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Abstract: The city of Chone, being situated on the Ecuadorian coast, was affected due to the close-by
epicenter of the earthquake of 16 April 2016, which reached a magnitude of Mw 7.8. This catastrophic
event presented settlements in the ground, sand boils and land subsidence, being the most damaging
in a variety of civil works among these several buildings. The main objective of the current study
is to select data using the standard penetration test (SPT) for the evaluation of the probability of
liquefaction considering a maximum acceleration seismic risk of amax = 0.5 g. With the tabulated
information, a liquefaction hazard map was generated for the city of Chone, where a safety factor of
1228 was obtained, determining the potentially liquefiable strata at an approximate depth between
9 and 11 m. Hereby, we were able to demonstrate results that were obtained experimentally through
a quantitative analysis, indicating that the urban area of the city of Chone has a high probability of
liquefaction, which was supported due to the presence of Holocene-aged soils developed in alluvial
deposits, located in an alluvium mid catchment area. This novel research, due to the combination of
a variety of used tools in the seismic risk evaluation, provides a relevant contribution to territorial
planning and risk management in construction, in addition to the territorial reorganization of the
canton as an example for different regions worldwide with similar geodynamics, soil mechanics and
seismic vulnerabilities.

Keywords: standard penetration test (SPT); soil liquefaction; Pedernales earthquake; seismic
vulnerability; Ecuador

1. Introduction

Earthquakes can be caused by various triggers, of which among the most common
are tectonic plate movements releasing their energy within or along capable geological
faults [1,2]. The earthquake-induced soil liquefaction causes a variety of damages [3],
including the partial or complete destruction or collapse of buildings, severe damages
of the road networks and further fundamental infrastructures [4–6]. Therefore, such a
hazard appears to be one of the most relevant issues nowadays in geotechnical and geolog-
ical engineering, based on numerous seismic movements due to ground vibrations [7,8].
This has led to the development of new techniques that allow to evaluate the strata
characterizing them.

There are several simplified methods that were developed from some databases of
field records in places where the phenomenon of liquefaction occurred [9,10]. The most
fundamental and frequently used are in situ testing techniques, such as the standard
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penetration test (SPT), the cone penetration test (CPT), and the shear wave velocity mea-
surements [11,12]. For the current research, we have used the methodology based on the
SPT trial as according to Toprak and Holzer [13], there is confirmation between the SPT
database and the CPT-based approach for the liquefaction susceptibility analysis of soil
layers [3], being the method that has been commonly used in most countries [14–16]. There
are several investigations regarding the SPT test, where the compactness of the lithologies
of the soil can be determined as well as the variability of its properties [17]. The number
of blows of the SPT has been used as a parameter that allows determining the resistance
of sandy soils to liquefaction [18]. The conditions of young soils that correspond to the
Holocene contain relatively unfavorable environments for geotechnical designs, as they
lack the ability to provide resistance capable of withstanding direct loads [19].

The approach based on SPT for the determination of the liquefaction potential reflects
several conditions that makes it one of the most used methods, allowing to know the
history of stresses and deformations, the structure of the soil, the horizontal effective
stress [18], as well as the combination of relative density and vertical stress, factors that
influence resistance to liquefaction in sands [20]. The SPT is considered a shear strength
test in undrained conditions and due to the fast deformation rate as well as due to the
low cost, it allows obtaining more data, generating a larger universe of samples [21]. The
SPT-based technique has been shown to be effective in saturated soils of narrow valley
sedimentary environments.

In the study area of the current research being situated in western, coastal Ecuador,
within the Chone canton (province of Manabí), as a result of what has already been
mentioned, collapses of buildings and failures in the pavement structures were evidenced
and nicely documented [22]. In present day, the analyses of earthquake environmental
effects require intensity assessment as well as more detailed geotechnical data, allowing
mitigation measures and emergency response plans to be better informed about the hazards
related specifically to earthquakes [23]. There are investigations performed on liquefaction
and earthquake-induced soil failures [24,25]. The initial studies about the liquefaction
phenomenon started in the early 1960s of the last century due to the 1964 earthquake
in Alaska and Niigata, presenting a very high number of considerable damages among
these faults in slopes, bridges and foundations [26]. Subsequently, elaborated liquefaction
risk maps in areas susceptible to this phenomenon obtained a great relevance for decision
makers and site planners. These maps result from the calculation of the liquefaction
potential (LPI) and the cumulative frequency distribution of the LPI in the different soil
layers, giving an approach to the evaluation of the quantitative results when evaluating
liquefaction [27].

