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Abstract: Water quality and scarcity are key topics considered by the Sustainable Development
Goals (SDGs), institutions, policymakers and stakeholders to guarantee human safety, but also vital
to protect natural ecosystems. However, conventional approaches to deciding the suitability of
water for drinking purposes are often costly because multiple characteristics are required, notably in
low-income countries. As a result, building right and trustworthy models is mandatory to correctly
manage available groundwater resources. In this research, we propose to check multiple classification
techniques such as Decision Trees (DT), K-Nearest Neighbors (KNN), Discriminants Analysis (DA),
Support Vector Machine (SVM), and Ensemble Trees (ET) to design the best strategy allowing the
forecast a Water Quality Index (WQI). To achieve this goal, an extended dataset characterized by
water samples collected in a total of twelve municipalities of the Wilaya of Naâma in Algeria was
considered. Among them, 151 samples were examined as training samples, and 18 were used to test
and confirm the prediction model. Later, data samples were classified based on the WQI into four
states: excellent water quality, good water quality, poor water quality, and very poor or unsafe water.
The main results revealed that the SVM classifier obtained the highest forecast accuracy, with 95.4%
of prediction accuracy when the data are standardized and 88.9% for the accuracy of the test samples.
The results confirmed that the use of machine learning models are powerful tools for forecasting
drinking water as larger scales to promote the design of efficient and sustainable water quality control
and support decision-plans.

Keywords: prediction model; regional management; drinking water quality; support decision-plans

1. Introduction

High-quality water resources are vital in the supply of necessary drinking water for hu-
mans and natural ecosystems, but also to guarantee human activities and development [1,2].
Nowadays, it is well-studied that several factors interacting in complex systems among
them such as population growth, intensive agriculture, urbanization, and industrial activity,
increase the water need, especially facing an uncertain context of climate change [3]. Ac-
cording to a recent United Nations (UN) report, 1.5 million people die each year because of
diseases caused by contaminated water because water contamination causes 80% of health
problems in low-income countries [4]. In fact, five million fatalities and 2.5 billion illnesses
were accounted for during the time of this report. Therefore, the assessment and prediction
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of water quality are required to set up whether water is suitable for a certain use and, if not,
to find relevant remedies or precautions; however, water quality is determined by many
measures that quantify dissolved substances. Due to this, assessing all interacting factors
in a groundwater bodies (and/or in a water surface lagoon) is insufficient in low-income
countries because the process is expensive and exhausting [5]. As a result, minimizing the
subjectivity and the cost-effectiveness of water quality assessment is a major challenge and
several tools are being developed to determine its cleanliness and purity [6,7].

The design of an accurate and adapted Water Quality Index (WQI) is a well-accepted
indicator used by several international and national organizations to classify water quality
at a certain location and time. Some researchers proposed modifications when calculating
this indicator (WQI), for instance, Uddin, Nash [8] presented twenty-one WQI models
for assessing drinking water quality, such as the Horton index, the National Sanitation
Foundation (NSF-WQI), and the Bascaron index (BWQI), among others. In order to calculate
it, physicochemical parameters must be gathered. As a result, an indicator is achieved that
allows the general public to know the water quality in aquifers [9]. It can also evaluate
water characteristics about human health and natural quality effects [10] or even to decipher
its impact on water poverty risk [11].

Indicators such as the WQI often are calculated in a complex and time-consuming
process. So, many methodologies are proposed to easily and accurately predict these
indicators considering its application for larger scales instead of a specific municipality or
small catchment. These models make it possible to expect compliance (and noncompliance)
with quality requirements in the short and long terms [12]. Water quality monitoring and
forecasting are carried out using a variety of methods such as computational intelligence
techniques (such as genetic algorithms, artificial neural networks, and others), which
have received increasing attention in environmental time-series prediction research, as
they allow for modeling nonlinear systems and are robust to noise data, leading to more
right results [13–15]. Thus, the machine learning helps to reduce the consumption time
to compute the WQI for each sample. However, using equations to determine the WQI
for 100 samples will consume more time, while using the machine learning (classification
learner) will significantly save the consumed time [12–15].

