
Journal of Computational Science 63 (2022) 101817

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

A parallel methodology using radial basis functions versus machine learning
approaches applied to environmental modelling
Violeta Migallón a, Francisco J. Navarro-González b, Héctor Penadés a, José Penadés a,∗,
Yolanda Villacampa b

a Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, Spain
b Departamento de Matemática Aplicada, Universidad de Alicante, Alicante, Spain

A R T I C L E I N F O

Keywords:
Numerical modelling
Parallel programming
Radial basis function
Machine learning

A B S T R A C T

Parallel nonlinear models using radial kernels on local mesh support have been designed and implemented
for application to real-world problems. Although this recently developed approach reduces the memory
requirements compared with other methodologies suggested over the last few years, its computational cost
makes parallelisation necessary, especially for big datasets with many instances or attributes. In this work,
several strategies for the parallelisation of this methodology are proposed and compared. The MPI commu-
nication protocol and the OpenMP application programming interface are used to implement the algorithm.
The performance of this methodology is compared with various machine learning methods, with particular
consideration of techniques using radial basis functions (RBF). Different methods are applied to model the daily
maximum air temperature from real meteorological data collected from the Agroclimatic Station Network of the
Phytosanitary Alert and Information Network of Andalusia, an autonomous community of southern Spain. The
obtained goodness-of-fit measures illustrate the effectiveness of this nonlinear methodology, and its training
process is shown to be simpler than those of other powerful machine learning methods.
1. Introduction

Mathematical models attempt to describe the human understanding
of real-world objects or systems in mathematical terms. The process
by which a simplified mathematical reality is obtained from a more
complex physical reality is known as modelling [1]. Since there are
conceptual models for which a formulation using analytical mathemat-
ical expressions is infeasible, various numerical approaches have been
proposed for the problem of modelling, including numerical modelling
methods and machine learning techniques [2].

Over the last few years, numerous methodologies for regression
problems have been devised based on the finite element method (FEM).
This method is used to compute an approximation of the real solution
to a differential equation by means of discretisation [3]. That is, given
a differential equation 𝐷(𝑓) = 𝑣, where 𝐷 is a differential operator
defined on a domain 𝛺, and 𝑓, 𝑣 belong to a functional space 𝑉 ,
FEM is used to transform 𝑉 to a finite space 𝑉ℎ with dim𝑉ℎ = 𝑄,
determined by discretisation (or a mesh), and the domain 𝛺 is parti-
tioned into 𝑁 subdomains such that 𝛺 = ∪𝑁

𝑖=1𝛺𝑖. The problem is then
reformulated as 𝐷(𝑓ℎ) = 𝑣ℎ, where 𝑓ℎ, 𝑣ℎ ∈ 𝑉ℎ. Hence, for a basis

∗ Corresponding author.
E-mail addresses: violeta@ua.es (V. Migallón), francisco.navarro@ua.es (F.J. Navarro-González), jhpm1@alu.ua.es (H. Penadés), jpenades@ua.es

(J. Penadés), villacampa@ua.es (Y. Villacampa).

𝐵ℎ =
{

𝜑1(𝑥), 𝜑2(𝑥),… , 𝜑𝑄(𝑥)
}

of 𝑉ℎ, the approximate solution has the
following form:

𝑓ℎ(𝑥) =
𝑄
∑

𝑖=1
𝑢𝑖 ⋅ 𝜑𝑖(𝑥). (1)

In this context, the basis functions are known as shape functions.
Discretisation implies that each shape function must satisfy a set of
conditions related to its values at a set of 𝑄 points called nodes {𝜁𝑗}

𝑄
𝑗=1,

that is, 𝜑𝑖(𝜁𝑗) = 𝛿𝑖𝑗 . In addition, 𝜑𝑖(𝑥) = 0 when the node 𝜁𝑖 is not part
of the element containing point 𝑥.

In its most general form, FEM is used to determine the values
𝑢𝑖 in (1) using weighted residual methods. Examples of well-known
weighted residual methods include the collocation, sub-domain, least-
squares, and Galerkin methods [4]. These methods have not only
been widely applied in diverse fields of engineering [5–8] but also in
other disciplines such as atmospheric modelling [9–11] or biological
modelling [12–15].

In previous works, authors have presented different methodologies
for regression problems based on FEM. For instance, the methodol-
ogy described in [16] uses FEM to generate a geometric model in
vailable online 10 August 2022
877-7503/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jocs.2022.101817
Received 11 February 2022; Received in revised form 27 June 2022; Accepted 2 A
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ugust 2022

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:violeta@ua.es
mailto:francisco.navarro@ua.es
mailto:jhpm1@alu.ua.es
mailto:jpenades@ua.es
mailto:villacampa@ua.es
https://doi.org/10.1016/j.jocs.2022.101817
https://doi.org/10.1016/j.jocs.2022.101817
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101817&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
an 𝑛-dimensional hypercube, which provides the basis for defining a
numerical methodology for studying and modelling complex systems.
The regression algorithm proposed in [16] used a least-squares ap-
proach and was applied to environmental problems. This numerical
methodology was improved in [17] through the use of the Lagrangian
FEM.

A Galerkin-based methodology was proposed in [18] that reduced
the algorithmic complexity of the methods developed in [16,17]. This
approach has been successfully applied in several problems related
to electrical and hydrodynamic engineering [18], and biological and
coastal engineering [19–21]. However, although the complexity of the
algorithm was reduced in relation to previous approaches, as the num-
ber of input variables or the mesh size was increased, the computational
cost made it impracticable for sequential processing. Hence, only small
datasets with few variables were considered in these works. To over-
come these drawbacks, a parallel version of this method was proposed
in [22]. This parallel Galerkin-based methodology was used to pre-
dict the compressive strength of lightweight aggregate concrete [23],
and outperformed a variety of machine learning techniques, including
artificial neural networks.

Recently, in [24], a new methodology based on radial basis func-
tions [25] was presented, in which the algorithmic complexity did
not depend on the mesh size but on the number of points used for
computation and the number of input variables (see Section 2 for
a comprehensive description of this methodology). The performance
of this scheme was analysed in [24] using two well-known datasets,
the Airfoil Self-Noise dataset and the Combined Cycle Power dataset,
both of which are available from the UCI Machine Learning Reposi-
tory [26]. The Airfoil Self-Noise dataset contains 1,503 instances, while
the Combined Cycle Power dataset contains 9,568 instances, and the
numbers of input variables were five and four, respectively. Although
this methodology can offer an alternative to the above techniques for
the study of complex systems, from a computational point of view
the complexity order of the algorithm still strongly limits its use.
Parallelisation is therefore necessary to solve realistic problems such
as the one addressed in this work. In particular, the problem studied
in this work involves modelling the daily maximum air temperatures
based on meteorological data provided by the Agroclimatic Station Net-
work of the Phytosanitary Alert and Information Network of Andalusia,
an autonomous community of Spain. Section 3 explains in detail the
characteristics of this area and the problem to be solved.

In the last decade of the twentieth century, machine learning meth-
ods began to be applied in the field of environmental sciences to extract
information from data. Nowadays, these techniques expect to have a
great impact on analysis and modelling in this field [2,27]. Hence, to
study the performance of the parallel nonlinear modelling algorithm
proposed in this work, our approach is compared with multiple linear
regression (MLR), artificial neural networks (ANN), 𝐾-nearest neigh-
bours (KNN) and support vector regression (SVR). Section 4 briefly
introduces these methods, and Section 5 explains the goodness-of-fit
measures used to compare these techniques. Section 6 describes and
analyses the parallel approaches put forward in this work. Section 7 dis-
cusses the numerical results obtained in this study, and shows that the
proposed methodology outperforms other techniques for the studied
problem. Lastly, some conclusions are presented in Section 8.

2. The nonlinear modelling method

In order to describe the method developed in [24], let us consider a
dataset of 𝑛 𝑑-dimensional real points, 𝑥(𝑖) ∈ R𝑑 , 𝑖 = 1, 2,… , 𝑛. Consider
that 𝑚 of these points (𝑚 < 𝑛), which form the set 𝐿, have an observed
dependent real value 𝑦𝑗 ∈ R. For the sake of simplicity, these 𝑚 points
are considered to be the first points in the dataset, that is, we have the
set:

{(𝑥(1), 𝑦), (𝑥(2), 𝑦),… , (𝑥(𝑚), 𝑦)} ⊂ 𝐿 × R. (2)
2

1 2 𝑚
Fig. 1. Decomposition of the domain 𝛺 = [0, 1]2 with a mesh formed by regular
elements with edge length ℎ = 1

6
.

This set is used as a training sample for the cross-validation process.
The remaining points are used as a test set:

𝑈 = {𝑥(𝑚+1), 𝑥(𝑚+2),… , 𝑥(𝑛)}, (3)

and are considered without the associated observed dependent values.
However, in the numerical experiments reported in Section 7, the
dependent values for the test set, 𝑦𝑗 ∈ R, 𝑚 + 1 ≤ 𝑗 ≤ 𝑛, are known
and will only be used to measure the goodness of fit of the model (see
Section 5).

The problem we are interested in involves determining a real func-
tion 𝑓 defined on the set 𝑉 = 𝐿 ∪ 𝑈 , which will be used to estimate
the observed values 𝑦𝑗 ∈ R, 𝑚 + 1 ≤ 𝑗 ≤ 𝑛, under the condition that
𝑓 (𝑥(𝑖)) = 𝑦𝑖, 𝑖 = 1, 2,… , 𝑚. The estimated value assigned to each point
𝑥(𝑖) ∈ R𝑑 is denoted by 𝑦̂(𝑥(𝑖)) ∈ R, 𝑖 = 1, 2,… , 𝑛.

The dataset is assumed to be normalised to the domain 𝛺 = [0, 1]𝑑 .
For FEM, we used a mesh formed by regular hypercubic elements with
edge length ℎ. We set the complexity parameter 𝑐 to the number of
elements in each dimension, such that ℎ = 1∕𝑐. The total number
of hypercubic elements is 𝑁 = 𝑐𝑑 , and the total number of nodes is
𝑄 = (𝑐+1)𝑑 . These 𝑁 elements and 𝑄 nodes are denoted as 𝛺 = ∪𝑁

𝑖=1𝛺𝑖

and
{

𝜁𝑗
}𝑄
𝑗=1, respectively.

Following [24], for interpolation over a mesh of finite elements, let
us consider the decomposition of the domain

(

{

𝛺𝑖
}𝑁
𝑖=1 ,

{

𝜁𝑗
}𝑄
𝑗=1

)

with
the associated shape functions

{

𝜑𝑗 (𝑥)
}𝑄
𝑗=1, that satisfy

𝑄
∑

𝑗=1
𝜑𝑗 (𝑥) = 1

𝜑𝑗 (𝜁𝑖) = 𝛿𝑗𝑖

⎫

⎪

⎬

⎪

⎭

.

