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Our research is guided by the question: “How might we observe, document, display, 

and analyze data from a collective systems perspective?” In this research forum, we 

share new research tools for studying mathematics classrooms, highlight opportunities 

for observation and analysis by layering these tools, and then illustrate how the 

layering of tools allows for visual distinctions across lessons and classrooms. 

INTRODUCTION 

For nearly 30 years, the researchers in this forum have worked individually, in 

subgroups, and as a collective to explore, analyze, and report on data related to 

collective action in mathematics classrooms (e.g., Davis & Simmt, 2016; Martin & 

Towers, 2015; Thom & Glanfield, 2018). For the past eight years, we have engaged in 

a methodological research project with the goal of exploring how we might observe, 

document, display, and analyze classroom data from the perspective of collective 

systems. That is, we intentionally shift the unit of analysis from individual students to 

the classroom as one ‘body.’ 

This research forum builds on our previous PMENA working group (McGarvey, et al., 

2015), NCTM research symposium (McGarvey et al., 2017), PME-42 research forum 

(McGarvey, et al., 2018), and PMENA colloquium (Thom, et al., 2021). These forums 

have been essential for engaging with the research community. Through the comments, 

criticisms, and suggestions received, we have taken up, expanded, extended, and 

revised our work. Here, we review our work to date, share new methodological tools, 

and examine, discuss and debate these tools as well as the insights gained about 

mathematics classrooms and lessons when these tools are layered. 

BACKGROUND AND THEORETICAL FRAMING 

This project is rooted in complex systems research—an approach to inquiry that 

investigates how relationships between parts of a system can give rise to collective 

behaviours. Examples of complex systems include birds flocking, ants foraging for 

food, weather systems, the Internet, and many others. Each complex system arises from 

the layering of biological, social, societal and environmental subsystems (Davis & 

Simmt, 2016). Complex systems are challenging to model and difficult to predict, but 
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are often understandable in retrospect. A key aspect of complex systems is the 

dialectical entanglement of the system and its environment (Varela et al., 2017).  

Our overriding project goal is to develop methodological tools to better understand the 

dynamics of the classroom as a collective whole, rather than continuing to treat 

classroom interactions as a series of distinct individual contributions. While we do not 

discount the value of research that explores individual understanding, teacher actions 

and decision making within classroom contexts are often based on the teacher’s sense 

of the class as a whole. We choose to understand the whole by developing tools where 

the unit of analysis is the whole class, rather than individuals within it. Because of this, 

we need different analytical tools. 

Grounded in diverse yet complementary frameworks that include complexity science, 

network theory, embodied cognition, and enactivism, our work attempts to 

conceptualize the entire classroom as one collective agent. In our work, we explore and 

generate new techniques for representing, analyzing, and interpreting group activity by 

making use of modelling techniques to represent classroom lessons as a visual whole. 

In doing so, we highlight one or more features of classroom collective action all-at-

once without attributing actions or utterances to specific individuals. This approach is 

useful for observing particular aspects of a system that may contribute to its global 

traits.  

At PME-42 in Sweden, we presented four methodological tools under the metaphor of 

“vital signs” including utterance distribution, actions on the board, a mathematical 

ideas network, and the dynamics of ideas based on the Pirie-Kieren (P-K) model (Pirie 

& Kieren, 1994). We found the use of “vital signs” to be useful way to foreground a 

particular feature of classroom activity, while recognizing that such tools must be 

layered in order to provide a more robust indicator of the health of the body. Utilizing 

feedback, suggestions, and criticism received at PME-42 and at other forums, we 

developed two additional tools including Lesson Activity Mapping and Bodymarking, 

and revised the Dynamics of Ideas into two related tools: Persistence and Movement 

of Ideas. We focus on these tools in this forum. 

Lesson Activity Mapping visually represent the collective actions and interactions in 

the classroom, such as whole class lecture, small group discussion, individual 

seatwork, along with the focus of interaction, such as problem solving, sharing 

solutions, providing explanations, and so on. The second tool, Bodymarking, 

emphasizes the collective gestures and gaze orientation of the class. Third, we have 

substantially revised the dynamics of ideas, so that it can be visually interpreted in the 

same way as the other tools. The other advancement of our work has been to establish 

a visual standard for all of the tools so that they can be layered, so that we may, for 

example, examine (Non)Actions on the Board, Bodymarking, and Lesson Activity 

Mapping for one lesson simultaneously. We can also compare this set of tools across 

different lessons to illustrate holistic differences in patterns, and point to key moments 

in a lesson. 
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Our project is intended to be exploratory as we continue to examine the potential for 

conceiving of classroom collectives as adaptive and self-maintaining complex systems. 

