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Abstract
When solving bankruptcy problems through equalizing solutions, agents with small
claims prefer to distribute the estate according to the Constrained Equal Awards solu-
tion,while the adoption of theConstrainedEqual Losses solution is preferred by agents
with high claims. Therefore, the determination of which is the central claimant, as a
reference to distinguish the agents with a high claim from those with a low claim,
is a relevant question when designing hybrid solutions, or new methods to distribute
the available estate in a bankruptcy problem. We explore the relationship between the
equal awards parameter λ and the equal losses parameter μ that characterize the two
solutions.We show that the central claimant is fully determined by these parameters. In
addition, we explore how to compute these parameters and present optimization prob-
lems that provide the Constrained Equal Awards and the Constrained Equal Losses
solutions.

Keywords Bankruptcy problem · Constrained Equal Awards · Constrained equal
losses · Relative degree of conflict

JEL Classification C79 · D63 · D74

1 Introduction

Bankruptcy problems describe situations where a given amount of a perfectly divisible
good, saymoney, has to be distributed among some agents according to their demands.
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Thekey issue of these problems is that there is not enoughmoney to satisfy the demands
by all the agents. Even though solutions for bankruptcy problems have been suggested
throughout the ages, the seminal paper by O’Neill (1982) can be seen as the starting
point of a large literature formally focusing on how bankruptcy problems should be
solved when some fairness criteria have to be preserved.

Among the many different solutions proposed along this literature, three of them
have captured the attention of several academics. These solutions share a common
feature, namely all of them try to equalize the agents’ perception of how they are
treated. The proportional solution, attributed to Aristotle, is designed to equalize the
agents’ relative award. The Constrained Equal Awards solution (Maimonides 1180)
is designed to equalize the agents’ absolute award. Lastly, the Constrained Equal
Losses solution (Maimonides 1180) is built to equalize the agents’ absolute unfulfilled
demand. For the sake of completeness, we also mention that the proportional solution
equalizes the agents’ relative unfulfilled demand.

The two (Constrained Equal) solutions proposed by Maimonides (1180) have been
very relevant to build some alternative ‘hybrid’ solutions as the Talmud (Aumann and
Maschler 1985), the Piniles’ (Piniles 1861), or the αmin (Giménez-Gómez and Peris
2014) solutions, among others.1

Our aim in this paper is to delve into the knowledge of how the dual proposals
by Maimonides work. To this matter, we propose an expression that lightens the
computations needed to get these solutions. Our approach is also useful to better
understanding the conflict of interest between agents with a low demand (that prefer
to equalize awards) and those with a large demand (that prefer to equalize unfulfilled
demands). To be precise, for any given problem, when exploring the opinion of each
agent about two different solutions, we can consider two groups of agents: those
that prefer the proposal of the first solution and the ones preferring the distribution
associated with the second solution. When the two solutions are dual (Aumann and
Maschler 1985), this analysis becomes simpler because there is an agent, which we
identify as the ‘central claimant,’ exhibiting the following property: agents whose
demand does not exceed that of the central claimant prefer one of the solutions, while
the alternative solution is (weakly) preferred by agents whose demand exceeds that of
the central claimant.

The Constrained Equal Awards solution is characterized by a ‘common award’
parameter, usually denoted by λ, that each agent receives unless his demand is lower
than this amount, in which case he receives his claim in full. Similarly, the Constrained
Equal Losses solution is characterized by a ‘common loss’ parameter, usually denoted
by μ, that each agent discounts from his demand, unless it is lower than μ, in which
case he receives no amount. We explore the relationship between these two equalizing
parameters, and we find that for each given problem, it is mainly conditioned by the
relative degree of conflict (Alcalde and Peris 2022): the ratio between the aggregate
unfulfilled demand and the aggregate demand.

Our results clarify the relationship between the characteristic values λ and μ defin-
ing these solutions, and the agents associated with these parameters: the first agent

1 Alcalde and Peris (2022) provide a complete description of the main hybrid solutions obtained by com-
bining the Constrained Equal Awards and the Constrained Equal Losses solutions.

123



Equalizing solutions for bankruptcy problems revisited

obtaining exactly the uniform award λ, or the first agent exactly incurring in the uni-
form loss μ. These results are useful to better understanding these classical solutions
and also to define new solutions combining them. It is also remarkable that the central
claimant is precisely the agent with the lowest demand exceeding the value λ + μ.

The remaining of the paper is organized as follows: Section 2 introduces the main
definitions. Section 3 contains our main results. Section 4 analyzes who is the central
claimant in a bankruptcy problem. Finally, Sect. 5 concludes by introducing a new
solution, the Consensus-Weighted solution, that combines the two constrained equal
solutions according to their ‘relative popularity.’

2 Preliminaries

We consider a group of agentsN = {1, . . . , i, . . . , n}, to be named the creditors, that
have to distribute among them a certain amount E ≥ 0 of a perfectly divisible good,
called the estate. Each creditor exhibits a claim ci ≥ 0 on the estate. A bankruptcy
occurs when E is not enough to cover all the creditors’ claims:2 E ≤ C ≡ ∑n

j=1 c j .
Throughout this paper, we assume that the set of creditorsN is fixed. This allows to

describe a bankruptcy problem as a pair (E; c) ∈ R+ × R
n+ such that E ≤ ∑n

j=1 c j .
Without loss of generality, we will concentrate on problems in which creditors are
labeled according to their claims, that is, we assume that ci ≤ c j whenever i < j . Let
B denote the set of such bankruptcy problems.

A solution for bankruptcy problems, or simply a solution, is a single-valued function
ϕ : B → R

n+ such that for each given bankruptcy problem (E; c) ∈ B,

(a) 0 ≤ ϕi (E; c) ≤ ci for each creditor i ; and
(b)

∑n
j=1 ϕ j (E; c) = E .

Aumann and Maschler (1985) introduced the notion of duality for bankruptcy
solutions capturing the following idea. Given a problem (E; c), solved according
to solution ϕ, creditor i incurs in a loss of �i = ci − ϕi (E; c). Provided that
E ≤ C = ∑n

j=1 c j , the pair (L; c) = (C − E; c)has also the structure of a bankruptcy
problem, and thus (L; c) ∈ B. In this framework, we say that:

Definition 1 Solutions ϕ and ϕd are dual whenever for each problem (E; c) ∈ B

ϕ (E; c) + ϕd (C − E; c) = c. (1)

This description allows to define self-dual solutions as those whose dual solution
is the solution itself.

