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This study aims to characterise elements of specialised knowledge of a group of 
preservice teachers (PST) when solving area tasks. Emphasis is placed on the 
subdomain of Knowledge of Topics. The written justifications and procedures used in 
the resolution of one area task are analysed using mixed methods, including 
qualitative and quantitative analysis. The results indicate that PST who manage to 
respond to the demand of the task mobilise different registers of representation as well 
as procedures, justifications, properties, and geometric principles. Results suggest 
that the use of different representations in the resolution process has an instrumental 
value that allows other indicators of the subdomain of Knowledge of Topics to be 
mobilised.  
INTRODUCTION  
Teachers' knowledge of both content and its didactics has been studied from different 
approaches (e.g., Ball, Thames & Phelps, 2008; Carrillo et al., 2018). Particularly, we 
are interested in the content knowledge teachers possess, as it allows them to better 
understand and justify why they solve mathematical tasks in a certain way. 
Additionally, possessing content knowledge also allows teachers to know different 
ways of solving problems and teaching the content to their students (Shulman, 1986). 
We emphasize the importance of possessing knowledge of area measurement because 
this content can set the ground to understand other mathematical content in primary 
education, such as multiplication of natural numbers or fractions (Freudenthal, 1983). 
Despite the different applications that area measurement may have, numerous 
investigations conclude that PSTs do not have key content and pedagogical knowledge 
(Chamberlin and Candelaria, 2018; Simon and Blume, 1994), which has a negative 
impact on student learning. This study departs from the model of Mathematics Teacher 
Specialised Knowledge (MTSK) developed by Carrillo et al. (2018) and considers the 
relevance of the domain of content knowledge on area measurement with the objective 
to answer the following question: what is the specialised knowledge mobilised by 
PSTs when facing tasks involving the calculation of area? Thus, our study aims to 
characterise the Knowledge of Topics (KoT) mobilised by PSTs when solving tasks 
that require the use of diverse procedures. 
THEORETICAL FRAMEWORK   
Surfaces' measurement requires understanding and reorganizing the object that is 
going to be measured, as well as understanding different properties, concepts and 
procedures involved in measurement processes (Sarama & Clements, 2009). 
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Therefore, it is not surprising that area measurement poses difficulties for PSTs. There 
are numerous studies that highlight such difficulties (Caviedes, de Gamboa & Badillo, 
2021b; Chamberlin & Candelaria, 2018; Simon & Blume, 1994), which are mainly 
related to poor resolution strategies and limited acquisition of geometric properties. 
Such difficulties limit the ability of PSTs to propose examples and guide students' 
wrong answers (Runnalls and Hong, 2019). The tendency that PSTs have towards the 
use of formulas could be related to difficulties in using and coordinating the different 
registers of representation (e.g., geometric and symbolic) involved in the resolution of 
a given task, or else, to the lack of acquisition of geometric properties and principles 
involved in area measurement processes (Caviedes, de Gamboa, & Badillo,2021b; 
Hong & Runnalls, 2020; Runnalls & Hong, 2019). Knowledge of such conceptual 
elements could help PSTs to expand their range of resolution strategies while allowing 
them to justify what they do and why they do it (Caviedes, de Gamboa & Badillo, 
2021b).  
In order to understand and develop the different conceptual elements involved in 
solving area tasks it is necessary to consider the knowledge that PSTs have on such 
elements. In this sense, we adopt the analytical model of Mathematics Teacher 
Specialised Knowledge - MTSK (Carrillo et al., 2018), which determines the desirable 
components that PSTs should know for their future practice (Policastro, Ribeiro, & 
Fiorentini, 2019; Caviedes, de Gamboa, & Badillo, 2021b). Within the MTSK model, 
the KoT subdomain describes and makes it possible to distinguish the specific 
conceptual knowledge that is mobilised in the resolution of area tasks (see Table 3), 
and their relationships by means of interconceptual connections. Thus, KoT describes 
what and in what way mathematics teachers (or PSTs) know the content they teach.  
METHOD 
This study is situated in an interpretative paradigm and is part of a broader research that 
seeks to characterise the PSTs' specialised knowledge of area measurement. Content 
analysis (Krippendorff, 2004) is used to make a first interpretation of the PSTs' 
resolutions using the KoT indicators as analytical categories. In addition, a statistical 
implicative analysis (Gras & Kuntz, 2008) is conducted to explore relationships 
between different KoT indicators that PST mobilise in their resolutions. Data 
collection was carried out in the first term of the 2020-2021 school year. The 
participants were 147 PSTs enrolled in the third year of the Primary Education Degree 
at the Universitat Autònoma de Barcelona. The PSTs had had previous instruction on 
different procedures of area measurement as part of their study programme. A 
semi-structured open-ended questionnaire (Bailey, 2007) was designed to be 
completed individually. The PSTs were asked to justify each procedure in writing. To 
solve the tasks, PSTs could use manipulative materials (cut-outs as an annex to the 
questionnaire), as well as measuring instruments (except tasks 1, 2 and 3). The 
questionnaire was structured as follows: three tasks responding to contexts of equal 
partition, and comparison and reproduction of shapes (Tasks 1, 2 and 3); two 
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measurement tasks (Tasks 4 and 5); one task of classification of statements and one 
task of the definition of the concept of area (Tasks 6 and 7); finally, one task of analysis 
of students' responses (Task 8). The PSTs had one week to answer the questionnaire 
and send it in pdf format. For sake of brevity, we present the analysis of two resolutions 
of Task 4 (Table 1). 