As such, we use complex systems as an interpretive frame for observing, analyzing, 

and comparing mathematics lessons and classrooms.  

COMMON DATA  

As in other presentations and publications, we use the TIMSS videos (timssvideo.com) 

as a common source of data in which to explore, develop, and illustrate the 

methodological tools (see McGarvey et al., 2018). The advantage of using the TIMSS 

videos is that they are publicly available and capture classroom activity in a way that 

is common in mathematics education research. That is, there is a video of the full lesson 

based on a single camera following the teacher and a set of transcripts. In addition, the 

TIMSS resources provide “lesson graphs” that outline the lesson activities and timing 

(see Figure 3).  

For this forum, the tool developers were asked to analyze several TIMSS videos. In 

this paper researchers describe their methodological took using one or both of the 

following two lessons: (1) Solving Inequalities (JP4) in Japan, and (2) Exponents 

(US3) in the United States. The two lessons are approximately 50 minutes in length 

and there is a similar number of students in each class (i.e., 35 and 36 respectively). 

The lessons offer contrasting features including the physical arrangement of desks (i.e., 

rows and grouped desks), and style of teaching (i.e., whole class and small group). 

Figures 1 and 2 offer a storyboard for each of the two lessons.  

 

Figure 1: Japan lesson storyboard 
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Figure 2: US lesson storyboard 

Analysis of the two lessons for each of the three tools presented in this forum are 

illustrated below. They include (1) Lesson Activity Mapping; (2) Bodymarking; and 

(3) Persistence and Movement of Ideas.  

 

LESSON ACTIVITY MAPPING 

Elaine Simmt and Lynn McGarvey 

University of Alberta 

 

INTRODUCTION 

The general impetus for our research team is to explore and develop methodological 

tools that model some aspect of classroom collectivity as a visual whole. The tools 

developed to date range from modelling relatively simple and specific aspects of the 

classroom to more complex features. When contemplating what aspect might have 

value when making comparisons across lessons with different content, tasks, and 

discourse styles, we landed on some common lesson structure questions: Are students 

engaged in whole class, small group, or individual activity? Where is the locus of 

control for engaging in the task? That is, are students generating solutions or applying 

learned processes? And what is the source or central focus of the activity? Are they 

preparing to engage in a task, engaged in a task, sharing solutions, and so on? By 

layering these forms of engagement, we could model general lesson structures.  
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The structure of mathematics lessons is an ongoing area of interest in mathematics 

education. In fact, the 1995 and 1999 TIMSS Video Studies brought considerable 

attention to the variability in lesson structures worldwide (e.g., Hiebert et al., 2003). 

Attention to a number of features, such as public and private work, mathematical and 

non-mathematical engagement, the types of mathematical activities, and so on. For the 

most part, an aggregate of lesson features for each country were described using 

descriptive statistics, and resulted in lesson patterns or “scripts” for each country. For 

example, the script ascribed to Japanese lessons included: presenting a problem, having 

students working individually or in groups, discussing various methods for solution, 

and summarizing key conclusions. In comparison, U.S. lessons were describe by an 

acquisition/application script based on the pattern of reviewing material, teacher 

demonstration, practice, and seatwork (Hiebert et al., 1996; Stigler & Hiebert, 1999).  

The contrast in scripts spawned new reform-based lesson structures, such as Launch-

Explore-Discuss (Stein et al., 2008) that emphasized “Task-First” rather than “Teach-

First” approaches (Russo & Hopkins, 2017). However, as we might expect, the lesson 

patterns ascribed to entire countries are much more varied when not reduced to a 

general form, and that it may be more useful to make comparisons at the level of the 

“lesson event”  (Clarke, et al., 2007). We considered several aspects of the lesson 

structures valuable to our work in modelling classrooms as collectives, and explored 

how to visualize these features under the vital signs metaphor.  

BACKGROUND 

We developed the Lesson Activity Mapping tool using the video, transcripts, and 

“lesson graphs” provided as resources for the TIMSS videos (see Figure 3 for a portion 

of the US3 lesson graph). Lesson graphs are one-page summaries of the activities in 

each lesson. As seen in Figure 3, the lesson graph chunks the class period into timed 

segments (left column) making distinctions between public and private class work 

(right column). Information about the mathematics content, and teacher and student 

actions are also provided. In most instances, the segments are described as either 

“Public Class Work” or as “Private Class Work.” Public class work includes such 

activities as reviewing homework, sharing solutions, posing problems, class 

discussions, teacher demonstrations, and so on. Private class work typically referred to 

individual seatwork where students were working independently on problems from the 

textbook or worksheets provided.  

