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ABSTRACT Currently, the ability to automatically detect human behavior in image sequences is one of
the most important challenges in the area of computer vision. Within this broad field of knowledge, the
recognition of activities of people groups in public areas is receiving special attention due to its importance
in many aspects including safety and security. This paper proposes a generic computer vision architecture
with the ability to learn and recognize different group activities using mainly the local group’s movements.
Specifically, a multi-stream deep learning architecture is proposed whose two main streams correspond to
a representation based on a descriptor capable of representing the trajectory information of a sequence of
images as a collection of local movements that occur in specific regions of the scene. Additional information
(e.g. location, time, etc.) to strengthen the classification of activities by including it as additional streams. The
proposed architecture is capable of classifying in a robust way different activities of a group as well to deal
with the one-class problems. Moreover, the use of a simple descriptor that transforms a sequence of color
images into a sequence of two-image streams can reduce the curse of dimensionality using a deep learning
approach. The generic deep learning architecture has been evaluated with different datasets outperforming
the state-of-the-art approaches providing an efficient architecture for single and multi-class classification
problems.

INDEX TERMS Neural network architecture, one-class classification, multi-class classification.

I. INTRODUCTION
The growing global population makes it necessary to develop
and improve automatic methods to analyse and recognize
activities of people groups in public areas for many reasons
including safety (e.g. recent restrictions on meetings due to
COVID pandemic) and security (e.g. demonstrations, ter-
rorism, etc.). Usually, human personnel visualize and anal-
yse data from surveillance cameras in order to provide the
required actions and decisions depending on the specific
problem. This task is very time consuming and not always
possible to perform online because, on the one hand, it can
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approving it for publication was Francesco Piccialli.

be expensive but, above all, the limitations related to human
visual inspection: tiredness, fatigue, lack of attention, etc.
As a result, camera monitoring is usually consulted after a
fact. Recently, however, special attention is being paid to
solving these problems with artificial vision and machine
learning techniques.

Despite the progress of this area of research, there aremany
challenges on human activity recognition, mainly related to
situations where more than one individual is analyzed. For
example, how to distinguish between a street fight and a
gather of friends playing, detect an abnormal behavior of
an individual among a crowd, or how to analyse a group of
people activity over a long period of time. Moreover, the con-
text where the activity takes place has a great impact on the
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final decision. It allows to determine the type of the activity
of if it is normal or abnormal. For instance, a fight in a street
is considered abnormal; however, a fight in a boxing ring can
be considered as a normal activity. The context defines all the
aspects that involve the situation, as the place as we have just
mentioned, the time, the conditions, etc.

Researchers have proposed different strategies to address
partial problems of the challenge of analysing group
behaviour. In this way, the works propose partial solutions
to determine movements, actions, activities of groups, other
focus on small groups or crowds, etc. [8]. Therefore, it is
necessary to advance in the proposal of a generic architec-
ture that allows to automate the monitoring of groups of
different size and with different levels of semantics. This
motivates our proposal, a multi-stream deep learning archi-
tecture (see Fig. 1) able to learn activities of groups using
local motion features (Section III). The two main streams of
the architecture correspond to the deep-learning variant of
the Activity Descriptor Vector (ADV) [4]. This is a simple
descriptor capable of representing the trajectory information
of a sequence of images as a collection of local movements
that occur in specific regions of the scene. The use of motion
features helps to reduce the curse of dimensionality using
a deep learning approach. Moreover, additional streams are
considered to incorporate context information (e.g. location,
time, etc.) to enhance the classification of activities. As spe-
cific cases, in this paper we instantiate the generic archi-
tecture in Section IV-A for multi-class analysis with two
above-mentioned streams corresponding to the deep-learning
ADV variant, with a final decision stage that outperforms
state-of-the-art proposals with over 2% accuracy. Also, the
architecture is instantiated for one-class classification in
Section IV-B, with three streams including the two ADV
variant as in multi-class and a third of context awareness.
As it will be in detail presented in Section V, one-class
classification instance also improves previous works.

The paper contribution is two-fold:
• The main contribution is a multi-stream generic archi-
tecture for human group activity recognition, indepen-
dently of the number of people in the group, that
uses local motions features and incorporate context
information. The architecture has been instantiated for
multi-class classification and for one-class classifica-
tion. These two instances include different specific
characteristics that, on average, cover a wide range of
possibilities.