Table 1. Task proposed to the PST group 

Formulation Graphic representation of the Task  

Task 4: Look at the triangles constructed on 
the geoboard. What is the area of each 
triangle? Which one has the largest area? 
Justify your answers using two or three 
different procedures. 

 
(Compiled by authors) 

 
Qualitative and quantitative analysis of PSTs` resolutions 
Since we have not found any studies detailing the KoT indicators for area measurement 
processes, these have been constructed based on the results of a previous study 
postulating an epistemic configuration of the concept of area (Caviedes, de Gamboa & 
Badillo, 2021a). From this epistemic configuration, we define the KoT indicators to 
focus on the analysis of the PSTs responses to the task. Each indicator was adapted to 
the subcategories that the MTSK model proposes for KoT (phenomenology, 
representations, procedures, properties and principles, justifications, and 
intra-conceptual connections) and allowed a deductive coding of the PST responses, 
with the support of MAXQDA plus software. Table 2 shows the KoT indicators. 

Table 2. Categories of specialised knowledge 

KoT's categories   Indicators 
Representations 
(R)  

(R1) Written: use of adjectives such as "minor", "major", "double", 
"half", etc., related to surfaces.  
(R2) Manipulative:  use of physical objects or dynamic geometry 
software.  
(R3) Geometric:  use of convenient decompositions or partitions of 
known figures to calculate the area of unknown figures. 
(R4) Symbolic: use of the R+ set to compare two or more surfaces, 
for counting units or adding up areas and-or for the indirect 
calculation of the area.  

Procedures (P) (P1) Compare two or more surfaces directly by total and-or partial 
overlapping. 
(P2) Compare two or more surfaces indirectly by cutting and 
pasting. 
(P3) Decompose in a convenient way, graphically or mentally, two 
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or more surfaces.  
(P4) Carry out movements of rotation, translation, and 
superimposition of figures. 
(P5) Decompose surfaces into congruent units and/or sub-units to 
facilitate the process of measuring areas. 
(P6) Measure areas as an additive process by counting units or 
sub-units that cover the surface. 
(P7) Measure linear dimensions and use formulas. 

Properties (Pp) 
and principles 
(Pr) 

(Pp1) Use of conservation. 
(Pp2) Use of accumulation and additivity.  
(Pp3) Use of transitivity. 
(Pr1) Use of the fact that the unit of measurement can be divided 
into parts to facilitate the process of measuring. 
(Pr2) Use of the fact that every triangle is equidecomposable from a 
parallelogram. 
(Pr3) Use of the fact that the calculation of area is a matter of 
decomposing the figure into a finite number of parts so these parts 
can be put back together to form a simpler figure.  