Under each public or private block, the lesson graph provides a brief description of the 

activities or tasks in that timeframe, and general descriptions of the teacher and student 

actions. As we can see in the US3 lesson graph (Figure 3), in the first 9.5 minutes of 

the lesson the teacher announces the topic of the day, comments on a teaching aid she 

is using to represent exponents, and then demonstrates how to multiply exponents using 

three examples.  
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Figure 3:  US3 Exponents lesson graph 

We found the lesson graphs to be valuable summaries of the lesson activities. In 

particular, the distinction between public and private work contributed to our view of 

collective activity in which two or more actors offered actions and utterances to others, 

in contrast to when students acted (primarily) on their own.  

The other component we believed would contribute well to collective modelling of 

lessons are broad-based activity segments. Activity segments, described by Stodolsky 

(1988) are the “instructional or managerial” aspects of a lesson that have an intended 

purpose and with relatively clear starts and stops (p. 11). Different activity types or 

variations of activity segments have been explored including “setting up,” “working 

on,” “sharing,” and “demonstration (Stigler et al., 1999); reviewing, demonstrating, 

practicing, correcting/assigning (Clarke et al., 2007); and “development,”, “student 

work,”, and “review of student work” (Kaur, 2021). The lesson graphs also showed the 

general activity segments for each lesson.  

METHOD AND CODING 

For the purposes of generating a new tool or vital sign, we chose to visually represent 

lesson structures based on public/private indicators, as well as demarcated activity 

segments. Because we are specifically interested in collective activity, we coded for 

two categories of public class work, whole class and small group engagement, as well 

as private work according to the following descriptors: 

 Public-Whole (dark green) involves periods of time where information and ideas 

were at the level of the whole class.  

 Public-Group (light green) includes periods of time where information and ideas 

were discussed at the level of a sub-group of the class in which two or more 

students were involved. The public-group periods were coded when students 

were directed to work with a group. That is, the grouping was an intentional 
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aspect of the lesson. It did not include periods in which students turned to one 

another for brief moments. 

 Private (yellow) refers to time periods where individuals worked predominantly 

independently. Again, this was an intentional aspect of the lesson where the 

teacher instructed students to work on their own 

For activity segments we selected four categories of actions: non-mathematical, 

presenting, engaging, and sharing.  

 Non-mathematical (grey) refers to segments of the lesson that involve activities 

such as greetings, announcements, moving into groups, and other forms of 

housekeeping.  

 Presenting (pink) involves segments where information is offered in preparation 

to engage in work or reviewing and summarizing completed work. These 

segments included the presentation of tasks, procedures, instructions, worked 

examples, explanations, and question-answer interchanges. 

 Engaging (blue) includes periods where most students in the collective were 

actively involved in a task.  

 Sharing (chartreuse) segments are predominantly a reflection on completed 

tasks by providing solutions.  

Figure 4 provides the colour coding used for the two sets of codes. We placed the 

activity segments at the top and the public-private segments at the bottom. 

 

Figure 4: Colour codes used for activity segments (top) and public-private (bottom) 

Although other researchers have examined activity segments using additional codes 

we felt that visually it was important to limit the number of segments. Our goal is to 

seek out lesson patterns broadly, rather than detailed descriptions of the lessons.  

As with the other tools, we examined the lesson in 15-second segments and coded for 

public-private and for the activity segment. Rather than overlap codes within a 15-

segment time period we chose to code to the nearest 15-second mark. This was 

intended to provide a clearer picture of the overall lesson pattern. Creating a 

standardized visualization allows us to layer the Lesson Activity Mapping tool with 

other vital sign visualization tools from the same lesson, enabling the researcher to look 

for critical points in the lesson. 
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RESULTS 

Using the public-private and activity segment codes above we coded the United States 

(US3) and Japan (JP4) lessons (see Figure 5). 

US3

  

JP4 

 

 

Figure 5: US3 (top) and JP4 (bottom) Lesson Activity Mapping based on public-

private and activity segments 

The visualization tool shows a number of common features. For these two lessons, 

presenting and sharing activity segments always occur with public-whole class 

engagement. Engaging is most often paired with private work; however, there are two 

instances in the US lesson in which the teacher explicitly tells the class to work with 

their group. In these instances, we see engaging with public-group work.  

