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In this work we consider a generalized Bronnikov-Ellis wormhole and the tideless Morris-Thorne
wormhole and we study the propagation of massive scalar fields. We calculate the quasinormal frequencies
using the Wentzel-Kramers-Brillouin method and the pseudospectral Chebyshev method and we show the
presence of an anomalous decay rate for the quasinormal modes in the generalized Bronnikov-Ellis
wormhole. However, such anomalous behavior is avoided for the fundamental mode in the Morris-Thorne

wormhole background.
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I. INTRODUCTION

The recent observations of the relativistic collision of
two compact objects produced gravitational waves (GWs)
which are probes of the nature of the colliding bodies. Also
the recent LIGO detections [1-5] provided evidence that
GW astronomy will help us to understand better the
gravitational interaction and astrophysics in extreme-
gravity conditions. However despite of these developments,
the recent observations do not yet probe the detailed
structure of spacetime beyond the photon sphere. The
future GW observations are expected to detect the ringdown
phase, which is governed by a series of damped oscillatory
modes at early times, which are known as quasinormal
modes (QNMs) [6-13], and may potentially contain
important information of the structure of compact objects
[14], especially the physics of the near-horizon region of
black holes (BHs) and possible existence of any unexpected
structure. Future GW observations may give us information
on different compact objects than BHs, objects without
event horizons. These compact objects are known as exotic
compact objects (ECOs) [12,15,16].

The most well-known ECO solutions are the wormholes
(WHs) which are solutions of the Einstein equations that
connect different parts of the Universe or two different
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Universes [17,18]. Despite that WHs have different causal
structures from BHs, they possess photon spheres and
therefore the early stage of the ringdown signal can disguise
WHs and BHs in GW data. Lorentzian wormholes in
general relativity (GR) were discussed in [19-23], where
introducing a static spherically symmetric metric, condi-
tions for traversable wormholes were found. For these
conditions to be satisfied a matter distribution of exotic or
phantom matter, violating the null energy condition (NEC),
has to be introduced. WHs with ordinary matter satisfying
the NEC [23-25] were introduced in modified gravity
theories like Brans-Dicke theory [26], f(R) gravity [27],
Einstein-Gauss-Bonnet theory [28], Einstein-Cartan theory
and general scalar-tensor theories [29]. WHs solutions were
studied in f(R) theories in [30]. Also, WHs with a self-
interacting scalar field were studied in [31].
Perturbations of BHs and WHs in the Horndeski theory
were studied in [32]. In this theory due to the presence of an
effective negative cosmological constant, AdS asymptotics
are generated due to the presence of a nonminimally
coupled scalar to the FEinstein tensor. The existence of
AdS asymptotics gives a different behavior of the late-time
response of the test scalar for BHs and WHs. In the case
that the compact object is a BH, the partially reflected
waves from the photon sphere (PS) mirror off the AdS
boundary and reperturb the PS to give rise to a damped
beating pattern, while for the case of a WH do not decay
with time but have constant and equal amplitude to that of
the initial ringdown. This is happening because the
reflected waves are related to the absence of dissipation
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and may be an indication of the existence of normal
oscillation modes, as well as potential instabilities.

The above discussion indicates that the knowledge of
QNMs and quasinormal frequencies (QNFs) are very
important to understand the properties of compact objects
and distinguish their nature. The QNMs give an infinite
discrete spectrum which consists of complex frequencies,
@ = wp + iw;, where the real part wy determines the
oscillation timescale of the modes, while the complex part
w; determines their exponential decaying timescale (for a
review on QNM modes see [7,8] and for recent solutions
see [33-39)).

Also, the QNMs and QNFs can give information about
the stability of matter fields that evolve perturbatively in
the exterior region of a compact object without back-
reacting on the metric. For the case of Schwarzschild and
Kerr black hole background it was found that the longest-
lived modes are always the ones with lower angular
number #. This is be understood from the fact that the
more energetic modes with high angular number Z would
have faster decaying rates.

If the probe scalar field is massive, then a mass scale is
introduced and a different behavior was found [40-43], at
least for the overtone n = 0. If the mass of the scalar field is
light, then the longest-lived QNMs are those with a high
angular number ¢, whereas if the mass of the scalar field is
large the longest-lived modes are those with a low angular
number #. This behavior is expected since if the probe
scalar field is massive its fluctuations can maintain the
QNMs to live longer even if the angular number Z is large.
This behavior of the QNMs introduces an anomaly of the
decaying modes which depends on whether the mass of the
scalar field exceeds a critical value or not. Introducing
another scale in the theory through the presence of a
cosmological constant an anomalous behavior of QNMs
was found in [44] as the result of the interplay of the mass
of the scalar field and the value of the cosmological
constant. Anomalous QNMs decay modes were also found
if the background metric is the Reissner-Nordstrom and the
probe scalar field is massless [45] of massive [46] depend-
ing on critical values of the charge of the black hole, the
charge of the scalar field and its mass. The decay modes of
QNMs in various setups were studied in [47-50].

Recently there are studies of QNMs and QNFs of other
compact objects like WHs. In the case of BHs to calculate
the QNFs of the scalar field equation we assume a purely
outgoing wave at infinity and a purely incoming wave at the
event horizon. However, a transformation to tortoise
coordinate changes the boundary conditions of the scalar
field, there are no incoming waves from both plus- and
minus- infinity. The traversable WHs that connect two
infinities in terms of the tortoise coordinate have the same
boundary conditions and therefore the QNM spectrum of
WHs should have some similarities and differences with
the BHs spectrum. The evolution of perturbations of WH

spacetime was investigated in [51] and it was found that the
QNMs are behaving the same way as a BH, includes the
quasinormal ringing and power-law asymptotically late
time tails. However, in [52] it was found that the symmetric
WHs do not have the same ringing behavior of the BHs at a
few various dominant multipoles. In [53] perturbations of a
massive probe scalar field were considered and it was
shown that WHs with a constant redshift function do not
allow for longest-lived modes, while wormholes with
nonvanishing radial tidal force do allow for quasiresonan-
ces. In the Morris-Thorne wormhole spacetime calculating
the high frequency QNMs modes the shape function of a
spherically symmetric traversable Lorenzian wormhole
near its throat was constructed in [54]. Scalar and axial
QNMs of massive static phantom WHs were calculated
in [55].