Let 𝛷 also be a parameterised radial function, that is, a function
𝛷 ∶ R+ × R+ ⟶ R+ characterised by a parameter 𝜔 that meets the
conditions
∀𝜔 ≠ 0, lim

𝑟→∞
𝛷(𝑟, 𝑤) = 0

∀𝑟 ≠ 0, lim
𝑤→0

𝛷(𝑟, 𝑤) = 0

}

.

A natural choice for the parameter 𝜔 of the radial function is the
value corresponding to the element width ℎ. A well-known example of a

parameterised radial function is the Gaussian function 𝛷(𝑟, ℎ) = 𝑒−
(

𝑟
ℎ

)2

.
Hence, given a point 𝑥0 in the hypercube 𝛺𝓁 ⊂ 𝛺 with 2𝑑nodes

{𝜁𝓁𝑘}
2𝑑
𝑘=1 (see Fig. 1), the regression estimation 𝑦̂(𝑥0) associated with

the radial kernel 𝛷 and the decomposition of the domain
(

{

𝛺
}𝑁 ,
𝑖 𝑖=1

Journal of Computational Science 63 (2022) 101817V. Migallón et al.

𝑦

Fig. 2. Study area and spatial distribution of the automated weather stations.

{

𝜁𝑗
}𝑄
𝑗=1

)

is defined as the interpolation of the weighted averages of
the observed values on the nodes of 𝛺𝓁 ,

̂(𝑥0) =
2𝑑
∑

𝑘=1
𝜑𝓁𝑘

(𝑥0) ⋅ 𝑐∗(𝜁𝓁𝑘), (4)

where 𝑐∗(𝜁𝓁𝑘) can be computed as
𝑚
∑

𝑗=1

[

𝑐∗(𝜁𝓁𝑘) − 𝑦𝑗
]

⋅𝛷(‖𝑥(𝑗) − 𝜁𝓁𝑘‖, ℎ) = 0, 𝑘 = 1, 2,… , 2𝑑 . (5)

3. Study area and dataset

The area analysed in this work is the autonomous community of
Andalusia. This region of Spain, with an area of approximately 87,597
𝑘𝑚2 and over 8.5 million inhabitants, is located in the south of the
Iberian Peninsula (see Fig. 2). It is made up of eight provinces: Almería,
Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga and Sevilla. Its surface
area represents 16.7% of the Spanish territory, and approximately 2.3%
of the entire area of the European Union.

The geography of the western provinces is dominated by the
Guadalquivir river valley. The valley depression separates the Sierra
Morena in the north from the Bética mountain range in the southeast.
The western limit is determined by the Guadiana river, which separates
the province of Huelva from Portugal. Half of Andalusia is mountain-
ous: a third of its surface is at an altitude of more than 600 𝑚, and it
has 46 peaks exceeding 1,000 𝑚. The highest mountains in the Iberian
Peninsula are found in the Sierra Morena (Mulhacen and Veleta), and
exceed 3,400 𝑚.

Andalusia generally has a temperate Mediterranean climate char-
acterised by warm, dry summers and mild winters. However, the
orographic heterogeneity of this territory, bathed by both the Mediter-
ranean Sea and the Atlantic Ocean, generates a great variety of cli-
mates, including coastal, inland, mid-mountain and high-mountain
climates, and semi-arid and arid climates (see [28] for more details of
the classification of the Andalusian climatic zones).

We are interested in modelling the daily maximum air tempera-
ture in this region. Table 1 defines the input meteorological variables
involved in this problem, which are related to the relative air humid-
ity, the global radiation, the total rainfall, and the wind speed and
direction. The elevation and month variables are used as auxiliary
variables.

The climatic data used to analyse the behaviour of the algorithms
were obtained from the Agroclimatic Station Network of the Andalusian
Phytosanitary Alert and Information Network. These stations, equipped
with electronic sensors, provide useful daily climatological information
3

Table 1
Meteorological predictor variables.

Variable description Mean Min Max

Maximum relative humidity (%) 75.89 13.21 100.00
Minimum relative humidity (%) 31.10 4.59 100.00
Mean relative humidity (%) 52.61 10.60 100.00
Mean radiation (Wh∕m2) 1.03 0.00 2.96
Maximum wind speed (Km∕h) 15.33 0.00 83.90
Minimum wind speed (Km∕h) 0.01 0.00 13.12
Mean wind speed (Km∕h) 3.74 0.00 33.58
Total rainfall (mm) 0.98 0.00 78.40
Dominant wind direction 2.45 1.00 4.00

Table 2
Weather stations sited in Almería, Cádiz, Córdoba and Granada; descriptive statistics
of the daily maximum air temperature (◦C) from March to August (2017–2019).

Province Station Mean Min Max

Almería Nijar 27.14 13.90 41.39
Antas 26.70 12.12 38.36
Alhama de Almería 27.32 11.09 39.57
Abla 25.79 8.13 40.43

Cádiz Olvera 26.48 9.51 43.42
Jerez de la Frontera 27.22 14.21 42.42

Córdoba Nueva Carteya 27.72 9.90 43.47
La Rambla 29.10 10.96 44.67
Lucena 26.55 9.86 43.49
Carcabuey 26.89 8.88 43.88
Córdoba 28.48 11.83 45.93
Guadalcazar 29.63 12.40 44.54
Obejo 26.40 7.76 40.97
Dos Torres 26.95 7.20 43.49

Granada Iznalloz 25.76 5.82 41.70
Guadix 27.22 8.34 41.10
Motril 25.99 13.16 36.68
Alhama de Granada 23.69 5.89 39.86
Lecrín 25.18 9.52 39.00
Montefrío 25.12 6.86 41.25
Órjiva 27.42 12.11 40.33
Santa Fe 28.62 8.33 44.40
Zújar 25.84 6.68 41.74
Ugijar 25.96 11.79 41.20

for the control of pests and diseases. The data were downloaded from
https://juntadeandalucia.es/datosabiertos/portal.html. Daily maximum
air temperatures from March to August were extracted from the data
collected by 52 weather stations in Andalusia over three years (2017–
2019). After a cleaning process had been applied to correct any incon-
sistencies in the data and remove instances with missing values, our
dataset consisted of 27,988 data points.

The geographical distribution of these stations can be seen in Fig. 2,
while Tables 2 and 3 display the summary statistics for the daily
maximum air temperatures recorded by each station over the studied
period. Table 2 shows the mean, maximum and minimum values of this
variable for the stations sited in Almería, Cádiz, Córdoba and Granada,
while Table 3 shows these values for the stations in Huelva, Jaén,
Málaga and Sevilla.

4. Machine learning approaches

4.1. Multiple linear regression

A multiple linear regression (MLR) model can be expressed as

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑑𝑋𝑑 + 𝜖, (6)

where 𝑌 is the dependent variable, 𝑋1, 𝑋2,… , 𝑋𝑑 are the independent
or predictor variables, 𝛽0, 𝛽1, 𝛽2,… , 𝛽𝑑 are the regression coefficients
and 𝜖 is the random component of the model, that is, the unpre-
dictable part of the dependent variable. When a dataset of 𝑛 instances

https://juntadeandalucia.es/datosabiertos/portal.html

Journal of Computational Science 63 (2022) 101817V. Migallón et al.

l
g
v
p
s

Table 3
Weather stations sited in Huelva, Jaén, Málaga and Sevilla; descriptive statistics of the
daily maximum air temperature (◦C) from March to August (2017–2019).

Province Station Mean Min Max

Huelva Lepe 26.81 13.93 40.73
Bollullos 28.10 13.23 42.94
Aracena 27.67 9.04 45.93
Gibraleón 27.95 13.43 42.71
San Bartolomé de la Torre 27.23 8.88 42.39
Cartaya 27.51 14.31 42.54

Jaén Bedmar-Garcíez 26.21 7.85 42.74
Los Villares 24.93 5.82 40.27
Torres de Albánchez 26.71 5.63 42.63
Villacarrillo 26.39 5.63 42.83
Castillo de Locubín 26.71 7.62 42.40
Huelma 26.35 5.88 41.89
Peal del Becerro 28.47 6.94 44.30
Castellar de Santisteban 25.76 5.12 41.46
Baeza 26.38 7.14 42.13
Martos 28.36 9.03 45.16
Higuera de Arjona 29.28 7.89 44.46
Quesada 27.97 7.23 43.52

Málaga Casarabonela 27.67 10.45 40.43
Villanueva de Algaida 27.56 9.15 43.37
Rincón de la Victoria 25.86 14.86 41.00
Periana 25.73 9.44 40.34

Sevilla Sevilla 30.03 13.90 44.31
Alanis 25.75 8.63 41.85
El Saucejo 25.29 8.97 41.04
Puebla de los Infantes 28.73 11.36 44.70
Estepa 27.36 10.77 44.60
Puebla de Cazalla 26.71 10.59 43.48

is considered, the model defined in (6) can be written as follows:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑑𝑥𝑖𝑑 + 𝜖𝑖, 𝑖 = 1, 2,… , 𝑛.

To ensure the validity of a linear regression model, the relationship
between the dependent variable and each of the independent variables
must be linear, and the residuals 𝜖𝑖, 𝑖 = 1, 2,… , 𝑛, must be normally
distributed with E(𝜖𝑖) = 0 and Var(𝜖𝑖) = 𝜎2. It is also assumed that there
is no multicollinearity between predictor variables.

4.2. 𝐾-Nearest neighbours

The 𝐾-nearest neighbour (KNN) algorithms are supervised machine
earning algorithms that can be used for both classification and re-
ression problems. In the case at hand, which involves predicting the
alues of a quantitative variable 𝑌 from the values obtained for the
redictor variables 𝑋1, 𝑋2,… , 𝑋𝑑 , this algorithm considers a training
et, say {(𝑥(1), 𝑦1), (𝑥(2), 𝑦2),… , (𝑥(𝑚), 𝑦𝑚)}, with 𝑥(𝑖) = (𝑥𝑖1,… , 𝑥𝑖𝑑), 𝑖 =
1, 2,… , 𝑚, and seeks the 𝐾 shortest distances between the data to be
evaluated and the training data. More specifically, given a test instance
𝑥 ∈ R𝑑 , the distances 𝑑(𝑥(𝑖), 𝑥) for all 𝑖, 𝑖 = 1, 2,… , 𝑚, are computed
and sorted from lowest to highest. Then, the predicted value for the
test instance 𝑥, denoted as 𝑦̂(𝑥), is obtained as the average of the
outputs of its 𝐾 nearest neighbours (denoted as 𝑦𝑖(𝑥), 𝑖 = 1, 2,… , 𝐾).
That is, 𝑦̂(𝑥) = 1

𝐾
∑𝐾

𝑖=1 𝑦𝑖(𝑥). Different types of distance may be used
in the algorithm; in particular, for predicting values of continuous
variables, the Euclidean and Manhattan distances are the most well-
known. However, finding the optimal value of 𝐾 is not an easy task,
and this problem has received considerable attention in the literature
(see e.g., [29] and the bibliography cited therein).