Definition 2 A solution ϕ is self-dual whenever for each problem (E; c) ∈ B

ϕ (C − E; c) = c − ϕ (E; c) .

2 A bankruptcy situation is genuinely declared when 0 < E < C . That is, the inequalities above become
strict and the amount to be distributed is strictly positive. Nevertheless, to avoid some technical problems,
we include here the degenerate cases where either there is nothing to be distributed, E = 0, or the creditors’
claims can be exactly reimbursed, E = C .
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It is well-known that the dual solution of the Constrained Equal Awards solution
is the Constrained Equal Losses solution, and vice versa. Therefore, none of these
two solutions is self-dual. Instead, the Proportional solution is self-dual. The next
subsections provide a formal definition for the Constrained Equal Awards and the
Constrained Equal Losses solutions, and describe intuitive algorithms to obtain these
solutions.

2.1 The Constrained Equal Awards solution

The Constrained Equal Awards solution assigns equal amounts to all creditors under
the restriction that none of them is awarded more than his claim.

Definition 3 The Constrained Equal Awards solution is the function ϕCE A : B →
R
n+ such that for each bankruptcy problem (E; c) ∈ B and any creditor i ∈ N ,

ϕCE A
i (E; c) = min {λ; ci }, where λ is the unique solution to

n∑

j=1

min
{
λ; c j

} = E . (2)

Equation (2) can be solved through a simple algorithm that we call the CEA algo-
rithm. Consider a given problem (E; c) and proceed as follows:

Step 1. If E ≤ nc1, assign each creditor i the (common) award ϕCE A
i (E; c) = E/n,

and stop. Otherwise, assign creditor 1 his claim, that is, ϕCE A
1 (E; c) = c1,

and proceed to step 2.
. . .

Step k. If E − ∑
j<k c j ≤ (n − k + 1) ck , assign each creditor i ≥ k the amount

ϕCE A
i (E; c) = E − ∑k−1

j=1 c j

n − k + 1
,

and stop. Otherwise, assign creditor k his claim ck and proceed to step k + 1.

Note that since (E; c) is a bankruptcy problem, there must be a step at which the
algorithm above stops. For a given problem (E; c), we denote by i (λ) the step at
which the CEA algorithm stops.

The solution λ of Eq. (2) is precisely the common award obtained at this final step.
That is, for a given problem (E; c),3

λ = E − ∑i(λ)−1
j=1 c j

n − i (λ) + 1
. (3)

3 From now on we adopt the convention that λ = E/n whenever i (λ) = 1.
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Remark 1 An alternative way to compute the solution of Eq. (2) comes from the
following formula. For a given problem (E; c), let us compute for each creditor i ∈ N

λi = E − ∑i−1
j=1 c j

n − i + 1
. (4)

The coefficient λi indicates the common award received by creditors after creditor i ,
if feasible: λi ≤ ci . The first elements in the sequence are:

λ1 = E

n
λ2 = E − c1

n − 1
λ3 = E − c1 − c2

n − 2
. . . .

Then,

λi+1 − λi = 1

(n − i)(n + 1 − i)

⎛

⎝E −
i∑

j=1

c j − (n − i)ci

⎞

⎠

Observe that from the definition of λ and i(λ)

E −
i∑

j=1

c j − (n − i)ci ≥ 0 ⇔ i ≤ i(λ)

and {λi } is an increasing sequence until it stabilizes at λ (when all creditors receive
the same amount) and then decreases. Hence, the connection between Eqs. (3) and (4)
comes from the fact that

λ = max
i∈N

λi .

�	
Although the stage i (λ) has been defined within the algorithm, we use to obtain

the Constrained Equal Awards solution, this stage does not depend on such algorithm.
Note that i (λ) denotes the first creditor such that, according to the Constrained Equal
Awards solution, receives an amount below his claim.4 Then, there is a configuration
like

creditor 1 2 . . . i (λ) − 1 i (λ) i (λ) + 1 . . . n
claim c1 c2 . . . ci(λ)−1 ci(λ) ci(λ)+1 . . . cn
ϕCE A
i c1 c2 . . . ci(λ)−1 λ λ . . . λ

4 Since it can be the case that ϕCE A
i(λ)

(E; c) = λ = ci(λ), roughly speaking, i (λ) is the first creditor such

that for each E ′ < E , ϕCE A
i

(
E ′; c) < ci .
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2.1.1 An optimization approach (1)

Inspired by a result by Schummer and Thomson (1997) establishing that under the
Constrained Equal Awards solution, the variance of the amounts received by all the
creditors is minimal among all the possible solutions, and we present an alternative
way to obtain the Constrained Equal Awards solution, by solving an optimization
problem. For a given problem (E; c), let D (E; c) denote the set of its solutions, that
is

D (E; c) =
⎧
⎨

⎩
x ∈ R

n :
n∑

j=1

x j = E, 0 ≤ x j ≤ c j ∀ j ∈ N
⎫
⎬

⎭
,

then, from Schummer and Thomson (1997), ϕCE A(E; c) minimizes the variance in
D (E; c); that is, it minimizes

1

n

n∑

j=1

x2i − x̄2 = 1

n

n∑

j=1

x2i −
(∑n

j=1 xi

n

)2

= 1

n

n∑

j=1

x2i −
(
E

n

)2

.

Since the last term of the previous expression is constant, it can be removed from the
optimization problem, so we get that the Constrained Equal Awards solution can be
obtained as5

ϕCE A(E; c) = argmin
x

||x ||
s.t.

∑n
j=1 x j = E

0 ≤ x j ≤ c j ∀ j ∈ N

⎫
⎪⎬

⎪⎭
.

�	

2.2 The constrained equal losses solution

The Constrained Equal Losses solution ϕCEL is also inspired by an egalitarian crite-
rion, but is based on what each creditor fails to recover. This solution aims to equalize
the (absolute) level of dissatisfaction among creditors, under the assumption that none
of them is awarded a negative amount.

