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This paper focuses on modelling at upper secondary level. The objective is to give 
students an understanding of mathematical concepts and methods in close 
relationship to a domain of reality, as well as to give them insight into the 
contribution of models of different kinds. This has led to the development of a 
framework for modeling activities based on the Mathematical Working Spaces 
theory. The questions at stake concern the operationality of this framework. To what 
teaching situations can it lead? How do students work in these situations? We 
examine these questions through an on-going experimentation on models of acid-
base transformations.  
APPROACHES TO MODELING IN MATHEMATICS EDUCATION AND 
SCIENCE DIDACTICS 
Beginning in the 2000s, interest in involving real-world contexts has grown in 
mathematics education. The ICMI 14 study (Bloom 2002) kicked off a lively stream 
of research and focused on mathematics as an important activity in society. This 
stream seems to us marked by two lines of force, problem solving and the modeling 
cycle as a theorization of the modeling activity. Many authors indeed characterize 
modeling activities as solving authentic problems, but the activities they propose 
focus more on the solution to a contextualized problem than on models. For example, 
in Blum and Ferri (2009), the task involves a lighthouse of a given height and 
students have to find a value for the visibility distance that is valid specifically for 
that height. The authors identify steps in students’ problem solving consistent with 
the modeling cycle, but these steps lead to the solution rather than to a model. 
Overall, the modeling cycle remains close to a classical resolution scheme where the 
problem and the solution are expressed at the extra-mathematical level and solving is 
done at the mathematical level. The cycle specifies steps and transitions and this 
allows, among other things, the interpretation of students' trajectories in their 
complexity. Nevertheless, the "real" and the "mathematical" remain two levels 
insufficiently intertwined to account for how working on a model articulates 
mathematics and real-world objects and phenomena (Czocher 2018).  
In experimental science didactics, the main concern is the relationship between an 
"empirical referent" (Sanchez 2008) made up of objects and phenomena as they are 
perceived and spontaneously mobilized by the students, and a "scientific referent" 
consisting of theoretical elements. By appropriating a model, the students can relate 
these two referents and thus progress both in their perception of everyday objects and 
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phenomena and in their understanding of scientific concepts. Nevertheless, the 
mathematical aspects of the model are generally not questioned as such, and science 
didactics privileges models where these aspects are minor for fear of complexity. 
Thus, dominant approaches in mathematics education emphasize problem solving 
rather than working on models, and science didactics favors appropriation of a model 
while leaving aside mathematical aspects. Drawing on science didactics, we aim to 
engage students in explicit work on models, but we also want to include mathematics 
in this work. The experimentation we are carrying out starts from a laboratory 
technique taught in the chapter about acid-base reactions of the chemistry course in 
the non-vocational upper secondary stream in France. Students often describe this 
technique as “a cooking recipe”, since mathematical methods are used, but not 
explained with reference to acid-base reaction models. The purpose of the 
experimentation is then to look for ways to make students study models both in their 
chemical and mathematical aspects and get a better understanding of these aspects.  
APPROACH AND FRAMEWORK 
Lagrange et al. (forthcoming) distinguish between modelling and mathematization of 
a domain. While mathematization is global in scope, modeling aims to account for 
certain aspects of the domain in order to understand it, even partially, and to act on it. 
A corollary is that there is not a single model: several models are as many ways to 
approach a reality. Modeling thus has a subjective and social dimension: all models 
can be useful, but each one must be discussed and confronted with others. In each 
model, the contribution of mathematics results from a specific mathematical work, in 
collaboration with experts in the field, in order to make the model more intelligible 
and facilitate its use. Thus, there is not a real model on one side and a mathematical 
model on the other side, but a plurality of models, each with a specific implication of 
mathematics into the same domain of reality. We consider students’ activity in 
modelling as a work of appropriation of two or more models, and as a work of 
uncovering relationships between models, in order both to get better insight into the 
domain and to progress in the mathematical concepts used; for instance Lagrange 
(2018) proposed to consider four models of a suspension bridge for a high school 
teaching project, one based on a study of tensions, a second one on arithmetical 
relationships, a third one being a computer simulation, and finally a fourth model 
based on notions in real analysis (functions, integration, etc.).  
Modelling implies collaboration between experts with different viewpoints (Lagrange 
et al. forthcoming) and that is why the above approach has led to organizing students’ 
work in a "jigsaw classroom". The work starts from a question. For the present study, 
the question will be about how a model of the reaction justifies the laboratory 
technique. There are four phases: (1) Presentation of the question and work on 
prerequisite concepts (2) Expert groups: each group works on a model from a specific 
viewpoint (3) Jigsaw groups: each group gathers experts from each expert group and 
progress in understanding the models (4) Whole class discussion and conclusion by 
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the teacher.  
Regarding the notion of work in educational settings, we refer to the theory of 
Mathematical Working Spaces (MWS). According to Kuzniak et al. (2016), a MWS 
is an abstract space that is organized to support mathematical work in an educational 
setting1. The theory of MWS distinguishes three levels: 

• A reference working space (WS) is a space in which somebody educated in a 
specific domain is expected to do the work in this domain. 