Recently, traditional Machine Learning models such as the Decision Tree, which has
been frequently used in many fields and applications [16,17] has been applied for water
quality assessments. The Ensemble Trees (ET), which is considered a more accurate predic-
tor than any of the individual learning algorithms has been tested [18,19]. Discriminant
analysis (DA) was also utilized in several kinds of research around the world to predict
water quality by generating discriminant functions (DFs) for grouping nonoverlapping data
based on scores on one or more quantitative predictor variables [20,21]. Other researchers
even used K-nearest neighbors (KNNs) to classify and predict the water quality [22,23].

Likewise, several new studies have been published assessing the behavior of the WQI
by using machine learning algorithms in many regions over the world [24,25]. For instance,
Support Vector Machines (SVM) can be offered as a robust technique for water quality
prediction in a free-form wetland environment because of many variables influencing
water quality [26]. Some approaches adopted SVM to predict sediment load concentration
in an arid watershed as in India Samantaray, Sahoo [27], or to predict the boundaries
of water quality limits, for example, in the Kelantan River in Indonesia by Kurniawan,
Hayder [28]. Koranga, Pant [29] proposed a machine learning model to predict the water
quality of Nainital Lake in India. Tan, Yan [30] used a square support vector machine to
predict water quality time series data from China. Mohammadpour, Shaharuddin [13]
forecasted the WQI in freely constructed wetlands using a support vector machine in
Malaysia. Other studies have also been undertaken in Algeria to test the effectiveness of
SVM [31–34] and confirmed that SVM provides accurate results in less time-consuming
and can run with fewer data than other algorithms. However, there is a lack of studies that
offer decision-makers effective tools for predicting water quality index to improve water
resource planning and to be used at larger scales in arid areas.
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Therefore, in this research, classification techniques were used to predict the WQI
for several water samples collected from an arid area, in particular, the Naama province
in Algeria which depicts clear signals of water pollution and scarcity. To accomplish
this objective, the MATLAB tool was considered because it contains a set of classification
learner methods, such as the SVM among others [35]. The main goals of this study can
be summarized as follows: (i) assess the physicochemical properties of different water
points (samples) on a large scale (12 municipalities); (ii) determine the water quality of
the study area, depending on the WQI; (iii) apply the learner technique to develop a
classification model for dry areas estimating the model’s accuracy about WQI values. These
data were divided into classes such as excellent, good, poor, and very poor or unsafe water
in order to facilitate its consideration; (iv) predict the WQI by using the best classifier, which
develops the based prediction accuracy, and (v) offer decision-makers with effective tools
for predicting water quality index to improve water resource planning and management
in arid areas. We hypothesize that the proposed prediction model will reduce the time to
determine the water quality state based on conventional equations.

2. Materials and Methods
2.1. Description of the Study Area and Data Collection

This research was carried out in the region of Naâma (Figure 1), which is located in the
southwestern part of Algeria (from 32◦9.284′ N to 34◦19.492′ N; and from 1◦39.568′ W to
0◦1.781′ E). It is part of the high plains of southern Oran, a region affected by desertification
processes [36], and specifically, the case study area is situated between the Tell Atlas and
the Saharan Atlas in the western part of Algeria.

Figure 1. Localization of the study area and sampling points.

The north region of the Naâma is characterized by pastoral activities, particularly in
hilly areas. In contrast, in the south region, agricultural fields with olive orchards, cereals,
vegetables, and livestock can be found [37]. Naâma receives most of its rainfall from the
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north direction, with an estimated average of 287 mm [38]. The evaporation can reach
2000 mm, which affects the groundwater quality. The average temperatures range from
7.22 to 30.03 degrees Celsius. Summer temperatures can reach 48 ◦C, while in winter, they
can drop below 0 ◦C [39].

The case study area depicts about 29,825 Km2 (i.e., three times the area of Lebanon).
Rangelands occupy about 74% of the total area (22,070.50 Km2) and the southern pre-
Saharan zone extends over the remaining 14% (4175.50 Km2) [40]. Elevation ranges from
768 to 2239 m.a.s.l. Geologically, Naâma is composed from the Triassic to the Quaternary
formations [41]. The vegetation is characterized by a steppe except in the mountains, where
remains of Aleppo pine forests (Pinus halepensis Mill.) are identified [42].