In Ecuador, within the recent years, several investigations have been conducted about
the Mw 7.8 Pedernales earthquake on 16 April 2016 and its coseismic effects [28–30]. The
most frequent coseismic ground effects were local settlements and sinkholes, coherent and
disrupted landslides and liquefaction-induced lateral spreading in the various cantons
belonging to the coastal provinces of Manabí and Esmeraldas. The main aim of the current
research is based on analyzing the coseismic liquefaction-induced ground deformation in
Chone, being situated just 85 km south of the epicenter of the earthquake of 2016, using
geotechnical and geological data through the standard penetration test (SPT) in the field,
for its subsequent calculation of the safety factor (Fs) and the probability of liquefaction
(PL). This research is intended to contribute to the municipal territorial reorganization,
allowing the identification of the most susceptible areas to liquefaction. Even more so, all
the given results can contribute to the reduction of the potential loss of human lives and
infrastructure when corresponding land use planning and ordering measures are applied.

2. The Study Area
2.1. Geodynamic and Geomorphological Setting

The Ecuadorian subduction zone is the main seismogenic structure and is divided in
five well-differentiated tectonic segments [31]. The province of Manabí has the shortest
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seismic recurrence associated with subduction earthquakes, where the northeast moving
Nazca oceanic plate collides and subducts the continental segment of the North-Andean
block or Caribbean and South American continental crust (Figure 1) [32]. The recorded seis-
mic history for the province of Manabí begins in 1896, where earthquakes with magnitudes
in the order of 7 degrees are recurrent for about every 20 years, while the strongest ones are
in the order of 8 degrees for about every 70 to 80 years (Table 1).

For the province of Manabí, many of its cities are built in narrow valleys between hills,
where saturated and unsaturated soils of alluvial and alluvial–colluvial environments are
predominant. The highest intensities of coseismic geological effects have been documented
in these types of soils. For colluvial soils, coherent and disruptive landslides have been
evaluated, while for soft and loose soils, various types of soil liquefaction have been
recorded. In the current study, reference is made to the city of Chone, which is the capital
of the largest canton in the province of Manabí, and with little or scarce geotechnical
information on the subsoil in the urban area. An analysis of the seismic risk is analyzed
for the entire Chone canton, where its total basin area is approximately 3519 km2 with
an average slope of 18.15%, accompanied by elevations that do not exceed 120 m.a.s.l.
Urban areas have a degree of inclination that corresponds to 4–35◦ and are associated
with colluvial deposits. The soft soils correspond to areas of alluvial–colluvial and alluvial
plains, which presented settlements, soil liquefaction and lateral displacements during the
Pedernales earthquake in 2016.
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Figure 1. Geodynamic setting of Ecuador and its surrounding. The Galapagos Islands and the
Carnegie Ridge form part of the oceanic Nazca plate, which subducts below the South American
continent. Note the location of the most recent earthquake in 2016 in coastal Ecuador. Adapted
from [32].

The city of Chone is located in earthquake-prone areas, so its close-by distance from
the epicenter of the 2016 earthquake. Chone is the third most populous city in the province
of Manabí with 73,681 inhabitants with a surface area of 17 km2 [33]. Indeed, during the
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Pedernales earthquake in 2016, the structural failure of state health buildings was evidenced.
The same buildings with the combination of natural periods of the ground caused the total
collapse of the main hospital in the city, increasing the level of health emergency due to the
poor response to care for the injured, where mobile tents then functioned as a hospital for
several months [29]. In addition, a large amount of structural damage was recorded, with
a total of 662 homes being damaged, of which 466 correspond to the urban area [22,34].
In these areas, they present different types of soils for the Borbon formation, basically
comprising grayish-blue calcareous sandstones and for the Onzole formation, shales to
bluish mudstone siltstones interspersed with white volcanic tuffs and sandstone slats [35].
Furthermore, there are alluvial terraces with saturated and partially saturated soils [28,34].
These geological conditions allowed the elaboration of a map with 21 capable geological
faults as illustrated in Figure 2, corresponding to sea floor and continental segments [36,37].
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Table 1. Seismic subduction events in coastal Ecuador [30,38].