Justifications (J) (J1) The overlapping method to compare two or more surfaces is 
useful for establishing equivalence or to include relationships. 
(J2) The mental act of cutting the two-dimensional space into parts 
of equal area serve as a basis to compare areas.  
(J3) The change in the shape of a surface does not change the area of 
the surface, as the figures can be decomposed and reorganised while 
keeping the same "parts". 
(J4) The area of the triangle is half of a square or a rectangle with the 
same base and height that contains it. Therefore, the formula of the 
triangle is base per height divided by two. 

 
Figure 1 below shows examples of two PSTs (PST 7 and PST 133) that mobilise 
specialised knowledge. PST 7 uses written (R1), geometric (R3) and symbolic (R4) 
representations in the resolution process. As we can see, PST 7 mobilises (J2) and (J3) 
because she decomposes and reorganises triangles A and B into rectangles to later 
apply the area formula (P7). In addition, PS7 mobilises (J4) as she searches for the 
square containing triangle C to calculate its area by means of using formulas (P7). 
Geometric representations (R3) allow PS7 to decompose triangular surfaces by using 
auxiliary trace. Likewise, they allow PST 7 to use (P4) and (P5) in the case of triangle 
A, and (P3) and (P4) in the case of triangles B and C. The surface decomposition and 
reorganization procedures, allow PST 7 to implicitly mobilise (Pp1), (Pp2) and (Pp3) 
in addition to (Pr1), (Pr2) and (Pr3). This is because PS7 is able to accept that the area 
of a triangle does not change as its shape changes and that it is possible to simplify a 
resolution process by decomposing a figure and then rearranging its parts into a new 
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figure.  The resolution of PST 133 shows written (R1), geometric (R3) and symbolic 
(R4) representations. Figure 1 shows that (R3) allows PST 133 to use the auxiliary line 
tracing and to decompose the area around the triangles (P3) in order to find the legs 
corresponding to triangles B and C. This procedure allows PST 133 to obtain the length 
of the sides of triangles B and C by applying the Pythagorean theorem (P10) and (R4). 
Since the red triangle was located straight on the geoboard, PST 133 calculates its area 
by means of (P7). The comparison between triangles allows PST 133 to mobilise 
(Pp3). 

 
Figure 1. PSTs `resolution for Task 4 

With the aim to identify relationships between KoT indicators, we performed a 
statistical implicative analysis. This analysis makes it possible to identify and organise 
quasi-implication relationships (implicative relationships between variables with a 
given probability) by means of a graph with arrows that relates the variables with the 
strongest implications at different levels and intensities. The quasi-implication 
between the variables A ➔ B indicates that, if PST respond affirmatively to A, they are 
likely to respond to B (although a relatively small number of responses may contradict 
it). That is, A ➔ B is equivalent to the set B not A being almost null (with the 
understanding that the set of observations A is almost contained in B). In this study, in 
the implicative graph, we use the arrow ➔ to indicate a quasi-implication according to 
the meaning described above. The variables considered for the implicative analysis are 
those arising from the qualitative analysis (presented in Table 3). In order to carry out 
the analysis, a value of 1 was assigned to each variable mobilised in the PSTs’ 
responses and a value of 0 to each variable that was not mobilised in the PSTs’ 
responses. The package C.H.I.C version 0.27 in the R console version 3.5.2 was used. 
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RESULTS AND DISCUSSION 
Table 3 shows that PTS have a tendency to use symbolic representations (R4) and 
numerical procedures (P7). PST also struggle to solve Task 4 using different types of 
procedures. Geometric representations (R4) involving auxiliary line tracing, which 
allow the use of surface decomposition and reorganization procedures (P3), (P4), (P5), 
are used by a small number of PSTs. The same happens with the justifications, 
geometric properties and principles that support the above-mentioned procedures.   