As we have already discussed, in the case of BHs, if the
probe scalar field is massive then an anomalous behavior of
QNMs was observed. In this work we will investigate if the
same behavior is observed in the case that the background
metric defines a WH geometry. We will work with two
WHs solutions, the generalized Bronnikov-Ellis wormhole
[20] and the Morris-Thorne wormhole [10]. For the case of
the generalized Bronnikov-Ellis wormhole we will show
that there is a critical mass of the scalar field beyond which
the anomalous decay rate of the QNMs is present. In the
case of the Morris-Thorne wormhole the anomalous decay
rate of the QNMS is not present at least for the fundamental
modes. We will also show that the propagation of massive
scalar fields is stable in these wormhole geometries.

Our work in the present article is organized as follows: In
Sec. II we review the equations of traversable wormholes
considered. In Sec. III we study the massive scalar field
perturbations. In Sec. IV we obtain the QNFs by using the
WKB method and the pseudospectral Chebyshev method
and we analyze the anomalous decay rate of the QNFs.
Finally, in Sec. V we summarize our work with some
concluding remarks.

II. REVIEW OF TRAVERSABLE WORMHOLES

Considering a static spherically symmetric metric the
necessary conditions to generate traversable Lorentzian
wormholes as exact solutions in GR were first found by
Morris and Thorne [21]. To find a solution which is
consistent with a condition on the wormhole throat neces-
sitates the introduction of exotic matter, which leads to the
violation of the NEC.

We consider the following action

S—/d4x\/—_g<§+%6”¢dﬂ¢—V(¢)), (1)

which consists of the Ricci Scalar R, a scalar field with
negative kinetic energy and a self-interacting potential.
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The field equations that arise by variation of this
action are

1 j
R/w - EQWR = TZI/’ (2)

O+ Vy(#) =0, (3)

where [J = V#V, is the D’ Alambert operator with respect
to the metric, and the energy-momentum tensor is given by

1
Tl = =0,00,0 + 5 90" 0t = 9V (#)- (4)

We consider the following metric ansatz firstly used by
Morris and Thorne [21] in spherical coordinates

ds? = —¢?

b -1
() d? + (1 - ﬂ) dr* +r*dQ, (5)
r

where ®(r) is the redshift function, b(r) is the shape
function and dQ = d6” + sin(6)?>dg?. In order to obtain a
wormhole geometry, these functions have to satisfy the
following conditions [21,23], namely:

(1) < 1 for every [ry,, +00), where ry, is the radius of
the throat. This condltlon ensures that the proper

radial distance defined by /(r f Lar
is finite everywhere in spacet1me Note that in the
coordinates (t,1,6,¢) the line element (5) can be
written as

ds? = —e*®Vdi? + di*> + r*(1)(d6* +sin?0dy). (6)

In this case the throat radius would be given by ry, =
ggrm){ r(D)}- . .

2) r“‘ 1 at the throat. This relation comes from
requiring the throat to be a stationary point of r(I).
Equivalently, one may arrive at this equation by
demanding the embedded surface of the wormhole
to be vertical at the throat.

3) b'(r) <&r’) which reduces to b'(ry) <1 at the
throat. This is known as the flare-out condition
since it guarantees ry, to be a minimum and not
any other stationary point.

The ensure the absence of horizons and singularities
requires ®(r) # 0 which means that ®(r) is finite through-
out the spacetime. To be more specific the Ellis [20] is a
wormhole solution of an action that consists of a pure
Einstein-Hilbert term and a scalar field with negative
kinetic energy

/ d4x\/_< +5049 ¢) (7)

Assuming the metric ansatz (5), for f(r) = R(r),V(r) =0
the above equations give the following solution

bo(r) = A%/ Q
00 =V (Y2 g O
fr) =R ==, (10)

where A, ¢, are two constants of integration. The resulting
spacetime is asymptotically flat as it can be seen from both
b(r) and R(r). The wormhole throat is the solution of the
equation

gt =0 ry, = £A. (11)

The solution also satisfies the flaring-out condition and
V(ry) = 1.

The scalar field takes a constant value at infinity
P(r - o0) = \/% + ¢, 50 to make the scalar field vanish

at large distances we will set ¢, = —%. The scalar field

takes the asymptotic value at infinity at the position of the
throat ¢p(r = ry,) = (- As can be seen in the solution (8),
(9) and (10) the integration constant A of the phantom
scalar field plays a very important role in the formation of
the wormhole geometry. It has units [L]?, appears in the
scalar curvature and at the position of the throat takes
the value R,_, (A) = —2/A%. Also it affects the size of the
throat, a larger charge A gives a larger wormhole throat.
Therefore, the presence of the phantom scalar field is very
important for the generation of the wormhole geometry and
to define the scalar curvature and specifying the throat of
the wormhole geometry.

In addition, the function b(r) encodes the shape of the
wormhole. Notice that at certain minimum value of r, the
throat of a wormhole is defined, namely, when r;, = b.
Thus, the radial coordinate increases ranging from r .,
until spatial infinity » = co. On one hand, keep in mind that
®(r) must be finite everywhere in light of the requirement
of absence of singularities. In addition, ®(r) - 0as r - o
(or [ > +o0) based on the requirement of asymptotic
flatness. On the other hand, the shape function 5(r) should
satisfy that 1 — b(r)/r > 0 and b(r)/r — 0 as r — oo (or
equivalently [ - +o0). In the throat r = b(r) and thus
1 — b(r)/r vanishes. Traversable wormholes does not have
a singularity in the throat. The latter means that travelers
can pass through the wormhole during the finite time.

In particular, we shall consider the following metric
functions

2M b2
200 — - b(r) = (12)

which goes over into the Bronnikov-Ellis wormhole in the
limit M — 0[19,20], and we also consider the Morris-Thorne
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wormhole, characterized by b(r) = \/byr. Note that the
parameter b, specifies the charge of the phantom scalar
field.