• A suitable WS helps manage the work for beginners in a teaching project.  
• A personal WS is particular to individuals. 

As Menares-Espinoza and Vivier (forthcoming) explain, beginners approach a new 
domain with their prior knowledge and cognitive processes. Teaching must design 
tasks to help students' personal WSs evolve towards the reference level and this 
requires designing suitable WSs. Here a reference WS is what allows for scientific 
thinking about the laboratory technique. Models on which this thinking can be based 
are described below. This paper focuses on suitable WSs, both a priori with reference 
to models of the reaction and a posteriori from student observation, leaving for 
further research a study of personal WSs.  
The research question follows. RQ: What are the suitable WSs that provide a 
conceptual basis for a mathematical-chemical approach of acid-base reaction models? 
How do they predict students’ behavior and cognitive processes?  
MODELS, WORKING SPACES AND TASKS 

  
Table 1: The laboratory technique. Empirical procedure and tangent method. 

The laboratory technique we start with is titration, i.e. the use of a solution of known 
concentration (titrant) to determine the unknown concentration of another solution 
(analyte). The titrant is added from a graduated buret to a known quantity of analyte. 
In case of an acid-base reaction, the analyte is an acidic solution, characterized by a 
preponderance of oxonium ions and the titrant is a basic solution characterized by a 
preponderance of hydroxides ions. During the titration, the oxoniums and the 
hydroxides react and then the pH (minus the decimal logarithm of the concentration 

 

1	Because	 of	 limited	 space,	 we	 do	 not	 insist	 on	 the	 three	 dimensions	 that	 structure	 a	 MWS:	 semiotic,	
instrumental	and	discursive.	However	they	are	important	in	the	domain	of	modelling,	ensuring	that	mathematics	
are	not	simply	considered	as	a	"language".		
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in oxonium) of the mixture increases and a table of values (volume added, pH) is 
obtained (Table 1 on the left). The experimental curve is a sigmoid whose inflection 
point (called neutralization point) corresponds to a volume added for which the 
mixture is neutral, i.e. has equal concentration in oxoniums and hydroxides 
corresponding to pH 7. The position of the neutralization point allows to know the 
quantity of hydroxides added and consequently the concentration in oxoniums of the 
analyte. A geometrical technique (method of tangents) is used to determine this 
position. It is based on the quasi-symmetry of the experimental curve with respect to 
the inflection point (Table 1 on the right). As said before, no theoretical justification 
in chemistry and mathematics is given to students. The underlying model of the 
reaction is the evolution of the pH based on empirical observation, increasing and 
almost symmetrical with regard to the neutralization point. This is Model 1.  

Titrant: 8 ml acid, oxinium concentration 0.0125 mole/liter. 
Analyte: base, hydroxide concentration 0.01 mole/liter. 

Oxinium concentration for x ml base< 10: 

 
pH for x ml base < 10: 
f(x)= - log(10-x)+log(8+x)+2 
 
Hydroxide concentration for x ml base> 10: 

 
pH for x ml base> 10: 
f(x)= log(x-10) – log(8+x) + 12  

Table 2: Mathematical function based on assumption: mixture contains only one type 
of ions. 

Model 2 is another model in which the titration curve is obtained by the calculation of 
a mathematical function (Table 2). It is based on a simplifying assumption: hydroxide 
and oxonium ions neutralize so that the mixture contains only one of the two types of 
ions. This assumption allows to obtain a function whose curve is coherent with the 
empirical curve, except in the vicinity of the neutralization point where the function 
tends towards infinity. This is a consequence of a phenomenon called partial 
dissociation of water, that contradicts the assumption: acidic solutions contain 
hydroxides and basic solutions contain oxoniums, but this is negligible except in the 
vicinity of the neutralization point. Because tangents are drawn at a distance from the 
neutralization point, the model is a basis for a mathematical work to justify the 
method. Mathematics also allows to question the simplifying assumption, and thus 
students working on the models should progress both in chemistry and mathematics.  
In accordance with the RQ, the experimentation aimed to build and evaluate suitable 