Definition 4 The Constrained Equal Losses solution is the function ϕCEL : B →
R
n+ such that for each bankruptcy problem (E; c) ∈ B and any creditor i ∈ N ,

ϕCEL
i (E; c) = max {ci − μ; 0}, where μ is the unique solution to

n∑

j=1

max
{
c j − μ; 0} = E . (5)

5 For a given vector x ∈ R
n , ‖x‖ stands for its length, ‖x‖ =

√
√
√
√

n∑

i=1

x2i .
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For any given problem (E; c), parameter μ in Eq. (5) can be easily computed
through the CEL algorithm below.

Step 1. Denote L1 = ∑n
j=1 c j − E . If L1 ≤ nc1, assign each creditor i the award

ϕCEL
i (E; c) = ci − L1/n, and stop. Otherwise, award creditor 1 the amount

ϕCEL
1 (E; c) = 0, and proceed to step 2.

. . .

Step k. Denote Lk = ∑n
j=k c j − E . If Lk ≤ (n − k + 1) ck , assign each creditor

i ≥ k the award

ϕCEL
i (E; c) = ci − Lk

n − k + 1
.

and stop. Otherwise, award creditor k the amount ϕCEL
k (E; c) = 0, and

proceed to step k + 1.

Note that since (E; c) is a bankruptcy problem there must be a step at which the
algorithm above stops. We denote by i (μ) the step at which the CEL algorithm stops.

The solution μ of Eq. (5) is precisely the common loss obtained at this final step.
That is, for a given problem (E; c),

μ =
∑n

j=i(μ) c j − E

n − i (μ) + 1
. (6)

Remark 2 As illustrated in Remark 1, we can provide an alternative way to compute
the solution of Eq. (5) that comes from the following formula. For a given problem
(E; c), let compute for each creditor i ∈ N

μi =
∑n

j=i c j − E

n − i + 1
. (7)

The coefficient μi indicates the common loss incurred by creditors after creditor i , if
feasible: μi ≤ ci . The first elements in the sequence are:

μ1 =
∑n

j=1 c j − E

n
μ2 =

∑n
j=2 c j − E

n − 1
μ3 =

∑n
j=3 c j − E

n − 2
. . . .

Then,

μi+1 − μi = 1

(n − i)

(

ci − E − ∑i
j=1 c j

n + 1 − i

)

Observe that from the definition of μ and i(μ)

ci − E − ∑i
j=1 c j

n + 1 − i
≥ 0 ⇔ i ≤ i(μ)
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and {μi } is an increasing sequence until it stabilizes at μ (when all creditors lose
the same amount) and then decreases. Then, the connection between Eqs. (5) and (7)
comes from the fact that

μ = max
i∈N

μi .

�	
As in the case of the Constrained Equal Awards, the stage i (μ)we use to obtain the

Constrained Equal Losses solution does not depend on such algorithm. Note that i (μ)

denotes the first creditor receiving some positive amount.6 Therefore, agents with a
label lower than i (μ) do not obtain a positive award.

creditor 1 2 . . . i (μ) − 1 i (μ) i (μ) + 1 . . . n
claim c1 c2 . . . ci(μ)−1 ci(μ) ci(μ)+1 . . . cn
ϕCEL
i 0 0 . . . 0 ci(μ) − μ ci(μ)+1 − μ . . . cn − μ

The relationship between the position of stages i (λ) and i (μ) defining both solu-
tions is analyzed in Sect. 3.

2.2.1 An optimization approach (2)

Aswe illustrated for theConstrainedEqualAwards solution, there is an alternativeway
to compute the Constrained Equal Losses solution through solving an optimization
problem. In this case,

ϕCEL(E; c) = argmin
y

||c − y||
s.t.

∑n
j=1 y j = E

0 ≤ y j ≤ c j ∀ j ∈ N

⎫
⎪⎬

⎪⎭
.

�	

3 A comparison of the constrained equal solutions

The aim of this section is to obtain, for a given problem (E; c), a relationship between
the parameters λ andμ, as well as between the stages of the CEA and CEL algorithms
where λ and μ are determined. Before dealing with this objective, it is useful to define
the relative degree of conflict of (E; c), introduced by Alcalde and Peris (2022).

6 As we mentioned in footnote 4 for the case of i (λ), i (μ) is, roughly speaking, the first creditor such that
for each E ′ > E , ϕCE A

i

(
E ′; c) > 0.

123



Equalizing solutions for bankruptcy problems revisited

Definition 5 Given a problem (E; c) ∈ B, its relative degree of conflict is the ratio
between the excess demand and the aggregate claim:

γ (E; c) =
∑n

j=1 c j − E
∑n

j=1 c j
= L

C
.

Remark 3 Note that for each bankruptcy problem (E; c), γ (E; c) ∈ [0, 1]. Moreover,
the parameter γ (E; c) measures how strong the deficit associated with this problem
is. The smaller γ (E; c), the ‘lighter’ the problem associated with this bankrupt, in
the sense that the aggregate claim can be satisfied almost completely. Note that in the
extreme (degenerate) case where γ (E; c) = 0, each creditor would receive his own
claim and thus, strictly speaking, no bankruptcy problem occurs.

As we see below, when comparing the parameters λ and μ associated with the
ConstrainedEqualAwards andConstrainedEqualLosses solutions for a given problem
(E; c), it is very important to knowwhether the problem exhibits a high or a low degree
of conflict.

Theorem 1 For any given bankruptcy problem (E; c)

μ ≥ λ if and only if γ (E; c) ≥ 1

2
.

Proof For a given problem (E; c), let λ(E; c) and μ(E; c) denote the parameters
obtained when running the CEA and CEL algorithms for such a problem, respectively.

Assume that γ (E; c) < 0.5. Note that γ (E; c) < 0.5 if and only if 2E >
∑n

j=1 c j
and then E > L , where L = ∑n

j=1 c j − E is the aggregate loss in which creditors
incur when facing the problem (E; c).

As ϕCE A is order preserving and resource monotonic7 (see, for instance, Thomson
2019) we have that for each creditor i ∈ N , ϕCE A

i (E; c) ≥ ϕCE A
i (L; c), with the

inequality strict for creditor n. Therefore, λ(E; c) = ϕCE A
n (E; c) > ϕCE A

n (L; c) =
λ(L; c) = μ(E; c) where the last equality comes from the fact that ϕCE A and ϕCEL

are dual solutions.
To conclude, let us observe that γ (E; c) ≥ 0.5 if and only if 2E ≥ ∑n

j=1 c j and
then E ≥ L . Therefore, the arguments above can be replicated for the cases where
γ (E; c) = 0.5, or γ (E; c) > 0.5. �	

As an immediate consequence, we obtain the following result.