Table 3. Categories of specialised knowledge mobilised in Task 4 
 

Code Frecuency Code Frecuency Code Frecuency 
R1 106 P5 38 J2 6 
R4 141 P3 37 P1 5 
P7 105 NP 34 J1 4 
Pp2 121 Pr1 31 Pp1 6 
R3 63 J3 11 Pr3 3 
J4 44 P4 10 Pp3 6 
P6 39 Pr2 7 R2 3 

 
The implicative graphs in Figure 2 below (with 98% significance indicated by the red 
arrows and 95%, indicated by the green arrows) show different relationships between 
KoT subdomain indicators for those resolutions that make use of different procedures. 
Graph A (Figure 2) shows that PSTs using procedures related to isometric 
transformations (P4) make use of geometric representations (R3) by auxiliary line 
tracing and of procedures that require reorganizing and decomposing surfaces (P3). In 
turn, PSTs that make use of geometric decompositions (P3) use symbolic 
representations (R4), indicating a use of different procedures. The symbolic and 
written representations present a reciprocal relationship (R4➔R1/R1➔R4) due to the 
fact that a symbolic register is also a written register. Graph B (Figure 2) shows that 
PSTs simultaneously mobilise the properties of conservation (Pp1) and accumulation 
and additivity (Pp3). Both properties involve the use of geometric representations 
(R3), as PSTs decompose triangles by auxiliary line tracing, and subsequently 
rearrange them into a different figure (rectangle). We also observe that the use of (R3) 
also implies the use of (R1) and (Pp2), that is, the PSTs justify in written form the 
decompositions performed and the comparison of the triangles, in order to explain 
which has the largest area. The use of the transitivity property (Pp2) is also associated 
with the use of (R4), which indicates that PSTs make comparisons between triangles 
based on the numerical value of their areas. On the other hand (R1) implies the use of 
(R4) since both are written registers. Graph C (Figure 2) shows that the use of (J4) 
implies the use of (R4) and (R1), that is, PSTs justify by writing the relationship that 
exists between the area of triangles and squares or rectangles. The use of (J2) implies 
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the use of (R3), as PSTs use decompositions to compare and relate the areas of 
triangles. Graph D (Figure 2) shows that the use of (Pr2) implies the use of (R3), i.e., 
PSTs use line tracing to decompose figures and identify that a triangle can be 
transformed into a rectangle. The use of (Pr1) implies the use of (R4) and (R1), which 
indicates that PSTs justify the decomposition of triangles into congruent units and 
subunits by means of written and symbolic registers. Again, we observe a reciprocal 
relationship between symbolic and written representations (R4➔R1/R1➔R4). 

 
Figure 2. Implicative graph showing relationships between KoT indicators for Task 4. 

The results of the qualitative analysis suggest that PSTs tend to associate area with the 
use of calculations and formulas, through the use of a symbolic register (Caviedes, de 
Gamboa & Badillo, 2021b; Chamberlin & Candelaria, 2018, Simon & Blume, 1994). 
Such a tendency explains why PSTs fail to mobilise conceptual elements linked to the 
measurement of areas, such as properties (Hong & Runnalls, 2020). Broadly speaking, 
the implicative graphs in Figure 2 show that representations are presented as a key 
conceptual element within the KoT indicators since they allow PSTs to use diverse 
resolution procedures. This suggests that representations have an instrumental and 
organizational value within the KoT subdomain indicators, that is, certain 
representations allow the use of certain procedures (or justifications, geometric 
properties, and principles) that would not be possible with the use of other 
representations. For example, the use of geometric representations allows PSTs to use 
surface decomposition and reorganization procedures, which would not be possible 
through the use of symbolic representations. The same geometric register allows the 
mobilization of properties of conservation and accumulation and additivity, which are 
not mobilised through the symbolic register. We consider that this instrumental value 
of representations could have implications for the didactic design of tasks that allow 
the development of specialised knowledge in PSTs. 
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