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Abstract
In this work, we propose and analyse forward-backward-type algorithms for find-
ing a zero of the sum of finitely many monotone operators, which are not based on 
reduction to a two operator inclusion in the product space. Each iteration of the stud-
ied algorithms requires one resolvent evaluation per set-valued operator, one for-
ward evaluation per cocoercive operator, and two forward evaluations per monotone 
operator. Unlike existing methods, the structure of the proposed algorithms are suit-
able for distributed, decentralised implementation in ring networks without needing 
global summation to enforce consensus between nodes.
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1  Introduction

In this work, we propose algorithms of forward-backward-type for solving struc-
tured monotone inclusions in a real Hilbert space H . Specifically, we consider the 
problem

where A1,… ,An ∶ H ⇉ H are maximally monotone operators, and 
B1,… ,Bm ∶ H → H are either cocoercive, or monotone and Lipschitz continuous. 
Inclusions in the form (1) arise in a number of settings of fundamental importance 
in mathematical optimisation. In what follows, we describe three such examples.

Example 1  (Composite minimisation) Consider the minimisation problem given by

where g1,… , gn ∶ H → (−∞,+∞] are proper, lsc and convex, and 
f1,… , fm ∶ H → (−∞,+∞) are convex and differentiable with L-Lipschitz continu-
ous gradients. Through its first order optimality condition, (2) can be posed as (1) 
with

where �gi denotes the subdifferential of gi . Note that the operators B1,… ,Bm 
are both L-Lipschitz and 1

L
-cocoercive, due to the Baillon–Haddad theorem  

[1, Corolaire 10].

Example 2  (Structured saddle-point problems) Consider the saddle-point problem 
given by

where h1,… , hn ∶ H1 → (−∞,+∞] , g1,… , gn ∶ H2 → (−∞,+∞] are proper, lsc 
and convex, and Φ1,… ,Φm ∶ H1 ×H2 → (−∞,+∞] are differentiable convex-con-
cave functions with Lipschitz continuous gradient. Assuming a saddle-point exists, 
(3) can be posed as (1) in the space H ∶= H1 ×H2 with

where we note that the operators B1,… ,Bn ∶ H → H are monotone, due to [2, The-
orem 2], and L-Lipschitz continuous, but generally not cocoercive.

(1)find x ∈ H such that 0 ∈

(
n∑
i=1

Ai +

m∑
i=1

Bi

)
(x),

(2)min
x∈H

n∑
i=1

gi(x) +

m∑
i=1

fi(x),

Ai = �gi and Bi = ∇fi

(3)min
x∈H1

max
y∈H2

n∑
i=1

hi(x) +

m∑
i=1

Φi(x, y) −

n∑
i=1

gi(y),

Ai(x, y) =

(
�hi(x)

�gi(y)

)
and Bi(x, y) =

(
∇xΦi(x, y)

−∇yΦi(x, y)

)
,
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Example 3  (Structured variational inequalities) Consider the variational inequality 
problem given by

where g1,… , gn ∶ H → (−∞,+∞] are proper, lsc and convex, and 
B1,… ,Bm ∶ H → H are monotone and L-Lipschitz. Then (4) is of the form of (1) 
with Ai = �gi . An important special case of (4) is the constrained variational ine-
quality problem given by

where C1,… ,Cn ⊆ H are nonempty, closed and convex sets. This formulation 
allows one to exploit a representation of the set C in terms of the simpler sets 
C1,… ,Cn.

1.1 � Splitting algorithms

We focus on splitting algorithms for solving (1) of forward-backward-type, by 
which we mean those whose iteration can be expressed in terms of the resolvents 
of the set-valued operators A1,… ,An and direct evaluations of the single-valued 
operators B1,… ,Bm . It is always possible to reduce this problem to the m = 1 
case by combining the single-valued operators into a single operator F ∶=

∑m

i=1
Bi 

whilst preserving the above features. However, since the resolvent of a sum is 
generally not related to the individual resolvents, the same cannot be said for the 
set-valued operators, and so it makes sense to distinguish algorithms for (1) based 
on the value of n.

In the case n = 1 , there are many methods satisfying the above criteria. Among 
them, the best known are arguably the forward-backward method given by

which can be used when F is cocoercive, and the forward-backward-forward method 
[3] given by

which can be used when F is monotone and Lipschitz. When n = 2 , there are also 
many methods. For instance, if F is cocoercive, Davis–Yin splitting [4–6] which 
takes the form

(4)

find x∗ ∈ H such that

n�
i=1

gi(x) −

n�
i=1

gi(x
∗) +

m�
i=1

⟨Bi(x
∗), x − x∗⟩ ≥ 0 ∀x ∈ H,

find x∗ ∈ H such that

m�
i=1

⟨Bi(x
∗), x − x∗⟩ ≥ 0 ∀x ∈ C ∶=

n�
i=1

Ci,

xk+1 = J�A1

(
xk − �F(xk)

)
,

{
yk = J�A1

(
xk − �F(xk)

)

xk+1 = yk − �F(yk) + �F(xk),
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can be applied, and if F is monotone and Lipschitz, then the backward-forward-
reflected-backward methods [7] can be used.

However, for n > 2 , the situation is drastically different. Most existing methods 
rely on a product space reformulation, either directly or implicitly. For instance, the 
iteration given by

for cocoercive B1,… ,Bn , where [[1, n]] denotes the integers between 1 and n , 
amounts to Davis–Yin splitting applied to the three operator inclusion

where A ∶= (A1,… ,An) , B ∶= (B1,… ,Bn) and ND denotes the normal cone to the 
diagonal subspace D ∶= {(x1,… , xn) ∈ H

n ∶ x1 = ⋯ = xn} . Other methods for (1) 
with n > 2 include the generalised forward-backward method [8] and those from the 
projective splitting family [9, 10].

Indisputably, product space reformulations such as (6) provide a convenient tool 
that makes the derivation of algorithms for n > 2 operators an almost mechanical 
procedure. It is therefore natural to consider whether this tool is the only one at our 
disposal. In addition to academic importance in its own right, the discovery of new 
algorithms that do not fall within standard categories can provide new possibilities, 
both in terms of mathematical techniques and potential applications. Sometimes 
these applications can be quite unexpected, as we demonstrate next.

1.2 � Distributed algorithms

Advances in hardware (parallel computation) and increasing the size of datasets 
(decentralised storage) have made distributed algorithms one of the most prevalent 
trends in algorithm development. Such algorithms rely on a network of devices that 
perform subtasks and are able to communicate with each other. For details on the 
topic, the reader is referred to the book of Bertsekas & Tsitsiklis [11] as well as [12] 
for recent advances.

From the perspective of distributed computing, the product space formulation 
generally requires the computation of a global sum across all nodes in every itera-
tion. To be more concrete, consider a distributed implementation of (5) in which 
node i performs the zi-updates by using its operators, Ai and Bi . To perform the 
x-update, the local variables z1,… , zn must be aggregated and the result then broad-
cast to the entire network. There may be many reasons why this is not desirable, 
including default network setting, privacy or cost issues.

{
xk = J�A1

(zk)

zk+1 = zk + J�A2

(
2xk − zk − �F(xk)

)
− xk

(5)

⎧
⎪⎨⎪⎩

xk =
1

n

n�
i=1

zk
i

zk+1
i

= zk
i
+ J�Ai

�
2xk − zk

i
− �Bi(x

k)
�
− xk ∀i ∈ [[1, n]]

(6)find � = (x,… , x) ∈ H
n such that 0 ∈ (ND + A + B)(�),
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Another important aspect of distributed communication is parallelism and syn-
chronisation. Returning to our example involving (5) from the previous paragraph, 
the product space reformulation provides a fully parallel algorithm in the sense that 
all nodes performing z-updates can compute their updates in parallel before send-
ing to the central coordinator. This parallelisation comes at cost of requiring global 
synchronisation between nodes. Specially, the algorithm (5) cannot move from k-th 
to (k + 1)-th iteration until all nodes 1,… , n have completed their computation. This 
can be overcome with asynchronous algorithms, that is, those which only require 
little or no global synchronisation. However, their development and mathematical 
analysis are significantly more delicate.