The most general energy-momentum tensor compatible
with the wormholes geometries is given by [56]

P b’r(zr) ,
o= —b(r) + 2r(r3— b(r))®(r) ’

Tﬂy:diag(_p7prapt7pl‘)’ (13)

where p is the energy density and p,, p, are radial and
tangential pressures, respectively.
The Einstein’s field equations take the form

Pr =

The important energy conditions are the weak energy
condition (WEC), the null energy condition (NEC), the
strong energy condition (SEC) and the dominant energy
condition (DEC). In terms of the principal pressures the
energy conditions are given by, see for instance [57]

WEC:
NEC:

SEC:
DEC:

p>20, p+p, 20, p+p, >0
p+p,20, p+p, 20

p+p, 20, p+p, >0, p+p,+2p, 20
P20, p=|p/ 20, p—|p| 20

For the generalized Bronnikov-Ellis wormhole we obtain

bg
p__F’
7—b(2)+2Mr
"TP(r-2M)°
_ (bg(M = 1) +Mr?)
Pr= r(r—2M)? ’
2(b2(M — r) + Mr?
iy 20 =) 5 7).
r*(r—2M)
M(b2(2r = 3M) + (M — r)r?
4y MR =3M) (M =)

r(r—2M)?

Therefore p <0 and the WEC is violated for any
r>rgy = by. Also, p+ p, is negative in the range

b24+/bi—4b2M2 . .
by < r < —53——. On the other hand, p, is negative

ba4+/bi—4b2M2 L
for r > %, therefore this implies that p + p, at
least is negative in that range. Therefore all the energy
conditions are violated for r > ry,.
/b
" > 0; how-

For the Morris-Thorne wormhole p = 5

\/bor

ever, p + p, = —55 <0 and we can verify that all the
energy conditions are also violated.

(b(r) = rb'(r) 4+ 2r(r = b(r))@' (r))(1 + r® (r)) + 2(r — b(r))r*®"(r)
273 ‘

[
III. MASSIVE SCALAR FIELDS PERTURBATIONS

In order to study the propagation of a massive scalar field
in a wormhole geometry we consider the Klein-Gordon
equation given by

1
——0,(v/=99"0,)¥Y = m*¥. 14
So, to decouple and subsequently resolve the Klein-Gordon

equation, we take advantage of the method of separation of
variables making the following Ansitz:

Y(t,r,0,¢) = e‘“‘”Mf/,(Q), (15)

r
where @ is the unknown frequency (which will be deter-
mined), while ¥,(Q) are the spherical harmonics, and they
depend on the angular coordinates only [58]. After the
implementation of the above mentioned Ansitz it is easy to

obtain, for the radial part, a Schrodinger-like equation,
namely

d?y

oot [0* = V(r*)]y =0, (16)

where r* is the well-known tortoise coordinate, i.e.,

y / dr
r=s | ———.
eq’\/ 1- bir)
Finally, the effective potential (for scalar perturbations) is
then given by [59]

V(r) = e2‘1’<m2 +f(fj 2 —b/r_b+l (1 —b7/>d>’>,
(18)

r 27 r
where, the prime denotes differentiation with respect to the
radial coordinate, and # > 0 is the angular degree. Be aware

(17)
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and notice that we can identify L?> = #(# + 1) as the square
of the angular momentum. Thus, we have reduced the
problem to the familiar one dimensional Schrodinger
equation with energy w? and effective potential V(r).

The wormhole connects two different regions of the
space. Such regions are located at “+oc0”, and only via the
throat is where such spaces connect. In order to obtain
the QNFs, it is necessary to consider appropriated boundary
conditions. The wormhole geometry is asymptotically flat
and the effective potential (with respect to the tortoise
coordinate) is a barrier which take constant values at both
infinities, therefore we will consider as boundary condi-
tions the requirement of purely outgoing waves at both
infinities: no waves are coming from both asymptotically
flat regions [51,60]

P S
Y ~ gtiver—miT r* = +oo0.
TN
Y~ gmiVarmmi r* — —o0. (19)

IV. QUASINORMAL FREQUENCIES

A. Numerical methods

1. WKB method

at the horizon and at spatial infinity [13] and has been used
to determine the QNFs for asymptotically flat and asymp-
totically de Sitter black holes, also it has been applied to
determine the QNFs of asymptotically flat wormhole
geometries. The QNMs are determined by the behavior
of the effective potential near its maximum value r;;. The
Taylor series expansion of the potential around its maxi-
mum is given by

® y) .
V(r) =V(rg) + ZT(W‘ — )", (20)
=2
where
) dt
v dr* v(r) o (21)

corresponds to the ith derivative of the effective potential
with respect to the tortoise coordinate r* evaluated at
the maximum of the potential. The QNFs in the WKB
approximation carried to third order beyond the eikonal
approximation are given by [61]

The semi-analytical Wentzel-Kramers-Brillouin (WKB) w* = V(r, 0) —2iU, (22)
method can be used for effective potentials which have the
form of potential barriers that approach to constant values  where
|
U=N V<2>/2+i Lver —a (7+60N?) + Ve 14 4N?)
B 64\ 9v@
N 5  yO4 5 3 y32yM) 5 1 (4)2 5
+23/2288 (24( )9/2(77+188N)+ W(SI—FIOON) 8W(67+68N )
y3y6) ) y(6) .
+ 7(_‘/(2))5/2 (19 + 28N?) + 7(_‘/(2))3/2 (5+4N )) )

and N=n+1/2, where n=0,1,2,... is the overtone
number. Now, by considering L? = #(¢ + 1) large, the
QNFs are approximately given by

wo=oL+w)+o_ L'+, L2+ 0O(L73). (23)

In the next section we shall employ the third order WKB
formula (22) to determine approximate analytical values of
the QNFs for large values of the angular momentum (23)
and the critical scalar field mass for the two wormhole

|

(@M =)= )y () PO M )

(M((262426-1)r* +3b3) —

geometries mentioned. Additionally, we have used the
Wolfram Mathematica [62] code utilizing the WKB
method at order six [63] to evaluate the QNFs numerically.