Lagrange 
 

 

PME 45 – 2022 3 - 111 
 

WSs thanks to which students could recognize Model 1 and 2 as the foundations of 
the titration technique, and compare the two models. These WSs are designed for the 
two group phases (expert groups and jigsaw groups). There are three expert groups. 
Students in group Ea should become experts in Model 1, students in Eb should 
become experts of the mathematical component of Model 2 and students Ec should 
develop an expertise in quantifying the evolution of concentrations throughout the 
titration. WSEa, WSEb and WSEc are suitable WS, each representing the respective 
expertise targeted in each group and WSJ is the suitable WS pour the Jigsaw groups. 
A presentation of the WSs and associated tasks follows, summarized in Table 3. 

WSEa:  
Acid, base, neutralization (visual),  
pH (reading), measure, proportion, 
curve (experimental), tangents (visual). 

Task Ea: Appropriate a simulation 
software. Simulate for given data. Operate 
the tangent method for varied positions and 
compare accuracy. 

WSEb:  
Functions (symbolic), curve, tangents 
(software), decimal logarithms. 

Task Eb: Study the function f (Table 1); 
growth, limits. Trace the curve and tangents 
at abscissas 10-x and 10+x for varied values 
of x ; observe the mid-lines. 

WSEc:  
Ions, concentration, neutralization, pH. 
Volumes, ratios, formula. 

Task Ec: Calculate hydroxides and oxynium 
concentration for varied added volume. 
Calculate pH for these values and draw curve. 

WSJ:  
Idem Ec + symbolic calculations 

Task J: Compare curves (Tasks Ea, Eb,Ec). 
Show how f (Task Eb) models the pH as a 
function of the added volume. 
Justify the tangent method. 

Table 3: Suitable working spaces and tasks in the group works. 
WSEa is suitable to work on Model 1 and thus includes elements of chemistry (ions, 
pH, concentration, etc.) but also of mathematics (measurements, curve, tangents, 
ratios, etc.) We choose to have Ea students work on computer software simulating 
titrations. The purpose of the software is to help systematize and reflect on the 
method: students must enter the data of a given titration; they obtain a curve 
simulating the empirical curve, they can choose points to perform the tangent method 
and observe the accuracy of the method (Task Ea). 
WSEb is the space for a complete mathematical study of the Model 2 function. The 
signs, the theoretical frame of reference as well as the use of a software for functions 
belong to high school calculus, with the exception of decimal logarithms and the 
piece-wise function which are unfamiliar. Task Eb is a study of properties of the 
function. It is classical in the form, but the function is unusual. 
WSEc is the space for students to numerically compute concentrations along the 
titration, using the assumption of complete neutralization. The elements of chemistry 
are the same as in Model 1, but they must be systematically quantified; pH formulas 
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must be used. From a mathematical point of view it is an arithmetic space. Task Ec 
requires students to have a good mastering of chemistry notions, as well as ratios and 
unit conversion. The calculation of the concentration must take into account the 
quantity of ions, but also the increase of the volume along the titration. 
WSJ correspond to the jigsaw groups in Phase 3. This is the space for students to 
understand Model 2, make the connection to the assumption that the mixture contains 
only one type of ions and make sense of the tangent method at a symbolic level.  
Task J should lead students to perform a computation similar to Task EC, but at a 
symbolic level as in Table 2, and to justify that two parallel tangents, one on each 
branch, are nearly symmetrical with regard to the neutralization point. 
IMPLEMENTATION AND ANALYSIS 
In the context of the pandemic in 2020, the experimentation was carried out in the 
form of a "lock-down online jigsaw classroom", i.e. the six participants were 
physically separated, communicating on a platform that allowed either all students to 
be gathered together (Phases 1 and 4) or split into groups (three groups of two in 
Phases 2, and two groups of three in Phase 3). The students were of average level, 
some more proficient in mathematics, other more in experimental sciences. They had 
previously performed titrations on real solutions. The platform allowed the recording 
of exchanges and productions. This data was completed by a e-mail survey. In the 
analysis of the data we leave aside the aspects related to the online work, underlining 
only that even online, the jigsaw classroom kept its potential for collaborative work.  
This is the analysis of the group work phases (about one hour each). Table 4 presents 
extracts of the reports made by the three experts groups (Ea, Eb, Ec, Phase 2) and the 
two jigsaw groups (J1, J2, Phase 3). Ea appropriated the simulation software after 
having difficulty understanding menus and data needed. They were able to use the 
tangent method for several values and compare the accuracy. Eb’s study of the 
function remained partial as the log decimal function was unfamiliar. As shown in 
their report they were also not comfortable with a piece-wise function. They noted an 
undefinitness, but did not mention infinite limits that would have shown 
inconsistency with the experimental curve. Pseudo-symmetry and use of parallel 
tangents for the position of the center were discussed. Ec was comfortable with the 
chemistry concepts and the various calculations, but had difficulty taking into 
account the variation in the volume of the solution. They made the connection with 
the titration curve. Overall, Ea and Ec’s work can be seen as fitting in the suitable 
WSEa and WSEc after initial difficulties. This is not the case for Eb. The students 
were not comfortable with the function of Model 2, which is different from routine 
functions they had been trained with. They were able to draw curves and tangents 
thanks to the software. It was consistent with WSEc only for the use of software. 