1.3 � Our contribution

We propose and analyse algorithms of forward-backward-type for solving (1) which 
exploit problem structure. Note that by using the zero operator in (1) if necessary, 
we can always assume that m = n − 1 . Applied to this problem with cocoercive 
operators B1,… ,Bn−1 , our algorithm can be expressed as the fixed point iteration 
�k+1 = T(�k) based on the operator T ∶ H

n−1
→ H

n−1 given by

  where � = (x1,… , xn) ∈ H
n depends on � = (z1,… , zn−1) ∈ H

n−1 and is given by

For the case where Bi are monotone and Lipschitz, the underlying operator is 
slightly more complicated and relies on an update similar to the one proposed in the 
forward-reflected-backward method [13].

Overall, the notable characteristics of the algorithms we propose are:

•	 They do not rely on existing product space reformulation: Instead, we extend the 
framework for backward operators, proposed in [14], which in turn is a generali-
sation of [15] for n > 3.

•	 They are decentralised and can be naturally implemented on a ring network for 
communication.

•	 The order in which variables are updated can vary significantly between execu-
tions: zk+1

i
 can be computed before evaluation of zk

i+2
, zk−1

i+3
,….

Importantly, we believe that our work is an important starting point towards a more 
general template that will allow for different network topologies.

T(�) ∶= � + �

⎛⎜⎜⎜⎝

x2 − x1
x3 − x2

⋮

xn − xn−1

⎞⎟⎟⎟⎠
,

⎧⎪⎨⎪⎩

x1 = J�A1
(z1),

xi = J�Ai
(zi + xi−1 − zi−1 − �Bi−1(xi−1)) ∀i ∈ [[2, n − 1]],

xn = J�An

�
x1 + xn−1 − zn−1 − �Bn−1(xn−1)

�
.
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The remainder of this work is structured as follows: In Sect. 2, we recall nota-
tion and preliminaries for later use. In Sect. 3, we introduce and analyse a forward-
backward type algorithm for solving (1) with cocoercive operators. In Sect. 4, we 
introduce and analyse a modification of the algorithm from Sect.  3 which can be 
used when B1,… ,Bm are not necessarily cocoercive.

2 � Preliminaries

Throughout this paper, H denotes a real Hilbert space equipped with inner product 
⟨⋅, ⋅⟩ and induced norm ‖ ⋅ ‖ . A set-valued operator is a mapping A ∶ H ⇉ H that 
assigns to each point in H a subset of H , i.e., A(x) ⊆ H for all x ∈ H . In the case 
when A always maps to singletons, i.e., A(x) = {u} for all x ∈ H , A is said to be a sin-
gle-valued mapping and is denoted by A ∶ H → H . In an abuse of notation, we may 
write A(x) = u when A(x) = {u} . The domain, the graph, the set of fixed points and 
the set of zeros of A, are denoted, respectively, by domA , graA , FixA and zer A; i.e.,

The inverse operator of A, denoted by A−1 , is defined through 
x ∈ A−1(u) ⟺ u ∈ A(x) . The identity operator is denoted by Id.

Definition 1  An operator B ∶ H → H is said to be 

	 (i)	 L-Lipschitz continuous for L > 0 if 

	 (ii)	 1

L
-cocoercive for L > 0 if 

Note that, by the Cauchy–Schwarz inequality, a 1
L
-cocoercive operator is always 

L-Lipschitz continuous.

Definition 2  An operator T ∶ H → H is said to be 

	 (i)	 quasi-nonexpansive if 

	 (ii)	 nonexpansive if it is 1-Lipschitz continuous, i.e., 

	 (iii)	 strongly quasi-nonexpansive if there exists 𝜎 > 0 such that 

domA ∶= {x ∈ H ∶ A(x) ≠ ∅}, graA ∶= {(x, u) ∈ H ×H ∶ u ∈ A(x)},

FixA ∶= {x ∈ H ∶ x ∈ A(x)}, zer A ∶= {x ∈ H ∶ 0 ∈ A(x)}.

‖B(x) − B(y)‖ ≤ L‖x − y‖ ∀x, y ∈ H;

⟨B(x) − B(y), x − y⟩ ≥ 1

L
‖B(x) − B(y)‖2 ∀x, y ∈ H.

‖T(x) − y‖ ≤ ‖x − y‖ ∀x ∈ H,∀y ∈ FixT;

‖T(x) − T(y)‖ ≤ ‖x − y‖ ∀x, y ∈ H;
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	 (iv)	 averaged nonexpansive if there exists � ∈ (0, 1) such that 

In particular, the following implications hold: (iv)⇒(ii)⇒(i) and (iv)⇒(iii)⇒(i).
When we wish to explicitly specify the constants involved, we refer to the 

operators in Definition 2(iii) and (iv), respectively, as �-strongly quasi-nonexpan-
sive and �-averaged nonexpansive. Since the mapping � ↦

1−�

�
 is a bijection from 

(0, 1) to (0,+∞) , there is a one-to-one relationship between the values of � in (iii) 
and � in (iv), with inverse relation given by � ↦

1

1+�
.

Definition 3  A set-valued operator A ∶ H ⇉ H is monotone if

Furthermore, A is said to be maximally monotone if there exists no monotone opera-
tor B ∶ H ⇉ H such that graB properly contains graA.

Proposition 1  ([16, Corollary 20.28]) Every continuous monotone operator with full 
domain is maximally monotone. In particular, every cocoercive operator is maxi-
mally monotone.

The resolvent operator, whose definition is given next, is one of the main 
building blocks of splitting algorithms.

Definition 4  Given an operator A ∶ H ⇉ H , the resolvent of A with parameter 𝛾 > 0 
is the operator J�A ∶ H ⇉ H defined by J�A ∶= ( Id + �A)−1.

Proposition 2  ([17] or [16, Corollary 23.11]) Let A ∶ H ⇉ H be monotone and let 
𝛾 > 0 . Then 

	 (i)	 J�A is single-valued,
	 (ii)	 dom J�A = H if and only if A is maximally monotone.

3 � A distributed forward‑backward method

Let n ≥ 2 and consider the problem

‖T(x) − y‖2 + �‖( Id − T)(x)‖2 ≤ ‖x − y‖2 ∀x ∈ H,∀y ∈ Fix T;

‖T(x) − T(y)‖2 + 1 − �

�
‖( Id − T)(x) − ( Id − T)(y)‖2 ≤ ‖x − y‖2 ∀x, y ∈ H.

⟨x − y, u − v⟩ ≥ 0 ∀(x, u), (y, v) ∈ graA.

(7)find x ∈ H such that 0 ∈

(
n∑
i=1

Ai +

n−1∑
i=1

Bi

)
(x),
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where A1,… ,An ∶ H ⇉ H are maximally monotone and B1,… ,Bn−1 ∶ H → H are 
1

L
-cocoercive.

For the case when B1 = ⋯ = Bn−1 = 0 , Malitsky and Tam [14] proposed a splitting 
algorithm with (n − 1)-fold lifting for finding a zero of the sum of n ≥ 2 maximally 
monotone operators; see also [18] for recent extensions. In this section, we adapt the 
methodology developed in [6] to obtain a splitting method of forward-backward-type 
for the inclusion (7) by modifying the splitting method in [14] without increasing the 
dimension of the ambient space.