2. Pseudospectral Chebyshev method

In this section we use the pseudospectral Chebyshev
method to calculate the QNFs for a massless scalar field in
the generalized Bronnikov-Ellis wormhole. In this case,
Eq. (16) can be written as

r(rA(*+¢—r*w*)+b3))

y(r)+

r

5 0=y(r)=0.
(24)

r
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The effective potential V(r*) — 0 when r* — oo and the
boundary condition satisfied by the QNMs at infinity is
given by

y~e as r* — oo.

So, there are only outgoing waves at infinity, which can be
transformed to

iwr oM

y~er as r — oo. (25)

Also, since the potential is symmetric about the throat of
the wormhole, which is located at r; = 0, the solutions will
be symmetric or antisymmetric. Therefore, we impose the
|

(z=2)z(z = 1)2(by +2M(z — 1)

)
+ 2iw(z —2)z(by +2M(z — 1)

dy
s o
the symmetric solutions and y(rj) =0 for the antisym-
metric solutions. These boundary conditions yields the
even and odd overtones, respectively. Similar boundary
conditions have been applied in [64,65] for other wormhole
geometries, where the QNMs were obtained by direct
integration of the wave equation.

For the symmetric solutions it is convenient to define
y = e ri®My(r), which satisfies the boundaries condi-
tions when y(r) is regular in by < r < oo. Then, perform-

following boundary conditions at the throat

+ =0 for
0

ing the following change of coordinate z = 1 — b—r", Eq. (24)
is transformed to

X" (z) + ((z—=1)(Bboy(z —=2)z+ by + M(z—1)(7(z=2)z+ 2))
V(o — Mz + M)y (2) + (bo(=b3w* + ibyw(z = 1) + 2 + € + (2 — 1)?)

+ M(z = 1)(ibgw(z — 1) +2£(¢ + 1) + 322 — 62+ 2) + M*w(3byw(z — 2)z — i(z — 1)(5(z = 2)z + 2))

—2MP0*(z = 2)(z = 1)z)x(z) = 0,

(26)

where the coordinate z lies in the range [0, 1], z = 0 corresponds to the throat and z = 1 corresponds to spatial infinity.
For the antisymmetric solutions it is convenient to define y = (r — by)'/?e” Fi®M=1/2(r), which satisfies the boundaries

conditions when y(r) is regular in b, < r < oo. Then, performing the following change of coordinate z = 1 — b Eq. (24) is

transformed to

r

4bg(z —2)z(z — 1)*(bg + 2M(z — 1))x"(z) + 4bj((z — 1)(bo(2(4z2 = 9) + 3) + M(z — 1)(2(9z — 20) + 6))
+ 2iw(z — 2)z(bg + 2M(z = 1)) (bg + M(=z) + M)y (z) + bi(2M(z — 1)(2ibyw(2z — 3) + 4£(£ + 1) + 1222
=29z 4+ 15) + by(—4bjw* + 4ibyw(2z — 3) +4£(£ + 1) + 92 — 227 + 13) + AM*w(3byw(z — 2)z
—i(z=1)(z(72 = 16) + 6)) = 8M3w?*(z —2)(z — 1)2)y(z) = 0. (27)

The pseudospectral method is implemented by expand-
ing y(z) in a complete basis of functions {¢;(z)}: ¥(z) =
>, cipi(z), where c; are the coefficients of the expan-
sion, and we choose the Chebyshev polynomials T';(x) =
cos(jcos™ x) as the basis that are well defined in the
interval x € [—1, 1], and j corresponds to the grade of the
polynomial. The sum is truncated until some value N,
therefore the function y(z) is approximated by

N
x(@) &Y eTi(x). (28)
i=0

Thus, the solution is assumed to be a finite linear combi-
nation of the Chebyshev polynomials. Since z € [0, 1], the
relation between the coordinates x and z is x = 2z — 1.
Then, the interval [0, 1] is discretized at the Chebyshev
collocation points z; by using the so-called Gauss-Lobatto
grid, where

| .
Zj:§|:1—cos<]ﬁﬂ>:|, j=0,1,...N. (29)

The corresponding differential equation is then evalu-
ated at each collocation point. So, a system of N + 1
algebraic equations is obtained, which corresponds
to a generalized eigenvalue problem which is solved
numerically to obtain the QNMs spectrum, by employing
the built-in Eigensystem [] procedure in Wolfram’s
Mathematica [62].

In Tables I and II we show the fundamental QNFs and
the first overtone calculated using the WKB approximation
and the pseudospectral Chebyshev method, we see a good
agreement, especially for high . We observe that when M
increases the WKB method is less accurate for low values
of 7.

In Table III we show the fundamental QNFs for several
values of £ and M /b, using the pseudospectral Chebyshev
method. We observe that the imaginary part of the QNFs
decreases as ¢ increases; however, for M/b, = 0.4 the
decreasing is much faster and the imaginary part tends to
zero as ¢ increases. Furthermore, in Fig. 1 we plot the
behavior of the imaginary part of the QNFs for a massless
scalar field as a function of b, for M = 1 and # = 0, 10, 20.
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TABLE I. QNFs wb for massless scalar field perturbations for
the Bronnikov-Ellis wormhole with n = 0, 1, for several values of
the angular momentum # of the scalar field using the six order
WKB approximation and the pseudospectral Chebyshev method.