Corollary 1 Let (E; c) be a bankruptcy problem with γ (E; c) < 0.5 (respectively,
γ (E; c) > 0.5; γ (E; c) = 0.5). Then, the CEL algorithm stops not later (not before;
at the same time, respectively) than the CEA algorithm stops. That is, i (λ) ≥ i (μ)

(respectively, i (λ) ≤ i (μ); i (λ) = i (μ)).

7 A bankruptcy solution ϕ is order preserving if for each given problem (E; c) and any two creditors
i, j ∈ N , ϕi (E; c) ≤ ϕ j (E; c) whenever ci ≤ c j . Solution ϕ is resource monotonic if for each problem
(E; c) and any E ′, 0 ≤ E ′ ≤ E , ϕi (E

′; c) ≤ ϕi (E; c) for each creditor i ∈ N .
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Proof For (E; c) given, let λ = λ(E; c) and μ = μ(E; c) be the solutions for Eqs.
(2) and (5), respectively. Note that i (λ) = max

{
j ∈ N : c j < λ

} + 1. Similarly, we
note that i (μ) = max

{
j ∈ N : c j < μ

} + 1. Assume that γ (E; c) < 0.5. Then, by
Theorem 1, λ > μ and thus i (λ) ≥ i (μ). A similar argument applies when either
γ (E; c) > 0.5 or γ (E; c) = 0.5. �	

The following result establishes that the sum of both solutions is greater than the
claim for all creditors, or it is lower than the claim for all creditors, depending on the
value of the relative degree of conflict γ (E; c).
Theorem 2 Let (E; c) a bankruptcy problem. Then, either
(1) ϕCE A

i (E; c) + ϕCEL
i (E; c) ≥ ci for each creditor i ∈ N ; or

(2) ϕCE A
i (E; c) + ϕCEL

i (E; c) ≤ ci for each creditor i ∈ N .

Moreover, ϕCE A
i (E; c)+ϕCEL

i (E; c) = ci , for each creditor if and only if γ (E; c) =
0.5.

Proof It is well-known that the Constrained Equal Awards and the Constrained Equal
Losses are dual solutions; that is, for each bankruptcy problem (E; c), it holds that
ϕCE A (E; c) = c − ϕCEL

(∑n
j=1 c j − E; c

)
= c − ϕCEL (L; c). Then,

ϕCE A (E; c) + ϕCEL (L; c) = c.

On the other hand,

γ (E; c) ≥ 1

2
⇔ C − E

C
≥ 1

2
⇔ 2C − 2E ≥ C ⇔ C ≥ 2E ⇔ L ≥ E,

and the result follows straightforwardly, since both solutions fulfill resource mono-
tonicity (see, for instance, Thomson 2019). �	

It is important to note that the sum of the Constrained Equal Awards and the Con-
strained Equal Losses solutions cannot be greater for some agents and lower for some
other agents. Then, if we consider the average of these solutions:

ϕAv(E; c) = 1

2
ϕCE A(E; c) + 1

2
ϕCEL(E; c)

it holds that all agents receive at least half of his claim (whenever γ (E; c) ≤ 0.5), or
all agents receive at most half of his claim (whenever γ (E; c) ≥ 0.5).

Corollary 2 For each bankruptcy problem (E; c), and agent i ∈ N ,

(a) if γ (E; c) ≥ 0.5, then ϕAv
i (E; c) ≤ 1

2ci , and
(b) if γ (E; c) ≤ 0.5, then ϕAv

i (E; c) ≥ 1
2ci .

This property, that can be understood as a kind of half-claim reference, is shared
by some well known solutions, as the Proportional solution, that associates with each
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problem (E; c) the share of the estate ϕP (E; c) = (1 − γ (E; c)) c; or the Talmud
solution (Aumann and Maschler 1985), that fits the expression

ϕT (E; c) =
{

ϕCE A
(
E; 1

2c
)

if γ (E; c) ≥ 0.5
1
2c + ϕCEL

(
E − 1

2C; 1
2c

)
if γ (E; c) ≤ 0.5

4 Finding the central claimant

An interesting question about the Constrained Equal Awards and the Constrained
Equal Losses solutions is to which extent we can characterize the problems such that
more agents prefer the first solution. To this matter, for a given problem (E; c), we
define its central claimant as the agent z such that agents with a large claim prefer the
Constrained Equal Losses solution. Note that ties in claims are allowed, so to count
how many agents prefer each of these solutions, we select as the central claimant the
last one who does not prefer the Constrained Equal Losses (in the order we initially
prefixed, N = {1, . . . , i, . . . , n}, such that ci ≤ c j whenever i < j) .

Definition 6 Given a bankruptcy problem (E; c) ∈ B the central claimant is the
agent z ∈ N such that:

(a) ϕCE A
i (E; c) ≥ ϕCEL

i (E; c) for each i ≤ z, and
(b) ϕCE A

i (E; c) < ϕCEL
i (E; c) for each i > z.

Remark 4 Related to Condition (a), note that for any problem (E; c), and creditor i
such that ci = 0, it trivially follows that ϕCEL

i (E; c) = ϕCE A
i (E; c) = 0. Con-

dition (b) is imposed to determine which creditor is named the central claimant,
namely the last creditor, with positive claim, weakly preferring the distribution by
the Constrained Equal Awards solution to that determined by the Constrained Equal
Losses solution. Finally, from now on we consider problems (E; c) such that the
vector of (ordered) claims satisfies c1 < cn . Note that, otherwise, for each agent
i , ϕCEL

i (E; c) = ϕCE A
i (E; c) = E/n which trivially implies that n is the central

claimant.