Given λ ∈ (0, 2
L ) and γ ∈ 0, 1 − λL

2 and an initial point z0 =
(z01 , . . . , z

0
n−1) ∈ Hn−1, our proposed algorithm for (7) generates two

sequences, (zk) ⊆ Hn−1 and (xk) ⊆ Hn, according to

zk+1 = zk + γ





xk
2 − xk

1
xk
3 − xk

2
...

xk
n − xk

n−1



 (8a)

and





xk
1 = JλA1(z

k
1 ),

xk
i = JλAi

(zki + xk
i−1 − zki−1 − λBi−1(xk

i−1)) ∀i ∈ 2, n− 1 ,

xk
n = JλAn

xk
1 + xk

n−1 − zkn−1 − λBn−1(xk
n−1) .

(8b)

The structure of (8) lends itself to a distributed decentralised implementation, 
similar to the one in [14, Algorithm 2]. More precisely, consider a cycle graph with 
n nodes labeled 1 through n. Each node in the graph represents an agent, and two 
agents can communicate only if their nodes are adjacent. In our setting, this means 
that Agent i can only communicate with Agents i − 1 and i + 1 mod n , for i ∈ [[1, n]] . 
We assume that each agent only knows its operators in  (1). Specifically, we assume 
that only Agent 1 knows the operator A1 and that, for each i ∈ {2,… , n} , only Agent i 
knows the operators Ai and Bi−1 . The responsibility of updating xi is assigned to Agent 
i for all i ∈ {1,… , n} and the responsibility of updating zi is assigned to Agent i for 
i ∈ {2,… , n} . Altogether, this gives rise to the protocol for distributed decentralised 
implementation of (8) described in Algorithm 1.
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Algorithm 1 Protocol for distributed decentralised implementation of (8).

Require: Let λ ∈ (0, 2
L ) and γ ∈ 0, 1− λL

2 .
1: For each i ∈ 2, n , Agent i chooses z0i−1∈ H and sends it to Agent i− 1.
2: for k = 0, 1, . . . do
3: Agent 1 computes xk

1 = JλA1(z
k
1 ) and sends it to Agents 2 and n

4: for i = 2, . . . , n− 1 do
5: Agent i computes

xk
i = JλAi

(zki + xk
i−1 − zki−1 − λBi−1(xk

i−1))

zk+1
i−1 = zki−1 + γ(xk

i − xk
i−1),

sends xk
i to Agent i+ 1 and sends zk+1

i−1 to Agent i− 1;
6: end for
7: Agent n computes

xk
n = JλAn

(xk
1 + xk

n−1 − zkn−1 − λBn−1(xk
n−1))

zk+1
n−1 = zkn−1 + γ(xk

n − xk
n−1),

sends zkn−1 to Agent n− 1;
8: end for

Remark 1  (Termination criterion for Algorithm 1) Let (�k) be the sequence gener-
ated by Algorithm 1. In order to detect termination, one could compute (possibly 
periodically) the residual given by

The structure of this residual is suitable for the distributed implementation within 
the protocol in the algorithm. Indeed, the i-th term in the sum, given by ‖zk+1

i
− zk

i
‖2 , 

can already be computed by Agent i + 1 , and therefore the full residual ‖�k+1 − �k‖2 
can be computed by a global summation and broadcast operation (which is compat-
ible with the existing communication pattern, with the addition of one extra dimen-
sion for carrying the sum). The same stopping criterion can also be applied to the 
algorithm presented in Sect. 4 generated by the iteration given in (32a) and (32b).

In order to analyse convergence of (8), we introduce the underlying fixed point 
operator T ∶ H

n−1
→ H

n−1 given by

‖�k+1 − �k‖2 =
n−1�
i=1

‖zk+1
i

− zk
i
‖2.
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 where � = (x1,… , xn) ∈ H
n depends on � = (z1,… , zn−1) ∈ H

n−1 and is given by

In this way, the sequence (�k) given by (8a) satisfies �k+1 = T(�k) for all k ∈ ℕ.

Remark 2  Note that, although the sum of cocoercive operators is cocoercive (see, 
e.g., [16, Proposition 4.12]), considering the sum of n − 1 operators in (1) gives the 
freedom of either applying each operator as a forward step before the corresponding 
backward step, or to apply the sum of all of them before a particular backward step 
(by setting all the operators to be equal to zero except for one of them, which would 
be equal to the sum).

Remark 3  (Special cases) If n = 2 , then x1 = xn−1 and T in (9) recovers the operator 
corresponding to Davis–Yin splitting [4–6] for finding a zero of A1 + A2 + B1 . In 
turn, this includes the forward-backward algorithm and Douglas–Rachford splitting 
as special cases by further taking A1 = 0 or B1 = 0 , respectively.

If B1 = ⋯ = Bn−1 = 0 , then T in (9) reduces to the resolvent splitting algorithms 
proposed by the authors in [14]. This has been further studied in [19] for the particu-
lar case in which the operators Ai are normal cones of closed linear subspaces.

Although the number of set-valued and single-valued monotone operators in (7) 
differ by one, it is straightforward to derive a scheme where this is not the case by 
setting A1 = 0 . In this case, x1 = J�A1

(z1) = z1 can be used to eliminate x1 so that (9) 
and (10) respectively become

 where

(9)T(�) ∶= � + �

⎛
⎜⎜⎜⎝

x2 − x1
x3 − x2

⋮

xn − xn−1

⎞
⎟⎟⎟⎠
,

(10)

⎧
⎪⎨⎪⎩

x1 = J�A1
(z1),

xi = J�Ai
(zi + xi−1 − zi−1 − �Bi−1(xi−1)) ∀i ∈ [[2, n − 1]],

xn = J�An

�
x1 + xn−1 − zn−1 − �Bn−1(xn−1)

�
.

T(�) ∶= � + �

⎛⎜⎜⎜⎝

x2 − z1
x3 − x2

⋮

xn − xn−1

⎞⎟⎟⎟⎠
,

⎧⎪⎨⎪⎩

x2 = J�A2
(z2 − �B1(z1)),

xi = J�Ai
(zi + xi−1 − zi−1 − �Bi−1(xi−1)) ∀i ∈ [[3, n − 1]],

xn = J�An

�
z1 + xn−1 − zn−1 − �Bn−1(xn−1)

�
.
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While at first it may seem unusual that the number of set-valued and single-valued 
monotone operators in (7) are not the same, we note that this same situation arises in 
Davis–Yin splitting as described above.

Remark 4  The algorithm given by (8) appears to be new even in the special case 
with Ai = 0 and Bi = ∇fi for convex smooth functions fi . In this case, one of the 
most popular algorithms for solving minx

∑
i fi(x) in a decentralised way is EXTRA, 

proposed in [20]. They are similar in spirit, but also have quite different properties. 
In particular, the main update of EXTRA is

where W and W̃ are certain mixing matrices and �1 = W�0 − �∇f (�0) . Undoubt-
edly, an advantage of EXTRA is the ability to use a wider range of mixing matrices 
which, in terms of communication, generalises better for network topology.

In what follows, we first describe the relationship between the solutions of the 
monotone inclusion (7) and the fixed point set of the operator T in (9).

Lemma 1  Let n ≥ 2 and 𝛾 , 𝜆 > 0 . The following assertions hold. 

	 (i)	 If x̄ ∈ zer
�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
 , then there exists �̄ ∈ FixT .