Sector (Epicenter) Date Magnitude (Mw)

Bahía de Caráquez 3 May 1896 7.1
Esmeraldas 31 January 1906 8.8

Pedernales-Muisne 1 June 1907 7.4
Pedernales 14 May 1942 7.9
Esmeraldas 23 October 1944 6.7

Bahía de Caráquez 16 January 1956 7.4
Esmeraldas 19 January 1958 7.6

Bahía de Caráquez 4 August 1998 7.1
Pedernales 16 April 2016 7.8

2.2. Structural Geological Context of the Studied Area

A deterministic seismic risk map was realized from 21 capable geological faults near
the Chone canton (Table 2). The most appropriate approach to estimate the maximum
magnitude of an earthquake is a relationship with the fault rupture length [38]. The first
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analysis consists of applying equations proposed by Wesnousky in 2008 [39], relations for
each type of capable fault:

Strike slip faults: Mw = 5.56 + 0.87Log(Lf) (1)

Normal faults: Mw = 6.12 + 0.47Log(Lf) (2)

Reverse faults: Mw = 4.11 + 1.88Log(Lf) (3)

where Lf is the length of the geological fault.
A second analysis is to obtain the peak ground acceleration of the rocks from geological

faults, applying the equation proposed by Fukushima and Tanaka in 1990 [40] by using the
proposed equation:

PGArock =
(100.41Me−log10(H f+0.032×100.41Me) − 0.0034H f + 1.3)

980
(4)

where H f is the depth of fault and Me the estimated magnitude.
The seismic risk map indicates that the maximum magnitudes expected from the full

activation of a tectonic segment of geological fault is in the order of 6.17 ≤ Mw ≤ 7.18 and
rock acceleration is between 0.28 ≤ PGA ≤ 0.36. A second scenario considers the activation
of 60% of the length of the geological fault, where the expected magnitudes are in the order
of 5.79 ≤ Mw ≤ 6.79 and the acceleration in the order of 0.22 ≤ PGA ≤ 0.31. The Ecuadorian
Construction Standard named NEC-11 [41] considers 60% of the potential of a seismogenic
structure, as these values may be closer to the recurrence and seismic values expected
on the coast of Ecuador. Using data from seismic stations and environmental vibration
measurements, it is possible to compare the spectral ratio technique with respect to a
reference site with that of the spectral ratio (H/V) obtaining consistency in the fundamental
frequency values [42] (Figure 3). The phenomenon of seismic amplification in soft sediments
near the surface has been studied for several decades, so knowing the characteristics and
behavior of soil deposits in high seismic activity is fundamental in order to determine the
amplifications of seismic movements and identify resonance conditions in buildings [43].
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Table 2. Maximum magnitudes and PGA-rock determination obtained from the analysis of capable
geological faults in the canton of Chone. Values determined based on Wesnousky (2008) [41] and
Fukushima and Tanaka [40].

Figure 100. Mechanism
Fault

Length
(km)

Fault
Depth
(km)

Distance
Fault to

City (km)
Rake

Fault
Width
(km)

Magnitude
Calculated 100%

Fault Rupture
Length

Magnitude
Calculated 60%
Fault Rupture

Length

Levels of
Reliability

PGA-
Rock

(g)