• The deep-learning ADV variant (D-ADV) as a simple
descriptor that transforms a sequence of color images
into a sequence of two-image streams that allow to rep-
resent spatio-temporal information using images. They
can be used as inputs of deep neural networks mod-
els. Compared to end-to-end architectures, our proposal
allows to train a classification network from features
rather than from raw data reducing the space of solutions
and, in consequence, less data is need to train.

II. RELATED WORK
The study of human activity has been an important goal of
computer vision since its inception and has developed consid-
erably in recent years. To address this problem, researchers
have proposed several methods over the past years based
on traditional Artificial Neural Networks and, more recently,
on deep learning architectures.

The works use different strategies to address partial prob-
lems of the challenge of analysing group behaviour. In this
way, the works propose partial solutions to determine move-
ments, actions, activities of groups, other focus on small
groups or crowds, etc. Applying robust solutions at each stage
of the process allows higher level abstraction layers to be
addressed with better performance. In general, the first stages
deal with the extraction of motion information and video
object segmentation [30]–[32]. In [14] the authors propose
a vision-based solution to identify Activities of Daily Liv-
ing (ADL), through skeletal data captured with an RGB-D
camera. After the decomposition of a skeletal sequence into
short time segments, the activities are classified through a
two-layer network called Long-Short TermMemory Network
(LSTM), which allows analyzing the sequence at different
levels of temporal granularity. The proposal is evaluated in
the dataset Watch-n-Patch [56], in which there are examples
11 different daily activities of people such as: bringing things
from the fridge, turning things to the fridge, spilling liquid,
drinking a liquid, leaving the kitchen, bringing things from
the oven, putting things into the microwave, preparing food,
filling a kettle, connecting a kettle to the electrical outlet,
moving the kettle. The main contribution of the authors is a
model of activities of multiple scales and time dependence,
based on the comparison of the characteristics of the context
that characterize the results of previous recognitions, and a
hierarchical representation with a recognition layer of low
level behavior units and another high level unit. That is, it is
a solution that handles two different levels of semantics.

Human actions in video sequences are usually defined as
three-dimensional (3D) space-time signals that characterize
both the visual and dynamic appearance of the movement of
the human beings and objects involved. Taking into account
the success generated by the positive results of Convolutional
Neural Networks (CNN) for image classification, recent
attempts have been made to learn CNN 3D to recognize
human actions in videos, but due to the high complexity of
the training of 3D convolution cores and the need for large
amounts of training videos that this type of networks requires
for their training, there are only few success stories, being a
broad topic still requiring maturity in research.

Regarding the study of groups of people, advances in
analysing behaviour are limited to very concrete and simple
activities or actions, usually of short duration (low semantic
component) such as a actions in sport games [11], [35], [40],
[50], detection interactions of people inside a group [13],
[54], [57], inter-group violence [48], [61], [62], among others.
If we increase the number of people in the group, becoming
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crowds, the level of semantics is even lower, being specifi-
cally limited to tasks such as counting people and calculating
crowd density [6], [16], [23], [65] or detecting movements of
a mass of people or crowd collisions [19], [37], [46], [68],
mainly for the purpose of security tasks. It is important to
highlight the work in [51], in which the authors present
a model of learning based on contextual relationships that
uses a deep neural network to recognize activities in a video
sequence. The proposed model involves contextual learning
using a bottom-up approach, learning from individual human
actions to group-level activities, and learning from scene
information. Taking into account that it can identify group
and individual activities would be considered a progress
in this field of research, since it is one of the first works
that can identify behaviors according to the number of peo-
ple in the scene, clarifying that it is not yet reached the
level of identification of behaviors in crowds with the same
application [51], [52].