From the configuration of both solutions (see tables in Sect. 2), we observe that if
for some individual i ∈ N , ϕCE A

i (E; c) ≥ ϕCEL
i (E; c), then for all j ∈ N such that

c j ≤ ci , it is also true that ϕCE A
j (E; c) ≥ ϕCEL

j (E; c). Therefore, the central claimant

z ∈ N is defined by the equation:8

cz − μ(E; c) ≤ λ(E; c) < cz+1 − μ(E; c),

which is equivalent to
cz ≤ λ(E; c) + μ(E; c) < cz+1. (8)

8 When the central claimant is z = n, this inequality becomes cn − μ(E; c) ≤ λ(E; c). Note that this only
holds when either E = 0 or E = C .
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Fig. 1 Graphs of λ (in dashed blue) and μ (in red) as a function of the estate (colour figure online)

That is, in a given problem (E; c), the sum of the common award and the common
loss, λ(E; c) + μ(E; c), determines the agent dividing those individuals that prefer
the Constrained Equal Awards from those preferring the Constrained Equal Losses.

To illustrate the above assertions, let us consider the following example.

Example 1 Let B5 the family of five-creditor problems (E; c) where the claims vector
is fixed as c = (5, 8, 13, 20, 34) and 0 ≤ E ≤ C = 80. Figure 1 illustrates how λ and
μ vary with the estate E .

Observe that according to Eq. (8) that characterizes the central claimant, the claim
of creditors 1 to 3 is always strictly lower than λ (E; c) + μ (E; c), so these creditors
always obtain a higher reimbursement when the estate is distributed according to
the Constrained Equal Awards rather than the Constrained Equal Losses solution, no
matter the amount of estate to be distributed. On the contrary, c5 ≥ λ (E; c)+μ (E; c)
for all E , and thus ϕCEL

5 (E; c) ≥ ϕCE A
5 (E; c). Creditor 4 deserves a deeper analysis.

For E ∈ [0, 70/3]∪ [170/3, 80] creditor 4 (weakly) prefers the distribution proposed
by the Constrained Equal Awards to that proposed by the Constrained Equal Losses.
However, this preference is reversed, that is, ϕCEL

4

(
E ′; c) > ϕCE A

4

(
E ′; c) whenever

the estate E ′ is in the interval (70/3, 170/3). Therefore for c = (5, 8, 13, 20, 34), the
central claimant for each estate, namely z (E; c), is

z (E; c) =
⎧
⎨

⎩

3 for E ∈ (70/3, 170/3)
4 for E ∈ (0, 70/3] ∪ [170/3, 80)
5 for E = 0 or E = 80

Figure 2 illustrates the above reasoning.

The above example invites to describe a simple procedure tofind the central claimant
for each problem. To proceed, we consider a given vector of claims c. We first identify
which creditors can be the central claimant, for an appropriate estate.We then compute
the ranks on the estate at which each of these creditors are the central claimant. Next,
we formalize this process.

For a claims vector c, and thus aggregate claim C = ∑n
i=1 ci , compute the equal-

izing parameters λ (C/2; c) = μ (C/2; c). Let z (0) denote the creditor i such that
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Fig. 2 Finding the central claimant

(a) ci ≤ 2λ (C/2; c), and
(b) for each j > i , c j > 2λ (C/2; c).
Define the sequence of creditors {z (k)}tk=1, t ≤ n, such that for each k < t , z (k)
is such that cz(k−1) < cz(k) < cz(k+1); and z (t) = n, the last creditor.9 Once these
creditors have been identified, we compute for each of them the two solutions for the
equation

cz(k) = λ
(
Ez(k); c

) + μ
(
Ez(k); c

)
, (9)

and denote them by E−
z(k) and E+

z(k), with E−
z(k) < E+

z(k). Note that in particular, for

the last creditor z (t) = n, we have E−
z(t) = 0 while E+

z(t) = C . Moreover, for each k,

E−
z(k) + E+

z(k) = C . Therefore, when confronting the solutions for all the equations, it
follows that

0 = E−
z(t) < E−

z(t−1) < · · · < E−
z(1) <

C

2
< E+

z(1) < · · · < E+
z(t−1) < E+

z(t) = C .

(10)

This allows to identify the central claimant for each problem (E; c) as follows. Given
the vector of claims c, once obtained the sequence of claimants z (0), z (1), . . . , z (k),
. . . , z (t) = n, the central claimant is:

z (E; c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z (0) for E ∈
(
E−
z(1), E

+
z(1)

)

z (1) for E ∈
(
E−
z(2), E

−
z(1)

]
∪

[
E+
z(1), E

+
z(2)

)

. . .

z (k) for E ∈
(
E−
z(k+1), E

−
z(k)

]
∪

[
E+
z(k), E

+
z(k+1)

)
∀k = 2, . . . , t − 1

z (t) for E = 0 or E = C

9 We are only interested in the claim of each creditor, since agents with equal claims will receive the same
amount. In case of a tie in the claims, we select the last creditor with this claim.
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As a consequence, we obtain the following result.

Proposition 1 For each bankruptcy problem with claims vector c, agent i ∈ N weakly
prefers the Constrained Equal Awards solution independently of the value of the estate
0 ≤ E ≤ C = ∑n

i=1 ci if and only if ci ≤ cz(0).

4.1 Additional features of (� + �) function

Consider, as illustrated by Example 1, the family of problems (E; c) associated with
a given vector of claims c, while the estate E varies from 0 to C = ∑n

i=1 ci . It can
be observed that the graphs shown in Figs. 1 and 2 are piece-wise linear. The step
points (where the slope changes) can be determined in general terms by the following
expressions:

(a) For λ (E), the (n − 1) step points follow the expression

xi =
i−1∑

j=1

c j + (n − i + 1) ci ;

(b) For μ (E), the (n − 1) step points follow the expression

yi =
n∑

j=n−i

c j − (n − i) ci .

Observe that for each k = 1, 2, . . . , n − 1,

xk + yn−k =
n∑

j=1

c j = C . (11)

This simplifies the computations needed to obtain all the step points since we only
need to compute the λ step points. If we order the 2n−2 step points from the smallest
to largest, say P = {p1, p2, . . . , p2n−2}, we obtain a partition of the possible values
of E ∈ (0,C). From (11), exactly half of these values are lower than or equal to C/2,
so

pn−1 ≤ C

2
≤ pn .

Moreover, as the slopes of λ and μ with respect to E are

s(λ) = 1

n − i(λ) + 1
and s(μ) = −1

n − i(μ) + 1

the step points occur when the variation in E gives that the CEA or the CEL algorithms
need an additional step to stop.
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Then, the slope in each interval determined from the above points is

s (λ(E) + μ(E)) = 1

n − i(λ) + 1
− 1

n − i(μ) + 1
.