4.3. Artificial neural networks

Artificial neural networks (ANN) are a set of useful techniques
in the field of machine learning that are based on biological neural
networks, and are used to model complex relationships between inputs
4

and outputs or to find patterns. Among the characteristics that differ-
entiate them from other machine learning methods are their ability to
learn dynamically and their fault tolerance. The simplest processing
element in a neural network is the neuron. Each neuron 𝑖 may have
multiple inputs, 𝑥1, 𝑥2,… , 𝑥𝑑 , and synaptic weights, 𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑑 . An
input or propagation function combines these inputs with their synaptic
weights, and an activation function is subsequently applied to the
obtained result to generate the corresponding output. One of the most
well-known input functions is the weighted sum of the inputs based on
the corresponding synaptic weights, such that for a neuron 𝑖, the input
function is defined as 𝑔𝑖(𝑥1, 𝑥2,… , 𝑥𝑑 , 𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑑) =

∑𝑑
𝑗=1 𝑤𝑖𝑗𝑥𝑗+𝜃𝑖,

where 𝜃𝑖 is a bias value. This value is treated as a weight whose input is
equal to 1. The output value of neuron 𝑖 can therefore be expressed as
𝑦𝑖 = 𝑓𝑖(

∑𝑑
𝑗=1 𝑤𝑖𝑗𝑥𝑗 + 𝜃𝑖), where 𝑓𝑖 is some activation function. Different

activation functions can be used depending on the characteristics of the
problem. Some of the most widely used are the sigmoid function, the
hyperbolic tangent function (tanh), the softmax function and the ReLU
(Rectified Linear Unit) function (see e.g., [30]).

Neural networks are usually organised into layers, each consisting
of a set of neurons such that the neurons in one layer may connect with
those in the anterior or posterior layer. There are three types of layers
in a neural network: the input layer, the hidden layers, and the output
layer. The neurons in the input layer receive the inputs and propagate
them to the next layer. The hidden layers form the intermediate layers,
while the output layer transfers the information from the network to
the outside, and gives the response for each input pattern.

To create the predictive model, a supervised and iterative learning
process is followed, starting with an initial configuration of the synaptic
weights. These weights are adjusted iteratively based on the inputs of
the training set. A loss function compares the output with the data
to be predicted. The learning algorithm seeks to find the weights of
the neural network that minimise this function; gradient descent is an
optimisation algorithm that is commonly used for this purpose. If the
output of the neural network is continuous, a widely used loss function
is the mean squared error (see e.g., [31]).

Since the proposed nonlinear modelling algorithm uses radial ker-
nels, the alternative ANNs analysed in this work are the radial basis
function (RBF) networks. In this way, the performance of both methods
when using RBFs can be compared. An RBF network is a type of feed-
forward ANN with three layers that uses RBFs as activation functions.
These functions are commonly used in function approximation and
regression problems. RBF networks are usually implemented using the
Gaussian function as an RBF (see e.g., [32]).

4.4. Support vector regression

Support vector machine (SVM) techniques are widely used for both
classification and regression problems. Based on an independent and
identically distributed training instance set, SVM classification tech-
niques aim to find a discriminant function that can correctly predict
new instances into a set of classes predefined for the output variable.
From a geometric point of view, this is equivalent to finding the equa-
tion for the multidimensional surface that best separates the different
classes in the feature space (see e.g., [33]). This discriminant technique,
which uses predefined kernel functions, maps the data onto a higher-
dimensional space before solving the machine learning task. From an
algorithmic point of view, the learning process of SVM is a convex op-
timisation problem in which the optimal solution is found analytically
rather than heuristically, such that for a predetermined kernel and a
given training dataset, the training phase returns a uniquely defined
model.

The support vector regression (SVR) technique is an extension of
the SVM classification algorithm that is used for regression problems, in
which the model outputs are continuous values [34]. In order to obtain
the estimated continuous-valued multivariate function, an 𝜖-insensitive

Journal of Computational Science 63 (2022) 101817V. Migallón et al.

S

region around the function, called the 𝜖-tube, is considered; the optimi-
sation problem then involves finding the tube that best approximates
it. In other words, SVR can be formulated as an optimisation problem
in which a multiobjective function is constructed from a convex 𝜖-
insensitive loss function and the geometrical properties of the tube. The
objective is to find the narrowest tube centred around the surface, while
minimising the prediction error (see e.g., [33]). In SVR, the estimation
function is obtained by mapping the input samples onto a higher-
dimensional feature space by means of a nonlinear mapping 𝜙 and
learning a linear regressor in the feature space [35]. More specifically,
given the training vectors 𝑥(𝑖) ∈ R𝑑 , 𝑖 = 1, 2,… , 𝑚, and a vector 𝑦 ∈ R𝑚,
we assume that the regression estimating function 𝑓 ∶ R𝑑 ⟶ R is
defined by 𝑓 (𝑥) = 𝜔𝑡𝜙(𝑥) + 𝑏, where 𝜔 is a vector in the feature space
and 𝑏 is a scalar threshold. Then, to determine the values of 𝜔 and 𝑏,
VR solves the following primal problem [33,36,37]:

min
𝜔,𝑏,𝜉,𝜉∗

1
2
𝜔𝑡𝜔 + 𝐶

𝑚
∑

𝑖=1
(𝜉𝑖 + 𝜉∗𝑖)

subjet to 𝑦𝑖 − 𝜔𝑡𝜙(𝑥(𝑖)) − 𝑏 ≤ 𝜖 + 𝜉𝑖,
𝜔𝑡𝜙(𝑥(𝑖)) + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉∗𝑖 ,
𝜉𝑖, 𝜉∗𝑖 ≥ 0, 𝑖 = 1, 2,… , 𝑚,

where 𝐶, 𝜖 ∈ R+ are input parameters and 𝜉, 𝜉∗ are nonnegative vectors
of slack variables. This optimisation problem can be solved in its dual
form using the Lagrange multipliers method, as follows:

min
𝛼,𝛼∗

1
2
(𝛼 − 𝛼∗)𝑡𝑃 (𝛼 − 𝛼∗) + 𝜖𝑒𝑡(𝛼 + 𝛼∗) − 𝑦𝑡(𝛼 − 𝛼∗)

subjet to 𝑒𝑡(𝛼 − 𝛼∗) = 0,
0 ≤ 𝛼𝑖, 𝛼∗𝑖 ≤ 𝐶, 𝑖 = 1, 2,… , 𝑚,

where 𝛼, 𝛼∗ ∈ R𝑚 are the Lagrange multipliers, 𝑒 is a vector of all ones
and 𝑃 is an 𝑚×𝑚 positive semidefinite matrix, with 𝑃𝑖𝑗 = 𝜙(𝑥(𝑖))𝑡𝜙(𝑥(𝑗)).

Then, by applying the kernel trick, that is, taking 𝐾(𝑥(𝑖), 𝑥(𝑗)) =
𝜙(𝑥(𝑖))𝑡𝜙(𝑥(𝑗)), where 𝐾 is a kernel function, the prediction of an input
vector 𝑥 ∈ R𝑑 is obtained as 𝑓 (𝑥) =

∑𝑚
𝑖=1(𝛼𝑖 − 𝛼∗𝑖)𝐾(𝑥(𝑖), 𝑥) + 𝑏.

To rewrite and solve the dual problem, several kernel functions
can be used depending on the characteristics of the dataset, such as
linear, polynomial or sigmoid functions or RBFs. Since the proposed
methodology uses Gaussian radial basis kernels on local mesh support,
its performance is compared with the SVR technique using Gaussian
RBF kernels. This kernel is defined as 𝐾(𝑥(𝑖), 𝑥(𝑗)) = 𝑒−𝛾‖𝑥(𝑖)−𝑥(𝑗)‖2 , where
the parameter 𝛾 > 0 must be determined in the training phase.

5. Criteria for model selection

In order to measure the goodness of fit of the models treated here,
the following parameters are considered, where 𝑦𝑖, 𝑖 = 1, 2,… , 𝑛,
denote the observed values, 𝑦̄ is the mean of the observed values,
𝑦̂𝑖, 𝑖 = 1, 2,… , 𝑛, are the predicted values, and 𝑑 is the number of
predictive variables in the model.

• Relative error,
∑𝑛

𝑖=1(𝑦𝑖−𝑦̂𝑖)
2

∑𝑛
𝑖=1(𝑦𝑖−𝑦̄)

2 . This goodness-of-fit measure is often
used to determine the performance of ANN.

• Determination coefficient, 𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖−𝑦̂𝑖)
2

∑𝑛
𝑖=1(𝑦𝑖−𝑦̄)

2 . This goodness-
of-fit coefficient is one of the most frequently used in linear re-
gression to measure the degree of linear correlation between two
variables, and can be interpreted as the proportion of variability
explained by the model. Note that the determination coefficient
in a linear least-squares regression with an intercept is equivalent
to the square of the correlation coefficient, and therefore takes
values between zero and one. However, outside of this context,
the determination coefficient may be negative.

• Adjusted determination coefficient or adjusted 𝑅2, 𝑅2
𝑎𝑑𝑗 = 1 −

𝑛−1
𝑛−𝑑−1 (1 − 𝑅2). This coefficient is better than the determination
coefficient for measuring the goodness of fit of models with
5

several independent variables.
• Mean squared error, MSE =
∑𝑛

𝑖=1(𝑦𝑖−𝑦̂𝑖)
2

𝑛 . This parameter reflects
the systematic deviation of both predicted and observed values,
as well as the precision of the prediction (see e.g., [38]).

• Root mean square error, RMSE =
√

∑𝑛
𝑖=1(𝑦𝑖−𝑦̂𝑖)

2

𝑛 . Although the
RMSE is an appropriate indicator to represent the performance of
the model, its sensitivity to outliers is the most common concern
(see e.g., [39]).

• Mean absolute error, MAE =
∑𝑛

𝑖=1 |𝑦𝑖−𝑦̂𝑖|
𝑛 . In some studies, the

MAE is considered a better measure of goodness of fit than the
RMSE (see e.g., [40]). Nevertheless, there are some circumstances
where using the RMSE is more beneficial (for example, when
the errors are normally distributed). Hence, it would be hard
to argue that one is better than the other. Instead, as discussed
in [39], a combination of metrics is often used to analyse the
model performance.

• Mean absolute percentage error, MAPE = 100
𝑛

∑𝑛
𝑖=1 |

𝑦𝑖−𝑦̂𝑖
𝑦𝑖

|. This
measure provides the error in terms of percentages. Both the
MAPE and the MAE are robust to the effects of outliers, due to
the use of absolute values in the formulae.

6. Parallel algorithms: Description and analysis

Due to the computational requirements of the methodology de-
scribed in Section 2, we are interested in the development of parallel
algorithms that can yield a considerable reduction in the computing
time. In essence, a parallel algorithm running on a parallel computer
can execute several operations simultaneously on different processing
units, and the partial results can eventually be communicated between
them. The outputs of all processing units are combined to obtain the
final result.

The parallel algorithms developed in this work are implemented
and analysed on a high performance computing (HPC) cluster with 20
nodes, HP Proliant SL390s G7, connected through a QDR Infiniband
low-latency network. Each computing node has two Intel XEON X5660
hexacores, with up to 2.8 GHz and 12 MB cache per processor, with
48 GB of RAM; that is, each node consists of 12 core processors. Hence,
the total number of available processing units is 240. The operating
system is CentOS Linux 5.6 for x86 (64 bit), and the algorithms are
implemented in the C++ language using the GNU C++ compiler known
as g++.