Finally, it is important to analyse the one-class classifi-
cation approaches. They become particularly relevant when
an adequate dataset is not available for all the classes that
the classification models have to learn. There exists many
situations in which it is necessary to identify one class among
others but only having examples of this class. For example,
in video surveillance, it is common to have information on
normal actions or activities while it is very difficult to have
examples of criminal actions. The same is valid for credit
card transactions, where the large volume is related to legal
transactions but the objective is to detect fraudulent ones.
The models have to be trained without or scarce samples of
abnormal situations, in which the goal is to learn from data
the meaning of ‘‘normal’’. Deviations or data different from
this definition are considered as anomalies or ‘‘abnormal’’.
The problem of having most (or all) examples of a particular
class becomes a bigger problem when using deep learning
techniques as they are large consumers of data. Some pro-
posals have been presented to address the one-class classi-
fication problem using deep neural networks. In particular,
it is important to highlight the work of Chalapathy et al. [9]
that proposed a model of a one-class neural network
(OC-NN) to detect anomalies in complex datasets. Among
the work specifically addressing activity recognition in
groups or crowds, different neural network models have been
used to solve the problem. For example, the use of Con-
volutional Neural Networks (CNN) is shown in the work
of Li et al. [27] where a new colorization of images includ-
ing other information as optical flow is used as input of
CNNs to detect objects and their anomalies. Also, in [48],
Su et al. integrate the one-class Support Vector Machine into
a CNN proposing the Deep One-Class (DOC) model. One
widely used model has been autoencoders (AE) where they
attempt to extract features from images to form a new space
in which to decide the existence of normal activities. In this
way, Saokrou et al. [45] propose a cubic-patch-based method
based on a cascade of AE to represent the information in the
patches; Vu et al. [53] propose representation learning using

Denoising Autoencoders (DAEs); and the works in [58], [59]
are based on multiple Stacked Denoising AutoEnocders
(SDAEs). Finally, Generative Adversial Networks (GAN)
trained using normal data have been used to learn an internal
representation of the scene normality [41], [42].

III. PROPOSED GENERIC ARCHITECTURE
Currently, the methods of Deep Learning are achieving great
results that are revolutionizing the way to address the prob-
lems of Artificial Vision. These techniques can solve prob-
lems that previously could not be solved, especially in image
recognition. End-to-end (E2E) architectures have various
advantages, such as the simplicity of coding and the training
process. Also, E2E networks internally learn features that
describe the data in a way to produce an expected result. Nev-
ertheless, they are highly dependent on the dataset diversity
to be generally applicable. Also, a large number of exam-
ples is required in most cases to train a large number of
parameters in the networks [5], [47]. Some human behaviour
datasets are quite small, or not fully labelled. That hardens the
training of E2E deep learning architectures. Some proposals
have overcome this problem using transfer learning, such as
in [70] where pre-trained weights of a VGG16 are used. How-
ever, this approach still depends on the previously trained
parameters.

In order to cope with these problems, a different dual-stage
solution is presented in this paper. It uses pre-defined features
that convert the data to a different known space and train
a network with those features. Using descriptors reduce the
space of solutions, helping to learn tasks with fewer data.
In this way, we detach the motion description (D-ADV in this
case) from the behaviour classification and allow the system
to train ones regardless of the specific dataset since we train
the network from the features. Since those features are known
(i.e. they always have the same shape and range) and not
learnt from a specific dataset, and the network learns from
them, the generality is implicit regardless of the original data.
This idea has been used before with generic descriptors [20]
or simple optical flow [49], but not with specific descriptors
for behaviour classification.

Another advantage of this solution is that a smaller amount
of data is required to train the architecture, which is important
for both small and large datasets. In the case of small for the
reasons explained before, and for large to avoid the need of
fully labelling the entire dataset, which can be a tedious and
time-consuming task.

Furthermore, the learning part is based on the paradigm of
‘‘ensemble learning’’ with, in the general case, any number
of classifiers, and in the specific instances of this paper, two
specific classifiers for the vertical and horizontal motion, and
three for the one-class classification that includes the context.
Ensemble learning [15], [60] has proven outstanding results
in many papers and challenges.

With this idea in mind, the key contribution in this paper
is a multi-stream architecture, depicted in Figure 1, that anal-
yses group human behaviour using a movement descriptor
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and a classification stage to detect different activities. For the
movement descriptor, in this paper, we present the D-ADV
based on the Activity Descriptor Vector (ADV) for
deep learning classification, as explained in detail in
Section III-A2. The descriptor is attached to the two first
streams of the architecture.

The classification stage is coupled to a learning block as
it is shown in Figure 1, that classifies the activity taking into
account the context. There are two main classification strate-
gies, one distinguishes among multiple classes (multi-class
classification) and the other between known and unknown
activities (one-class classification). The second is common
in human behaviour as most of the times people act nor-
mally, so it is highly unlikely to find enough data to train a
network for abnormal activities. Thus, a system is trained to
detect the known classes and ‘‘classify’’ the rest as abnormal
or unknown. Using a motion descriptor let the system be
adaptable to any of these two strategies, that we instantiated
after in Section IV-B for one-class and Section IV-A for
multi-class.