If E ≤ C/2, then γ (E; c) ≥ 1/2 and i(λ) ≤ i(μ), so s (λ(E) + μ(E)) is negative.
Analogously, if E ≥ C/2, this slope is positive. So, by continuity of both λ (·) and
μ (·) with respect to E , the minimum value of λ(E) + μ(E) is reached at E = C/2.
Moreover, λ(E) + μ(E) is symmetric regarding the central value E = C/2 and
it is constant in the central interval

[
pn−1, pn

]
, since i(λ) = i(μ) and then for all

E ∈ [
pn−1, pn

]

min {λ(E) + μ(E) : E ∈ [0,C]} =
∑n

j=i(λ) c j − ∑i(λ)−1
j=1 c j

n − i(λ) + 1
.

With the data in Example 1, c = (5, 8, 13, 20, 34), the obtained step points and
intervals are:

x1 = 25 x2 = 37 x3 = 52 x4 = 66

y1 = 14 y2 = 28 y3 = 43 y4 = 55

p1 = 14 p2 = 25 p3 = 28 p4 = 37 p5 = 43 p6 = 52 p7 = 55 p8 = 66

The central interval [37, 43] provides the minimum value for λ(E; c) + μ(E; c). In
this interval, λ(E; c)+μ(E; c) is constant and then coincides with the value obtained
for the estate E = C/2 = 40, that is, minE {λ(E; c) + μ(E; c)} = 2λ(C/2; c) = 18.
Therefore, creditors 1, 2 and 3, with claims ci < 18, always prefer the Constrained
Equal Awards solution regardless of the value of the estate E .

5 Forgiving debts in bankruptcy solutions

To conclude the paper, we deal with a convex combination of the two ‘constrained
equal’ solutions according to the popular support that each one receives. To describe
this solution, we introduce some additional notation. For a given problem (E; c) ∈ B,
we denote

N A (E; c) =
{
i ∈ N : ϕCE A

i (E; c) > ϕCEL
i (E; c)

}
; and

N L (E; c) =
{
j ∈ N : ϕCEL

j (E; c) > ϕCE A
j (E; c)

}
,

the agents preferring to distribute the estate according to theConstrainedEqualAwards
or theConstrained Equal Losses solutions, respectively. Their cardinalities are denoted
by nA (E; c) and nL (E; c). Note that 0 ≤ nA (E; c) + nL (E; c) ≤ n. For the sake of
completeness, we denote byN I (E; c), with cardinality nI (E; c) = n − nA (E; c) −
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nL (E; c), the set of creditors being indifferent between the Constrained Equal Awards
and the Constrained Equal Losses solutions at problem (E; c).

In what follows, and just for interpretative purposes, we consider bankruptcy prob-
lems where no creditor exhibits a null claim, and the estate is strictly positive. Note
that, since claims are increasingly ordered, the central claimant is precisely creditor
z = n − nL (E; c).

Using the proportions of creditors supporting each solution, we can define the
Consensus-Weighted solution, a convex combination of the ϕCE A and ϕCEL solu-
tions, so that the coefficient of each solution is the relative popular support of such a
constrained equal solution.

Definition 7 We define the Consensus-Weighted solution for bankruptcy problems
as the function ϕCW : B → R

n+ associating each problem (E; c) the share of the estate

ϕCW (E; c) = nA (E; c)
nA (E; c) + nL (E; c) ϕCE A (E; c) + nL (E; c)

nA (E; c) + nL (E; c) ϕCEL (E; c) ,

(12)

when c1 < cn ; and ϕCW (E; c) = ϕCE A (E; c) = ϕCEL (E; c) when c1 = cn .

Remark 5 Note that for a problem (E; c) ∈ B, N A (E; c) = N L (E; c) = ∅ if and
only if c1 = cn . In this case, since nA (E; c) + nL (E; c) = 0, the expression in
Eq. (12) is not properly defined.

It is remarkable that from an equity perspective, the Consensus-Weighted solu-
tion exhibits a nice behavior. In particular, it is order-preserving because both the
Constrained Awards and the Constrained Equal Losses solutions satisfy this property.
Nevertheless, it fails to be continuous since the number of agents is finite.

Associatedwith this discontinuity,wefind that some agentsmight have incentives to
hide information about their true claim.10 The reason is that the Consensus-Weighted
solution fails to be claims monotonic. Just to illustrate this, and also to find a rationale
of such a behavior, consider a three-claimant instance where c = (100, 200, 302),
and E = 300. In this case we have that ϕCE A (E; c) = (100, 100, 100), while
ϕCEL (E; c) = (0, 99, 201). Therefore, N A = {1, 2} and N L = {3}, and thus
ϕCW (E; c) = (200/3, 299/3, 401/3). Now consider the situation where the claim
of creditor 3 diminishes from the (original) 302 to c′

3 = 298. Then, creditor 3’s
award raises to 166. The reason is that, even though both the Constrained Awards
and the Constrained Equal Losses solutions are claims monotonic, creditor 3, by
reducing his claim, forces the set of high claimants N L to become larger. That is
nL (E; c) < nL

(
E; c′). What is relevant for creditor 3 is that the benefit from increas-

ing the popularity of the Constrained Equal Losses solution exceeds the losses from
reducing his claim.

The arguments above suggest the interest of studying the following situation.
Consider a given bankruptcy problem (E; c). Assume that creditors might ‘for-
give’ (part of) their debt, so that i’s effective claim becomes 0 ≤ xi < ci . Once

10 Note that in a bankruptcy situation, a creditor might declare a claim xi lower than her true claim ci just
by ‘hiding’ some invoices. Nevertheless, no agent can justify a claim exceeding her credit.
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each creditor has declared his effective claim, the debtor should face an outlay of
O = min

{
E;∑n

i=1 xi
}
. Under these circumstances each creditor is awarded xi when

O = ∑n
j=1 x j < E . Otherwise, (E; x) describes a bankruptcy problem11 and agents

are rewarded according to the Consensus-Weighted solution. In this framework, it can
be relevant to explore which creditors select a reduced effective claim xi < ci . That is,
to analyze at which extent some agent has incentives to show a ‘forgiving’ behavior
when the estate is distributed according to the Consensus-Weighted solution. It is clear
that if creditor i is trying to manipulate, he will select some xi ≥ E − ∑

k �=i ck = x̂i .
In other case, his manipulation strategy might be tweaked by selecting x̂i and thus
reaching a higher award. Therefore, we have no loss of generality in our analysis
when assuming that the manipulating strategy xi by creditor i fits the boundary above.