Following (4) and (5), the proposed methodology involves a loop
over all points to be estimated. Since there are no data dependencies
between the iterations of this loop, the computation of each estimated
value can be assigned to a different processing unit. There are typically
far fewer processing units than points to be computed, and a good
strategy for distributing the computation of all estimated values among
the available processing units is required.

The choice of strategy depends on the programming model used in
the parallel implementation. In this work, two programming models
are considered. The first is based on the use of the MPI (Message Pass-
ing Interface [41]) communication protocol for parallel programming;
in this case, the MPI interface is used both for distributed memory
parallelisation over the interconnected nodes and for shared memory
parallelisation within each node. In the second programming model,
in addition to the use of MPI for communications between nodes,
OpenMP (Open Multi-Processing [42]) is used within nodes. OpenMP is
a multithreading implementation that supports multi-platform shared-
memory multiprocessing. This last programming model, in which MPI
is used for data distribution among the nodes and OpenMP is applied
to exploit loop-level parallelism within each node, is called a hybrid
paradigm. Our parallel implementation of this hybrid model has no
MPI calls inside the OpenMP parallel regions, and follows a hybrid
master-only model (see e.g., [43,44]).

In the first parallel programming model, all processes are MPI pro-
cesses running on different cores of several nodes. We use the notation

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Algorithm 1 Parallel NLM-RK algorithm
1: Given a set of points defined in (2) and (3) normalised in the domain 𝛺 = [0, 1]𝑑 .
2: Given a complexity 𝑐 that determines a regular hypercubic decomposition of the domain

(

{

𝛺𝑖
}𝑁
𝑖=1 ,

{

𝜁𝑗
}𝑄
𝑗=1

)

with shape functions
{

𝜑𝑗 (𝑥)
}𝑄
𝑗=1.

3: Given a radial kernel 𝛷.
4: Let 𝑝 be the number of MPI processes.
5: Divide the 𝑛 points across the 𝑝 processes, each one with 𝑛𝑠, 1 ≤ 𝑠 ≤ 𝑝 points.
6: for 𝑠 = 1 → 𝑝 in parallel do
7: if dynamic then
8: #pragma omp parallel for schedule(dynamic, chunk-size)
9: else

10: #pragma omp parallel for schedule(static)
11: end if
12: for 𝑖 = ∑𝑠−1

𝑙=1 𝑛𝑙 + 1 →
∑𝑠

𝑙=1 𝑛𝑙 do
13: Initialise the estimated value 𝑦̂(𝑥(𝑖)) = 0.
14: Find the element 𝛺𝓁 of the mesh containing 𝑥(𝑖).
15: Find the 2𝑑 nodes of 𝛺𝓁 , namely 𝜁𝓁𝑘 , 1 ≤ 𝑘 ≤ 2𝑑 .
16: for 𝑘 = 1 → 2𝑑 do
17: Initialise 𝑛𝑜𝑑𝑒𝐸𝑠𝑡𝑖𝑚 = 0.
18: Initialise 𝑑𝑖𝑠𝑡 = 0.
19: for 𝑗 = 1 → 𝑚 do
20: Increment 𝑑𝑖𝑠𝑡 with 𝛷(||𝑥(𝑗) − 𝜁𝓁𝑘 ||, ℎ).
21: Increment 𝑛𝑜𝑑𝑒𝐸𝑠𝑡𝑖𝑚 with 𝑦𝑗 ⋅𝛷(||𝑥(𝑗) − 𝜁𝓁𝑘 ||, ℎ).
22: end for
23: Update the node estimate as 𝑛𝑜𝑑𝑒𝐸𝑠𝑡𝑖𝑚 = 𝑛𝑜𝑑𝑒𝐸𝑠𝑡𝑖𝑚∕𝑑𝑖𝑠𝑡.
24: Increment 𝑦̂(𝑥(𝑖)) with 𝑛𝑜𝑑𝑒𝐸𝑠𝑡𝑖𝑚 ⋅ 𝜑𝓁𝑘

(𝑥(𝑖)).
25: end for
26: end for
27: Communicate the 𝑛𝑠 estimated values to a central process.
28: end for
Fig. 3. Pure MPI and hybrid MPI+OpenMP parallel programming models.
𝑝 = 𝑠× 𝑡 to state that 𝑝 processes are running on 𝑠 nodes of the parallel
platform, such that 𝑡 MPI processes are assigned to 𝑡 different cores
of each node. In the second parallel programming model, the 𝑝 = 𝑠 × 𝑡
processes are assigned as follows. First, 𝑠 MPI processes are executed on
𝑠 nodes of the parallel platform. Then, for each MPI process, 𝑡 OpenMP
threads are started on 𝑡 different cores of the node. Fig. 3 illustrates
these models. Due to the characteristics of the HPC cluster, the values
of 𝑠 and 𝑡 are less than or equal to 20 and 12, respectively.

The computational resources required to compute each estimated
value are similar. Then, assuming that the processing units are ho-
mogeneous, the points to be estimated are distributed among the
MPI processes in such a way that each one gets approximately the
same amount of points. More specifically, the maximum difference
in the number of estimated values assigned to two MPI processes is
one. This data distribution is considered in both parallel programming
models. In addition, two scheduling strategies (dynamic and static) are
implemented when OpenMP is used within each node. In the dynamic
scheduling strategy, the loop over the points to be estimated on each
node is divided into groups of a user-determined size (called the chunk
6

size) that are assigned to the threads on a ‘first come, first served’
basis. In the static scheduling strategy, without specifying a chunk
size, OpenMP divides the loop into chunks of approximately equal
size. Algorithm 1 describes these parallel programming models and
scheduling strategies. Note that lines 7 to 11 of Algorithm 1 only apply
when OpenMP is used within nodes.

Algorithm 1 not only describes the computation of the test points
but also provides the estimation of the training points. In other words,
this algorithm computes all the points needed to accomplish the cross-
validation procedure. Note that the computational cost of each esti-
mated value in Algorithm 1 is on the order of 𝑂(𝑚 ⋅𝑑 ⋅ 2𝑑); this is lower
than for the previous methodologies presented in [17,18], which have a
computational cost per estimated value on the order of 𝑂(𝑑⋅(𝑐+1)3𝑑) and
𝑂(𝑑 ⋅ (𝑐+1)𝑑), respectively. Unlike these approaches, the computational
cost of the method presented in Algorithm 1 does not depend on the
selected complexity 𝑐 (see [24]).

A value of 𝑚 = 22,391 was selected for the reported numerical
experiments, meaning that an 80:20 ratio was used for the training and

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 4. Behaviour of the static and dynamic scheduling strategies for the hybrid MPI+OpenMP model.
test datasets in Algorithm 1. This partition was done by means of simple
random sampling.

Fig. 4 compares the static and dynamic scheduling strategies of
the hybrid MPI+OpenMP model, for several values of the chunk size.
Figs. 4(a) and 4(b) show the computing time (on two different vertical
axes) when 20 nodes (blue axis on the left) and 10 nodes (red axis
on the right) are used, respectively. The best dynamic scheduling
strategy was obtained by setting the chunk size to one. Moreover,
the computing time of the static scheduling strategy is comparable to
that of the best dynamic specification. These conclusions are consistent
with the fact that the dynamic scheduling strategy (with a chunk size
greater than one) may yield a difference in the load balancing when
all iterations have the same computational cost and the processing
units are homogeneous. To illustrate this, Figs. 4(c) and 4(d) show the
maximum number of points to be computed inside each core for the
static and dynamic scheduling strategies. It is clear that a good load
balance is achieved when this maximum is as small as possible. In this
case, each process is assigned approximately the same amount of points
to be estimated. It can be appreciated that these figures follow the same
pattern as in Figs. 4(a) and 4(b), which show the computation time in
each case; clearly, this time is closely related to the load distribution.
The effect of the load distribution on the execution time for several
scheduling strategies is illustrated in Fig. 5, which shows the execution
time taken to compute all points assigned to each processing unit. A
configuration of 240 = 20 × 12 processes is used in Fig. 5(a), while
Fig. 5(b) shows the results for a configuration of 60 = 10 × 6 processes.
The computing time for each processing unit remains within a small
interval regardless of whether the dynamic scheduling strategy with a
chunk size of one or the static specification is selected, that is, when a
load-balanced distribution is considered.

Fig. 6 compares the pure MPI model with the two best scheduling
strategies for the hybrid MPI+OpenMP model: the dynamic strategy
with a chunk size equal to one and the static scheduling strategy. This
figure shows the behaviour of these models when varying numbers of
nodes and cores are used. Fig. 6(a) shows the parallel execution times
when 12 cores are used in each node, and Fig. 6(b) presents the times
when six cores per node are used. It can be observed that a considerable
7

reduction in the computation time is achieved as the number of pro-
cessing units increases. Moreover, Fig. 6 shows similar performance for
the pure MPI and hybrid MPI+OpenMP parallel programming models.
However, in all cases, the best performance is achieved by the hybrid
MPI+OpenMP model with a dynamic scheduling strategy and a chunk
size of one. The differences between the pure MPI model and the hybrid
MPI+OpenMP model are less significant when six cores per node are
used. This is typical behaviour for pure MPI and hybrid MPI+OpenMP
models: the performance of the pure MPI version is better for low core
counts, but the hybrid version performs much better when the number
of cores is increased (see e.g., [45,46]).

The abovementioned findings from a performance comparison be-
tween both models and scheduling strategies can also be seen in Fig. 7,
which shows the speed-up and the parallel efficiency. The speed-up
when computations are performed with 𝑝 processing units is computed
as 𝑆𝑝 = 𝑇𝑠∕𝑇𝑝, where 𝑇𝑠 is the elapsed time when executing a program
on a single processor and 𝑇𝑝 is the execution time when 𝑝 processors are
used. The efficiency can be considered as the average utilisation of the
𝑝 allocated processing units, and is computed as 𝑆𝑝∕𝑝. Figs. 7(a) and
7(b) display the speed-up for the MPI model and several scheduling
strategies for the MPI+OpenMP model, for a range of nodes (10 to
20 nodes), using 12 and 6 cores per node, respectively. These speed-
ups are close to the perfect linear speed-up (𝑆𝑝 = 𝑝). Figs. 7(c) and
7(d) show the efficiency of those models for the full range of nodes
(1 to 20 nodes). All efficiencies remain close to one as the number of
processing units increases, thus indicating the good utilisation of the
parallel resources. For example, the average time needed to calculate
one point in the sequential mode is about 4.85 𝑠, while this is reduced
to 0.0214 𝑠 when 240 processing units are used.

Finally, it is interesting to explore the performance of the pure
MPI model when all processing units appear as a distributed memory
computing resource, and hence there is no possibility of using a hybrid
model. In this case, a maximum of 20 MPI processes can be assigned,
each to a node of the parallel resource. Fig. 8 displays, on two different
vertical axes, the speed-up (blue axis on the left) and the efficiency (red
axis on the right) of the MPI model for between 1 and 20 MPI processes.
These speed-ups are very close to the perfect linear speed-up, giving an
average efficiency of close to one (0.9975).