When the two lesson structures are viewed as a whole, we see a number of visual 

differences. In the lesson graph provided for the US3 lesson, it shows the lesson in 

twelve segments. However, when coding at 15-second intervals we see twenty-one 

different segments. In this particular lesson the majority of the lesson was based on 

students completing sections of a worksheet, so we see the teacher present information 

to prepare students to answer the question in a section; the students complete the 

section individually or in small groups, and the solutions to those sections are shared. 

This results in a frequent cycling through of presenting-engaging-sharing.  

The JP4 lesson shows eleven segments. The number of mathematical segments (nine) 

matches with the number of segments shown on the lesson graph provided. (The 

additional two segments are non-mathematical occurring at the beginning and end of 

the lesson.) We see much longer segments, for all three types of lesson activities.  

Another contrast between the two lessons are how the lessons begin and end. While 

the US lesson begins with presenting information to prepare students to complete the 

worksheet, the Japan lesson begins with a sharing of solutions to the homework from 

the previous night. The US lesson ends with a lengthy period of engagement while the 

Japan lesson ends with sharing solutions and a brief period of presenting in which the 

teacher summarizes the key insights of the day. 
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We also notice the difference in the pattern for engaging in public and private work. 

The US lesson shows frequent cycling between public and private while the Japan 

lesson is predominantly public, except for two periods where students work privately 

and independently on a problem.  

CONCLUDING REMARKS 

The visualization offered through the Lesson Activity Mapping tool provokes 

questions for us: What is happening when the activity moves from public to private? 

How do the patterns of shifting back and forth impact the development of mathematics 

in the lesson? What are the patterns that exist for other lessons? Is the pattern an artifact 

of the content of the lesson or pedagogical distinctions of the teacher or culture? Do 

different patterns of activity segments and public-private actions point to different 

lesson structures already known in the mathematics education community? 

We acknowledge that examining only two lessons does not provide warrants for 

generalization. Rather, presenting these two lessons illustrates that the visualization of 

a lesson can stimulate questions for the mathematics education researcher. 

We believe that the visualization offered by the Lesson Activity Mapping tool offers 

possibilities for analysis of multiple lessons by the by the same or different teachers, 

topics, grade levels, and cultures. By making such comparisons, the visualizations can 

help us identify overarching patterns representing the dynamics of the system. There 

is a trivialization of the situation with this tool; however, using it across multiple 

examples as a way to make visual comparisons offers an opportunity to identify new 

insights and questions. 

To conclude we would like to reiterate that the purpose of the Lesson Activity Mapping 

tool is to observe lessons in ways we have not before and to see things that may have 

gone unnoticed. Finally, when using this tool in conjunction with others, we can 

identify what might be interesting moments in the lesson, and as we look across content 

and contexts we may be able to identify dynamics of lessons that help us better 

understand learning systems.  

 

BODYMARKING 

Jo Towers and Josh Markle 

University of Calgary  Brock University 

 

THEORETICAL CONSIDERATIONS 

Bodymarking is a methodology and tool for understanding collective action through 

the ways bodies gesture in the classroom. Observing, tracking, and analyzing this kind 

of movement is prominently featured in the theories and approaches collected under 

the rubric of body pedagogics (Shilling, 2017), an embodied approach to the study of 
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various cultural practices, including in formal teaching/learning contexts. In such 

educational contexts, researchers have tracked specific teacher movements and the 

paths teachers have taken as they move around classrooms (Andersson & Risborg, 

2018; 2019), as well as other embodied phenomena, including gaze and gesture 

(Kaanta, 2012). Spurred by the availability and affordability of eye-tracking 

technology, gaze, in particular, has become a well-studied phenomenon, especially in 

the mathematics classroom, and is frequently used as a means of measuring student 

engagement and the pedagogical priorities of teachers (e.g., Abrahamson et al., 2015; 

McIntyre et al., 2019; Seidel et al., 2021). Building on this work we have chosen to 

focus on the kinds of actions and gazes that we believe might best illuminate 

collectivity in mathematics classrooms and to attempt to capture, with a digital tool, 

these everyday aspects of classroom life. 

BODYMARKING TOOL DESCRIPTION 

The Bodymarking tool focuses on six everyday classroom actions, which we denote as 

strands, including intentional movements of the hand or body, gaze, writing, and other 

kinds of tool use. We argue that each of the strands, which we discuss in detail below, 

captures a distinct gestural expression in the classroom.  