n=0
‘ WKB Pseudospectral
1 1.58240688-0.52094760 i 1.57270839-0.52970088 i
3 3.53418275-0.50723853 i 3.53428741-0.50692165 i
5 5.52229633-0.50299528 i 5.52230920-0.50295823 i
10 10.51183943-0.50083950 i  10.51183964-0.50083853 i
15 15.50804387-0.50038776 1  15.50804389-0.50038767 i
20 20.50608858-0.50022226 1  20.50608858-0.50022224 i
30 30.50409562-0.50010061 i  30.50409562-0.50010061 i
n —
4 WKB Pseudospectral
1 1.26019632-1.65600690 i 1.25582759-1.70245148 i
3 3.39009551-1.53845539 i 3.39009976-1.53721055 i
5 5.43086691-1.51543326 i 5.43090081-1.51524731 i
10 10.46413272-1.50423343 1  10.46413347-1.50422829 i
15 15.47575749-1.50194642 1  15.47575755-1.50194589 i
20 20.48168591-1.50111377 1  20.48168592-1.50111367 i
30 30.48769836-1.50050355 i  30.48769836-1.50050354 i
TABLEII. QNFs wb, for massless scalar field perturbations for

the generalized Bronnikov-Ellis wormhole with M /by = 0.2,
n =0, 1, for several values of the angular momentum ¢ of the
scalar field using the six order WKB approximation and the
pseudospectral Chebyshev method.

n=0
4 WKB Pseudospectral
1 2.07409974-0.01995352 i  1.26184288-0.35838100 i
3 2.78480392-0.31403523 i  2.76272243-0.32940500 i
5 4.29701216-0.32089962 i  4.29516650-0.32260412 i
10 8.15242428-0.31819085 1  8.15238600-0.31824940 i
15 12.01936574-0.31718861 1  12.01936256-0.31719541 i
20 15.88919723-0.31678931 1  15.88919672-0.31679069 i
30 23.63192203-0.31648546 1  23.63192200-0.31648560 i
n=1
4 WKB Pseudospectral
1 5.60190637 + 0.44619248 i 1.12961440-1.14814627 i
3 2.92789699-0.81127205 1  2.71575841-1.00573220 i
5 4.29045541-0.95572400 1  4.27080139-0.97685590 i
10 8.14306669-0.95728640 i 8.14260660-0.95800302 i
15 12.01345291-0.95314405 1 12.01341265-0.95322867 i
20 15.88492607-0.95133409 i  15.88491952-0.95135153 i
30 23.6291682-0.94991320 1  23.62916774-0.94991495 i

Note that the imaginary part tends to zero when by — 2M,
and there is a range where —Im(w) increases when b
increases until it reaches a maximum value and then
begin to decreasing when b increases. Also, for a fixed

—Im(w)
0.10 +
0.08
— =0
0.06 -
— =10
0.04 - — 1=20
0.02 -
1 1 1 1 1 1 bo
25 3.0 3.5 4.0 45 5.0
FIG. 1. The behavior of —Im(w) for massless scalar field as a

function of b, for the generalized Bronnikov-Ellis wormhole with
M=1 n=0, and £ =0, 10, 20 using the pseudospectral
Chebyshev method.

value of by we observe that —Im(w) decreases when #
increases.

In the following, we shall consider only the WKB
method to study the anomalous behavior and the critical
scalar field mass, which is defined for large-Z values, where
the WKB approximation in general yields accurate values
of the QNFs.

B. Critical scalar fields mass
In this section, we consider the eikonal limit £ — oo to
estimate the critical scalar field mass for two wormhole
geometries, by considering @ = /™' as a proxy for
where the transition or critical behavior occurs [66].

1. Generalized Bronnikov-Ellis wormhole

The maximum of the potential is located at r = r,,, which
is found from the condition b(ry) = ry, which yields
rg = by or ry = 0, and its value is given by

2M ~by 5 _ (2M = bo) (1 + m?b})
b b

V(rg) = - . (30)

while the second derivative of the potential evaluated at
yields

2(2M — by)(3M — by)
by

_2(2M — by)(=2by + M(6 + mb;))

b '

VO (rg) = - L?

(31)

For the higher derivatives, we obtain the following
expressions
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TABLE III. Fundamental QNFs wb, for massless scalar field perturbations for the generalized Bronnikov-Ellis wormhole for several
values of the angular momentum and M/b, using the pseudospectral Chebyshev method.
M/by = 0.1 M/by =02 M/by=0.3 M/by =04
=0 0.64217472-0.52979187 i 0.60140772-0.43496986 i 0.55566949-0.33158637 i 0.49376269-0.21360446 i
=10 9.40544221-0.41934024 i 8.15238600-0.31824940 i 6.68219785-0.17455013 i 4.89133776-0.00536578 1
¢ =20 18.34294833-0.418599751 15.88919672-0.31679069 i  12.99054975-0.16506712 1 9.37995278-0.00005840 i
=30 27.28486839-0.41845231 1 23.63192200-0.31648560 i  19.30804041-0.16194591 i  13.85644956-0.00000040 i
=40 36.22794705-0.41839947 i  31.37623574-0.31637475 1  25.62859493-0.16052566 i  18.33052377-0.0000000025 i
V(3) (rz;) =0,
V<4)( o 2(2M - bo)(102M2 —T73Mby+ 12b%) 12 2(2M - bo)(36b(2) —Mby(215+ 9m2b%) + 2M2(147 + 11m2b%))
ry)=-— - ’
by by
VO (r5) =0.
6 2(2M - 170)(8472M3 —9406M?by, + 3309Mb% - 36Ob(3,) 5
14 )(’"5) = 12 L
by
B 2(2M - bo)(—1440b8 + 3Mb(2)(4296 + 75m2b(2)) +8M? (3918 + 173m2b%) - 2M2b0(17836 + 567m2b%))
b2 '
(32)
Now, considering L large, the QNFs are approximately given by
o=wL+wy+o_ L™ +wo_ L4+ O(L7), (33)

and using (22) we obtain

M
by=4/1—-2—,
w1bg by
iQn+1),/1-34
0)0b0:_ D) P
b (}}M())2(96b%m2 —60n(n+ 1)+ 30) —|—bM”(—80b%m2 +50n(n+1) = 31) = 8(=2bm* + n*> +n—1)
-1bo =

32(1-3%), /1-2M ’

M\* M3
@_rby = —i(2n + 1) <12<b—) (=384m>b3 + 115n(n + 1) + 171) + 4(19_) (1920m*b3 — 499n(n + 1) — 723)