The main water resources refer to groundwater used for irrigation and drinking in the
region. From a hydrogeological perspective, the Wilaya of Naâma has four main groundwa-
ter aquifer systems: the Jurassic sandstone aquifer, the lower cretaceous sandstones aquifer,
the tertiary limestones aquifer, and the quaternary alluvial aquifer [43]. Those aquifers
offer water supplies to 208,136 people living and there are supplies to 1,792,076 animals
grazing in this area. These resources irrigate 43,688 ha of agricultural area. Because of
the population growth and several activities developed throughout the study area, it is
necessary to assess the water demand and the supply of resources. The dataset in this
research was gathered from twelve different communes in the Naâma Province.

2.2. Data Collection, Analysis, Sampling, Preprocessing and Water Quality Index Calculation

A total number of 169 samples were collected to analyze eleven elements. Electric
Conductivity (EC), Mineralization, and Hydrogen Power (pH) were measured in situ using
a portable HANNA type multiparameter (HI98194) during the sampling procedure in the
laboratory at the University Center of Naâma. Then, in the Algerian Water Unit of Naâma
(ADE) laboratory, a flame photometer was used to measure Sodium (Na) and Potassium
(K). The UV-Vis spectrophotometer recognized Sulphate (SO4) and Nitrate (NO3), and the
complex metric titration method was used to identify Calcium (Ca), Magnesium (Mg),
Chloride (Cl), Bicarbonate (HCO3). These values were then used to rank the water samples
according to many terms that affect water quality [44,45].

This study considers the collected dataset to test the proposed model, and eleven
significant water quality parameters are included. WQI has been calculated using the
following Formula (1):

WQI = ∑N
i=1 qi wi

∑N
i wi

(1)

where WQI, is the water quality index; N represents the total number of parameters used
to calculate the WQI. qi means the rating scale of each parameter, which is determined
using Equation (2), where Si denotes the drinking water standards, and Ci denotes the
concentration of each chemical parameter (Table 1). Detail information of these equations
can be found in [8,9].

qi = (Ci/Si)× 100 (2)

Table 1 depicts the relative weight of each physicochemical parameter. In particular,
weights were attributed to each of the study’s 11 physicochemical parameters, according to
their relative significance on the total quality of drinking water. Thus, nitrates received a
maximum weight of 5, due to their high impact on groundwater quality, while magnesium
was assigned the minimum value of 1, due to its low influence on the water quality of
drinking. Weights between 2 and 4 were attributed to other physicochemical parameters.

The values of WQI were classified into four classes as below [46]: Class I: excellent
water class and WQI < 50; Class II: good water class and 50 < WQI < 100; Class III: poor
water class and 100 < WQI < 200; and, Class IV: very poor water class and WQI > 200.
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Table 1. The weighting of each physicochemical parameter.

PC-Parameters Units Permissible Limits Weight (Wi) Relative Weight (Wi)

pH 8.5 4 0.118
Electrical

Conductivity µδ/cm 2800 4 0.118

Mineralization mg/L 2000 4 0.118
Magnesium mg/L 50 1 0.029

Calcium mg/L 200 2 0.059
Potassium mg/L 12 2 0.059

Sodium mg/L 200 2 0.059
Chlorides mg/L 500 3 0.088
Sulphates mg/L 400 4 0.118
Nitrates mg/L 50 5 0.147

Bicarbonates mg/L 120 3 0.088

34 1

2.3. Data Classification

The results obtained from the data samples were divided into training and testing
ones (151 and 18 samples, respectively). The limitation of the samples number imposed
on us to reduce the number of test samples. A total number of 151 samples were used for
training to be efficient and to get a robust classifier model. Although the number of test
data is small, it contains all classes. On the other hand, the accuracy of the model will be
calculated based on the correct number of predicted samples to the total number of test
samples. Thus, the number of samples for each class of the sample data is selected to be
sufficient for determining the prediction accuracy. The number of test samples for each
WQI class is shown in Table 2.

Table 2. Distribution of the training and testing samples according to the WQI class.