Following a taxonomy used in other fields, such as neuroscience and neuropsychology, 

gestures can be characterized as either transitive (i.e., involving tool use) or intransitive 

(i.e., not requiring tool use). We have chosen to observe and record both types of 

gesture through Bodymarking. Strands associated with transitive gestures involve tool-

oriented actions in the classroom. These include writing in public spaces (Boardwork), 

writing in private spaces, (Writing), and the use of other tools, such as mathematics 

manipulatives (Manipulating Tools). We argue these are three of the most prominent 

means of interacting with the material world in the mathematics classroom. 

As described in Mgombelo et al.’s (2018) “Vital sign 2: (Non)actions on the board”—

whiteboard, chalkboard, computer screen, etc.—often orients classroom action. In the 

Japanese lesson, for example, we see the board used by the teacher to convey 

information and by students to engage in problem solving. In contrast to Mgombelo et 

al.’s vital sign, we only remark on engagement with the board through the addition or 

subtraction of material, whether it be by a student or teacher. Our interest lies more in 

the distinct cadences of public work and the complex ways it couples with other 

classroom phenomena, not the nature of any one particular engagement. We are 

similarly interested in the ways the classroom works privately, which we capture 

through the Writing strand, and how it engages other materials in the environment, 

either publicly or privately. 

We have also chosen to observe three distinct gestures that do not require the use of 

tools—Pointing, Hand and Body Movement, and Shared Gaze—to focus on as aspects 

of collective action in the classroom. These kinds of gestures have been frequent 

objects of study in mathematics education (e.g., Alibali et al., 2014), and more 

generally, have been shown to play a fundamental role in learning (Novack & Goldin-
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Meadow, 2015). We focus on intentional movements of the hand or body, such as when 

a student raises a hand to ask a question, counts out a sum on their fingers, or measures 

a length with outstretched arms. By intentional, we mean gestures that we interpret as 

emerging out of the interactional domain of the classroom. This includes gestures that 

intimate actions, describe abstract ideas, and orient the gesturer or others; they can be 

deliberate, communicative gestures, or the kind of unconscious gesturing that often 

accompanies speech in conversation. Though these gestural movements may be 

spontaneous, they are not random. In the Bodymarking process, we do not record 

movements we interpret to be random or reflexive, such as when a student taps their 

foot. 

Though the Hand and Body Movement strand could be considered inclusive of actions 

such as pointing and gazing, we conceive of pointing and gazing as specific kinds of 

gesture worthy of closer scrutiny and have therefore separated these from the other 

hand and body movements we track. Though pointing is clearly a particular kind of 

hand gesture, we believe it often functions in ways other hand and body movements 

do not. Our emphasis on pointing speaks to our interest in understanding how actors in 

the classroom are oriented by and toward each other and their environment at the 

collective level. In studying interaction in the context of virtual spaces for 

collaboration, Luff et al. (2013) noted that if “there is one collaborative activity that 

exemplifies the embedded character of practical action then it is reference, and in 

particular, pointing” (p. 2). Moreover, as Cooperrider (2021) noted, pointing often goes 

beyond the directing of attention to include a host of iconic and communicative 

phenomena. Finally, pointing is unique with respect to the other two strands denoted 

as intransitive in that it can be incorporated with tool use. By focusing on the 

phenomenon of pointing, not just its physical instantiation, Bodymarking can capture 

the complex ways we use the material environment to orient ourselves. 

How we conceive of gaze in Bodymarking is similarly nuanced. Gaze is an 

increasingly studied phenomenon in the context of mathematics education (see 

Strohmaier et al., 2020) and is frequently associated with quantifying measures of 

visual attention. In work more closely aligned to our use of gaze, Abrahamson et al. 

(2015) sought to identify emergent patterns of sensorimotor activity, including gaze, 

and mathematical discourse. We are particularly interested in studying collective action 

and so in the Bodymarking tool we capture instances of shared gazing, those that 

involve all or most of the class and those that may only involve small groups. 

THE CODING PROCESS 

Using TIMSS video as source material, we recorded observations for each of the six 

strands at 15-second intervals for the duration of each lesson. We coded entirely 

without sound or subtitles, an approach also adopted by Wilmes and Siry (2021) in 

their study of multimodal interaction in the science classroom. Although the object of 

their study is a better understanding of how students enact science, and so is explicitly 

focused on a lesson’s content, they note that viewing video with no sound allows the 
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researcher to “draw analytical focus…to the embodied aspects of interaction” (Wilmes 

& Siry, 2021, p. 79). In this sense, their approach is consistent with ours: we are not so 

much interested in the mathematical content intimated by an individual’s iconic 

gesture, for example, but rather what the cadences of actions at the classroom scale can 

tell us about the states and dynamics of collective knowing. 