F01 Normal 39 16 95 −90 10 6.87 6.76 deducted 0.32

F02 Normal 29 15 78 −90 9 6.81 6.70 deducted 0.32

F03 Normal 27 15 62 −90 9 6.79 6.69 deducted 0.32

F04 Shear fault Sx 33 15 73 −5 10 6.88 6.69 deducted 0.33

F05 Normal 16 12 102 −90 8 6.69 6.58 deducted 0.34

F06 Normal 21 12 113 −90 8 6.74 6.64 deducted 0.35

F07 Reverse 43 16 92 90 10 7.18 6.76 certain 0.36

F08 Normal 16 12 43 −90 8 6.69 6.58 certain 0.34

F09 Reverse 17 12 28 90 8 6.42 6.01 certain 0.31

F10 Normal 25 15 9 −90 9 6.78 6.67 deducted 0.32

F11 Reverse 22 15 33 90 8 6.63 6.22 certain 0.30

F12 Reverse 38 16 26 90 10 7.08 6.66 deducted 0.35

F13 Normal 44 16 46 −90 10 6.89 6.79 certain 0.32

F14 Normal 31 15 70 −90 9 6.82 6.72 certain 0.32

F15 Shear fault Dx 15 12 40 −175 8 6.58 6.39 deducted 0.33

F16 Shear fault Dx 25 15 32 −175 9 6.78 6.58 certain 0.32

F17 Reverse 13 12 52 90 7 6.20 5.79 certain 0.28

F18 Shear fault Sx 7 10 38 −5 6 6.30 6.10 certain 0.32

F19 Reverse 18 15 52 90 8 6.47 6.05 deducted 0.28

F20 Shear fault Sx 5 10 58 −5 6 6.17 5.98 certain 0.31

F21 Normal 16 12 5 −90 8 6.69 6.,58 deducted 0.34

2.3. Geological and Geotechnical Section of the Lithological Structure of the Chone Soil

A geological profile of section A–B in Figure 4, which is approximately 5 km long,
was obtained from geophysical tests for the determination of rocky basement strata cor-
responding to Cretaceous basalts of the Piñon formation [44,45]. There, we yielded wave
speeds (Vs) up to 2400 m/s at depths greater than 90 m [34]. In the upper part of the
profile, there are strata of soft rocks corresponding to Miocene siltstones and claystones
with the Tosagua formation, where (Vs) between 400 and 700 m/s are evident located
at depths that range between 20 to 80 m. This layer corresponds to a type C soil profile.
The firm soils of the Miocene and Cretaceous represent the rocky substrate covered by
dense to very dense sediments defined as fluvial valley material, where the Vs ranges
between 200 and 400 m/s, with thicknesses of 10 to 20 m in depth. This depth, according
to the soil profile, classifies it as type C [34]. This part corresponds to colluvial sediments.
These present (Vs) 220 m/s classified as type D soil that oscillates at depths of up to
12 m and a fundamental period of the soil between 0.35 and 0.9 s. The sedimentary strata
corresponding to the alluvial–colluvial deposits of the Pleistocene reach (Vs) between
180 and 300 m/s thicknesses that manage to reach depths of up to 15 m, being classified
as type D soil profile [34] and fundamental period of the soil between 0.7 and 1.2 s. Sed-
imentary units are characterized as Holocene floodplain deposits. These reach (Vs) less
than 150 m/s at depths that oxidize between 2 and 8 m, and according to the soil profile
classification, they correspond to type E [34] and fundamental period of the soil between
0.9 and 1.2 s. This classification of soil profiles is based on the criteria according to the
Ecuadorian Standards Construction NEC-2002, NEC-2011 and NEC-2015 [41,46].
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3. Materials and Methods

For the current study, geotechnical, geological, and geomorphological data were used
to later evaluate the soil profiles, which are susceptible to liquefaction [47,48]. Hereby, the
standard penetration test (SPT) was used, being the one of the most used worldwide due to
its low cost [49]. SPT samples were able to be obtained at 1.5 m intervals through boreholes
in order to determine the grain size distribution and Atterberg limits of soils [50]. A total of
26 perforations were used for the determination of the potential of soil liquefaction for the
city of Chone as illustrated in Figure 5.
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A depth of 20 m was investigated, allowing the elaboration of SPT, Fs and PL profiles.
Later, a map of soil liquefaction hazards was developed, categorized by classes, the method
proposed by Chen and Juang [51], where the safety factor was calculated throughout the
drilling, relating the cyclic resistance (CRR) and the cyclic stress ratio (CSR). Addition-
ally, the main geological deposits were identified, being predominantly alluvium plains,
colluvium–alluvium deposits, alluvium plains, colluvium deposits and ancient alluvium
plains. Granulometry, water content (%w), degree of saturation (Sr), liquid limit (LL),
and plasticity limit [22] tests were performed, evaluating each of the different strata. The
methodology that was followed to determine the probability of liquefaction in the city of
Chone is divided into four stages [22]. In the first stage, a database of historical earthquakes
and geological faults is created. Then the geotechnical, geological and geophysical results
of the area are compiled and analyzed, where there is also field reconnaissance and the
elaboration of a map of geological units using GIS technology. The calculation probability
(PL) is assessed from SPT tests, considering a seismic hazard of amax = 0.5 g. Finally, a
liquefaction hazard map is prepared for the city of Chone, with documented co-seismic
evidence as illustrated in Figure 6 of the earthquake in 2016.
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Figure 6. Evidence of the Pedernales earthquake on 16 April 2016, in the city of Chone with affectation
in buildings, houses and in the southern zone in the urban area presence of liquefaction. (A) Structural
failure in the building caused by construction flaws; (B) non-uniform settlement in the foundation;
(C) settlement on soft ground produced by liquefaction effects; (D) deformations or decoupling in
pavement structures.