0

M\ 2
+ (17) (—=4736m*b3 + 961n(n + 1) + 1585) +4<

0

0

K) (5(64m2b2 —21) — 48n(n + 1))

by

+ 16(=8m*b3 + n® + n + 3))/(512(1 - 3%) v (1 - 2%)). (34)

Interestingly, w_, and w_, diverge when M /by = 1/3 and
1/2, also the second derivative of the potential V®)(r3)
evaluated at the maximum r{; is zero for those values of M/ b,
when m = 0. Furthermore, for M /by, < 1/3 w is complex,
but for M /by > 1/3, wy and w_, become real, therefore w is
real in the interval 1/3 < M /by, < 1/2 and there is not a
critical mass. Comparing this behavior with the more accurate
values obtained with the pseudospectral Chebyshev method

in Table III, we can observe that for M /b, = 0.4 and high
values of ¢ the QNFs have a very small, but non-null
imaginary part which is much smaller than for the other
values of M /by = 0.1, 0.2, 0.3. See also Fig. 1.

As we mentioned, in order to estimate the critical scalar
field mass we consider @/ = @/ ! as a proxy for where the
transition or critical behavior occurs. So, the critical scalar

field mass is given by
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bo 0

\/—2<%>3(499n(n+ 1)+723) +% (b%)z(%ln(m 1)+1585) -6(?) (16n(n+1)+35) +8(n? +n+3)+6(b%)4(115n(n+ 1)+171)

0 0

m.by=

8(1—3

valid for M /by < 1/3.

A general expression for the critical scalar field mass for
a generic static and spherically symmetric wormhole (5)
with arbitrary metric functions ®(r) and b(r) is given in
Appendix A. Note that the above expression for m b,
diverges when M /b, = 1/3, and 1/2. In Fig. 2 we plot the
behavior of the critical scalar field mass as a function of b,
for M =1 and for the overtone numbers 0, and 1. We
observe the critical mass diverges for by = 3. Also, we
observe that the critical mass decreases when b, increases
and increases when the overtone number increases.

In Fig. 3 we plot the behavior of —Im(w)b, as a function
of mb,. We can observe an inverted behavior of w;(Z). For
m > m,, @; increases with ¢; whereas, for m < m., @,
decreases when ¢ increases. The numerical values are in
appendix B, Tables IV and V. Also, it is possible to observe

— n=0

—_ n=1

S S bO
3.0 3.5 4.0 4.5 5.0

FIG. 2. The behavior of m, as a function of b, for the
generalized Bronnikov-Ellis wormhole.

—Im(w)by
0.50010

0.50005 F
| — |=30
0.50000
— |=40
0.49995

0.49990 [ — =50

0.49985

1 L | 1

—m bo
0.2 0.4 0.6 0.8 1.0

FIG. 3.
M /by = 0.2 right panel.

M

) (17%5,)

(35)

in such tables that the frequency of the oscillation increases
when the angular number increases and when the parameter
mb increases.

2. Morris-Thorne wormhole

The maximum of the potential is located at r = b, or
ro = 0, and its value is given by

1 1
V(ra):ﬁL2+m2+W, (36)
0 0

while the second derivative of the potential evaluated at r;
yields

)
2b}

S
32b3°

2

VeI(r) = (37)

For the higher derivatives, we obtain the following
expressions

VO (rg) = 0. (38)

21 15
V@) = 124 2 39
(r0) = 8 "+ 320 (39)
VO (rg) =0, (40)

261 2
LWU@:—682—38i. (41)

32b8 102458

Then, considering Eq. (22) and the expansion (23) for L
large the QNFs are approximately given by

—Im(w)by
0.3164 L
0.3162 — =30
0.3160 — |=40
0.3158 + — =50
0.3156
: : : L m by
0.5 1.0 1.5 2.0

QNFs as a function of the scalar field mass for the Bronnikov-Ellis wormhole with Z = 30, 40, 50. M /b, = 0 left panel, and
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—Im(a))bo
0.25000 ¢

0.24998 |
0.24996 |
0.24994
0.24992 |
0.24990
0.24988 |

— 1=30

— |=40

— =50

! 1

. . = m by
0.2 0.4 0.6 0.8 1.0

—Im(w)bgy
0.7500
0.7499 — =30
— 1=40
0.7498
— =50

0.7497

= m bo
0.2 0.4 0.6 0.8 1.0

FIG. 4. QNFs as a function of the scalar field mass for the Morris-Thorne wormhole with Z = 30, 40, 50, left panel for n = 0 and right

panel for n = 1.

i(2n+1) N 128b3m* — 10n(n+ 1) + 19L_1

b =L =" 256
_i(2n 4 1)(=2048bym* + 65n(n + 1) = 27) [
16384
+O(L73), (42)

and the critical scalar field mass is given by

\/65n(n+1) =27
W . (43)

Notice that there is a critical scalar field mass only forn > 1
which increases when the overtone number increases, and
the QNFs do not have an anomalous decay rate behavior for
n = 0. In Fig. 4 we plot the behavior of —Im(w)b, as a
function of mby. We can observe an inverted behavior of
w;(¢) for n =1 (right panel), where for m > m., w;
increases with £; whereas, for m < m,, @; decreases when
¢ increases. However, for the fundamental mode (left
panel) there is not an anomalous decay rate behavior of
the QNMs. The numerical values are in Appendix B,
Tables VI and VII. Also, it is possible to observe in such
tables that the frequency of the oscillation increases when
the angular number increases and when the parameter mb,
increases.

mcbo =

V. CONCLUSIONS

In this work we considered the generalized Bronnikov-
Ellis wormhole and the Morris-Thorne wormhole and we
studied the propagation of massive scalar fields. We
showed for the generalized Bronnikov-Ellis wormhole that
there is an anomalous decay rate of the quasinormal modes
depending on a critical value of the mass of the scalar field
which increases as the overtone number is increasing.
In particular, we found that for by, < 3M, where b is
the scalar charge forming the wormhole, that there is no a
critical mass for the scalar field and the behavior of the
quasinormal frequencies is always anomalous. On the other

hand, for by > 3M there is a critical mass m,. of the scalar
field and the quasinormal frequencies present an anomalous
behavior for m < m, which changes for m > m,. Also, the
critical mass diverges for b, = 3M. Also, we showed that
the propagation of massive scalar fields is stable in this
wormhole background with a frequency of the oscillation
increasing when the angular number increases and when
the parameter mb, increases.