For each of the strands except Shared Gaze, we recorded only the occurrence of a 

gesture, not its frequency. For example, there is no distinction made between a 15-

second interval in which only one instance of pointing occurs and a 15-second interval 

in which there are many. If a gesture is observed, we assign a colour-code to the 

relevant strand for that 15-second interval (Figure 6). For the Shared Gaze strand, we 

code a 15-second interval as one of two colours (see Figure 6) if we determine that the 

shared gaze occupies at least half of the interval. 

 

Figure 6: Bodymarking Strand Colour-Coding and Descriptions 

As described above, only one strand, Shared Gaze, requires further distinction. For that 

strand, we distinguish between two types of gazes, those shared by most or all of the 

individuals during an interval (dark brown) and those shared by only some individuals 

during an interval (light brown). It is worth noting an important limitation of the 

TIMSS video data: we are constrained by the view of the camera. To address this 

limitation when coding for this strand, we only consider individuals shown in the 

camera’s view in discerning gazes shared by most and some. If an interval depicted 

four individuals all gazing at a single object, it would be coded as Shared Gaze 

(Focused); if only two of the four individuals were gazing at the object, but the other 

two were each looking at something else, it would be coded as Shared Gaze (Diffused). 

The purpose of the Shared Gaze strand is to tell us something about how the collective 

gaze of the classroom is oriented: is the whole classroom oriented by a common 

project? Are small groups of individuals focussed on a multiplicity of objects? To best 
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capture this ebb and flow, we colour code the distinct gazes along a single strand, 

Shared Gaze. 

Applying the Bodymarking tool to both of the Japanese and US lessons yielded 332 

and 357 unique observations, respectively, across the six strands (Figure 7). 

 

Figure 7: Bodymarking Visualizations for Japanese (Top) and US (Bottom) Lessons 

DISCUSSION 

The lesson storyboards shown in Figures 1 and 2 reveal the ubiquity of everyday 

actions, such as pointing and gazing in the classroom. Although we observe and record 

these individual gestures through the Bodymarking process, the name we have chosen 

also points to our interest in marking out the ephemeral body of the collective as it 

emerges through classroom action. For the two lessons in this analysis, we found our 

attention drawn to two phenomena. The first concerns the ways in which Shared Gaze 

couples with other actions in the classroom. We would expect Shared Gaze (Focused), 

shown in dark brown, to occur naturally alongside other strands, such as Boardwork, 

and this is evident in Figure 7. What stands out to us is the observation that Shared 

Gaze (Focused) is the only strand that did not frequently occur in the absence of the 

others. That is, Shared Gaze (Focused) is almost always coupled with at least one other 

strand. In fact, there is only one 15-second interval, early in the Japanese lesson, in 

which Shared Gaze (Focused) occurs in the absence of other strands. This leads us to 

question how moments in which there is a focused gaze shared by the classroom differ 

from those in which there are multiple objects of shared gaze or none at all. Moreover, 

we are interested in what those moments might tell us about how the actions captured 

by the other strands couple with each other and with gaze. 

 A second phenomenon of interest involves the potential for observing cadences 

of classroom action over the course of a lesson. Figure 8 highlights three intervals in 

the Japanese lesson in which Boardwork is prominently featured. Intervals A and B 

show Boardwork coupling with intransitive gestures, such as Gaze and Pointing, while 

interval C shows it coupling with a transitive gesture, Writing. The intervening periods 

in which Boardwork is absent depict unbroken blocks of writing. 
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Figure 8: Intervals of Boardwork and Other Gestures 

The cadence of the Japanese lesson contrasts with the US lesson, which depicts no 

discernable rhythm. To be sure, this is a function of classroom pedagogy—the Japanese 

lesson, for example, alternates introducing new content with practice, while the US 

lesson involves small group work on a problem set for most of the period—but we 

argue the Bodymarking visualizations may yield additional insight when applied to a 

larger set of classroom data. How might similar pedagogies manifest in different 

settings? What could variations within a lesson, as depicted in intervals A, B, and C, 

tell us about the way collective action emerges in the classroom? And how are they 

reflected in other vital signs? 