A. LOCAL DESCRIPTOR MOTION
The first block of the architecture aims to extract a repre-
sentation of the movements that occur in the scene. Here
a variant of the ADV descriptor that allows to be used in
image-based deep learning systems is presented. Specifically,
the Deep-ADV is proposed that allows describing a scene
with images of local motions in regions of the scene. For
the sake of completeness we first briefly describes the main
aspects of the ADV and later the proposed D-ADV.

1) ACTIVITY DESCRIPTION VECTOR (ADV)
The ADV [2], [3] is a representation of the scene that dis-
cretizes the input data into a set of cells where the movement
is computed. It has proven good classification capabilities
independently of classifiers, in full sequences and in predic-
tion [4]. G-ADV [1] is a variant specified to analyse group
behaviour. The G-ADV describes the motion of the group and
the individuals with three different components: the trajectory
of the group, the coherence of the individual in the group and,
the movement relations between the different groups in the
scene.

The ADV assumes the input data to be a non-perspective
set of images (i.e. images on the ground plane), in some cases
a pre-process to correct them is required. Using homography
(Eq. 1) can help to rectify the data, assuming that any point pi
in the image is transformed into a point pg in the ground
plane G.

pg = H · pi (1)

The ADV uses the information of pairs of consecutive
points to find the ratio of movement in the four directions
(up, down, left, right, and frequency). Each cell combines the
movement information in the descriptor that will later be used
to feed a classifier.

2) D-ADV
Deep-ADV (D-ADV) uses apparent motion of the individuals
in the scene, in contrast to the original ADV that uses specific
movements, i.e. displacement between frames. This gives a
more abstract perception of what is happening. In order to do
it, a sequence of images is used, and the dense optical flow is
calculated from the sequence.

Specifically, this proposal uses a sequence of images as
the input set. Unlike ADV, D-ADV does not rely on the
specific, individual movements of a person in the scene and
the occurrences in the scene (i.e., frequency). It considers the
apparent motion of individuals in the visual scene and the
appearance of individuals assuming a specific background.
For the former, optic flow calculation is the initial stage
of the process. It calculates the optical flow between two
consecutive frames (t, t + δt) of the sequence using the
differential method as the most commonly used method [24].
It is based on the assumption of image brightness constancy:
given a video sequence, the pixel intensity (x, y) of frame t,
It (x, y), remains the same despite small changes in position
and time period. If (δx,δy,δt) is expressed as a small change of
motion, and assuming constancy of brightness and expansion
as a Taylor series, it can be expressed and approximated as
described in [24]):

It+δt (x + δx, y+ δy) ≈ It (x, y)+
∂I
∂x
δx +

∂I
∂y
δy+

∂I
∂t
δt,

solving and dividing the second term along it by δt , it is
possible to obtain:

∂I
∂x
δx
δt
+
∂I
∂y
δy
δt
+
∂I
∂t
=
∂I
∂x
U +

∂I
∂y
V +

∂I
∂t
≈ 0

where U = δx
δt y V = δy

δt are the two components of the
optical flow in t .

If we assume the image as a ground plane and a static
camera (i.e., apparent motion is only generated by the indi-
viduals, not by the observer), the difference between two
points could be approximated as the derivatives of the pixels
(pi − pi−1) ≈ ( δx

δt ,
δy
δt ) = (W ,V ). Based on the ADV,

we can relateUp (U ) andDown (D) motion components with
vertical W and Left (L) and Right (R) with V . Hence, the
components are calculated as in Eq. 2:

U (It ) =
{
−Vt if Vt < 0
0 others . . .

D(It ) =
{
Vt if Vt > 0
0 others . . .

L(It ) =
{
−Wt if Wt < 0
0 others . . .

R(It ) =
{
Wt if Wt > 0
0 others . . .

(2)

The Frequency (F) refers to the time (frames) in which
there are people in the scene regardless if they are moving
or not (Eq. 3:

F = |I−B| > 2 · std(I − B), (3)
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FIGURE 1. Overall proposed architecture. Local movement representation by D-ADV and multi-stream and fusion stages.

where B is the background, i.e. an image of the scene with
no people. The std refers to the standard deviation, that in
this case models the dispersion of the difference between the
pixels of the image and the background. In order to reliably
estimate the pixels that refer to people, by knowing the vari-
ability in the pixels of the background due to camera noise or
other interferences, we can robustly define the segmentation
threshold with the standard deviation specifically, setting it to
twice the std .

