitated counting, and three aggregating gestures 
summarized the perceived property that there are ten edges in each of three groups.  
DISCUSSION 
The first research question raised by this study was on shifts in focus and form of 
students’ attention when studying 3D geometrical objects by exploring physical 
models. By moving in space, changing points of view, and modifying a physical object 
(Gibson, 2015), the students experienced shifts in focus (small and large model, three 
distinct parts of the model, vertices, edges, groups of edges) and structures of attention. 
All five theoretical structures of attention and shifts between them (Mason, 2008) were 
documented in two episodes. Note that shifts in the structures of attention were 
associated with vision and touch, proprioception, and physical actions of students with 
and through the models. For instance, tilting the model on its vertex allowed students 
to structure their seeing of the icosahedron into three visible sets. We reported this case 
as indicative since this action helped students answer questions about vertices and 
edges or explain their solution to their peers in all the cases we possess.  
The second question was on the role of physical features of the models in the process 
of student exploration. Models of different scales landed students different affordances 
(Gibson, 2015) for inquiry. For instance, in most cases, at least one student entered a 
human-scale model to examine the features of the polyhedron from within (as Yellow 
did). The activity enabled students to ground conceptions of the geometric figure 
simultaneously as objects in mesospace and macrospace (c.f. Herbst et al., 2017), 
providing more opportunities for possible shifts in focus and structures of attention and 
thus learning (Mason, 2008, 2010). Each model served as a physical attractor with 
different affordances for and constraints on the action; accordingly, students 
reorganized around these affordances and constraints. For instance, the small-scale 
model centered the group’s multimodal interactions, but its size could not 
accommodate students’ form of inquiry; the apparent availability of a larger model 
catalyzed splitting the group, which, in turn, juggled students’ social roles. 
The case study findings highlight the pedagogical potential of using different scales 
3D models in spatial geometry instruction. First, the students experienced construction 
and informal exploration of polyhedron models producing a multitude of perspectives 
and collaborative insights on their features. Their efforts combined collaborative 
actions, gestures (indexing and iconic), and speech to indicate and highlight models’ 
properties. The fluency with which students moved from one model to another—both 
physically and inferentially—suggests they noticed invariant scale-free features of a 
geometric object. Then, students’ shifts of attention were multimodally grounded in 
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their senses and converged to a gradual disciplinary formalization of the polyhedron’s 
concept (c.f. Abrahamson et al.,2020, embodied design for mathematics instruction).  
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