Most of the urban area has soft soils, which are classified as sand, silt, and silty clay,
and interspersed sand strata. At moderate to high magnitude levels, soil liquefaction is one
of the main causes of structural damage in non-cohesive and low plasticity soils [52,53].
In addition, in another investigation, undrained cyclic triaxial tests were conducted using
various types of sands under different confining pressures, to establish a relationship
between the resistance to liquefaction and the speed of the shear wave [54]. In many cases,
areas susceptible to soil liquefaction experienced rapid, unplanned population growth [30].
However, there are few rules of competent organizations with territorial planning that
involve types of soil exposed to co-seismic environmental effects [55], that is, they are not
considered in municipal cadastre studies for cities.
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4. Results and Discussion
4.1. Geological and Geotechnical Database

These exposed data indicate that the city of Chone is located on deposits of alluvial
plain sediments and old strata of colluvial deposits, causing them to have unfavorable
conditions in terms of soil behavior [30]. Table 3 lists the description by stratum of the
Unified Soil Classification System (USCS), the geological units, shear rates and geological
ages with their respective thicknesses.

Table 3. Classification of the geological materials of the seven present quaternary units and the one
Miocene (Tosagua) unit of Chone city.

Geologic Units Thickness of
Sediments USCS Soil Type Geological Age Average Shear

Rate (m/s)

Alluvium plain deposits 1 ≤ m ≤ 8 MH–ML Holocene 100–150

Stiff colluvium alluvium 8 ≤ m ≤ 22 ML–SM Holocene to Late Pleistocene 150–400

Ancient alluvial–colluvial 15 ≤ m ≤ 18 MH–SM Holocene to Late Pleistocene 180–300

Soft rock siltstone >25 m ML–MH Late Pleistocene >500

The surface strata identified between 1 and 8 m deep have shear rates that vary
between 100 and 150 m/s belonging to the Holocene. With respect to the stiff colluvium
alluvium deposits, there are soft to medium compact strata with a Vs ranging from 150 to
400 m/s between depths of 8 and 22 m. The deepest strata of ancient alluvial–colluvial
deposits are sedimentary deposits with compactness that varies with depth from soft to firm
between 15 and 18 m with Vs ranging from 180 to 300 m/s and soils with firm compactness
that are located at greater depths at 25 m presenting Vs greater than 500 m/s.

This analysis was realized in order to first classify the geological units describing
which soils are liquefiable where they are considered probably liquefiable when the liquid
limit (LL) is less than 37% and the plasticity index (PI) is less than 12% [56]. These would
correspond to the soils of the city of Chone at depths between 8 and 14 m deep. Any loose
soils with PI < 12 and wc/LL > 0.85 are the most susceptible to liquefaction, while loose
soils between 12 < PI < 20 and wc/LL > 0.8 are more resistant to liquefaction but still
these are susceptible to cyclic mobility [57]. Figure 7 illustrates the susceptibility results of
liquefiable soils based on the criteria proposed by Seed et al. [56], where the perforations
are indicated with their respective LL and PI, evidencing that non-liquefiable soils present
higher LL values, from 37% to 82%.

These soils present Holocene strata up to 15 m deep with soft to medium compactness
and with a degree of saturation (Sr) close to 100%. All these characteristics make them
potentially liquefiable soils that belong to alluvial deposits. For the Pleistocene strata that
correspond to depths of 15 to 25 m with moderately dense compactness, belonging to
alluvial–colluvial deposits, they indicate (Sr) between 77% and 86%. Table 4 illustrates the
geotechnical results according to their geological units of the tests performed as Fc, Sr, LL,
PI, and N1SPT60 corresponding to the city of Chone.

It is indicated that the laboratory tests performed on saturated sands for the liquefac-
tion phenomenon are determined by three main factors. First, the higher the void ratio in
the soil, the more easily liquefaction will occur. Second, the lower the confining pressure,
the more readily liquefaction will occur. Finally, the higher the cyclic stress, the lower the
number of cycles required to induce liquefaction [58].

The content of low plasticity fines does not necessarily provide a higher resistance to
liquefaction, and with respect to the grading effect of sands, it is concluded that the triaxial
cyclic strength of a well-graded specimen decreases to a lower limit value when adding
low plasticity fines up to about 20% [59]. According to the geotechnical results, the strata
intercalated between sands and silts that present these soils of the city of Chone vary the



Appl. Sci. 2022, 12, 7867 10 of 18

coefficient of uniformity (Cu) between 1.82 and 2.80 mm and the coefficient of curvature
(Cu) between 0.12 and 2.80.