Samples Excellent (1) Good (2) Poor (3) Very Poor or
Unsafe (4) Total

Training 20 101 24 6 151
Testing 5 5 5 3 18
Total 25 106 29 9 169

2.4. Data Standardization

In this study, the original classifiers were applied to the raw data without normaliza-
tion, and the forecast model was built up. The data standardization was accomplished to
study the transformation process of the data on the prediction accuracy of the classification
process. It is not easy to compare data from different sources, such as analyses and tests.
Therefore, data standardization is an important task to analyze, process, and compare more
accurately and efficiently. Each variable value as X is subtracted from the sample’s mean
(µ) and divided by the standard deviation (σ). The mean and standard deviation of each
data sample of each variable will be zero and 1, respectively. The new standard magnitude
of each variable in each sample can be determined as in Equation (3):

Xn =
Xc − µ

σ
(3)

where µ and σ are the mean and standard deviation of each variable for all samples in the
training process, respectively.



Water 2022, 14, 2801 6 of 16

2.5. Classification Techniques
2.5.1. Decision Tree

The decision tree (DT) is a prediction tool or a classification tool, which uses machine
learning [33,45]. The decision tree is a binary tree that means for every parent, there are
at most two offspring. Each node in the tree refers to a variable and also a separation
point for that variable. Each leaf of the tree represents the result (output) that was used
to predict. To build the prediction DT model, the following procedures must be followed:
(i) the variables from the data that will build the model should be selected, (ii) choose
the values by which separate each variable based on the rules that have been built; and,
(iii) tree construction ends upon arrival with a certain stop condition (for example, the
lowest number of instances of tree leaves were identified).

2.5.2. Ensemble Tree

A combination of several DTs to get the highest predictive performance than only one
DT is referred to ensemble method. It is based on combining the weak learners to compose
a strong learner. There are two techniques used in ensemble decision trees, the first one is
bagging and the other is boosting [47,48]. The bagging (Bootstrap Assembly) is used when
it is necessary to reduce the variance in the DT. The bagging technique basis consists on
create several datasets from the randomly selected and replaced training sample. Then,
each subset of data is used to train the decision trees. The mean of all predictions is used
for various trees and is stronger than a single decision tree. The other ensemble technique
is boosting used to create an aggregation of predictors. The learners act consecutively:
the first learners adapt simple models to the data, and then the errors are analyzed. It
means that consecutive trees (random samples) were adjusted to resolve the net error of
the previous tree.

2.5.3. K Nearest Neighbors (KNN)

It is a supervised machine learning classification algorithm and the simplest and most
frequently used classifier. In KNN, a new data point is categorized based on similarity in a
particular group of neighboring data points. For a given data point in the set, the KNN
identifies the distances between this point and all other K points in the dataset close to the
initial point and then, votes for the class which is the most common. Usually, the Euclidian
distance is taken as a distance measurement. Thus, the resulting final model is just the
labeled data placed into space. KNN is used in different applications such as genetics,
forecasting, etc. [49].

2.5.4. Discrimination Analysis (DA) Classifier

Discrimination analysis (DA) proposes that various classes produce data based on
various Gaussian distributions. For training a DA classifier, the fitting function assesses the
parameters of a Gaussian distribution for each class. For predicting the classes of new data,
the trained classifier finds the class with the lowest cost of misclassification [50].

2.5.5. Support Vector Machine (SVM)

The SVM classification technique gave the highest classification and prediction ac-
curacy of the WQI in the current study. It is a machine learning tool that separates the
data into two-class data via a hyperplane [51]. This hyperplane must achieve the greatest
distance between the points of each class; then, accurate classifying can occur. If any point
lies outside the hyperplane margin, it belongs to a different class. Greater features lead it
more difficult to separate among different classes. Figure 2 illustrates the margin condition
of SVM. A good classification can occur when a large margin exists [52,53].
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Figure 2. SVM algorithm indicates the margin separating two classes.