	 (ii)	 If (z̄1,… z̄n−1) ∈ FixT , then x̄ ∶= J𝜆A1
(z̄1) ∈ zer

�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
 . More-

over, 

 for all i ∈ [[2, n − 1]].
Consequently,

Proof  (i): Let x̄ ∈ zer
�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
 . Then there exists � = (v1,… , vn) ∈ H

n 

such that vi ∈ Ai(x̄) and 
∑n

i=1
vi +

∑n−1

i=1
Bi(x̄) = 0 . Define the vector 

�̄ = (z̄1,… , z̄n−1) ∈ H
n−1 according to

for i ∈ [[2, n − 1]] . Then x̄ = J𝜆A1
(z1) and x̄ = J𝜆Ai

(z̄i − z̄i−1 + x̄ − 𝜆Bi−1(x̄)) for 
i ∈ [[2, n − 1]] . Furthermore, we have

�k+1 = ( Id +W)�k − W̃�k−1 − �[∇f (�k) − ∇f (�k−1)],

(11)x̄ = J𝜆Ai
(z̄i − z̄i−1 + x̄ − 𝜆Bi−1(x̄)) = J𝜆An

(2x̄ − z̄n−1 − 𝜆Bn−1(x̄)),

FixT ≠ ∅ ⟺ zer

(
n∑
i=1

Ai +

n−1∑
i=1

Bi

)
≠ ∅.

{
z̄1 ∶= x̄ + 𝜆v1 ∈ ( Id + 𝜆A1)x̄,

z̄i ∶= 𝜆vi + z̄i−1 + 𝜆Bi−1(x̄) ∈ ( Id + 𝜆Ai)(x̄) − x̄ + z̄i−1 + 𝜆Bi−1(x̄),
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which implies that x̄ = J𝜆An
(2x̄ − z̄n−1 − 𝜆Bn−1(x̄)) . Altogether, it follows that 

�̄ ∈ FixT .
(ii): Let �̄ ∈ Fix T  and set x̄ ∶= J𝜆A1

(z̄1) . Then (11) holds thanks to the definition 
of T. The definition of the resolvent therefore implies

Summing together the above inclusions gives x̄ ∈ zer
�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
 , as 

claimed. 	�  ◻

Next, we study the nonexpansivity properties of the operator T in (9).

Lemma 2  For all � = (z1,… , zn) ∈ H
n−1 and �̄ = (z̄1,… , z̄n) ∈ H

n−1 , we have

In particular, if � ∈
(
0,

2

L

)
 and � ∈

(
0, 1 −

�L

2

)
 , then T is �-averaged for 

� =
2�

2−�L
∈ (0, 1).

Proof  This proof mainly uses the monotonicity property of the operators A1,… ,An 
together with the cocoercivity property of the operators B1,… ,Bn−1 to obtain 
some bounds which yield (12), from where the averagedness of operator T can be 
directly deduced. For convenience, denote �+ ∶= T(�) and �̄+ ∶= T(�̄) . Further, let 
� = (x1,… , xn) ∈ H

n be given by (10) and let �̄ = (x̄1,… , x̄n) ∈ H
n be given analo-

gously. Since z1 − x1 ∈ �A1(x1) and z̄1 − x̄1 ∈ 𝜆A1(x̄1) , monotonicity of �A1 implies

For i ∈ [[2, n − 1]] , zi − zi−1 + xi−1 − xi − �Bi−1(xi−1) ∈ �Ai(xi) and z̄
i
− z̄

i−1 + x̄
i−1

−x̄
i
− 𝜆B

i−1(x̄i−1) ∈ 𝜆A
i
(x̄

i
) . Thus, monotonicity of �Ai yields

( Id + 𝜆An)(x̄) ∋ x̄ + 𝜆vn = x̄ − 𝜆v1 − 𝜆

n−1∑
i=2

(
vi + Bi−1(x̄)

)
− 𝜆Bn−1(x̄)

= x̄ − (z1 − x̄) −

n−1∑
i=2

(
z̄i − z̄i−1

)
− 𝜆Bn−1(x̄)

= 2x̄ − z̄n−1 − 𝜆Bn−1(x̄),

⎧
⎪⎨⎪⎩

𝜆A1(x̄) ∋ z̄1 − x̄,

𝜆Ai(x̄) ∋ z̄i − z̄i−1 − 𝜆Bi−1(x̄) ∀i ∈ [[2, n − 1]],

𝜆An(x̄) ∋ x̄ − zn−1 − 𝜆Bn−1(x̄).

(12)

‖T(�) − T(�̄)‖2 +
�
1 − 𝛾

𝛾
−

𝜆L

2𝛾

�
‖( Id − T)(�) − ( Id − T)(�̄)‖2

+
1

𝛾
��
n−1�
i=1

( Id − T)(�)i −

n−1�
i=1

( Id − T)(�̄)i
��2 ≤ ‖� − �̄‖2.

(13)
0 ≤ ⟨x1 − x̄1, (z1 − x1) − (z̄1 − x̄1)⟩
= ⟨x2 − x̄1, (z1 − x1) − (z̄1 − x̄1)⟩ + ⟨x1 − x2, (z1 − x1) − (z̄1 − x̄1)⟩.
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 Summing this inequality for i ∈ [[2, n − 1]] and simplifying gives

Since x1 + xn−1 − xn − zn−1 − �Bn−1(xn−1) ∈ �An(xn) and x̄
1
+ x̄

n−1 − x̄
n
− z̄

n−1−

𝜆B
n−1(x̄n−1) ∈ 𝜆A

n
(x̄

n
) , monotonicity of �An gives

 Adding (13), (14) and (15) and rearranging gives

0 ≤ ⟨xi − x̄i, zi − zi−1 + xi−1 − xi − 𝜆Bi−1(xi−1)⟩
− ⟨xi − x̄i, z̄i − z̄i−1 + x̄i−1 − x̄i − 𝜆Bi−1(x̄i−1)⟩

= ⟨xi − x̄i, (zi − zi−1 + xi−1 − xi) − (z̄i − z̄i−1 + x̄i−1 − x̄i)⟩
− 𝜆⟨xi − x̄i,Bi−1(xi−1) − Bi−1(x̄i−1)⟩

= ⟨xi+1 − x̄i, (zi − xi) − (z̄i − x̄i)⟩ + ⟨xi − xi+1, (zi − xi) − (z̄i − x̄i)⟩
− ⟨xi − x̄i−1, (zi−1 − xi−1) − (z̄i−1 − x̄i−1)⟩
− ⟨x̄i−1 − x̄i, (zi−1 − xi−1) − (z̄i−1 − x̄i−1)⟩
− 𝜆⟨xi − x̄i,Bi−1(xi−1) − Bi−1(x̄i−1)⟩.

(14)

0 ≤⟨x
n
− x̄

n−1, (zn−1 − x
n−1) − (z̄

n−1 − x̄
n−1)⟩

− ⟨x
2
− x̄

1
, (z

1
− x

1
) − (z̄

1
− x̄

1
)⟩ +

n−1�
i=2

⟨x
i
− x

i+1, (zi − x
i
) − (z̄

i
− x̄

i
)⟩

−

n−2�
i=1

⟨x̄
i
− x̄

i+1, (zi − x
i
) − (z̄

i
− x̄

i
)⟩ − 𝜆

n−1�
i=2

⟨x
i
− x̄

i
,B

i−1(xi−1) − B
i−1(x̄i−1)⟩.

(15)

0 ≤ ⟨xn − x̄n, x1 + xn−1 − xn − zn−1 − 𝜆Bn−1(xn−1)⟩
− ⟨xn − x̄n, x̄1 + x̄n−1 − x̄n − z̄n−1 − 𝜆Bn−1(x̄n−1)⟩

= ⟨xn − x̄n, (x1 − xn) − (x̄1 − x̄n)⟩
+ ⟨xn − x̄n, (xn−1 − zn−1) − (x̄n−1 − z̄n−1)⟩
− 𝜆⟨xn − x̄n,Bn−1(xn−1) − Bn−1(x̄n−1)⟩

= −⟨xn − x̄n−1, (zn−1 − xn−1) − (z̄n−1 − x̄n−1)⟩
+ ⟨x̄n − x̄n−1, (zn−1 − xn−1) − (z̄n−1 − x̄n−1)⟩
+

1

2

�‖x1 − x̄1‖2 − ‖xn − x̄n‖2 − ‖(x1 − xn) − (x̄1 − x̄n)‖2
�

− 𝜆⟨xn − x̄n,Bn−1(xn−1) − Bn−1(x̄n−1)⟩.
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The first term in (16) can be expressed as

and the second term in (16) can be written as

To estimate the last term, Young’s inequality and 1
L
-cocoercivity of B1,… ,Bn−1 

gives

(16)

0 ≤

n−1�
i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

+

n−1�
i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), zi − z̄i⟩

+
1

2

�‖x1 − x̄1‖2 − ‖xn − x̄n‖2 − ‖(x1 − xn) − (x̄1 − x̄n)‖2
�

− 𝜆

n−1�
i=1

⟨xi+1 − x̄i+1,Bi(xi) − Bi(x̄i)⟩.