Table 4. Statistical soil parameter analysis results of the city of Chone.

Borehole Fc Sr ρd LL IP N1SPT60

(%) (%) (g/cm3) (%) (%)

Min–Max Min–Max Min–Max Min–Max Min–Max Min–Max

Alluvium plain deposits 6–78 96.87–99.87 1.307–1.746 23–46 4–22 1–21

Ancient alluvium plain 16–98 80.45–85.56 1.566–1.852 0–66 0–33 6–44

Colluvium–lluvium deposits 15–82 77.12–86.54 1.654–1.866 25–42 7–16 11–45

Fc—Fraction of fine particles; Sr—Degree of saturation; ρd—Dry density; LL—Liquidity limit; LP—Plasticity
limit; NSPT—Standard penetration.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

Table 3. Classification of the geological materials of the seven present quaternary units and the one 
Miocene (Tosagua) unit of Chone city. 

Geologic Units 
Thickness of 

Sediments 
USCS Soil 

Type Geological Age 
Average Shear 

Rate (m/s) 
Alluvium plain deposits  1 ≤ m ≤ 8 MH–ML Holocene 100–150 

Stiff colluvium alluvium 8 ≤ m ≤ 22 ML–SM 
Holocene to Late 

Pleistocene 150–400 

Ancient alluvial–colluvial 15 ≤ m ≤ 18 MH–SM Holocene to Late 
Pleistocene 180–300 

Soft rock siltstone >25 m ML–MH Late Pleistocene >500 

This analysis was realized in order to first classify the geological units describing 
which soils are liquefiable where they are considered probably liquefiable when the liquid 
limit (LL) is less than 37% and the plasticity index (PI) is less than 12% [56]. These would 
correspond to the soils of the city of Chone at depths between 8 and 14 m deep. Any loose 
soils with PI < 12 and wc/LL > 0.85 are the most susceptible to liquefaction, while loose 
soils between 12 < PI < 20 and wc/LL > 0.8 are more resistant to liquefaction but still these 
are susceptible to cyclic mobility [57]. Figure 7 illustrates the susceptibility results of liq-
uefiable soils based on the criteria proposed by Seed et al. [56], where the perforations are 
indicated with their respective LL and PI, evidencing that non-liquefiable soils present 
higher LL values, from 37% to 82%. 

These soils present Holocene strata up to 15 m deep with soft to medium compact-
ness and with a degree of saturation (Sr) close to 100%. All these characteristics make them 
potentially liquefiable soils that belong to alluvial deposits. For the Pleistocene strata that 
correspond to depths of 15 to 25 m with moderately dense compactness, belonging to al-
luvial–colluvial deposits, they indicate (Sr) between 77% and 86%. Table 4 illustrates the 
geotechnical results according to their geological units of the tests performed as Fc, Sr, LL, 
PI, and N1SPT60 corresponding to the city of Chone. 

 
Figure 7. Analysis of the liquefaction susceptibility based on the criteria proposed by Seed et al. [56]. 
The red rectangle is distributed spatially to determinate the areas susceptible to soil liquefaction, 
while the white area indicates the non-liquefiable soils. 

  

Figure 7. Analysis of the liquefaction susceptibility based on the criteria proposed by Seed et al. [56].
The red rectangle is distributed spatially to determinate the areas susceptible to soil liquefaction,
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It was also indicated that soils are liquefiable when they have a degree of saturation (Sr)
close to 100%, that a fraction (FC) is less than 35%, and that the diameter of the granulometry
must be between 0.05 mm and 1.5 mm, having a uniformity coefficient Cu < 15 [56]. In
the present investigation, a quantitative technique is used, where it allows us to determine
the probability of liquefaction (PL) up to 20 m depth [30], applying equations proposed by
Chen and Juang [60]. Subsequently, a soil liquefaction hazard map was prepared.

4.2. Determination of the Safety Factor for the City of Chone

Once the lithological units were described, the liquefaction potential was evaluated
using the standard penetration test (SPT). The simplified method was used to determine
the factor of safety (Fs), the cyclic resistance ratio (CRR) and the cyclic stress ratio (CSR).
The methods used in this investigation were originally developed by Seed and Idriss [14],
and later updated by Seed et al. [15,56], Youd and Idriss [16] and Youd et al. [49].