Hyperplanes can separate all samples in each WQI class in SVM in multidimensional
space. The hyperplanes distinguish between every two WQI classes (Yi and Yj) of WQI
of two different input vectors (Xi and Xj) [54]. The hyperplane with the greatest margin
must be found among these hyperplanes. An orthogonal vector ω to the hyperplane can be
defined as in Equation (4):

ω = [ω1, ω2, . . . , ωk] (4)

The hyperplane function, h, can be identified as mentioned in Equation (5) [54]:

h(Xi) = wT . Xi + ω0 = ω0 +
k

∑
i=1

ωi.xi (5)

where ω0 is the bias term to determine the separating hyperplane position (i.e., h (X) = 0).
One by one learning strategy is chosen, where Xi is the class 1 when h (Xi) ≥ 0 and is
−1 elsewhere. If Xi and Xj are the two closest points on each side of the hyperplane (i.e.,
different classes), the hyperplanes h (Xi) and h (Xj) are:

h(Xi) = wT · Xi + ω0 = 1 (6)

h
(
Xj

)
= wT · Xj + ω0 = −1 (7)

Differencing these equations and dividing both sides by the magnitude of the ω, we
obtain:

Xi−Xj =
2
||ω|| (8)

where Xi−Xj is the distance between the two hyperplanes.
The maximization of the margin of Equation (8) implies the minimization of the weight

vectorω defining the hyperplane. In addition, a soft-margin SVM is utilized for nonlinear
classes to allow the model to misclassify some data points by minimizing the number of
such samples [55].

3. Results
3.1. Description of the Physicochemical Analysis of the Sampling Points

The results of eleven (11) physicochemical parameters obtained from 169 samples of
groundwater in the Wilaya of Naâma are shown in Table 3.



Water 2022, 14, 2801 8 of 16

Table 3. Descriptive statistics of groundwater parameters of the Wilaya of Naâma.

Min Value Max Value Mean Value Standard
Values [56]

Standard
Deviation

Coefficient of
Variation (%)

Ca++ 12.00 832.00 137.69 75–200 122.50 88.97
Mg++ 3.00 560.00 76.03 50 68.85 90.56
Na+ 5.00 2967.00 186.40 200 315.33 169.17
K+ 1.00 59.00 8.97 12 8.47 94.38
Cl− 10.00 443.00 118.95 250 62.90 52.88

SO4
2− 38.00 2370.00 376.78 250 437.83 116.20

HCO3
− 20.00 529.00 237.85 120 63.92 26.87

NO3
− 1.00 390.00 26.82 50 36.85 137.40

Cond. 290.00 8660.00 1556.82 1500 1306.60 83.93
Miner. 186.00 5493.00 1076.67 - 877.30 81.48

pH 6.58 10.60 7.71 6.5–8.5 0.51 6.64

3.2. Water Quality Index Assessment

The results obtained to evaluate the groundwater quality through the Wilaya of Naâma
using the WQI method are presented in Table 4, and in Figure 3.

Table 4. Summary of WQI evaluation in the Wilaya of Naâma.

Classes Type Number of Samples %

I Excellent 25 14.8
II Good 106 62.7
III Poor 29 17.2
IV Unsafe 9 5.3

Figure 3. Spatial distribution of WQI in the study area.
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3.3. Results with Raw Data

The procedures to predict the WQI via the classifiers will be illustrated. The data
(169 samples) is classified based on the WQI in Excellent, good, poor, and very poor classes
(Table 2). A total number of 151 samples were used for training and the remain (18 samples)
were used for testing the model. The training and testing samples were selected to include
all classes. The 151 samples were trained with all classifiers to investigate which one is the
best (achieves high prediction accuracy). This process was accomplished by feeding the
classification learner tool in MATLAB with the input data of each sample and its output
(WQI). So, the classifiers learn the relation between the inputs and outputs (extraction the
features). Each class will contain the samples that have similar features. After learning
the classifier, the constructed weighted matrix (identifying the features of each class) was
exported to the worksheet in MATLAB and then the test data were applied without its
output and then the prediction results will be developed based on the feature in weighted
matrix for each class. Then the accuracy of the constructed classifier will be computed
dividing the number of the correct prediction to the total number of test data (18 Samples).

The samples’ raw data was first considered by comparing its results with the stan-
dardization data. When all classification techniques are applied to the raw data, Linear
SVM presents the highest accuracy of the classification process in the training stage (94.7%),
as shown in Table 5. The results of training the classifiers on the raw data illustrate that
the SVM classifier developed the highest accuracy rather than the other classifiers. It de-
velops notable correctness with less computation power and is preferable in classification
problems. It is also used when an understandable margin of dissociation between classes
is observed. Likewise, it is suitable for high dimension spaces and considers memory
systematic.