On the other hand, for the Morris-Thorne wormhole the
anomalous decay rate of the quasinormal modes is not
present for the fundamental mode n. However, for n > 1,
there is a range of values of the scalar field mass where the
anomalous decay rate for the quasinormal modes is present,
depending on a critical scalar field mass. Also the propa-
gation of massive scalar fields is stable with a frequency
of the oscillation increasing when the angular number
increases and when the parameter mb, increases.

Furthermore, we employed the pseudospectral method
that allows us to calculate the values of the QNFs for scalar
field for large as well for small values for the angular
number 7, and the semianalytical WKB method that only
works well for high values of Z. In particular, it should be
mentioned that the WKB method at sixth-order employed
in [63] certainly allowed to diminish the relative error of the
QNFs for several cases by quite a few times or even orders.
However, the WKB approach did not allow one to compute
n > ¢ modes with satisfactory accuracy in many circum-
stances as in [63]. Thus, the inclusion of the computation of
the QNMs using the pseudospectral method is novel by
itself.

It would be interesting to extent this work to the study of
wormbholes in AdS spacetimes. Wormholes in AdS space-
times where discussed in [67], in an attempt to yield some
information about the physics of closed Universes. Such
discussion is connected with the physics of inflation, and its
connection with vacuum decay. A unique realization of such
ideas is baby-Universe formation by quantum tunneling
which eventually disconnect from the parent spacetime [68].
Recently, these ideas of connecting the physics of wormhole
spacetimes to baby-Universes were revisited in [69], using
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features associated with a negative cosmological constant ~ order WKB approximation for a generic static and spheri-
and asymptotically AdS boundaries. The presence ofthetwo  cally symmetric wormhole (5) with arbitrary metric func-
AdS boundaries will make the scattered waves to be trapped  tions @(r) and b(r) for which the WKB approximation is
in the wormhole photosphere and it would be interesting to  applicable. The maximum of the potential (18) is located at

study there effect on the quasinormal modes and quasinor-  r = r(, which is found from the condition b(ry) = r.
mal frequencies. For large L, the QNFs are approximately given by
ACKNOWLEDGMENTS 0 =L+ +0 L7 +0,L7 +O(L7), (Al
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APPENDIX A: WKB METHOD

ie®0)\ /(=1 + b/ (ry)) (=1 + ro@ (o))
2\/§r0 ’

Wy = — (A3)

In this appendix we show the expressions of the QNFs
and the critical scalar field mass obtained using the third
|

w_| = e®(’0)(—9 —32rim 2496/ (ry) + rob"(rg) + ro(6 + 32r0m —6b'(ry) — rob" (o)) @ (ry)
= 6r5(=1+b'(ro)) @' (rg)> = 3r5 (=1 + b'(ro))®" (ro)) / (64ro(=1 + ro®'(ry))), (A4)

w_y = —ie®) (20r305) (1) (b (rg) — 1)? + 2173(b' (rg) — 1)2@" (rg)> = 28r3(b' (ro) — 1)2@' (rp)* + 136/ (ry)?
+ ro(4rgb®) (rg) + b (ry) (rob" (ro) + 46)) + 6r5(b' (ro) = 1)@ (r) (rob" (ro) = b'(rg) + 1)
—4r3(b/ (rg) = 1)@ (ro)* (5rob” (ro) + 146 (rg) — 14) + @' (o) (r5(2161' (r0)* + ro(4rgb®®) (ry)
+ b"(ro) (rob" (ro) + 12)) + 46/ (ro) (=ro(rop3) (ro) + 35" (ry)) + 64m?r} — 108) — 256m>r + 216)
— 60r5(b'(rg) = 1)*@"(rg)) + @' (rg) (=@ () (207 (&' (rg) = 1)) = @" (1) (615 (&' (ro) — 1)(r9b" (ro)
— 186/ (rg) 4 18)) = 2r(62b' (rg)* + ro(4rob™ (ro) + b (rg) (rob" (ro) +39)) + b'(ro) (=415b1) (ry)
—39rgb" (rg) + 256m*r} — 124) — 256m2r + 62)) + b (ro) (=4r3b'3) (ro) — 46rob" (ro) + 256m*r} — 26)
—256m272 + 13)/(1024v/2r0 (=1 + 1@ (1)) (=1 1 5 (ro)) (=1 + 7@ (7)) (A5)

The critical scalar field mass m, is given by
m. = VP/Q. (A6)
where

P = —60r3®0) (rg) (b'(rg) — 1)2 = 6373 (b (rg) — 1)2®" (ry)? + 84r4(b (ro) — 1)@ (rg)* — 390 (r()?
= 3ro(4rgb®) (rg) + b"(ry) (rob" (ro) + 46)) = 1815 (' (rg) = 1)@ (rg) (rob" (rg) = b'(ro) + 1)
+ 12156 (o) = 1)@ (r0)> (Srob” (r0) + 146/ (rg) — 14) + @' (r)* (18075 (&' (r) — 1)*@" (r)
+ 372 (=2161(r)? = ro(4rgh®) (rg) + b" (1) (rob" (ro) + 12)) + 41 (ro) (13 (ry) + 3rob" (ry) + 108) — 216))
+ @1(r9) (60rg @) (rg) (B (rg) = 1)* + 1815 (b (o) = 1)@ (r0) (rob" (ro) — 186/ (ro) + 18)
+ 67(625'(1g)? + ro(4roh® (r) + b (ro) (rod" (ro) + 39)) — b’ (ry) (4r3b3) (ro) + 39r,b" (ry) + 124) + 62))
+ 60’ (ro) (2r2b3) (rg) + 23rgb" (1) + 13) = 39, (A7)

0 = 16V3ro\/ (=1 + b'(rg)) (=1 + @ (1)) (AS)
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APPENDIX B: NUMERICAL VALUES

In the following tables we show the numerical values of the QNFs obtained with the WKB method used to plot the Figs. 3
and 4.