Fs = CRR/CSR (5)
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According to Youd and Idriss [16], the CRR parameter was calculated with the follow-
ing proposed equation:

CRR =
1

34 − (N1)60
+

(N1)60
135

+
50

(10(N1)60 + 45)2 − 1
200

(6)

The resistance of the soil to penetration is given by the number of blows N, which is
corrected to become (N1)60 as illustrated in Figure 8a. This process is performed by means
of the pressure factor of overload Cn, the hammer energy correction (ER) Ce, the borehole
diameter Cb, the rod length correction factor Cr and the correction for samplers with or
without casing Cs. This factor of (Cn) was calculated according to the equation proposed by
Liao and Whitman [9], that is, Cn = (Pa/σ’v)0.5 as a function of (Pa) (atmospheric pressure)
and σ’v (effective vertical stress). Subsequently, a “fine content” correction was applied
to the calculated value of N1(60) in order to obtain an equivalent clean sand value (N1)60cs
given by the equations proposed by Youd et al. [16].

Rd = 1.0 − 0.00765 Z for Z ≤ 9.15 m

Rd = 1.174 − 0.0267 Z for 9.15 m ≤ Z ≤ 23 m (7)
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Subsequently, it is divided by a magnitude scale factor (MSF), where it is calculated by
the following equation proposed by Youd et al. [16].

MSF = (Mw/7.5)2.56 (8)
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4.3. Analysis of the Liquefaction Potential in the City of Chone

Equation (5) as proposed by Iwasaki et al. [61] is used to calculate the liquefaction
potential index (LPI) for the city of Chone as illustrated in Figure 8 which was applied to
depths of 20 m.

LPI =
∫ z

0
F(z)W(z)dz (9)

where z is the depth below the ground surface in meters and is calculated as w(z) = 10 − 0.5 z.
F(z) is a function of the factor of safety against liquefaction, Fs, where F(z) = 1 − Fs when
Fs < 1 and if Fs > 1, then F(z) = 0. Iwasaki et al. [61] categorized the liquefaction potential
with the (LPI) according to the severity of damage as indicated in Table 5.

Table 5. Liquefaction severity in the LPI scale.

Liquefaction Potential Category Iwasaki et al. [61] Sonmez [62]

Very low LPI = 0 No liquefiable (based on Fs ≥ 1.2)
Low 0 < LPI < 5 0 < LPI < 2

Moderate - 2 < LPI < 5
High 5 < LPI < 15 5 < LPI < 15

Very high LPI > 15 LPI > 15

In addition, using the method of Sonmez [62], the sites have been also categorized
according to their LPI value as susceptibility to liquefaction in very low, low, moderate,
high, and very high, as listed in Table 5. The LPI values illustrated in Figure 9 demonstrate
the strata that have an impact on soil liquefaction.
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When evaluating the LPI, which was obtained from the 26 perforations analyzed in
the city of Chone, using criteria established by Juang et al. [51] and Chen and Juang [60], it
was established that those strata that have a safety factor less than 1.228, obtained from the
conditional mean would behave as liquefiable layers and values higher than this would
correspond to non-liquefiable soils as illustrated in Figure 8b. These are values that were
obtained from the average conditional of the perforations considered in the investigation.
The analysis method used in the development of this research allowed to identify the zones
classifying them according to the level of occurrence and demonstrating the existence of
areas with high and low probability of soil liquefaction; in addition, the PL was identified
based on its depth (Figure 8c).

After the analyses obtained and their interpretation of results, as listed in Table 6, a
liquefaction hazard map was drawn up for the city of Chone (Figure 10), according to its
classes according to its Fs and PL, as proposed by Chen and Juang [60].

Probability (liquefaction) =
1

1 +
(

Fs
0.96

)4.5 (10)

Table 7 indicates the probability of liquefaction, safety factors and their respective
classes. With the mean values, PL of 0.989 and Fs of 0.354 were obtained for class 5.
Considering for class 4, the mean values of PL are 0.849 and Fs 0.654. For class 3 the PL
values are 0.530 and Fs 0935. For class 2, the PL is 0.248 and Fs 1.228. According to the
results analyzed, the study area does not present soils corresponding to class 1.
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Table 6. Liquefaction probability calculation according to the class proposed by Chen and Juang [60]
in the city of Chone.