Other techniques obtained similar results, 93.4% for the quadratic SVM, and the cubic
SVM and linear discrimination classifiers provide lower values, such as 90.7 and 88.7%.

The cross-validation method is used in classifier learners to investigate the constructed
prediction model’s robustness and to verify the model’s prediction accuracy. In this method,
the data samples divide into two partitions for the training and testing processes. Division
of the data samples was carried out randomly into k equal size subsamples. A single
subsample is kept as validation data. The remaining k-1 subsamples are used in training
the model and repeated k times. The accuracy of the test data is average to develop the final
model accuracy. So, all data samples are used for training and validation processes [57]. The
stratified k-fold cross-validation is used in the classification learner to solve the classification
problem so that the folds are selected. Each selected fold randomly includes the same
features as each categorized class.

Figure 4 shows the linear SVM confusion matrix achieved with the classification
technique. Figure 4a shows the corrected prediction samples for each class. The “excellent”
WQI (class 1) was correctly classified in 17 out of 20 samples; in class 2, 99 out of 101 samples
were correctly predicted. Figure 4b explained the prediction accuracy of each class, where
the correct prediction of class 1 (Excellent state) was 85% (17/20), and the wrong prediction
was 15% (3/20). For the very poor state, the correct and wrong predictions were 50% (3/6)
and 50% (3/6), respectively.

Figure 5 shows that the predicted class 1, referring to the excellent class, appeared
19 times; 17/19 is a correct prediction class (89%), and 11% (2/19) occurred with class 2
(good state). The receiver operating characteristic (ROC) is illustrated for class 1 in Figure 6.
The marker on ROC presents the current classifier performance where the false positive
rate (FPR) is on the x-axis, and the true positive rate (TPR) is on the y-axis.

Figure 6 explained that the FPR is 0.02, i.e., 2% of the data samples were assigned
incorrectly to the positive class. The TPR refers to 0.85, which explains that the classifier
correctly assigns 88% of the samples to the positive class. Right angle for ROC refers to
perfect classifying results. When the angle is 45◦, it shows a poor classification result. The
area under the curve (AUC) showed the overall accuracy of the classifier for the class.
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Larger AUC values refer to better classifier performance. Figure 6 explains that the AUC is
99%, which refers to better classifying.

Table 6 shows 18 samples (randomly selected) where the chemical values gathered
are shown in the left rows. The water quality index (WQI) and the quality achieved for
the samples are shown in the following columns and finally, the SVM model prediction is
depicted in the right column. The classification accuracy is 88.9% (16/18) due to two of the
samples being wrong diagnosed (Sample 1 and sample 17).

Table 5. Comparison between different classifiers.

Classifier
Training Data

Raw Data Standardization

1. Decision Tree (DT)
Fine tree 83.4 75.5

Medium tree 83.4 75.5
Coarse tree 81.5 76.8

Linear discriminant 88.7 88.7
Quadratic discriminant Fail Fail

2. Support Vector Machine (SVM)
Linear SVM 94.7 95.4

Quadratic SVM 93.4 93.4
Cubic SVM 90.7 91.4

Fine Gaussian SVM 66.9 67.5
Medium Gaussian SVM 90.1 91.1
Coarse Gaussian SVM 74.8 74.2

3. K-Nearest Neighbors (KNN)
Fine KNN 86.1 84.1

Medium KNN 81.5 83.4
Coarse KNN 66.9 66.9
Cosine KNN 72.8 78.8
Cubic KNN 80.8 80.1

Weighted KNN 83.4 84.1
4. Ensemble Trees

Ensemble boosted trees 66.9 66.9
Ensemble bagged trees 86.8 88.1

Ensemble subspace Discriminant 83.4 83.4
Ensemble subspace KNN 82.8 88.7

Ensemble RUSBoosted trees 75.5 78.8
5. Discrimination Analysis (DA)

Linear Discrimination 90.7% 90.1
Quadratic Discrimination Failed Failed

Figure 4. Confusion matrix of linear SVM that was applied to the raw data, (Green refers to True
Positive, red refers to False negative) (a) corrected prediction samples for each class (b) prediction
accuracy of each class.
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Figure 5. Positive–negative predictive values of linear SVM confusion matrix of Raw data, (Green
refers to True Positive, red refers to False negative).