CONCLUDING REMARKS 

Bodymarking offers a means of visualizing everyday classroom action. By focusing on 

both transitive and intransitive gestures, such as writing and pointing, respectively, we 

argue it has the potential to provide insight into the collective engagement of the 

material world. Moreover, in attending to how these gestures couple with one another, 

and how those couplings are reflected in other vital signs, Bodymarking may provide 

insight into how collective knowing and doing emerges in the mathematics classroom.  
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PERSISTENCE AND MOVEMENT OF IDEAS 

Jennifer S. Thom and Florence Glanfield 

University of Victoria and University of Alberta 

CONTEXT 

In 1989 Pirie and Kieren introduced a model (Figure 9) of a dynamical theory for the 

growth of mathematical understanding. The authors characterized mathematical 

understanding as an embodied process that was inherently dynamic, levelled but non-

linear and recursive (Pirie & Kieren, 1994). The model featured eight nested yet 

unbounded levels: Primitive Knowing as “the starting place for the growth of any 

particular mathematical understanding” (p. 170); Image Making as the activity by 

which to “make distinctions in previous knowing and use it in new ways” (p. 170); 

Image Having as the “use [of] a mental construct about a topic without having to do 

the particular activities which brought it about” (p. 170); Property Noticing as the 

action by which to “manipulate or combine aspects of images to construct context 

specific relevant properties” (p. 170); Formalising as activity which “abstracts a 

method or common quality from the previous image dependent know how which 

characterised noticed properties” (p. 170); Observing as “reflect[ing] on and 

coordinat[ing] formal activity and express[ing] coordinations as theorems” (p. 171); 

Structuring as involving “formal observations as a theory” (p. 171); and Inventising 

which entails the “break[ing] away from preconceptions ... and creat[ing] new 

questions [that] might grow into a totally new concept” (p. 171).  

 

Figure 9: Pirie-Kieren Model 
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The nested structure of the model shown in Figure 9 reflects each level as including all 

inner levels as well as being integral to all outer levels.  

To date, the Pirie-Kieren model/theory has predominantly been used to illuminate the 

understanding of individual students. In contrast, we use Pirie and Kieren’s 

model/theory to attend to the emergence and dynamics of ideas at the collective level, 

in mathematics classes, as suggested by Thom and Glanfield (2018); Kieren and Simmt 

(2002); Martin and Towers (2003; 2015); Davis and Simmt (2003); and Pirie and 

Kieren (1994).  

Using the JP 4 TIMMS lesson we first identified concepts and ideas within the lessons. 

We identified the level at which the ideas emerged, monitored the ideas as they were 

(re)iterated or elaborated upon, and tracked during each lesson as they moved back and 

forth across the different levels of the model. There were two ideas in the Japan lesson 

around the concept of inequality. Idea 1 (I1[JP]), the first idea to emerge, involved the 

procedure(s) used to solve an inequality. Idea 2 (I2[JP]), the second idea to emerge, 

related to how an inequality expression could be used to model a specific context.  

DYNAMICS OF IDEAS TOOL 

In the first iteration of the Dynamics of Ideas Tool we used the Pirie-Kieren theory to 

code the mathematical ideas within the lessons and map the emergence, (re)iteration(s), 

elaboration(s), and the dynamics, or movement back and forth, of those ideas onto the 

Pirie-Kieren model, according to the eight levels (as seen in Figure 10 which shows 

the mapping of the first 17 minutes of the Japan lesson). Five minutes 33 seconds of 

this period were not coded. Two minutes 57 seconds consisted of going over homework 

related to I1[JP]. I1[JP] emerged, and for the most part, stayed at the Formalising level. 

The balance of time, 8 minutes 30 seconds, was spent on I2[JP]. Interestingly, I2[JP] 

arose in manners that were not specific to any one level in the model but indeed, clearly 

beyond Image Having. To distinguish these events, we mapped the moments in which 

I2[JP] occurred Beyond Image Having as dotted spheres on the boundaries between 

levels. In addition to this, and unlike I1[JP], I2[JP] moved across levels, back and forth, 

from Primitive Knowing through to Formalising, and Beyond Image Having.  
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Figure 10: 0:00-16:59 of the Japan lesson 

We encountered challenges in using this tool. First, the tool was not clear due to the 

sheer density of the ideas; that is, as they emerged and underwent (re)iterations, 

elaborations, and moved across the levels. Second, while the nested model allowed for 

chronological sequencing, it did not allow for mapping along linear time which meant 

that specific moments in time within any one lesson could not be compared with other 

tools being developed. 