Description (Likelihood of Liquefaction) Class Borehole PL Fs

Almost certain that it will liquefy 5 BH01 0.979 0.409

Almost certain that it will liquefy 5 BH02 0.987 0.365

Almost certain that it will liquefy 5 BH03 0.989 0.350

Almost certain that it will liquefy 5 BH04 0.998 0.240

Almost certain that it will liquefy 5 BH05 0.998 0.236

Almost certain that it will liquefy 5 BH06 0.999 0.214

Almost certain that it will liquefy 5 BH07 0.999 0.214

Almost certain that it will liquefy 5 BH08 0.979 0.408

Liquefaction/non-liquefaction is equally likely 3 BH09 0.401 1.050

Liquefaction/non-liquefaction is equally likely 3 BH10 0.430 1.022

Liquefaction/non-liquefaction is equally likely 3 BH11 0.487 0.971

Liquefaction/non-liquefaction is equally likely 3 BH12 0.373 1.077

Liquefaction/non-liquefaction is equally likely 3 BH13 0.573 0.899

Liquefaction/non-liquefaction is equally likely 3 BH14 0.547 0.921

Very likely 4 BH15 0.684 0.809

Unlikely 2 BH16 0.236 1.246

Unlikely 2 BH17 0.260 1.210

Liquefaction/non-liquefaction is equally likely 3 BH18 0.435 1.017

Very likely 4 BH19 0.920 0.558

Almost certain that it will liquefy 5 BH20 0.935 0.531

Almost certain that it will liquefy 5 BH21 0.964 0.462

Liquefaction/non-liquefaction is equally likely 3 BH22 0.613 0.867

Very likely 4 BH23 0.840 0.664

Liquefaction/non-liquefaction is equally likely 3 BH24 0.641 0.844

Liquefaction/non-liquefaction is equally likely 3 BH25 0.637 0.847

Almost certain that it will liquefy 5 BH26 0.932 0.536

Table 7. Soil liquefaction probability proposed by Chen and Juang [60] for the city of Chone. The
values indicated for PL and Fs are the mean values of each class obtained in the present research.

Probability of Liquefaction PL Description (Likelihood of Liquefaction) Security Factor Fs Class

0.989 Almost certain that it will liquefy 0.354 5

0.849 Very likely 0.654 4

0.530 Liquefaction/non-liquefaction is equally likely 0.935 3

0.248 Unlikely 1.228 2

* Almost certain that it will not liquefy * 1

* No Class 1 soils were observed in the city of Chone.
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4.4. Liquefaction Susceptibility Map, with Maximum Estimates of Magnitude Mw and PGA
Values for the City of Chone

A liquefaction susceptibility map was generated for the city of Chone as illustrated
in Figure 10, identifying them by zone according to the classes proposed by Chen and
Juang as illustrated in Figure 10, contributing to the planning and risk management of the
study area. The main earthquakes with magnitude greater than Mw 7.0 are situated in
subduction zones located on the coast of Ecuador with a segment of an approximate length
of 281 km. Subduction earthquakes, such as the Pedernales earthquake that occurred on
16 April 2016 (Mw 7.8), have a historical reference event due to their similar characteristics
to the earthquake that occurred in 1942 in the province of Manabí, which was of about
Mw 7.9. Both seismic events caused considerable damage and deaths [63].

5. Conclusions

After evaluating the study area using geological and geotechnical data acquired
through standard penetration tests (SPT) to determine the PL and LPI of the various strata
down to depths of 20 m and considering as a seismic scenario a maximum recorded peak
acceleration of 0.50 g according to the NEC, a hazard map is presented according to the
probability of liquefaction. The map proposed divides the Chone area into 5 classes of soil
depending on its probability of liquefaction assessed according to Chen and Juang. No
soils belonging to the class 1 (almost certain that it will not liquefy) were identified in the
city of Chone.

Once the safety factor for the city of Chone was calculated from the geotechnical
results, it was determined that the strata with Fs lower than 1228 correspond to liquefiable
soils. The maximum values of LPI were found at a depth between 9 and 11 m, where
the presence of greater damages due to liquefaction and co-seismic effects are estimated.
According to the SPT studies, compactness values between low and high were recorded, as
they are settled in deposits of alluvial plains that correspond to Holocene soils up to depths
of 15 m.

The liquefaction map generated serves as a relevant contribution to territorial plan-
ning, risk management in the construction of civil works and territorial reorganization
of the canton. The same can be used by government or private institutions and will
serve as an example for regions that have similarities in lithology, geodynamics and
seismic vulnerabilities.
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