Figure 6. The ROC result of the ensemble bagged tree.

Table 6. The prediction results of the 18 testing samples with linear SVM.

Ca++ Mg++ Na+ K+ Cl− SO4−− HCO3− NO3− Cond. Miner. pH WQI Results Quality Pred.

72 46 55 4 104 154 173 10 900 618 8.4 49.48 Excellent Good
59 50 44 4 61 184 223 4 760 544 7.27 48.44 Excellent Excellent
33 29 16 3 21 64 169 3 290 223 7.67 33.32 Excellent Excellent
72 32 48 3 63 136 224 17 712 510 7.37 49.66 Excellent Excellent
68 28 46 4 56 132 198 7 587 420 7.39 43.62 Excellent Excellent
60 68 322 4 150 172 271 6 1980 1503 7.32 80.06 Good Good

118 64 74 3 142 228 258 27 1186 900 7.53 67.70 Good Good
73 59 41 2 78 219 217 12 867 658 7.34 52.77 Good Good

116 48 37 2 36 363 203 8 945 717 7.22 55.10 Good Good
91 56 35 4 99 146 284 4 890 676 6.94 54.36 Good Good

101 99 444 17 139.6 908 106 8 2730 2073 7.34 108.02 Poor Poor
128 124 311 12 152.5 546 201 10 2470 1875 7.5 100.95 Poor Poor
506 290 140 19 184 2370 113 39 3520 2672 7.34 178.91 Poor Poor
222 159 120 11 205 1020 193 25 2050 1556 7.29 107.86 Poor Poor
303 211 85 12 116 1495 173 34 2290 1738 7.25 128.38 Poor Poor

112.2 331 472 19 265.8 1536 182 44 4600 2852 8 241.26 Very Poor Very Poor
451 95 1277 38 200 1320 127 1 6400 3968 8.1 220.54 Very Poor Poor
160 452 978 26.1 172.1 1872 288 9 6200 5270 8 365.72 Very Poor Very Poor

3.4. Results with Standardization of the Data [(X − µ)/σ] Linear SVM

The standardization process of the data has been carried out following Equation (3).
Again, linear SVM is obtained as the best classification tool, with a prediction accuracy of
95.4%. Figure 7 indicates that standardization of the raw data only enhanced the prediction
accuracy of the excellent state (18/20; 90% accuracy). On the other hand, all other states are
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equal to those obtained with raw data. Therefore, the prediction accuracy of the test data
samples was the same as that of the raw data.

Figure 7. Confusion matrix of linear SVM that was applied to the standardization data (Green refers
to True Positive, red refers to False negative) (a) corrected prediction samples for each class (b)
prediction accuracy of each class.

The k-fold cross-validation was used to check the robustness of the constructed model
for developing high accuracy classification. Tenfold cross-validation is used, which divides
the data into two groups (80% of the data samples for training, and the remaining 20% is for
the testing process). These processes were repeated ten times with a random collection of
the samples. Then the average of the classification accuracy was determined. Standardizing
the data samples slightly enhanced the training classification accuracy to 95.4% compared
with 94.7% using the raw data. The testing results’ classification accuracy shows that the
constructed classification model is so beneficial to reduce the time needed to compute the
WQI for each sample. The data of new samples are used as input data, and the WQI is
directly identified.

4. Discussion

Table 3 shows that concentrations of Calcium experienced varied considerably from
12.0 to 832.0 mg/L (average value 137.69 mg/L). These values are much higher than the stan-
dards in Europe for Calcium in drinking water ranging from 75–200 mg/L [56]. Moreover,
concentrations of Magnesium also varied considerably from 3.0 to 560.0 mg/L (average
value of 76.03 mg/L). These values are much higher than other reference values found in
literature as 78–155 mg/L (Calcium) and 28–54 mg/L (Magnesium) found in Slovakia [58]
and also in Egypt, as 8–197 mg/L (Calcium) and 1.6–110 mg/L (Magnesium) [59].