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 5. Computing time taken for each process of the hybrid MPI+OpenMP model, for several scheduling strategies.
Fig. 6. Comparison of parallel programming models for varying numbers of nodes and cores.
Fig. 7. Speed-up and efficiency of parallel programming models for varying numbers of nodes and cores.
7. Numerical experiments

To analyse the prediction performance of the proposed parallel
NLM-RK algorithm, four machine learning techniques are adopted as
8

benchmarks for comparison, using the real dataset described in Sec-
tion 3. MLR, KNN, ANN and SVR are used. Regression trees were
also explored, but these models failed to improve the performance of
the above machine learning models. Note that the high variance of
regression trees can produce poor predictive accuracy. Moreover, tree

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 8. Speed-up and efficiency of the pure MPI model.

Table 4
Descriptive statistics.

Variable description Median 𝑄1 𝑄3

Maximum air temperature (◦C) 27.54 21.49 33.09
Maximum relative humidity (%) 79.52 63.89 90.40
Minimum relative humidity (%) 27.27 18.6 40.35
Mean relative humidity (%) 51.67 39.08 65.67
Mean radiation (Wh∕m2) 1.07 0.84 1.23
Maximum wind speed (Km∕h) 15.34 10.64 20.29
Minimum wind speed (Km∕h) 0.00 0.00 0.00
Mean wind speed (Km∕h) 3.46 2.23 4.95
Total rainfall (mm) 0.00 0.00 0.00
Dominant wind direction 2.54 1.00 3.33
Elevation (m) 463.00 234.00 698.00

models are neither smooth nor continuous, meaning that they may not
be good at extrapolation. Hence, for the sake of simplicity, these results
are omitted.

To validate each model, the sample was split into two datasets: the
training set, which was used to estimate the new model, and a test set,
which was used to evaluate the predictive ability of the model. This
validation process was repeated 10 times, by randomly partitioning
the sample into 80% for training and a 20% for testing. For the
implementation and construction of the machine learning models, we
used Python and version 1.0.1 of the Scikit-learn API [47] for predictive
data analysis. In addition, IBM SPSS Statistics 26.0 [48] was used for
several statistical analyses.

A preliminary statistical analysis to test the normality of the quan-
titative variables was carried out using the Kolmogorov–Smirnov test
with the Lilliefors correction, and we concluded that there was evidence
to reject the assumption of normality. Hence, additional statistical
measures other than the mean were analysed. Table 4 displays the
median and the lower and upper quartiles for the input and target
variables.

The non-parametric Kruskal–Wallis H test was used to analyse
the significant differences in the daily maximum air temperature in
relation to the considered months or years, and the Mann Whitney
U test was applied to analyse the differences between each pair of
independent groups. As expected, the obtained results showed statisti-
cally significant differences in the distribution of the daily maximum
air temperature, both between months and between years, with the
differences being more noticeable between months (see Fig. 9). In
addition to the input topographic and meteorological variables shown
in Table 4, the month was therefore also used as an input variable for
predicting the maximum air temperature.

7.1. Machine learning models

In this section, we explore the performance of the MLR, KNN, RBF
networks and SVR in terms of obtaining the best models for predicting
the daily maximum air temperature in the climatological problem
considered here.
9

First, we analysed the MLR models. To validate these models, the
linearity and homoscedasticity were checked by means of a plot of
the standardised residuals versus the standardised predicted values,
and the normality of the residual distribution was checked with the
Kolmogorov–Smirnov test.

Table 5 summarises the first estimated MLR model, in which all in-
put variables were used to predict the daily maximum air temperature.
Although the 𝑡-tests showed that all input variables were significant in
the model and its adjusted 𝑅2 was 0.84, we detected multicollinearity
based on the variance inflation factor (VIF) and the tolerance of the
predictors (TOL). Note that in this table, the maximum VIF value and
the minimum TOL value are 30.664 and 0.033, respectively. Further-
more, this model contains five factors with a VIF value greater than
four (i.e., a TOL value less than 0.25).

To reduce multicollinearity, linking correlated features, several vari-
ables were iteratively removed. The estimated final MLR model is
explained in Table 6, where the maximum VIF value and minimum
TOL value are 1.907 and 0.524, respectively. Hence, with an adjusted
𝑅2 = 0.837, similar to that obtained in the full MLR model, this new
model does not have potential multicollinearity problems.

Fig. 10 shows the adjusted coefficient of determination and the
RMSE for the 10 random runs of the validation process. It can be
seen that these measures of the goodness of fit were similar for both
the training and test datasets, with a mean of approximately 0.84 for
the adjusted 𝑅2 and 3.04 for the RMSE, in addition to correcting the
multicollinearity detected previously. Table 7 summarises the different
measures of the goodness of fit obtained in the cross-validation pro-
cedure using the eight input variables in Table 6. The mean MAPE
obtained for the estimated MLR model was approximately 10.29%.

The methods analysed next were the KNN algorithms. More specif-
ically, a comparison of the prediction accuracy of the KNN algorithm
depending on the value of the parameter 𝐾 was conducted. The dis-
tances used in the KNN algorithm were the Euclidean and Manhattan
distances. Fig. 11 illustrates the behaviour of the algorithm for varying
values of 𝐾 from 1 to 50. Fig. 11(a) illustrates the variation in the
MAE for different values of K, and Fig. 11(b) displays the corresponding
RMSE.

Based on these measures, we can see that the KNN regression algo-
rithm with the Manhattan distance outperforms the algorithm using the
Euclidean distance. Moreover, the optimal value of 𝐾 in this problem
was 𝐾 = 9, with the cross-validation procedure giving a mean of
approximately 0.87 for the adjusted 𝑅2, 2.6965 for the RMSE and
2.0829 for the MAE (see Table 8, in which the different measures of
goodness of fit are summarised for the KNN models for 𝐾 = 3, 5, 9). All
of the models in this table outperform the best MLR model. In fact, the
mean values of MAPE obtained for the KNN models of this table are
less than the mean MAPE of the best MLR model, with a mean MAPE
of approximately 8.87% for the best KNN model.

Following our analysis of the machine learning methods, RBF net-
works were also used to predict the maximum air temperature from
the 11 predictive variables. To determine the number of neurons in
the hidden layer, architectures with between 1 and 211 neurons in the
hidden layer were built. Fig. 12 illustrates the behaviour of the relative
error (1 − 𝑅2) as the number of neurons increases. It can be seen that
the shape of the network affects the results. The best neural network
architectures were obtained for a number of neurons greater than or
equal to 260. To avoid the risk of overfitting, and taking into account
the empirical criteria recommended by different authors [49], the
smallest of the optimal values was considered, choosing an architecture
with 260 neurons in the hidden layer.

Fig. 13 explains the variation in the RMSE and MAPE for the 10
models generated with this architecture. It can be observed that no
significant differences were obtained for the training and test datasets.
Table 9 summarises several goodness-of-fit measures for this RBF net-
work, giving a mean of approximately 0.83 for the adjusted 𝑅2, 3.0918
for the RMSE, 2.4154 for the MAE, and 10.18% for the MAPE. Clearly,

Journal of Computational Science 63 (2022) 101817V. Migallón et al.

R
a

Fig. 9. Box plots of the daily maximum air temperatures.
Table 5
Full MLR model. Dependent variable: Maximum air temperature. Adjusted 𝑅2 = 0.840.

Unstandardised
coefficients

Standardised
coefficients

Collinearity
statistics

𝛽𝑖 Std. Error 𝛽𝑖 𝑡 Sig. TOL VIF

(Constant) 20.870 0.162 128.883 0.000
Maximum relative humidity 0.025 0.003 0.058 7.750 0.000 0.102 9.840
Mean relative humidity −0.097 0.006 −0.225 −16.990 0.000 0.033 30.664
Minimum relative humidity −0.129 0.004 −0.278 −34.267 0.000 0.086 11.561
Mean radiation 1.496 0.070 0.068 21.486 0.000 0.567 1.763
Maximum wind speed 0.048 0.004 0.059 11.661 0.000 0.226 4.417
Minimum wind speed 0.495 0.097 0.013 5.112 0.000 0.898 1.113
Mean wind speed −0.316 0.014 −0.115 −23.090 0.000 0.228 4.380
Total rainfall 0.021 0.005 0.012 4.260 0.000 0.744 1.345
Dominant wind direction 0.269 0.018 0.039 14.620 0.000 0.783 1.276
Altitude −0.005 0.000 −0.177 −68.595 0.000 0.852 1.173
Month 2.506 0.012 0.568 201.726 0.000 0.719 1.391
Table 6
Estimated MLR model. Dependent variable: Maximum air temperature. Adjusted 𝑅2 = 0.837.

Unstandardised
coefficients

Standardised
coefficients

Collinearity
statistics

𝛽𝑖 Std. Error 𝛽𝑖 𝑡 Sig. TOL VIF

(Constant) 19.596 0.141 138.819 0.000
Minimum relative humidity −0.203 0.002 −0.437 −131.000 0.000 0.524 1.907
Mean radiation 1.465 0.069 0.067 21.317 0.000 0.596 1.677
Minimum wind speed 0.363 0.097 0.009 3.742 0.000 0.917 1.090
Mean wind speed −0.168 0.007 −0.061 − 22.614 0.000 0.797 1.254
Total rainfall 0.026 0.005 0.014 5.117 0.000 0.748 1.336
Dominant wind direction 0.301 0.018 0.044 16.732 0.000 0.840 1.190
Altitude −0.004 0.000 −0.167 − 64.838 0.000 0.883 1.133
Month 2.568 0.012 0.582 208.952 0.000 0.752 1.329
Fig. 10. Estimated MLR model, 10 models randomly generated with an 80:20 ratio by means of simple random sampling.
BF networks fail to improve the performance of the KNN methods (see
lso Table 8).
10

s

Lastly, in the context of machine learning, SVR methods were

tudied. To obtain the best SVR model using RBF kernels, different

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 11. Comparison of KNN models, 1 ≤ 𝐾 ≤ 50.
Fig. 12. Relative error of the RBF networks for varying number of neurons in the hidden layer.
Fig. 13. Estimated RBF networks, 10 models randomly generated with an 80:20 ratio by means of simple random sampling.
values of the parameters 𝐶, 𝛾 and 𝜖 were analysed (see Section 4.4).
The parameter 𝛾 defines the influence of a single training example; the
larger this parameter, the closer other examples must be to be affected.
Hence, if 𝛾 is too large, there is a risk of overfitting, while a value
that is too small may cause underfitting [50]. The penalty parameter 𝐶
in the SVR model allows for a trade-off between the misclassification
of training examples and the simplicity of the decision surface. A low
11
value of 𝐶 makes the decision surface smooth, while a high value aims
at classifying all training examples correctly. Fig. 14(a) illustrates the
behaviour of the RMSE with varying values of 𝛾, where ‘‘auto’’ means
that 𝛾 = 1

𝑑 , and ‘‘scale’’ means 𝛾 = 1
𝑑 Var(𝑋) , where 𝑑 is the number of

input variables and Var(𝑋) is the variance of the input dataset. It can
be seen that regardless of the value of 𝐶, setting 𝛾 = 1

𝑑 Var(𝑋) produces
a competitive model.