(17)

n−1�
i=1

⟨(xi − x̄i) − (xi+1 − x̄i+1), x̄i − xi⟩

=
1

2

n−1�
i=1

�‖xi+1 − x̄i+1‖2 − ‖xi − x̄i‖2 − ‖(xi − xi+1) − (x̄i − x̄i+1)‖2
�

=
1

2

�
‖xn − x̄n‖2 − ‖x1 − x̄1‖2 − 1

𝛾2
‖(� − �+) − (�̄ − �̄+)‖2

�
,

(18)

n−1�
i=1

⟨(xi − xi+1) − (x̄i − x̄i+1), zi − z̄i⟩

=
1

𝛾

n−1�
i=1

⟨(zi − z+
i
) − (z̄i − z̄+

i
), zi − z̄i⟩

=
1

𝛾
⟨(� − �+) − (�̄ − �̄+), � − �̄⟩

=
1

2𝛾

�‖(� − �+) − (�̄ − �̄+)‖2 + ‖� − �̄‖2 − ‖�+ − �̄+‖2�.
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Thus, substituting (17) and (18) into (16), using (19) and simplifying gives the 
claimed inequality  (12). Finally, to show that (12) implies T is �-averaged with 
� ∶=

2�

2−�L
 , note that � ∈ (0, 1) and satisfies 1−�

�
=

1−�

�
−

�L

2�
 . This completes the 

proof. 	�  ◻

The following theorem is our main convergence result regarding the algorithm 
given by (8).

Theorem  3  Let n ≥ 2 , let A1,… ,An ∶ H ⇉ H be maximally monotone and let 

B1,… ,Bn−1 ∶ H → H be 1
L
-cocoercive with zer

�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
≠ ∅ . Further, 

let � ∈
(
0,

2

L

)
 and � ∈

(
0, 1 −

�L

2

)
 . Given �0 ∈ H

n−1 , let (�k) ⊆ H
n−1 and (�k) ⊆ H

n 

be the sequences given by (8). Then the following assertions hold. 

	 (i)	 The sequence (�k) converges weakly to a point � ∈ FixT .
	 (ii)	 The sequence (�k) converges weakly to a point (x,… , x) ∈ H

n with 

x ∈ zer
�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
.

	 (iii)	 The sequence 
(
Bi(x

k
i
)
)
 converges strongly to Bi(x) for all i ∈ [[1, n − 1]].

Proof  (a):  Since zer
�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
≠ ∅ , Lemma  1(i) implies FixT ≠ ∅ . 

Since � ∈
(
0,

2

L

)
 and � ∈

(
0, 1 −

�L

2

)
 , Lemma 2 implies T is averaged nonexpansive. 

(19)

−

n−1�
i=1

⟨xi+1 − x̄i+1,Bi(xi) − Bi(x̄i)⟩

=

n−1�
i=1

⟨(x̄i+1 − x̄i) − (xi+1 − xi),Bi(xi) − Bi(x̄i)⟩

+

n−1�
i=1

⟨x̄i − xi,Bi(xi) − Bi(x̄i)⟩

≤
L

4

n−1�
i=1

‖(x̄i+1 − x̄i) − (xi+1 − xi)‖2 + 1

L

n−1�
i=1

‖Bi(xi) − Bi(x̄i)‖2

−
1

L

n−1�
i=1

‖Bi(xi) − Bi(x̄i)‖2

=
L

4

n−1�
i=1

‖(x̄i+1 − x̄i) − (xi+1 − xi)‖2

=
L

4𝛾2
‖(� − �+) − (�̄ − �̄+)‖2.
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By applying [16, Theorem 5.15], we deduce that (�k) converges weakly to a point 
� ∈ FixT  and that limk→∞ ‖�k+1 − �k‖ = 0.

(ii): By nonexpansivity of resolvents, L-Lipschitz continuity of B1,… ,Bn−1 , and 
boundedness of (�k) , it follows that (�k) is also bounded. Further, (9) and the fact that 
limk→∞ ‖�k+1 − �k‖ = 0 implies that

Next, using the definition of the resolvent together with (8b), we have

 where bk
i
∶= Bi−1(x

k
i
) − Bi−1(x

k
i−1

) and the operator S ∶ H
n
⇉ H

n is given by

As the sum of two maximally monotone operators is again maximally monotone 
provided that one of the operators has full domain [16, Corollary  24.4(i)], it fol-
lows that S is maximally monotone. Consequently, it is demiclosed [16, Proposi-
tion 20.38]. That is, its graph is sequentially closed in the weak-strong topology.

Let � ∈ H
n be an arbitrary weak cluster point of the sequence (�k) . As a conse-

quence of (20), � = (x,… , x) for some x ∈ H . Taking the limit along a subsequence 
of (�k) which converges weakly to � in (21), using demiclosedness of S together with 
L-Lipschitz continuity of B1,… ,Bn−1 , and unravelling the resulting expression gives

which implies � ∈ FixT  and x = JA1
(z1) ∈ zer

�∑n

i=1
Ai +

∑n−1

i=1
Bi

�
.

In other words, � = (x,… , x) ∈ H
n with x ∶= JA1

(z1) is the unique weak sequen-
tial cluster point of the bounded sequence (�k) . We therefore deduce that (�k) con-
verges weakly to � , which completes this part of the proof.

(iii): For convenience, denote �k = (yk
1
,… , yk

n
) where

(20)lim
k→∞

‖xk
i
− xk

i−1
‖ = 0 ∀i = 2,… , n.

(21)S

⎛
⎜⎜⎜⎜⎝

zk
1
− xk

1

(zk
2
− xk

2
) − (zk

1
− xk

1
) + �bk

2

⋮

(zk
n−1

− xk
n−1

) − (zk
n−2

− xk
n−2

) + �bk
n−1

xk
n

⎞
⎟⎟⎟⎟⎠
∋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xk
1
− xk

n

xk
2
− xk

n

⋮

xk
n−1

− xk
n

xk
1
− xk

n
+ �

n−1�
i=1

bk
i+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)S ∶=

⎛
⎜⎜⎜⎜⎜⎝

(�A1)
−1

�
�(A2 + B1)

�−1
⋮�

�(An−1 + Bn−2)
�−1

�(An + Bn−1)

⎞
⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝

0 0 … 0 − Id

0 0 … 0 − Id

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 0 − Id

Id Id … Id 0

⎞⎟⎟⎟⎟⎠
.

⎧⎪⎨⎪⎩

�A1(x) ∋ z1 − x,

�(Ai + Bi−1)(x) ∋ zi − zi−1 ∀i ∈ [[2, n − 1]],

�(An + Bn−1)(x) ∋ x − zn−1,
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so that xk
i
= J�Ai

(yk
i
) for all i ∈ [[1, n]] . Define � = (y1,… , yn) in an analogous way 

with � in place of �k and (x,… , x) in place of �k , so that x = J�Ai
(yi) for all i ∈ [[1, n]] . 