TABLE IV. Fundamental QNFs wb for scalar perturbations for the Bronnikov-Ellis wormhole, for several values

of the angular momentum and the mass of the scalar field using the six order WKB approximation.

¢ mby =0 mby = 0.2 mby = 0.4
10 10.51183943-0.50083950 i 10.51373757-0.50074908 i 10.51942994-0.50047811 i
20 20.50608858-0.50022226 i 20.5070633-0.50019848 i 20.50998717-0.50012717 i
30 30.50409562-0.50010061 i 30.50475109-0.50008986 i 30.5067174-0.50005763 i
40 40.50308525-0.50005710 i 40.50357896-0.50005101 i 40.50506006-0.50003272 i
50 50.50247464-0.50003674 i 50.50287062-0.50003282 i 50.50405854-0.50002106 i
¢ mby = 0.6 mby = 0.8 mby = 1

10 10.52891046-0.50002747 i 10.54216899-0.49939860 i 10.55919142-0.49859352 i
20 20.51485937-0.50000840 i 20.52167851-0.49984225 i 20.53044265-0.49962887 i
30 30.50999431-0.50000392 i 30.51458139-0.49992876 i 30.52047806-0.49983217 i
40 40.50752843-0.50000225 i 40.51098391-0.49995960 i 40.51542622-0.49990478 i
50 50.50603835-0.50000146 i 50.50880995-0.49997402 i 50.51237321-0.49993875 i

TABLE V. Fundamental QNFs wb, for scalar perturbations for the generalized Bronnikov-Ellis wormhole with
M /by = 0.2, for several values of the angular momentum and the mass of the scalar field using the six order WKB

approximation.

¢ mbg =0 mby = 0.2 mby = 0.4

10 8.152424282-0.31819085 i 8.15389325-0.31810533 i 8.158298582-0.31784900 i
20 15.88919723-0.31678931 i 15.88995206-0.31676678 1 15.89221637-0.31669919 i
30 23.63192203-0.31648546 i 23.6324297-0.31647527 i 23.63395265-0.31644471 i
40 31.37623575-0.31637472 i 31.37661815-0.31636894 i 31.37776534-0.31635160 i
50 39.12120109-0.31632253 i 39.1215078-0.31631881 i 39.12242793-0.31630765 i
¢ mby = 0.6 mby = 0.8 mby =1

10 8.165635572-0.31742255 i 8.175896403-0.31682714 i 8.18907019-0.31606434 i
20 15.8959895-0.31658661 i 15.90127037-0.31642910 i 15.9080575-0.31622679 i
30 23.63649067-0.31639378 i 23.64004345-0.31632250 i 23.64461052-0.31623089 i
40 31.37967722-0.31632270 i 31.38235367-0.31628225 i 31.38579448-0.31623025 i
50 39.12396142-0.31628906 i 39.12610821-0.31626304 i 39.1288682-0.31622958 i
TABLE VI. Fundamental QNFs wb for scalar perturbations for the Morris-Thorne wormhole, for several values
of the angular momentum and the mass of the scalar field using the six order WKB approximation.

¢ mby =0 mby = 0.2 mby = 0.4

10 10.49516376-0.24998509 1 10.49706815-0.24993973 i 10.50277924-0.24980382 i
20 20.49752288-0.24999608 i 20.49849844-0.24998418 i 20.50142483-0.24994850 i
30 30.49833504-0.24999823 i 30.49899077-0.24999285 i 30.50095785-0.24997673 i
40 40.49874614-0.24999900 i 40.49923996-0.24999595 i 40.50072139-0.24998680 i
50 50.49899443-0.24999935 i 50.49939047-0.24999739 i 50.50057856-0.24999151 1
¢ mby = 0.6 mby = 0.8 mby =1

10 10.51229085-0.24957780 1 10.5255927-0.24926239 i 10.54267046-0.24885862 i
20 20.50630124-0.24988906 i 20.51312626-0.24980592 i 20.52189795-0.24969915 i
30 30.50423604-0.24994987 i 30.50882491-0.24991227 i 30.51472388-0.24986396 i
40 40.50319031-0.24997156 i 40.50664655-0.24995024 1 40.51108985-0.24992282 i
50 50.50255865-0.24998171 1 50.50533064-0.24996799 1 50.50889441-0.24995035 i
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First overtone n = 1 QNFs wb,, for scalar perturbations for the Morris-Thorne wormhole, for several

values of the angular momentum and the mass of the scalar field using the six order WKB approximation.

mby = 0.2

mby = 0.4

10.48962235-0.75003559 i
20.49468674-0.75000922 i
30.49642907-0.75000416 i
40.49731086-0.75000236 1
50.49784339-0.75000151 1

10.49531168-0.74962901 i
20.49761021-0.74990225 i
30.49839526-0.74995581 i
40.4987919-0.74997492 i

50.49903128-0.74998387 i

mby = 0.8

mb():l

TABLE VIL
¢ mby = 0

10 10.48772523-0.75017126 i
20 20.49371216-0.75004489 i
30 30.49577365-0.75002028 i
40 40.49681716-0.75001150 i
50 50.49744742-0.75000740 i
¢ mby = 0.6

10 10.50478719-0.74895283 i
20 20.50248173-0.74972407 i
30 30.50167197-0.74987524 i
40 40.50126019-0.74992922 i
50 50.50101104-0.74995447 i

10.51803886-0.74800922 i
20.50929992-0.74947483 i
30.50625876-0.74976249 i
40.50471554-0.74986525 1
50.50378258-0.74991331 i1

10.53505271-0.74680121 i
20.51806286-0.74915474 i
30.51215506-0.74961760 1i
40.5091577-0.74978302 i

50.50734576-0.74986041 i
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