Journal of Computational Science 63 (2022) 101817V. Migallón et al.

i
d
f
F
o

m
c
a
f
m
c

Table 7
Estimated MLR model, 10 models randomly generated with an 80:20 ratio by means
of simple random sampling. Statistical measures for test data.

Statistical measures Median Mean CI (95%)

𝑅2 0.8366 0.8368 [0.8345, 0.8392]
Adj. 𝑅2 0.8363 0.8365 [0.8342, 0.8389]
MAE 2.4104 2.4069 [2.3923, 2.4215]
MAPE 10.2962 10.2914 [10.2097, 10.3730]
RMSE 3.0475 3.0444 [3.0243, 3.0645]

Table 8
KNN model, 10 models randomly generated with an 80:20 ratio by means of simple
random sampling. Statistical measures for test data.

Model St. measures Median Mean CI (95%)

𝑅2 0.8508 0.8511 [0.8488, 0.8533]
𝐾 = 3 Adj. 𝑅2 0.8505 0.8508 [0.8485, 0.8531]
Euclidean MAE 2.2314 2.2294 [2.2155, 2.2433]
distance MAPE 9.4519 9.4298 [9.3700, 9.4897]

RMSE 2.9064 2.9085 [2.8905, 2.9265]

𝑅2 0.8551 0.8546 [0.8523, 0.8569]
𝐾 = 3 Adj. 𝑅2 0.8548 0.8543 [0.8520, 0.8566]
Manhattan MAE 2.2045 2.2037 [2.1900, 2.2175]
distance MAPE 9.3560 9.3542 [9.3027, 9.4057]

RMSE 2.8722 2.8741 [2.8572, 2.8911]

𝑅2 0.8619 0.8616 [0.8602, 0.8631]
𝐾 = 5 Adj. 𝑅2 0.8616 0.8614 [0.8660, 0.8628]
Euclidean MAE 2.1623 2.1628 [2.1515, 2.1741]
distance MAPE 9.1597 9.1633 [9.1269, 9.1997]

RMSE 2.8002 2.8036 [2.7930, 2.8142]

𝑅2 0.8662 0.8662 [0.8642, 0.8682]
𝐾 = 5 Adj. 𝑅2 0.8659 0.8659 [0.8640, 0.8679]
Manhattan MAE 2.1257 2.1239 [2.1092, 2.1385]
distance MAPE 9.0410 9.0251 [8.9705, 9.0796]

RMSE 2.7581 2.7568 [2.7396, 2.7740]

𝑅2 0.8669 0.8670 [0.8649, 0.8691]
𝐾 = 9 Adj. 𝑅2 0.8666 0.8667 [0.8647, 0.8688]
Euclidean MAE 2.1296 2.1287 [2.1143, 2.1431]
distance MAPE 9.0217 9.0283 [8.9716, 9.0850]

RMSE 2.7495 2.7486 [2.7314, 2.7658]

𝑅2 0.8721 0.8720 [0.8702, 0.8738]
𝐾 = 9 Adj. 𝑅2 0.8718 0.8717 [0.8699, 0.8735]
Manhattan MAE 2.0797 2.0829 [2.0693, 2.0964]
distance MAPE 8.8745 8.8668 [8.8065, 8.9271]

RMSE 2.6951 2.6965 [2.6810, 2.7121]

Table 9
RBF network, 10 models randomly generated with an 80:20 ratio by means of simple
random sampling. Statistical measures for test data.

Statistical measures Median Mean CI (95%)

𝑅2 0.8327 0.8310 [0.8269, 0.8351]
Adj. 𝑅2 0.8324 0.8306 [0.8266, 0.8347]
MAE 2.4032 2.4154 [2.3864, 2.4444]
MAPE 10.1888 10.1774 [10.0424, 10.3125]
RMSE 3.0733 3.0918 [3.0602, 3.1234]

The parameter 𝜖 specifies the epsilon tube, within which no penalty
s allocated in the training loss function to points predicted within a
istance of 𝜖 from the actual value. Fig. 14(b) shows the obtained RMSE
or both the training and test datasets, for 𝜖 = 0.1 and varying 𝐶.
ig. 14(c) displays the behaviour of the RMSE for varying 𝜖 and the
ptimum values of 𝐶 and 𝛾.

An exhaustive analysis of these parameters shows that an optimal
odel is achieved with 𝐶 = 20, 𝛾 = 1

𝑑 Var(𝑋) and 𝜖 = 0.01, where the
ross-validation procedure gives a mean of approximately 0.88 for the
djusted 𝑅2, 2.6146 for the RMSE, 2.1687 for the MAE and 8.59%
or the MAPE (see Table 10). For the problem studied here, this SVR
odel outperformed all of the machine learning models previously
12

onsidered.
Table 10
RBF SVR model, 10 models randomly generated with an 80:20 ratio by means of simple
random sampling, 𝐶 = 20, 𝛾 = 1

𝑑 Var(𝑋)
.

Statistical measures Median Mean CI (95%)

𝑅2 0.8789 0.8797 [0.8782, 0.8811]
Adj. 𝑅2 0.8786 0.8794 [0.8780, 0.8809]

𝜖 = 0.01 MAE 2.1672 2.1687 [2.1576, 2.1798]
MAPE 8.5798 8.5923 [8.5163, 8.6683]
RMSE 2.6164 2.6146 [2.5975, 2.6317]

𝑅2 0.8734 0.8733 [0.8720, 0.8747]
Adj. 𝑅2 0.8732 0.8732 [0.8718, 0.8744]

𝜖 = 0.1 MAE 2.1331 2.1314 [2.1225, 2.1403]
MAPE 8.9587 8.9610 [8.9011, 9.0209]
RMSE 2.6815 2.6824 [2.6697, 2.6952]

Table 11
NLM-RK model, 10 models randomly generated with an 80:20 ratio by means of simple
random sampling. Statistical measures for the test data.

Statistical measures Median Mean CI (95%)

𝑅2 0.8683 0.8687 [0.8664, 0.8710]
Adj. 𝑅2 0.8680 0.8684 [0.8661, 0.8707]
MAE 2.0768 2.0700 [2.0560, 2.0840]
MAPE 8.6950 8.7238 [8.6206, 8.8270]
RMSE 2.6728 2.6640 [2.6465, 2.6815]

7.2. Analysis of the behaviour of NLM-RK models and comparison with
machine learning models

Parallel nonlinear models using radial kernels on local mesh support
were tested based on the complexity chosen in the methodology (see
Algorithm 1). Fig. 15 shows the performance of these models depending
on the selected complexity.

The behaviour is consistent with that reported in [24], with the
training errors being smaller than the testing errors. Specifically, for our
climatological problem, the smallest differences between the training
and test datasets were obtained by setting the complexity to about 20.

To avoid overfitting and underfitting, a complexity of between 20
and 30 can be selected in the model; in the testing phase, the best
results were obtained with a complexity of 30. Table 11 summarises
different goodness-of-fit measures for this complexity, obtained from
the same cross-validation procedure as in the previous section. The
adjusted 𝑅2, MAE, MAPE, and RMSE values were obtained for the 10
models that were randomly generated using 80% of the sample for
training and the remainder for testing. Similar results were obtained
for the 10 models, which gave the following mean values after the
validation procedure: an adjusted 𝑅2 of 0.8684, a MAPE of 8.72%, a
MAE of 2.07 and an RMSE of 2.664.

Fig. 16 compares the performance of this model with that obtained
when each province is considered separately. To create this last model,
we split the dataset into eight smaller sets containing the instances
relative to the corresponding province. For each of these datasets,
the cross-validation process was carried out and the goodness-of-fit
measures were computed. No significant differences were obtained, and
the same mean values for the goodness-of-fit measures were obtained
as in the previous model (the global model in Fig. 16).

In accordance with the results presented in Section 7.1, the worst
models for predicting the maximum air temperature were the MLR
models and the RBF networks, with mean values for the MAPE of
10.29% and 10.18%, respectively (see Tables 7 and 9 in Section 7.1).

The NLM-RK model gave similar performance to the best SVR model
(with 𝐶 = 20, 𝜖 = 0.01 and 𝛾 = 1

𝑑 Var(𝑋)), which achieved values for the
RMSE of 2.66 and 2.61, respectively. In addition, the NLM-RK model
outperformed the KNN models and the rest of the machine learning
models analysed in Section 7.1. In particular, as can be seen from
Fig. 17, the RBF SVR model achieved the smallest RMSE and MAPE,

while the NLM-RK model achieved the smallest MAE with a mean

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 14. RMSE for the RBF SVR models.
Fig. 15. NLM-RK model generated with an 80:20 ratio by means of simple random sampling. Goodness-of-fit measures for the training and test datasets.
of 2.07. Unlike neural networks, these techniques are deterministic
algorithms, in the sense that for a specific selection of parameters or
hyperparameters, the estimated model depends only on the experimen-
tal dataset; that is, there are no differences between two runs of the
method.

Regarding the computational cost, the best parallel NLM-RK algo-
rithm required approximately 9.97 min to estimate all points of the
13
dataset. The SVR model took approximately 6.24 min, using the best set
of parameters. However, the determination of the optimal parameters
for SVR models is a more complex and arduous task than finding the
optimal value for the complexity of the NLM-RK algorithm, meaning
that a wrong choice of 𝐶, 𝛾 or 𝜖 can greatly reduce the performance of
the SVR model (see Fig. 14(b) and Table 10 in Section 7.1), whereas a
competitive value of the complexity in the NLM-RK algorithm can be

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Fig. 16. NLM-RK model, 10 models randomly generated with an 80:20 ratio by means of simple random sampling. Statistical measures for the test data for provinces.
Fig. 17. Comparison of the best models.

easily obtained by performing a few initial iterations of the algorithm.
In fact, this preprocessing time is practically negligible: for example,
performing 240 initial iterations with the above-selected 80:20 ratio
takes only about 0.18 𝑠 in parallel mode. However, the number of
experiments needed to obtain an optimal SVR model gives rise to a
high computational cost, and a total running time that is greater than
for the NLM-RK algorithm.

8. Conclusions

In this work, a parallel RBF-based methodology (NLM-RK model)
has been proposed to overcome the usage limitations imposed by the
computational cost of some current FEM-based methodologies [16–18,
22,23]. The parallel NLM-RK methodology is applicable to the mod-
elling of real-world objects or systems by means of a numerical method
that is not subject to the problem at hand. Its computational cost does
not depend on the complexity, that is, on the number of elements in
each dimension of the domain. Nevertheless, the model may obtain
different levels of prediction accuracy depending on the complexity
and the problem dataset used. For each experimental dataset, we can
obtain a competitive value for the complexity by performing a few
initial iterations of the algorithm. In future work, we will investigate
the development of a heuristic framework to derive suitable values for
the complexity parameter in real time.