Using firm nonexpansivity of resolvents yields

Rearranging (23) followed by applying 1
L
-cocoercivity of B1,… ,Bn−1 gives

⎧
⎪⎨⎪⎩

yk
1
∶= zk

1
,

yk
i
∶= zk

i
+ xk

i−1
− zk

i−1
− �Bi−1(x

k
i−1

) ∀i ∈ [[2, n − 1]],

yk
n
∶= xk

1
+ xk

n−1
− zk

n−1
− �Bn−1(x

k
n−1

),

(23)

0 ≤

n�
i=1

⟨J�Ai
(yk

i
) − J�Ai

(yi), ( Id − J�Ai
)(yk

i
) − ( Id − J�Ai

)(yi)⟩

= ⟨xk
1
− x, (zk

1
− xk

1
) − (z1 − x)⟩

+

n−1�
i=2

⟨xk
i
− x, (zk

i
− xk

i
) − (zk

i−1
− xk

i−1
) − �Bi−1(x

k
i−1

)⟩

−

n−1�
i=2

⟨xk
i
− x, zi − zi−1 − �Bi−1(x)⟩

+ ⟨xk
n
− x, xk

1
− xk

n
− (zk

n−1
− xk

n−1
)

− �Bn−1(x
k
n−1

)⟩ − ⟨xk
n
− x, x − zn−1 − �Bn−1(x)⟩

= ⟨xk
1
− xk

n
, (zk

1
− xk

1
) − (z1 − x)⟩ + ⟨xk

n
− x, (zk

1
− xk

1
) − (z1 − x)⟩

+

n−1�
i=2

⟨xk
i
− xk

n
, (zk

i
− xk

i
) − (zk

i−1
− xk

i−1
) − (zi − zi−1)⟩

+ ⟨xk
n
− x, (zk

n−1
− xk

n−1
) − (zk

1
− xk

1
) − (zn−1 − z1)⟩

− �

n−1�
i=1

⟨xk
i+1

− xk
i
,Bi(x

k
i
) − Bi(x)⟩ − �

n−1�
i=1

⟨xk
i
− x,Bi(x

k
i
) − Bi(x)⟩

+ ⟨xk
n
− x, xk

1
− xk

n
⟩ − ⟨xk

n
− x, (zk

n−1
− xk

n−1
) + (x − zn−1)⟩.

(24)

⟨xk
n
− x, xk

1
− xk

n
⟩ + ⟨xk

1
− xk

n
, (zk

1
− xk

1
) − (z1 − x)⟩

− �

n−1�
i=1

⟨xk
i+1

− xk
i
,Bi(x

k
i
) − Bi(x)⟩

+

n−1�
i=2

⟨xk
i
− xk

n
, ((zk

i
− xk

i
) − (zk

i−1
− xk

i−1
)) − (zi − zi−1)⟩

≥ �

n−1�
i=1

⟨xk
i
− x,Bi(x

k
i
) − Bi(x)⟩ ≥ �

L

n−1�
i=1

‖Bi(x
k
i
) − Bi(x)‖2.
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Note that the left-hand side of (24) converges to zero due to (20) and the bound-
edness of sequences (�k), (�k) and (Bi(x

k
i
)) for i ∈ [[1, n − 1]] . It then follows that 

Bi(x
k
i
) → Bi(x) for all i ∈ [[1, n − 1]] , as claimed. 	�  ◻

Remark 5  (Attouch–Théra duality) Let I ⊆ {1,… , n − 1} be a non-empty index set 
with cardinality denoted by |I| . Express the monotone inclusion (1) as

and note that the first operator 
∑

i∈I Bi is 1

|I|L-cocoercive (see, e.g., [16, Proposi-
tion 4.12]). The Attouch–Théra dual [21] associated with (25) takes the form

where we note that the first operator 
�∑

i∈I Bi

�−1 is 1

|I|L-strongly monotone. Hence, as 
a strongly monotone inclusion, (26) has a unique solution ū ∈ H . Moreover, for any 
solution x̄ ∈ H of (25), [21, Theorem 3.1] implies ū =

�∑
i∈I Bi

�
(x̄) . In the context 

of the previous result, Theorem  3(c) implies 
∑

i∈I Bi(x
k
i
) → ū as k → ∞ . In other 

words, the algorithm in  (8) also produces a sequence which converges strongly to 
the unique solution of the dual inclusion (26).

Remark 6  (i) When B1 = ⋯ = Bn−1 = 0 , Theorem 3 recovers [14, Theorem 4.5].
(ii) In the special case when n = 2 , (12) from Lemma  2 simplifies to give the 

stronger inequality

This assures averagedness of T provided that � ∈
(
0, 2 −

�L

2

)
 , which is larger than 

the range of permissible values for � in the statement of Theorem 3. However, by 
using (27), a proof similar to that of Theorem 3 guarantees the convergence for a 
larger range of parameter values, namely, when � ∈

(
0,

4

L

)
 and � ∈

(
0, 2 −

�L

2

)
 . For 

details, see [5, 6].

4 � A distributed forward‑reflected‑backward method

Let n ≥ 3 and consider the problem

(25)find x ∈ H such that 0 ∈
∑
i∈I

Bi(x) +

(
n∑
i=1

Ai +
∑
i∉I

Bi

)
(x),

(26)find u ∈ H such that 0 ∈

(∑
i∈I

Bi

)−1

(u) −

(
n∑
i=1

Ai +
∑
i∉I

Bi

)−1

(−u),

(27)

‖T(𝐳) − T(𝐳̄)‖2 +
�
2 − 𝛾

𝛾
−

𝜆L

2𝛾

�
‖( Id − T)(𝐳) − ( Id − T)(𝐳̄)‖2 ≤ ‖𝐳 − 𝐳̄‖2.

(28)find x ∈ H such that 0 ∈

(
n∑
i=1

Ai +

n−2∑
i=1

Bi

)
(x),
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where A1,… ,An ∶ H ⇉ H are maximally monotone and B1,… ,Bn−2 ∶ H → H are 
monotone and L-Lipschitz continuous.

Developing splitting algorithms which use forward evaluations of Lipschitz con-
tinuous monotone operators is generally more intricate than those exploiting cocoer-
civity, such as the one in the previous section. For concreteness, consider the special 
case of (28) with two operators given by

It is well known that the forward-backward method for (29) given by

fails to converge for any 𝜆 > 0 . Indeed, consider the particular instance of (29) given 

by H = ℝ
2 , A1 ∶= 0 and B1 ∶=

(
0 − 1

1 0

)
 , whose unique solution is (0, 0)T.Then, B1 

is skew-symmetric and thus monotone (but not cocoercive), but the sequence gener-
ated by  (30) will diverge for any non-zero starting point, since the eigenvalues of 
Id − �B1 are 1 ± �i . However, a small modification of (30) gives rise to

which is known as the forward-reflected-backward method [13]. Unlike (30), it con-
verges for any 𝜆 <

1

2L
 . While (31) is not the only constant stepsize scheme for solv-

ing (29), as there are a few which are fundamentally different [3, 22], it is arguably 
one of the simplest. In this section, we develop a modification of the method from 
the previous section which converges for Lipschitz continuous operators by drawing 
inspiration from the differences between (31) and (30).

Given λ ∈ 0, 1
2L

)
and γ ∈ 0, 1 − 2λL

)
and an initial point z0 =

(z01 , . . . , z
0
n−1) ∈ Hn−1, our proposed algorithm for (28) generates two

sequences, (zk) ⊆ Hn−1 and (xk) ⊆ Hn, according to

zk+1 = zk + γ





xk2 − xk1
xk3 − xk2

...
xkn − xkn−1




(32a)

and





x
k
1 = JλA1 z

k
1

)
,

x
k
2 = JλA2 z

k
2 + x

k
1 − z

k
1 − λB1(x

k
1 )

)
,

x
k
i = JλAi

z
k
i + x

k
i−1 − z

k
i−1 − λBi−1(x

k
i−1) − λ(Bi−2(x

k
i−1) − Bi−2(x

k
i−2))

)
,

x
k
n = JλAn x

k
1 + x

k
n−1 − z

k
n−1 − λ(Bn−2(x

k
n−1) − Bn−2(x

k
n−2))

)
.