Each component of the five is then accumulated over a
sequence of frames determined by the windows size (ws)
that depends on the accuracy requirements of the problem.
Then, the accumulated U , D, L, R, and F , are passed to the
classification stage, that is explained in Sec. III-B. In gen-
eral, the classification stage is proposed to be a multi-stream
network architecture. The input of each stream is not a con-
catenation of the five images, but one with LRF and the other
one with UDF . In this way, one network takes into account
horizontal displacements with the frequency, whilst the other
vertical motions with the frequency, isolating the directions
to allow the networks to focus better on specific directions.
Figure 2 depicts this idea of multi-stream with the LRF and
UDF inputs.

B. CLASSIFICATION STRATEGY
The proposed architecture defines, for human behaviour anal-
ysis, a classification stage that takes local motion as input
and provides a class, either in a range of classes or as a
normal/abnormal classification. In the literature review, it has
been seen that using multiple networks simultaneously for
classification, and fusing their outputs to provide a final

decision, achieves better results. This is because each
behaviour may have specific features that are learnt by a
specific network and then scored, rather than trying to extract
all the features within a single global network. This idea
is here applied, using a multi-stream strategy, that uses the
previously calculated UDF and RLF . Also, in some cases,
such as in the one-class classification instance of this general
architecture (Section IV-B), another stream can be added for
a specific purpose.

If prediction scores are assigned to each of the network
streams (each stream emits scores from different classifi-
cation tasks), we can weight the features from different
points of view. It is very important to efficiently fuse all
the streams to generate the final predictions. They can be
fused using different methods such as Late fusion (LF), Early
fusion (EF), Hybrid fusion (HF) used in [66]. Moreover,
a hierarchical fusing can be done that scores two streams
that have a common semantic meaning (motion behaviour
in the example), and the result is merged with the context
stream.

In this paper, the classification stage is proposed (see
Figure 1) to include of two streams, each related to the
D-ADV UDF and LRF descriptors respectively. The com-
bination of both streams is carried out by a final fusion
layer that concatenate the stream outputs and pass it to a
fully connected layer. In addition, the proposed architecture
considers, for the case of one-class classification, an extra
stream for the context information in the scene. In this
case, the fusion of the context stream is done in a weighted
way to each of the flows and will depend on the specific
application.
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FIGURE 2. Example of IMG, LRF , UDF images from D-ADV representation of an abnormal activity in Ped1 dataset.

IV. ARCHITECTURE INSTANTIATED
For the development of this proposal, two neural network
architectures have been proposed by instantiating the archi-
tectural model defined in the previous section: instance
withOne-Class classification (D-ADV-OC) and instancewith
Multi-Class classification (D-ADV-MC). These architectures
are able to detect specific behaviors that are part of the train-
ing data set and abnormal behaviors from training normal
data, respectively. Details about the classification and training
stages, as well as some important configuration parameters
of each of the architecture instances, are explained in the
subsections IV-A and IV-B.

A. MULTI-ACTIVITY CLASSIFICATION (D-ADV-MC)
The architecture instantiated from the architectural model
proposed in this paper for the classification of multiple group
activities can be seen in Figure 3. This architecture uses
two-stream activity classification and performs a late fusion
as discussed in the previous section capable of classifying
the previously computed D-ADV images: LRF and UDF .
The classifier approach is open and allows the use of any
CNN architecture (VGG, Resnet, Alexnet, LeNet, etc.). This
type of networks typically uses a fully connected layer on
the output with a softmax activation function to decide to
which class the image corresponds (e.g. objects, locations,
poses, etc.). The architecture ignores the individual dense
layers. However, the previous layers of the model are con-
catenated in a late merge with a fusion layer. Finally, we use
a fully connected layer with sigmoid activation function to
connect the fusion layer and predict multiple classes.

To overcome the challenge of training the architecture
with small datasets such as BEHAVE and CAVIAR [7], [18],
we perform transfer learning of the trained models with the
ImageNet dataset [25]. As a result, we refined the CNN-based
network three times. First, we replaced the fully connected
layer of the ImageNet architecture with a new one that
matches our classes. Second, we trained a subset of the

lower layers because the LRF and UDF inputs are different
from the RGB input images expected by ImageNet. Finally,
we retrained a subset of the upper layers for fine-tuning.