This parallel approach, based on the methodology proposed in [24],
not only reduces the computational complexity compared to previ-
ous methodologies but also allows the modelling of problems that
are larger than those considered in the abovementioned papers. The
proposed parallel algorithms use two different strategies. The first
uses MPI for parallel programming, while the second uses a hybrid
paradigm in which MPI and OpenMP are combined. The best results
were obtained when a hybrid MPI+OpenMP model was selected, using
a dynamic scheduling strategy with a chunk size equal to one or a
14
static strategy. The performance of the pure MPI model was compa-
rable to that of the best hybrid model. Both parallel programming
models achieved good utilisation of the parallel resources, with an
efficiency close to one. The experimental problem treated here involves
an attempt to model the daily maximum air temperature in Andalusia,
an autonomous community of Spain. Data were obtained from the
Agroclimatic Station Network of the Andalusian Phytosanitary Alert
and Information Network, and the final dataset had 27,988 instances
and 11 input attributes.

The modelling performance of the proposed parallel NLM-RK algo-
rithm was compared with the performance of four well-known machine
learning techniques. MLR, KNN, SVR algorithms and RBF networks
were implemented and evaluated to select the best machine learning
models. The cross-validation procedure showed that the MLR models
and RBF networks were the worst techniques in terms of modelling the
maximum air temperature, as they achieved a MAPE slightly greater
than 10%. However, the NLM-RK model, with a MAPE of approximately
8.72%, a MAE of 2.07, and an RMSE of 2.664, obtained similar perfor-
mance to the best SVR model, and outperformed both KNN and the
other SVR models. Since determining the optimal complexity for the
NLM-RK methodology is much less complex and costly than searching
for the optimal parameters of the SVR model, our parallel NLM-RK
model is shown to be a competitive method, in which the computing
time is drastically reduced as the number of processing units increases.
An extension that could be explored in the near future is the use of
more powerful multicomputers and graphics processing units (GPUs).
The design of new parallel approaches for the NLM-RK model will be
studied using these architectures.

CRediT authorship contribution statement

Violeta Migallón: Conceptualization, Methodology, Data curation,
Software, Analysis, Validation, Writing – original draft, Writing – re-
view & editing, Supervision. Francisco J. Navarro-González: Con-
ceptualization, Methodology, Software, Validation. Héctor Penadés:
Data curation, Software, Analysis, Writing – original draft. José Pe-
nadés: Conceptualization, Methodology, Software, Validation, Writing
– original draft, Writing – review & editing, Supervision. Yolanda
Villacampa: Conceptualization, Methodology, Software, Validation,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
Acknowledgements

This research was supported by the Spanish Ministry of Science,
Innovation and Universities Grant RTI2018-098156-B-C54, co-financed
by the European Commission (FEDER funds), and by the University of
Alicante.

References

[1] S.L. Barbour, J. Krahn, Numerical modelling - prediction or process? in:
Geotechnical News, 2004, pp. 44–52.

[2] W.W. Hsieh, Machine Learning Methods in the Environmental Sciences: Neural
Networks and Kernels, Cambridge University Press, 2009.

[3] R.H. Gallagher, Finite Element Analysis: Fundamentals, Prentice-Hall, 1975.
[4] M. Hatami, Weighted Residual Methods: Principles, Modifications and

Applications, Academic Press, 2017.
[5] R. Shamshiri, W.I.W. Ismail, Implementation of Galerkin’s method and modal

analysis for unforced vibration response of a tractor suspension model, Res. J.
Appl. Sci. Eng. Technol. 7 (2014) 49–55, http://dx.doi.org/10.19026/rjaset.7.
219.

[6] M. Balázsová, M. Feistauer, M. Hadrava, A. Kosík, On the stability of the space–
time discontinuous Galerkin method for the numerical solution of nonstationary
nonlinear convection–diffusion problems, J. Numer. Math. 23 (2015) 211–233,
http://dx.doi.org/10.1515/jnma-2015-0014.

[7] J. Chan, R.J. Hewett, T. Warburton, Weight-adjusted discontinuous Galerkin
methods: Wave propagation in heterogeneous media, SIAM J. Sci. Comput. 36
(2017) A2935–A2961, http://dx.doi.org/10.1137/16M1089186.

[8] J. Chan, Weight-adjusted discontinuous Galerkin methods: Matrix-valued weights
and elastic wave propagation in heterogeneous media, Internat. J. Numer.
Methods Engrg. 113 (2018) 1779–1809, http://dx.doi.org/10.1002/nme.5720.

[9] S. Marras, J.F. Kelly, M. Moragues, A. Müller, M.A. Kopera, M. Vázquez,
F.X. Giraldo, G. Houzeaux, O. Jorba, A review of element-based Galerkin
methods for numerical weather prediction: Finite elements, spectral elements,
and discontinuous Galerkin, Arch. Comput. Methods Eng. 23 (2016) 673–722,
http://dx.doi.org/10.1007/s11831-015-9152-1.

[10] N. Beisiegel, S. Vater, J. Behrens, F. Dias, An adaptive discontinuous Galerkin
method for the simulation of hurricane storm surge, Ocean Dyn. 70 (2020)
641–666, http://dx.doi.org/10.1007/s10236-020-01352-w.

[11] A. Constantin, R.S. Johnson, On the modelling of large-scale atmospheric flow, J.
Differ. Equ. 285 (2021) 751–798, http://dx.doi.org/10.1016/j.jde.2021.03.019.

[12] C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, Y. Lv, M. Xu, Galerkin-based
meshless methods for photon transport in the biological tissue, Opt. Express 16
(2008) 20317–20333, http://dx.doi.org/10.1364/OE.16.020317.

[13] J. Mathault, H. Landari, F. Tessier, P. Fortier, A. Miled, Biological modeling
challenges in a multiphysics approach, in: 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems, MWSCAS, 2017, pp. 88–91, http://dx.doi.
org/10.1109/MWSCAS.2017.8052867.

[14] M. Dehghan, N. Narimani, An element-free Galerkin meshless method for
simulating the behavior of cancer cell invasion of surrounding tissue, Appl. Math.
Model. 59 (2018) 500–513, http://dx.doi.org/10.1016/j.apm.2018.01.034.

[15] G. Ruocco, P. Caccavale, M.V. De Bonis, Chapter 18 - a predictive oncology
framework-modeling tumor proliferation using a FEM platform, in: S.C. Kundu,
R.L. Reis (Eds.), Biomaterials for 3D Tumor Modeling, Materials Today, Elsevier,
2020, pp. 427–450, http://dx.doi.org/10.1016/B978-0-12-818128-7.00018-6.

[16] F.J. Navarro-González, Y. Villacampa, A new methodology for complex systems
using 𝑛-dimensional finite elements, Adv. Eng. Softw. 48 (2012) 52–57, http:
//dx.doi.org/10.1016/j.advengsoft.2012.02.001.

[17] F.J. Navarro-González, Y. Villacampa, Generation of representation models for
complex systems using Lagrangian functions, Adv. Eng. Softw. 64 (2013) 33–37,
http://dx.doi.org/10.1016/j.advengsoft.2013.04.015.

[18] F.J. Navarro-González, Y. Villacampa, A finite element numerical algorithm for
modelling and data fitting in complex systems, Int. J. Comput. Methods Exp.
Meas. 4 (2016) 100–113, http://dx.doi.org/10.2495/CMEM-V4-N2-100-113.

[19] I. López, L. Aragonés, Y. Villacampa, F.J. Navarro-González, Gravel beaches nour-
ishment: Modelling the equilibrium beach profile, Sci. Total Environ. 619-620
(2018) 772–783, http://dx.doi.org/10.1016/j.scitotenv.2017.11.156.

[20] L. Aragonés, J.I. Pagán, I. López, F.J. Navarro-González, Y. Villacampa, Galerkin’s
formulation of the finite elements method to obtain the depth of closure, Sci.
Total Environ. 660 (2019) 1256–1263, http://dx.doi.org/10.1016/j.scitotenv.
2019.01.017.

[21] A. Palazón, I. López, L. Aragonés, Y. Villacampa, F.J. Navarro-González, Mod-
elling of Escherichia coli concentrations in bathing water at microtidal coasts, Sci.
Total Environ. 593-594 (2017) 173–181, http://dx.doi.org/10.1016/j.scitotenv.
2017.03.161.

[22] V. Migallón, F.J. Navarro-González, J. Penadés, Y. Villacampa, Parallel approach
of a Galerkin-based methodology for predicting the compressive strength of
the lightweight aggregate concrete, Constr Build Mater. 219 (2019) 56–68,
15

http://dx.doi.org/10.1016/j.conbuildmat.2019.05.160.
[23] A.J. Tenza-Abril, Y. Villacampa, A.M. Solak, F. Baeza-Brotons, Prediction and
sensitivity analysis of compressive strength in segregated lightweight concrete
based on artificial neural network using ultrasonic pulse velocity, Constr. Build
Mater. 189 (2018) 1173–1183, http://dx.doi.org/10.1016/j.conbuildmat.2018.
09.096.

[24] F.J. Navarro-González, Y. Villacampa, M. Cortés-Molina, S. Ivorra, Numerical
non-linear modelling algorithm using radial kernels on local mesh support,
Mathematics 8 (2020) http://dx.doi.org/10.3390/math8091600.

[25] M.D. Buhmann, Radial basis functions, Acta Numer. 9 (2000) 1–38, http://dx.
doi.org/10.1017/S0962492900000015.

[26] D. Dua, C. Graff, UCI machine learning repository, 2017, http://archive.ics.uci.
edu/ml.

[27] S. Zhong, K. Zhang, M. Bagheri, J.G. Burken, A. Gu, B. Li, X. Ma, B.L. Marrone,
Z.J. Ren, J. Schrier, W. Shi, H. Tan, T. Wang, X. Wang, B.M. Wong, X. Xiao, X.
Yu, J.-J. Zhu, H. Zhang, Machine learning: New ideas and tools in environmental
science and engineering, Environ. Sci. Technol. 55 (2021) 12741–12754, http:
//dx.doi.org/10.1021/acs.est.1c01339.

[28] J. Gómez-Zotano, J. Alcántara-Manzanares, E. Martínez-Ibarra, J.A. Olmedo-
Cobo, Applying the technique of image classification to climate science: the case
of Andalusia (Spain), Geogr. Res. 54 (2016) 461–470, http://dx.doi.org/10.1111/
1745-5871.12180.

[29] M. Azadkia, Optimal choice of 𝑘 for 𝑘-nearest neighbor regression, 2020, arXiv:
1909.05495.

[30] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation functions: Com-
parison of trends in practice and research for deep learning, 2018, arXiv:
1811.03378.

[31] C.C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.
[32] H. Faris, I. Aljarah, S. Mirjalili, Chapter 28 - evolving radial basis function

networks using moth-flame optimizer, in: P. Samui, S. Sekhar, V.E. Balas (Eds.),
HAndbook of Neural Computation, Academic Press, 2017, pp. 537–550, http:
//dx.doi.org/10.1016/B978-0-12-811318-9.00028-4.