(32b)

for i ∈ �3, n− 1�.

(29)find x ∈ H such that 0 ∈
(
A1 + B1

)
(x).

(30)xk+1 = J�A1
(xk − �B1(x

k))

(31)xk+1 = J�A1

(
xk − 2�B1(x

k) + �B1(x
k−1)

)
,
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Compared to the algorithm proposed in the previous section, the only major 
change here is that some expressions for xk

i
 in (32b) incorporate a “reflection-

type” term involving the operator Bi−2 . This precise form seems important for our 
subsequence convergence analysis and it seems not easy to incorporate “reflec-
tion-type” terms involving the operator Bi−1 . The structure of (32) allows for a 
similar protocol to the one described in Algorithm 1 to be used for a distributed 
decentralised implementation. The only change to the protocol (in terms of com-
munication) is that Agent i must also now send �

(
Bi−1(x

k
i
) − Bi−1(x

k
i−1

)
)
 to Agent 

i + 1 for all i ∈ [[2, n − 1]].

Remark 7  To the best of our knowledge, the scheme given by (32) does not directly 
recover any existing forward-backward-type scheme as special case (although it is 
clearly related to (31)). For example, if we take n = 3 and A1 = A3 = 0 . Then xk

1
 and 

xk
3
 can be eliminated from (32) to give

To better understand the relationship between this and (31), it is instructive to con-
sider the limiting case with � = 1 . Indeed, when � = 1 , xk

2
 and zk

2
 can be eliminated 

to give

Although this closely resembles (31) for finding zero of A2 + B1 , it is not exactly the 
same due to the index of the first term inside the resolvent.

In order to analyse (32), we introduce the underlying fixed point operator 
T̃ ∶ H

n−1
→ H

n−1 given by

 where � = (x1,… , xn) ∈ H
n depends on � = (z1,… , zn) ∈ H and is given by

⎧
⎪⎨⎪⎩

xk
2
= J�A2

�
zk
2
− �B1(z

k
1
)
�

zk+1
1

= zk
1
+ �

�
xk
2
− zk

1

�

zk+1
2

= zk
2
+ �

�
zk
1
− zk

2
− �(B1(x

k
2
) − B1(z

k
1
))
�
.

zk+1
1

= J�A2

(
zk−1
1

− 2�B1(z
k
1
) + �B1(z

k−1
1

)
)
.

(33)T̃(�) ∶= � + �

⎛⎜⎜⎜⎝

x2 − x1
x3 − x2

⋮

xn − xn−1

⎞⎟⎟⎟⎠
,

(34)

⎧⎪⎪⎨⎪⎪⎩

x1 = J�A1

�
z1
�
,

x2 = J�A2

�
z2 + x1 − z1 − �B1(x1)

�
,

xi = J�Ai

�
zi + xi−1 − zi−1 − �Bi−1(xi−1) − �(Bi−2(xi−1) − Bi−2(xi−2))

�
,

xn = J�An

�
x1 + xn−1 − zn−1 − �(Bn−2(xn−1) − Bn−2(xn−2))

�
,
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for i ∈ [[3, n − 1]] . In this way, the sequence (�k) given by (32) satisfies �k+1 = T̃(�k) 
for all k ∈ ℕ.

Next, we analyse the nonexpansivity properties of the operator  T̃  . The proof 
of the following result is similar to that of Lemma 2, but using the Lipschitzian 
properties of the operators B1,… ,Bn−2 instead of cocoercivity.

Lemma 3  Let �̄ = (z̄1,… , z̄n−1) ∈ Fix �T  . Then, for all � = (z1,… , zn−1) ∈ H
n−1 , we 

have

In particular, if � ∈ (0,
1

2L
) and � ∈ (0, 1 − 2�L) , then T̃  is �-strongly quasi-nonex-

pansive for 𝜎 =
1−𝛾

𝛾
−

2𝜆L

𝛾
> 0.

Proof  For convenience, denote �+ = T̃(�) . Further, let � = (x1,… , xn) ∈ H
n be given 

by (34) and let �̄ = (x̄,… , x̄) ∈ H
n−1 be given analogously. Note that the expression 

of �̄ is justified as �̄ = �T(�̄) . Monotonicity of �A1 implies

In order to simplify the case study, we introduce the zero operator B0 ∶= 0 . By 
monotonicity of �Ai , we deduce

and monotonicity of �An yields

(35)
‖�T(�) − �̄‖2 +

�
1 − 𝛾

𝛾
−

2𝜆L

𝛾

�
‖( Id − �T)(�)‖2 + 1

𝛾
��
n−1�
i=1

( Id − �T)(�)i
��2

+ 𝛾𝜆L‖( Id − �T)(�)1‖2 + 𝛾𝜆L‖( Id − �T)(�)n−1‖2 ≤ ‖� − �̄‖2.

(36)0 ≤ ⟨x2 − x̄, (z1 − x1) − (z̄1 − x̄)⟩ + ⟨x1 − x2, (z1 − x1) − (z̄1 − x̄)⟩.

(37)

0 ≤ ⟨xi+1 − x̄, (zi − xi) − (z̄i − x̄)⟩ + ⟨xi − xi+1, (zi − xi) − (z̄i − x̄)⟩
− ⟨xi − x̄, (zi−1 − xi−1) − (z̄i−1 − x̄)⟩
− 𝜆⟨xi − x̄,Bi−1(xi−1) − Bi−1(x̄)⟩
− 𝜆⟨xi − x̄,Bi−2(xi−1) − Bi−2(xi−1)⟩,

(38)

0 ≤ −⟨xn − x̄, (zn−1 − xn−1) − (z̄n−1 − x̄)⟩
− 𝜆⟨xn − x̄,Bn−2(xn−1) − Bn−2(xn−2)⟩
+

1

2

�‖x1 − x̄‖2 − ‖xn − x̄‖2 + ‖x1 − xn‖2
�
.
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Summing together (36)–(38), we obtain the inequality

where we have omitted the index i = 2 in the last sum, since B0 ∶= 0 . The first term 
in (39) multiplied by 2� can be written as

Therefore, multiplying (39) by 2� and substituting (40), we reach the inequality

Using monotonicity of B1,… ,Bn−2 , the second last term can be estimated as

(39)

0 ≤

n−1�
i=1

⟨(z̄i − x̄) − (zi − xi), xi+1 − xi⟩

+
1

2

�‖x1 − x̄‖2 − ‖xn − x̄‖2 + ‖x1 − xn‖2
�

− 𝜆

n−1�
i=2

⟨xi − x̄,Bi−1(xi−1) − Bi−1(x̄)⟩

− 𝜆

n�
i=3

⟨xi − x̄,Bi−2(xi−1) − Bi−2(xi−2)⟩,

(40)

2𝛾

n−1�
i=1

⟨(z̄i − x̄) − (zi − xi), xi+1 − xi⟩

=

n−1�
i=1

�‖z̄i − zi‖2 + ‖z+
i
− zi‖2 − ‖z+

i
− z̄i‖2

�

−
1

𝛾

n−1�
i=1

‖z+
i
− zi‖2 + 𝛾

�‖xn − x̄‖2 − ‖x1 − x̄‖2�.

(41)

‖�T(�) − �̄‖2 + 1 − 𝛾

𝛾
‖( Id − �T)(�)‖2 + 1

𝛾
��
n−1�
i=1

( Id − �T)(�)i
��2

≤ ‖� − �̄‖2 − 2𝛾𝜆

n−1�
i=2

⟨xi − x̄,Bi−1(xi−1) − Bi−1(x̄)⟩

− 2𝛾𝜆

n�
i=3

⟨xi − x̄,Bi−2(xi−1) − Bi−2(xi−2)⟩.