Moreover, Table 3 also depicts strong variations in sodium levels of groundwater
samples. The values ranged from 5.0 mg/L to 2967.0 mg/L (186.4 mg/L as average
value) and an extremally variable coefficient of variation of 169.17%. Similar values (22.15–
2769.5 mg/L) were found in Ghana [60] or south Africa (48–6971 mg/L) [61]. In the present
study, the potassium concentration observed ranged between 1.00 to 59.0 mg/L, being these
values lower than the identified in some studies carried out in Ghana (0.21–126 mg/L) [62].
The chloride concentration variation was 10–443 mg/L, while values higher to 21–110 mg/L
were observed in Tunisia [63]. Sulfates concentration ranges between 38–2370 mg/L
(average 376.78 mg/L) and nitrates also vary considerably from 1.0 to 390.0 mg/L (with a
mean value of 26.82 mg/L) being aware that limits for drinking water are 10 mg/L in the
United States and 50 mg/L according to World Health Organization [56].

The bicarbonates values in the water sampling points in our study area are between
20 and 529 mg/L, and electrical conductivity and mineralization varied considerably from
290 (µδ/cm) to 8660 (µδ/cm) and 186 mg/L to 5493 mg/L, respectively.
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At different water quality levels, pH levels varied considerably from 6.58 to 10.60,
spanning one order of magnitude with a mean value of 7.71 and a coefficient of variation
of 6.64%. These values are not in agreement with the permissible limits (6.5–8.5 mg/L) for
drinking water proposed by the World Health Organization [56].

The result shown in Table 4 revealed that 14.8% of samples fell into the excellent
category (Class I; with values ranging from 33.32 to 49.48), 62.7% were classed as good
(Class II; values varied from 50.9 to 99.26), 17.2% in the poor category (Class III, 100.15 to
183.82), and 5.3% are unsafe for drinking (Class IV values varied from 202.9 to 365.7). Being
aware that 75% of water comes from groundwater [64] and considering the huge amount of
data required to calculate WQI. Authors have found better values for predicting WQI using
the SVM model than other approaches in Malaysia with the coefficient of determination
(R2) equal to 0.8796 [64], or R2 = 0.9 also in Malaysia [65] using LSSVM (Least square SVM),
and R2 = 0.87 in Iran [66]. However, other better results were found in Poland, where
authors obtained R2 = 0.99 using neural networks [67]. Similar trustworthy results were
achieved in Ethiopia, Vietnam and Brazil among others [68–71].

5. Conclusions

In order to maintain the availability of resources for drinkable water and to monitor
pollution, the prediction of water quality indexes is extremely important. Thus, planning
and managing water resources can greatly benefit from precise groundwater level pre-
dictions. As a result, an effort is made in this work to create a forecasting model that
is effective for predicting groundwater quality by using the water quality index (WQI)
in the Wilaya of Naama, placed in the southwestern region of Algeria. Based on many
characteristics and indexes, conventional approaches evaluate water suitability for drinking
and domestic purposes. Although these techniques are reliable tools, they can be costly and
time-consuming. Therefore, this study proposes an alternative machine learning method
for predicting water quality using only a few simple water quality criteria. The data used to
conduct the study were collected from 169 samples of groundwater from 12 municipalities
in the Wilaya of Naâma. A set of representative supervised machine learning algorithms
has been used to estimate the WQI indicator. Based on WQI results, four classes were fixed:
excellent, good, poor, and very poor or unsafe water. A relevant percentage (62.7%) of
the considered physicochemical parameters depicted good water quality results. Related
to prediction tools, main results showed that Support Vector Machine (SVM) algorithms
classify groundwater quality with high accuracy (95.4%) with standardized data and lower
accuracy (88.88%) for raw data. Therefore, a great correlation between observed and pre-
dicted water quality data was obtained in the present manuscript. These results offer a
useful performance assessment tool for decision-makers, and further investigation can be
undertaken by integrating the findings of this research on a large scale in arid areas. In
conclusion, the SVM model is a simple and effective empirical model to simulate water
quality, and the method presented in this work is sufficiently general to be applied to a
wide range of arid areas.
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