[33] M. Awad, R. Khanna, Efficient learning machines: Theories, concepts, and
applications for engineers and system designers, apress media, 2015, http://dx.
doi.org/10.1007/978-1-4302-5990-9.

[34] F. Zhang, L.J. O’Donnell, Chapter 7 - support vector regression, in: A. Mechelli,
S. Vieira (Eds.), Machine Learning, Academic Press, 2020, pp. 123–140, http:
//dx.doi.org/10.1016/B978-0-12-815739-8.00007-9.

[35] S. Balasundaram, M. Tanveer, On Lagrangian twin support vector regression,
Neural Comput. Appl. 22 (2013) 257–267, http://dx.doi.org/10.1007/s00521-
012-0971-9.

[36] A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput.
14 (2004) 199–222, http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88.

[37] W. Gani, H. Taleb, M. Limam, Support vector regression based residual
control charts, J. Appl. Stat. 37 (2010) 309–324, http://dx.doi.org/10.1080/
02664760903002667.

[38] M.D. Schluchter, Mean Square Error, American Cancer Society, 2005, http:
//dx.doi.org/10.1002/0470011815.b2a15087.

[39] T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error
(MAE)? – arguments against avoiding RMSE in the literature, Geosci. Model Dev.
7 (2014) 1247–1250, http://dx.doi.org/10.5194/gmd-7-1247-2014.

[40] C.J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance,
Clim. Res. 30 (2005) 79–82, http://www.jstor.org/stable/24869236.

[41] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference, second ed., The MIT Press, Cambridge, MA, 1998.

[42] OpenMP, OpenMP official site, 2012, http://www.openmp.org. (Accessed on
October, 2021).

[43] G. Hager, G. Jost, R. Rabenseifner, Communication characteristics and hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP nodes, in:
Proceedings of Cray User Group, 2009.

[44] A. Pal, A. Agarwala, S. Raha, B. Bhattacharya, Performance metrics in a
hybrid MPI–OpenMP based molecular dynamics simulation with short-range
interactions, J. Parallel Distrib. Comput. 74 (2014) 2203–2214, http://dx.doi.
org/10.1016/j.jpdc.2013.12.008.

[45] M.J. Chorley, D.W. Walker, Performance analysis of a hybrid MPI/OpenMP
application on multi-core clusters, J. Comput. Sci. 1 (2010) 168–174, http:
//dx.doi.org/10.1016/j.jocs.2010.05.001.

[46] INTERTWinE-Consortium, Best practice guide to hybrid MPI OpenMP pro-
gramming, 2017, http://www.intertwine-project.eu/sites/default/files/images/
INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.2.pdf.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[48] IBM Corp, IBM SPSS statistics for windows, 2019, https://www.ibm.com/uk-
en/analytics/spss-statistics-software.

[49] K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons
in neural networks, Math. Probl. Eng. 2013 (2013) 425740, http://dx.doi.org/

10.1155/2013/425740.

http://refhub.elsevier.com/S1877-7503(22)00183-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb3
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb4
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb4
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb4
http://dx.doi.org/10.19026/rjaset.7.219
http://dx.doi.org/10.19026/rjaset.7.219
http://dx.doi.org/10.19026/rjaset.7.219
http://dx.doi.org/10.1515/jnma-2015-0014
http://dx.doi.org/10.1137/16M1089186
http://dx.doi.org/10.1002/nme.5720
http://dx.doi.org/10.1007/s11831-015-9152-1
http://dx.doi.org/10.1007/s10236-020-01352-w
http://dx.doi.org/10.1016/j.jde.2021.03.019
http://dx.doi.org/10.1364/OE.16.020317
http://dx.doi.org/10.1109/MWSCAS.2017.8052867
http://dx.doi.org/10.1109/MWSCAS.2017.8052867
http://dx.doi.org/10.1109/MWSCAS.2017.8052867
http://dx.doi.org/10.1016/j.apm.2018.01.034
http://dx.doi.org/10.1016/B978-0-12-818128-7.00018-6
http://dx.doi.org/10.1016/j.advengsoft.2012.02.001
http://dx.doi.org/10.1016/j.advengsoft.2012.02.001
http://dx.doi.org/10.1016/j.advengsoft.2012.02.001
http://dx.doi.org/10.1016/j.advengsoft.2013.04.015
http://dx.doi.org/10.2495/CMEM-V4-N2-100-113
http://dx.doi.org/10.1016/j.scitotenv.2017.11.156
http://dx.doi.org/10.1016/j.scitotenv.2019.01.017
http://dx.doi.org/10.1016/j.scitotenv.2019.01.017
http://dx.doi.org/10.1016/j.scitotenv.2019.01.017
http://dx.doi.org/10.1016/j.scitotenv.2017.03.161
http://dx.doi.org/10.1016/j.scitotenv.2017.03.161
http://dx.doi.org/10.1016/j.scitotenv.2017.03.161
http://dx.doi.org/10.1016/j.conbuildmat.2019.05.160
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.096
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.096
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.096
http://dx.doi.org/10.3390/math8091600
http://dx.doi.org/10.1017/S0962492900000015
http://dx.doi.org/10.1017/S0962492900000015
http://dx.doi.org/10.1017/S0962492900000015
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1021/acs.est.1c01339
http://dx.doi.org/10.1021/acs.est.1c01339
http://dx.doi.org/10.1021/acs.est.1c01339
http://dx.doi.org/10.1111/1745-5871.12180
http://dx.doi.org/10.1111/1745-5871.12180
http://dx.doi.org/10.1111/1745-5871.12180
http://arxiv.org/abs/1909.05495
http://arxiv.org/abs/1909.05495
http://arxiv.org/abs/1909.05495
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb31
http://dx.doi.org/10.1016/B978-0-12-811318-9.00028-4
http://dx.doi.org/10.1016/B978-0-12-811318-9.00028-4
http://dx.doi.org/10.1016/B978-0-12-811318-9.00028-4
http://dx.doi.org/10.1007/978-1-4302-5990-9
http://dx.doi.org/10.1007/978-1-4302-5990-9
http://dx.doi.org/10.1007/978-1-4302-5990-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1007/s00521-012-0971-9
http://dx.doi.org/10.1007/s00521-012-0971-9
http://dx.doi.org/10.1007/s00521-012-0971-9
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1080/02664760903002667
http://dx.doi.org/10.1080/02664760903002667
http://dx.doi.org/10.1080/02664760903002667
http://dx.doi.org/10.1002/0470011815.b2a15087
http://dx.doi.org/10.1002/0470011815.b2a15087
http://dx.doi.org/10.1002/0470011815.b2a15087
http://dx.doi.org/10.5194/gmd-7-1247-2014
http://www.jstor.org/stable/24869236
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb41
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb41
http://www.openmp.org
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb43
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb43
http://dx.doi.org/10.1016/j.jpdc.2013.12.008
http://dx.doi.org/10.1016/j.jpdc.2013.12.008
http://dx.doi.org/10.1016/j.jpdc.2013.12.008
http://dx.doi.org/10.1016/j.jocs.2010.05.001
http://dx.doi.org/10.1016/j.jocs.2010.05.001
http://dx.doi.org/10.1016/j.jocs.2010.05.001
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.2.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.2.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.2.pdf
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
http://refhub.elsevier.com/S1877-7503(22)00183-1/sb47
https://www.ibm.com/uk-en/analytics/spss-statistics-software
https://www.ibm.com/uk-en/analytics/spss-statistics-software
https://www.ibm.com/uk-en/analytics/spss-statistics-software
http://dx.doi.org/10.1155/2013/425740
http://dx.doi.org/10.1155/2013/425740
http://dx.doi.org/10.1155/2013/425740

Journal of Computational Science 63 (2022) 101817V. Migallón et al.
[50] M. Yoshida, T. Imanishi, H. Nishi, Feature extraction and background informa-
tion detection method using power demand, in: 2017 IEEE 26th International
Symposium on Industrial Electronics, ISIE, 2017, pp. 1336–1341, http://dx.doi.
org/10.1109/ISIE.2017.8001439.

Violeta Migallón is a Full Professor of the Computing Sci-
ence and Artificial Intelligence Department and a research
member of the University Institute for Computing Research,
both at the University of Alicante (Spain). She received
her Ph.D. degree in Computer Science in 1993. She is a
member of the ‘‘High-Performance Computing and Paral-
lelism’’ research group at the University of Alicante. Her
main research interests are parallel computing for solving
linear and nonlinear systems, and predictive modelling in
engineering including artificial intelligence techniques.

Francisco J. Navarro-González obtained his degree in
Physics from the University of Valencia. He received his
Ph.D. degree in Mathematics in 2011, with a doctoral
thesis on the generation of models from experimental data
using techniques based on the finite element method. He
obtained a master’s degree in Economic Research in 2017.
His research fields concern the development of algorithms
for system modelling and numerical solution of algebraic
problems and differential equations. Adjunct Professor at the
University of Alicante (Spain) since 2008 in the Department
of Applied Mathematics and Associate Professor since 2021.
16
Héctor Penadés obtained a bachelor’s degree in Industrial
Electronics and Automation Engineering in 2020 at the
University Carlos III of Madrid, Spain, and a master’s degree
in Automation and Robotics in 2021 at the University of
Alicante, Spain. He is a member of the research team of
QuixMind, a technology-based company at the University
of Alicante. His research interests focus on computer vision,
machine learning, and sensor technology and applications.

José Penadés is a Full Professor of the Computing Science
and Artificial Intelligence Department and a research mem-
ber of the University Institute for Computing Research, both
at the University of Alicante (Spain). He received his Ph.D.
degree in Computer Science in 1993. His main research
interests are parallel algorithms for heterogeneous platforms
for solving linear and nonlinear systems, high-level interface
design, which simplifies programming in parallel environ-
ments, and predictive analysis methodologies in engineering
including artificial intelligence techniques.

Yolanda Villacampa studied at the University of Valencia,
where she received her Ph.D. in Mathematics. She is a
Full Professor of Applied Mathematics at the University of
Alicante (Spain). She heads the research group ‘‘Mathemati-
cal Modelling of Systems’’ and her main research interest
is the development of computational algorithms for the
modelling and representation of complex systems and differ-
ential equations. She has participated in numerous research
projects, being the main researcher in ten of them, and has
collaborated with the Wessex Institute of Technology (UK)
and the University of Ancona (Italy).

http://dx.doi.org/10.1109/ISIE.2017.8001439
http://dx.doi.org/10.1109/ISIE.2017.8001439
http://dx.doi.org/10.1109/ISIE.2017.8001439

	A parallel methodology using radial basis functions versus machine learning approaches applied to environmental modelling
	Introduction
	The nonlinear modelling method
	Study area and dataset
	Machine learning approaches
	Multiple linear regression
	K-Nearest neighbours
	Artificial neural networks
	Support vector regression

	Criteria for model selection
	Parallel algorithms: Description and analysis
	Numerical experiments
	Machine learning models
	Analysis of the behaviour of NLM-RK models and comparison with machine learning models

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