To formalize our results, we introduce some simplifying additional notation. For a
given problem (E; c), agent i and effective claim xi < ci for this agent, (E; (xi , c−i ))

stands for the situation where i’s claim has been reduced from ci to xi ≥ 0 and other
claims remain unchanged. We abuse notation and describe, for each (E; (xi , c−i )),
and agent j

ϕCW
j (E; (xi , c−i )) =

{
c j if j �= i
xi if j = i

when xi < E − ∑
k �=i ck . Otherwise, ϕ

CW
j (E; (xi , c−i )) fits expression (12), in Def-

inition 7.

Definition 8 We say that creditor i manipulates (or profits from manipulating) ϕCW

at (E; c) via xi , xi < ci , whenever ϕCW
i (E; (xi , c−i )) > ϕCW

i (E; c).
For (E; c) given, λ and μ denote its equal awards and equal losses parame-

ters, respectively. For creditor i , and reduced claim xi , λ (xi ) and μ (xi ) denote the
equal awards and equal losses parameters for problem (E; (xi , c−i )) respectively.
In addition, since (E; c) is given, from now on, we denote nA = nA (E; c), nL =
nL (E; c), and nI = nI (E; c); for agent i and alternative claim xi < ci , nA (xi ) =
nA (E; (xi , c−i )), nL (xi ) = nL (E; (xi , c−i )), and nI (xi ) = nI (E; (xi , c−i )). Simi-
lar notation is employed hereafter for sets N A, N L and N I .

To understand the logic behind the manipulability of ϕCW , we introduce some
comparative statics insights. Consider a given problem (E; c) and assume that creditor
i , by following a forgiving behavior, declares a claim xi < ci . Since the two constrained
equal solutions are claims monotonic, creditor i , by selecting a forgiving strategy
xi < ci incurs in a ‘loss effect’ because ϕCE A

i (E; (xi , c−i )) ≤ ϕCE A
i (E; c), and

ϕCEL
i (E; (xi , c−i )) ≤ ϕCEL

i (E; c), and at least one of the inequalities is strict. For
interpretative purposes, we split this global loss effect as the addition of the CEA
loss effect, namely ϕCE A

i (E; c)−ϕCE A
i (E; (xi , c−i )), and the CEL loss effect, to be

described as ϕCEL
i (E; c) − ϕCEL

i (E; (xi , c−i )).
To definitively manipulate, creditor i needs to compensate the ‘loss effect’ by pro-

ducing a ‘popularity effect’ in which the solution preferred by i at problem (E; c)
11 We assume that the components of x are increasingly ordered. Otherwise, relabel the indices.
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reaches a higher popularity by the remaining creditors. This popularity effect trans-
lates into the following. Assume that the manipulating creditor i belongs to N A. By
the loss effect, i is also in N A (xi ). To be successful in his manipulation strategy xi ,
a necessary (but not sufficient) condition is that nA (xi ) > nA. Similar justification
applies for i ∈ N L , where the necessary condition becomes nL (xi ) > nL . As a con-
sequence of the above facts, we conclude that no creditor being indifferent between
the two constrained equal solutions is able to manipulate the Consensus-Weighted
solution.

Proposition 2 Assume that creditor i profits from manipulating ϕCW at (E; c) via xi .
Then, ϕCE A

i (E; c) �= ϕCEL
i (E; c).

Proof Assume that i profits frommanipulatingϕCW at (E; c)via xi andϕCE A
i (E; c) =

ϕCEL
i (E; c). Note that the Consensus-Weighted solution point-wise describes a con-

vex combination of the two constrained equal solutions,

ϕCW (E; c) = α (E; c) ϕCE A (E; c) + (1 − α (E; c)) ϕCEL (E; c) ,

where α (E; c) = nA/
(
nA + nL

)
captures the popularity of the Constrained Equal

Awards solution. This implies that ϕCW (E; c) = ϕCE A (E; c). Now, consider prob-
lem (E; (xi , c−i )).

ϕCE A
i (E; (xi , c−i )) ≤ ϕCEL

i (E; c) ϕCEL
i (E; (xi , c−i )) ≤ ϕCE A

i (E; c)

so, for any α ∈ [0, 1]

ϕCW
i (E; (xi , c−i )) ≤ αϕCE A

i (E; c) + (1 − α)ϕCEL
i (E; c) = ϕCW

i (E; c) ,

a contradiction. �	
We now describe the comparative statics associated with a reduction in i’s claim

from ci to xi ≥ x̂i . This is useful to explore at which extent creditor i is able to
manipulate ϕCW at (E; c) via xi .

Consider a given problem (E; c), a manipulating creditor i , and some forgiving
strategy xi ≥ x̂i . Then,

ϕCE A
i (E; (xi , c−i )) = min

{
xi , ϕ

CE A
i (E; c)

}
. (13)

The CEA loss effect for i , if any, is uniformly distributed among the creditors k �= i
truthfully constrained by the Constrained Equal Awards solution at (E; c).

For the case of theCEL loss effect, it is null for agentswith a low claim. In particular,
for the manipulating creditor i ,

ϕCEL
i (E; (xi , c−i )) = ϕCEL

i (E; c) = 0.

if and only ifμ ≥ ci . Nevertheless, for μ < ci , the CEL loss effect is positive. That is,
in the latter case, ϕCEL

i (E; (xi , c−i )) < ϕCEL
i (E; c). Moreover, when the CEL loss

123



Equalizing solutions for bankruptcy problems revisited

effect is positive, ϕCEL
k (E; (xi , c−i )) > ϕCEL

k (E; c) for each creditor k �= i such
that ck ≥ μ.

In particular, the above yields the following result.

Proposition 3 Assume that creditor i profits from manipulating ϕCW at (E; c) via xi .
If i ≤ z, then xi < λ.