For the training step, we use the binary cross-entropy as an
objective function to consider each output class as an inde-
pendent Bernoulli distribution. For classification, considering
that more than one class can be present in a time frame of
the sequence, different thresholds εi are considered for each
output neuron i. Here the εi thresholds are calculated to be
the value that maximises the true positive rate (TPR) and
minimises the false positive rate (FPR), for each class, Ci.

B. ABNORMAL ACTIVITY CLASSIFICATION (D-ADV-OC)
This section specifies the instance of the proposed architec-
ture for the detection of anomalous activities in a scene. This
architecture uses three data streams: the two motion-related
streams from the D-ADV with the LRF and UDF images,
and the a third stream associated with the scene context.
This architecture has been coined D-ADV-OC, and does
not use the individual dense layers as it connects to layers
upstream of them. Therefore, the upstream layers in the
convnet are concatenated in a late merging manner using
a concatenation layer of the two streams. After all, we use
a fully connected layer with linear activation to connect
the concatenation layer and predict abnormal activity in the
cluster. This architecture design is based on recent work
by Ruff et al. [44] providing a deep model for training a
neural network by minimizing the volume of a hypersphere
enclosing the data network representations. This proposal
differs from the work of Chalapathy et al. [10] by combining
the ability of CNN-based networks to progressively learn
from a subset of images that are the representation of the
input data along with the one-class target. Unlike the latter
work, which uses auto-encoders to establish the representa-
tion of the input data by defining the center of the hyper-
sphere, in this paper some layers of the CNN-based network
are trainable, allowing the architecture to continue training
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FIGURE 3. Data flow of the proposed D-ADV. The D-ADV architecture is mainly divided into two parts, the D-ADV-MC representation stage
where the displacement is calculated using the ADV descriptor from a sequence of images and their optical flow motion. The second stage
defines the classifier using CNN classifiers and a fully connected layer to predict the class.

FIGURE 4. The data flow of the D-ADV-OC method. The D-ADV-OC architecture is mainly divided into two parts, the D-ADV-OC
representation stage where the displacement is calculated using the ADV descriptor from a sequence of data and its optical flow
movement. The second stage defines the classifier using CNN classifiers and a fully connected layer to identify the class whether it is
normal or abnormal.

both the center and adjusting the radius of the hypersphere.
To avoid the problems of large datasets to train our model
and with the goal that it can be used for small datasets,
transfer learning of the models trained with ImageNet is
used.

The third stream of this architecture is related to the context
information in the scene, and at the training step, we calculate
the maximum values of the input patterns to normalize the
output data, which could be objects, locations, etc. The mean
value of the normalization establishes initially the center of
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the hypersphere but it is jointly the length of the hypersphere
radius optimized by means of a fully connected layer at the
end of the network.

The distance combination module (see Figure 4) uses the
weights wa and wc for the activity and context loss functions
to train the network and calculates the distance, d , of an input
pattern to the normal class according to the prediction stage
using the following function:

d(i) =
1
n
wa
∑
i

||ia − ca||2 + wc ||ic − cc||2 (4)

where ia is the computed representation for the activities
using motion; ic, the computed representation of the context
in the scene; and, finally, ca and cc are the centers of the
hyperspheres. Additionally, in this model, the combination of
the weights wa for behavior and wb are taken into account.
For prediction, P, an input pattern i is classified as normal

if the distance dist (Eq. 4) is less or equal than a threshold ε.
Otherwise, the input is considered abnormal.

P(i) =
{
normal if d(i) <= ε
abnormal otherwise. . .

The threshold ε of the length of the hypersphere is calculated
at the end of the training stage as the optimal cut point of the
ROC curve. It is the distance (Eq. 4) that classifies most of
the individuals correctly and thus least of them incorrectly.
Using the ROC curves, the cut point is calculated as follows:

ε = argmin
d
|TPR(d)− (1− FPR(d))|,

being TPR and FPR, the true and false positive rates
respectively.

V. EXPERIMENTAL RESULTS
In this section, the experimental results for the two proposed
instances are presented. First, the Deep-ADV Multi-Class
Classification (D-ADV-MC) instance has been validated
with the INRIA, CAVIAR and BEHAVE datasets [7], [18].
On the other hand, the Deep-ADV One-Class Classification
(D-ADV-OC) has been tested with the Ped 1, Ped 2 [34] and
Avenue [29] datasets.

The general experimentation configuration for both
instances are as follows:
• For the calculation of the optical flow, Gunnar
Farneback’s algorithm [17] has been used, which allows
a dense calculation.