Group Ea 
 

We used a software to enter the data, and we got curves for 
concentration and pH . We saw clearly the turning point that makes it 
go from acidic to basic. We used the tangent method to get the pH. 
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Group Eb 
 

We had two functions, one for x<10 and the other for x>10, but it was 
the same function. The two functions are not defined in 10. 
We drew the curves with GeoGebra. The pH curve, was symmetrical 
with regard to the neutralization point. We placed the points A and B 
according to the given abscissas then we traced the tangents and the mid 
line on the computer to find the neutralization point. 

Group Ec 
 

We calculated the quantity of oxoniums for each added volume. Then 
we applied the formula m/V after converting the volume into liters to 
get the concentrations, and the formula -log(Ca) for the pH values. We 
did similar calculations for the hydroxides after neutralization. We saw 
that values increased and that it looked like the empirical curve. 

Groups J J1 We observed that when we apply the formulas of group Eb, we 
obtain the data found by group C. We can therefore deduce that the 
curve representing pH are related to the function of group Eb. 
We calculated the derivatives to get the slopes of the tangents. When 
the difference between these is close to 0, we get more accurate results.  
J2 We had to develop a formula that actually calculates everything at 
once. We made calculations like Ec did but with a variable x and we got 
the function of group Eb for the acidic part. 

Table 4: Extracts of reports of students' group work. 
Both J groups observed that the curves obtained by the three experts groups were 
similar. Group Eb’s remark (the two functions are not defined in 10) did not lead 
students to observe a discrepancy between models near neutralization. Group J1 
concluded that the similarity of curves is sufficient evidence that f is a model of pH 
evolution. They started a study of the slope of the tangents with regard to the 
accuracy of the method, using the derivative of f with difficulty. Group J2 looked for 
a an analytic proof that f is a model and succeeded only for the acid part. The 
behaviors in both groups show students’ partial appropriation of WSJ, the suitable 
working space that should provide mastery of Model 2. One shortcoming is that 
students' symbolic calculation skills taught in math class were poorly enacted. 
Another shortcoming is that they were not able to recognize a discrepancy between 
the models. In Phase 4, after the J groups reported on their work, the teacher 
emphasized the use symbolic computation and the discrepancy between models near 
neutralization, which he explained by the dissociation of water. Answers to post-
questions by email showed that these points were partially understood by students. 
CONCLUSION AND PERSPECTIVES FOR RESEARCH 
The suitable WSs prepared for this experimentation allowed the students some 
appropriation of the models both in their chemical and mathematical dimensions. A 
critical look highlights achievements and gaps. WSEa did not help students 
distinguish Model 1 from Model 2. WSEb was too demanding in symbolic 
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calculation. WSEc seemed appropriate, with students Ec completing the task and 
contributing to the work in Phase 3. WSJ was affected by Ea and Eb’s shortcomings.  
Another implementation was then carried out in 2021 with a variation of the tasks. In 
Task Ea the simulation was a computer program that the students could read and 
interpret. In all tasks it was asked to get values of the pH (Tasks Ea and Ec) or of the 
function (Task Eb) very close to the neutralization point. The discrepancy between 
values obtained by Ea on one side and by Eb and Ec on the other side brought a 
discussion in groups J. The students did not reach a consensus. Some students 
emphasized the validity of the model underlying the computer program and its 
conformity with empirical observations, and others maintained that Model 2 was 
more reliable, stressing the inaccuracy of empirical observations compared to 
mathematics. These results may be somewhat surprising and unsatisfaying but they 
confirm the interest of this situation and provide insights for further experimentation. 
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