Proof Assume that i ≤ z is a manipulating creditor. By Proposition 2, i /∈ N I which
implies that i ∈ N A. If i manipulates by selecting a forgiving strategy xi ≥ λ, Eq. (13)
implies that for each creditor k ∈ N , ϕCE A

k (E; (xi , c−i )) = ϕCE A
k (E; c). This also

applies for the manipulating creditor i .
Moreover, by the arguments above related to the CEL loss effect, for each k > z,

ϕCEL
k (E; (xi , c−i )) > ϕCEL

k (E; c) which implies that nA (xi ) ≤ nA and nL (xi ) ≥
nL , which contradicts that i is a manipulating creditor. �	

In the following proposition, we show thatwhen there is a creditorwho is indifferent
between both constrained equal solutions, then the Consensus-Weighted solution is
always manipulable (except for the trivial case in which all creditors have the same
claim).

Proposition 4 Assume nI > 0. Then, there is a creditor i who profits from manipulat-
ing ϕCW at (E; c) via xi < ci if and only if n I < n.

Proof Assume nI = n. This implies that c1 = cn , and thus, for each creditor k,

ϕCE A
k (E; c) = ϕCEL

k (E; c) = ϕCW
k (E; c) = E

n
.

So, for any α ∈ [0, 1]

ϕCW
i (E; (xi , c−i )) ≤ αϕCE A

i (E; c) + (1 − α)ϕCEL
i (E; c) = E

n
= ϕCW

i (E; c) ,

a contradiction.
Now, assume that nI < n. Since nI > 0, the three sets N A, N L , and N I are non-

empty. Denote by i the
(
n − nL + 1

)
-th creditor. That is, i is such that ϕCE A

i (E; c) <

ϕCEL
i (E; c), and ϕCE A

k (E; c) ≥ ϕCEL
k (E; c) for each k < i . Since 0 < nI , for

the central claimant z, we have that ϕCE A
z (E; c) = ϕCEL

z (E; c). This implies that
i = z + 1, and also that, for each k ≥ i , ϕCE A

k (E; c) = λ < ck . Moreover, for each
creditor k, and any xi , ck ≤ xi < ci , ϕCE A

k (E; (xi , c−i )) = ϕCE A
k (E; c).

We now explore the dynamics of the Constrained Equal Losses solution when
creditor i exhibits a forgiving behavior. For (E; c) given, denote by t the last creditor
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such that ct < μ.12 By construction, for xi ≥ (n − t) (ct − μ) + ci ,

ϕCEL
k (E; (xi , c−i )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕCEL
k (E; c) if k ≤ t

ϕCEL
k (E; c) + 1

n − t
(ci − xi ) if k > t, k �= i

ϕCEL
k (E; c) − n − t − 1

n − t
(ci − xi ) if k = i

Since cz ≥ max {λ, (n − t) (ct − μ) + ci } we have that, for each xi , cz ≤ xi < ci ,

(a) ϕCE A
z (E; (xi , c−i )) = ϕCE A

z (E; c); and
(b) ϕCEL

z (E; (xi , c−i )) > ϕCEL
z (E; c).

Since ϕCE A
z (E; c) = ϕCEL

z (E; c), taking into account that the two constrained equal
solutions are order preserving it follows thatN L (xi ) ⊇ N L ∪N I , and thus nL (xi ) ≥
nL + nI .

Taking into account that i ∈ N L ∩ N L (xi ),

ϕCW
i (E; (xi , c−i ))

= nA (xi )

n − nI (xi )
ϕCE A
i (E; (xi , c−i )) + nL (xi )

n − nI (xi )
ϕCEL
i (E; (xi , c−i ))

≥ nA

n
ϕCE A
i (E; c) + n − nA

n
ϕCEL
i (E; c) − n − nA

n

n − t − 1

n − t
(ci − xi ) .

(14)

Since i ∈ N A, and nI �= 0, it follows that

nA

n
ϕCE A
i (E; c) + n − nA

n
ϕCEL
i (E; c) > ϕCW

i (E; c) .

Define the function F : R → R where

F (xi ) = nA

n
ϕCE A
i (E; c) + n − nA

n
ϕCEL
i (E; c) − ϕCW

i (E; c)

−n − nA

n

n − t − 1

n − t
(ci − xi )

Since F is continuous and F (ci ) > 0 choose some ε > 0 such that for all xi ∈ Bε (ci ),
F (xi ) > 0. Select x̄i > max {cz, ci − ε}. Then, by Eq. (14), ϕCW

i (E; (x̄i , c−i )) >

ϕCW
i (E; c). �	
If there are no indifferent creditors, N I = ∅, the existence of a creditor that

can profit from manipulating the Consensus-Weighted solution is not guaranteed

12 That is, t is such that ct+1 ≥ μ, whereas ck < μ for each k < t . For completeness, we set t = 0 and
c0 = 0 when ck ≥ μ for each k ∈ N .
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and depends, roughly speaking, on the difference between the demand of the cen-
tral claimant and the next claim, cz+1 − cz . The following example illustrates this
situation.

Example 2 Consider a three-claimant instance where c = (100, 150, 240), and E =
180. In this case, we have that ϕCE A (E; c) = (60, 60, 60), while ϕCEL (E; c) =
(0, 45, 135). Therefore, N A = {1, 2} and N L = {3}, and thus ϕCW (E; c) =
(40, 55, 85). If creditor 3 sets x3 = 199, then ϕCE A (E; (x3, c−3)) = (60, 60, 60),
while ϕCEL (E; (x3, c−3)) = (10.33, 60.33, 109.33). Therefore, N A(x3) = {1} and
N L(x3) = {2, 3}, and thus ϕCW (E; c) = (26.88, 60.22, 92.88), so creditor 3 can
profit from manipulating since he gains by reducing some of his claim.

Consider now c = (100, 150, 480), and E = 180. In this case, we have that
ϕCE A (E; c) = (60, 60, 60), while ϕCEL (E; c) = (0, 0, 180). Therefore, N A =
{1, 2} and N L = {3}, and thus ϕCW (E; c) = (40, 40, 100). In this case, no creditor
can profit from manipulating.

A deeper analysis of the Consensus-Weighted solution, which is the aim of future
research, can describe the family of problems under which there is no forgiving behav-
ior benefiting a manipulating creditor.
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