FROM ONE TO TWO TOOLS 

In designing the second iteration of the tool, we separated the two dynamics: the 

persistence (i.e., the (re)iterations and elaborations) of the ideas and the movement (or 

lack thereof) of the ideas across the Pirie-Kieren levels in order to address the first 

challenge. For each of the dynamics, we then mapped them in 15-second increments 

to address the second challenge. The addition of the 15-second increments as a standard 

timeline allowed for identifying a specific moment in time and as well, comparison of 

any moment across tools.  
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PERSISTENCE OF IDEAS TOOL 

 

 

 

Figure 11: Persistence of Ideas for JP 4 

Graphically, we can clearly see the persistence of Idea 1 and Idea 2 as well the 

difference of persistence between the two ideas across the whole period of time (see 

Figure 11). The ways in which the ideas persisted across the whole lesson could not be 

seen in the Dynamics of Ideas Tool as mapped on the Pirie-Kieren model. This new 

tool monitors the observed ideas as they emerge, are elaborate upon, and reiterated 

within the classroom as a collective.  
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MOVEMENT OF IDEAS TOOL 

 

 
Figure 12: Movement of Ideas for JP4 

The movement (or lack thereof) of ideas can be observed across the Pirie-Kieren levels 

and across the whole period of lesson time (see Figure 12). This could not be seen in 

the Dynamics of Ideas Tool as mapped on the Pirie-Kieren model. Neither were 

instances observed as not mathematical located on the model. The breaks in the graph 

are periods of time that could not be coded for a variety of reasons (e.g., no 

mathematical ideas were expressed for approximately the first 3 minutes of the lesson, 

and no mathematical ideas emerged at approximately the 7 minute and 15-17 minutes 

marks of the lesson). I1[JP] emerged, and for the most part, stayed at the Formalising 

level. Interestingly, I2[JP] arose in manners that were not specific to any one level in 

the model but indeed, clearly beyond Image Having. To distinguish these events, we 

mapped the moments in which I2[JP] occurred Beyond Image Having using dotted 

lines. Unlike I1[JP], I2[JP] moved across levels, moved back and forth, from Primitive 

Knowing through to Formalising and Observing, and Beyond Image Having 
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throughout the lesson. This tool monitors how the ideas moved within the Pirie-Kieren 

levels as they are taken up within the classroom as a collective. 

VERTICALLY ALIGNING THE TWO TOOLS 

 

 

Figure 13: Aligning the Two Graphs 

When the two tools are aligned vertically, we can see at any moment in time, which 

idea is being taken up in the collective, the persistence of that idea, and the Pirie-Kieren 



McGarvey et al.  

 

 

PME 45 – 2022 1 - 197 

 

level at which the ‘taken up’ occurs (see Figure 13). So, for example, between the 17 

and 20-minute period of the lesson, Idea 2 was elaborated upon or reiterated 1 to 8 

times at any given moment within the collective. Within this time period, the idea 

moved back and forth between Property Noticing and Image Having. In contrast, 

during the 40- to 45-minute time period in the lesson, Idea 2 can be observed as 

persisting between 1 to 5 times while moving back and forth from Formalising to Image 

Making to Property Noticing then back to Image Making. These two examples could 

not be seen in the Dynamics of Ideas Tool. Further still, at approximately the 13 to 15-

minute time period, the persistence of Idea 2 also occurs 1 to 5 times, however, the 

idea moves between Property Noticing, Image Having, and Beyond Image Having. 

CONCLUDING THOUGHTS 

The first iteration of the Dynamics of Ideas Tool attempted to observe two dynamics 

at the same time. The second iteration involved the separation of the two dynamics into 

two distinct Tools. The two tools offer a clearer way to monitor the persistence and 

movement of mathematical ideas within the classroom as a collective. 

 

LAYERING THE TOOLS 

We offer Figure 14 as an initial layering of three tools for the Japan lesson (JP4): 

Lesson Activity Mapping, Bodymarking, and Movement of Ideas. By aligning the 

tools vertically we may begin to see visual patterns across the three visualizations. As 

we might expect, the lesson pattern has many features in common with the 

Bodymarking. For example, boardwork and pointing occur predominantly in the 

public activities of presenting and sharing, while the writing occurs during private 

engagement times. These are also the time segments when we see more movement in 

ideas to the different levels of the Pirie-Kieren model.          
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Figure 14: Layering Tools for Collective Activity 

We believe that it is by layering multiple tools that we may be able to notice possible 

moments of interest, emergence, activity, and inactivity within a classroom. It is by 

exploring different modelling techniques of different aspects of collective activity that 

we can gain insight into global traits and group activity of collective systems.  
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