(42)−

n−1�
i=2

⟨xi − x̄,Bi−1(xi−1) − Bi−1(x̄)⟩ ≤
n−1�
i=2

⟨xi − x̄,Bi−1(xi) − Bi−1(xi−1)⟩
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and, using L-Lipschitz continuity of B1,… ,Bn−2 , the last term can be estimated as

Thus, substituting (42) and (43) into (41) gives (35), which completes the proof. 	� ◻

Remark 8  Compared to Lemma  2 from the previous section, the conclusions 
of Lemma  3 are weaker in two ways. Firstly, the permissible stepsize range of 
� ∈ (0,

1

2L
) is smaller than in Lemma 2, which allowed � ∈ (0,

2

L
) . And, secondly, the 

operator T̃  is only shown to be strongly quasi-nonexpansive in Lemma 3 whereas T 
is known to be averaged nonexpansive.

The following theorem is our main result regarding convergence of (32).

Theorem  4  Let n ≥ 3 , let A1,… ,An ∶ H ⇉ H be maximally monotone and let 
B1,… ,Bn−2 ∶ H → H be monotone and L-Lipschitz continuous with 
zer

�∑n

i=1
Ai +

∑n−2

i=1
Bi

�
≠ ∅ . Further, let � ∈

(
0,

1

2L

)
 and � ∈

(
0, 1 − 2�L

)
 . Given 

�0 ∈ H
n−1 , let (�k) ⊆ H

n−1 and (�k) ⊆ H
n be the sequences given by (32). Then the 

following assertions hold. 

	 (i)	 The sequence (�k) converges weakly to a point � ∈ Fix T̃ .
	 (ii)	 The sequence (�k) converges weakly to a point (x,… , x) ∈ H

n with 
x ∈ zer

�∑n

i=1
Ai +

∑n−2

i=1
Bi

�
.

(43)

−

n�
i=3

⟨xi − x̄,Bi−2(xi−1) − Bi−2(xi−2)⟩

= −

n�
i=3

⟨xi−1 − x̄,Bi−2(xi−1) − Bi−2(xi−2)⟩

+

n�
i=3

⟨xi−1 − xi,Bi−2(xi−1) − Bi−2(xi−2)⟩

≤ −

n�
i=3

⟨xi−1 − x̄,Bi−2(xi−1) − Bi−2(xi−2)⟩

+
L

2

n�
i=3

�‖xi−1 − xi‖2 + ‖xi−1 − xi−2‖2
�

= −

n−1�
i=2

⟨xi − x̄,Bi−1(xi) − Bi−1(xi−1)⟩ + L

n�
i=2

‖xi − xi−1‖2

−
L

2
‖x2 − x1‖2 − L

2
‖xn − xn−1‖2

= −

n−1�
i=2

⟨xi − x̄,Bi−1(xi) − Bi−1(xi−1)⟩ + L

𝛾2
‖( Id − �T)(�)‖2

−
L

2
‖( Id − �T)(�)1‖2 − L

2
‖( Id − �T)(�)n−1‖2.
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Proof  (a): Since zer
�∑n

i=1
Ai +

∑n−2

i=1
Bi

�
≠ ∅ , Lemma 1(i) implies that the set of 

fixed points of operator T in (9, 10) (with Bn−1 = 0 ) is nonempty. The latter set coin-
cides with the set of fixed points of operator T̃  in  (33, 34), so Fix T̃ ≠ ∅ . Since 
� ∈

(
0,

1

2L
) and � ∈

(
0, 1 − 2�L

)
 , Lemma 3 implies that (�k) is Fejér monotone with 

respect to Fix T̃  and that limk→+∞ ‖�k+1 − �k‖ = 0 . By nonexpansivity of resolvents, 
L-Lipschitz continuity of B2,… ,Bn−1 , and boundedness of (�k) , it follows that (�k) is 
also bounded. Further, (33) and the fact that limk→∞ ‖�k+1 − �k‖ = 0 implies that

Let � = (u1,… , un−1) ∈ H
n−1 be an arbitrary weak cluster point of (�k) . Then, due 

to (44), there exists a point x ∈ H such that (�,�) is a weak cluster point of (�k, �k) , 
where � = (x,… , x) ∈ H

n . Let S denote the maximally monotone operator defined 
by (22) when Bn−1 = 0 . Then (32b) implies

where bk
i
∶= Bi−1(x

k
i
) − Bi−1(x

k
i−1

) . Taking the limit along a subsequence of (�k, �k) 
which converges weakly to (�,�) in (45), using demiclosedness of S together with 
L-Lipschitz continuity of B2,… ,Bn−1 , and unravelling the resulting expression gives 
that � ∈ Fix T̃  and x = J�A1

(u1) ∈ zer
�∑n

i=1
Ai +

∑n−2

i=1
Bi

�
 . Thus, by [16, Theo-

rem 5.5], it follows that (�k) converges weakly to a point � ∈ Fix T̃ .
(b): Follows by using an argument analogous to the one in Theorem 3(b). 	�  ◻

Remark 9  (Exploiting cocoercivity) If a Lipschitz continuous operator Bi in (28) 
is actually cocoercive, then it is possible to reduce the number evaluations of Bi 
per iteration by combining the ideas in Sects. 3 and 4. In fact, we can consider the 
problem

where B1,… ,Bn−2 are each either monotone and Lipschitz continuous or cocoer-
cive, and Bn−1 is cocoercive. For this problem, we can replace (34) in the definition 
of T̃  with

(44)lim
k→∞

‖xk
i
− xk

i−1
‖ = 0 ∀i = 2,… , n.

(45)S

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

zk
1
− xk

1

(zk
2
− xk

2
) − (zk

1
− xk

1
) + �bk

2

(zk
3
− xk

3
) − (zk

2
− xk

2
) + �bk

3
− �bk

2

⋮

(zk
n−1

− xk
n−1

) − (zk
n−2

− xk
n−2

) + �bk
n−1

− �bk
n−2

xk
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∋

⎛⎜⎜⎜⎜⎜⎜⎝

xk
1
− xk

n

xk
2
− xk

n

xk
3
− xk

n

⋮

xk
n−1

− xk
n

xk
1
− xk

n

⎞⎟⎟⎟⎟⎟⎟⎠

,

find x ∈ H such that 0 ∈

(
n∑
i=1

Ai +

n−1∑
i=1

Bi

)
(x),
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where b2,… , bn−1 ∈ H are given by

This modification can be shown to converge using a proof similar to Theorem  4 
for � ∈ (0,

1

2L
) . However, it is not straightforward to recover Theorem 3 as a spe-

cial case of such a result because the stepsizes range of � ∈ (0,
2

L
) in the cocoercive 

only case (i.e., Theorem 3) are larger than the range in the mixed case. Moreover, 
Theorem 3(c) (strong convergence to dual solutions) does not have an analogue in 
the statement of Theorem 4. In addition, keeping the two cases separate allows the 
analysis to be as transparent as possible.
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⎧
⎪⎪⎨⎪⎪⎩

x1 = J�A1

�
z1
�
,

x2 = J�A2

�
z2 + x1 − z1 − �B1(x1)

�
,

xi = J�Ai

�
zi + xi−1 − zi−1 − �Bi−1(xi−1) − �bi−1

�
∀i ∈ [[3, n − 1]],

xn = J�An

�
x1 + xn−1 − zn−1 − �Bn−1(xn−1) − �bn−1

�
,

bi =

{
0 if Bi−1 is cocoercive,

Bi−1(xi) − Bi−1(xi−1) if Bi−1 is monotone and Lipschitz.
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