• Size of the cells that conform the images LRF and UDF
is 224 x 224.

• The CNN based image classifier is the ResNet50.
• The images LRF andUDF provided by the D-ADV rep-
resentation stage have been normalized as input of the
ResNet50 to the range between 0 and 1 by dividing each
cell (pixel) by the maximum value of each component
(L,R,U,D and F).

The CNN based image classifier has been trained using
transfer learning from the Imagenet dataset in three steps.

First, only the last layer has been trained with the specific
labels of the corresponding dataset. Second, the first 139 lay-
ers of the activity recognition module has been trained as a
domain adaptation solution from the RGB to the LRF and
UDF domain. Finally, from the top layer to the layer 249 is
finally trained.

A. MULTI-CLASS CLASSIFICATION RESULTS
A 10-fold cross validation has been used to calculate the
performance of the architecture for the different datasets.
Moreover, 25% of the training data in each fold has been used
for the validation set. Specifically, the performance of the
D-ADV has been evaluated using the sensitivity, specificity
(see Table 1) and the AUC and ROC curves (see Figure 5,
Figure 6 and Figure 7). These values have been calculated
for frames and for sequences. That is, the performance per
frame is calculated according to the prediction made on each
individual frame independently of the sequence. The perfor-
mance per sequence is calculated according to the prediction
made for all the frames in the sequence. For this, the pre-
diction of the sequence is the one corresponding to the one
corresponding to at least 80% of the frames of the sequence.
Finally, in order to evaluate the ability of the representation
to synthesize the information extracted from the scene, two
different values for the windowsize (ws) parameter have been
tested: 10 and 40 (i.e. 0.5 sec. and 2 sec.).

The per-frame performance results with awindow size (ws)
of 10 reach according to the sensitivity and specificity, for
the INRIA dataset, 71.70% and 84.85% on average, 91.47%
and 94.51% for BEHAVE dataset, while 78.18% and 87.12%
respectively for the CAVIAR (corridor) dataset. Using a
larger window size (i.e. ws of 40), the results are improved
in the three datasets, obtaining 89.93% and 95.65% (sendi-
tivity and specificity) for INRIA, 92.55% and 94.79% for
BEHAVE dataset, and 79.00% and 88.88% for the CAVIAR
dataset (see 1).

In terms of performance per sequence, D-ADV achieves
very high results. Considering a window size of 10, for the
INRIA dataset, a total of 91.67% of sensitivity and 95.83%
of specificity is achieved, while 95.07% and 95.52% for
the BEHAVE dataset, 80.00% and 93,06 respectively for
CAVIAR dataset. Again, the results considering a larger value
for the window size (ws = 40) are improved achieving the
best ones. On average, 95.83% of sensitivity and 97.92%
of specificity for the INRIA dataset, 95.52% and 95.70%
respectively for the BEHAVE dataset and, finally, 80.58%
and 94,27 for CAVIAR dataset.

Finally, the D-ADV architecture is compared with the
methods proposed in [1], [12], [36], [67], [64] considering
the seven classes of the BEHAVE dataset. Only [12] and our
previous work (GADV) consider the seven classes as well.
The rest of the works use a subset of four classes. Table 2
shows the comparison of the sensitivity results. As we can
see, our proposal, D-ADV, achieves in average the best results
outperforming all compared methods.
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TABLE 1. Comparison of results with datasets (INRIA, BEHAVE, CAVIAR) calculated for frame and sequence with windowsize (ws) values 10 and 40.

TABLE 2. Comparison according BEHAVE results.

TABLE 3. Results of the D-ADV-OC experiments for the PED 1, PED 2 and Avenue datasets. The OCC-SVDD and OCC-NN loss functions, with a combination
of D-ADV, D-ADV+Context, D-ADV+CNN and D-ADV+CNN+Context classifiers are used to calculate sensitivity and specificity.

B. ONE-CLASS
The previous instance of the architecture to solve the
multi-class problem has been tested with small datasets to
validate the architecture is able to be trained with a small
amount of data. Now, larger datasets have been used to vali-
date the use of context in improving the performance of the

model. Here, the D-ADV-OC architecture has been evaluated
using different instances. The simplest one is the D-ADV
instance that uses the original ADV descriptor [4] with 15 x
15 cells followed by a fully connected layer of 15 x 15 x 5
neurons corresponding to the space of the ADV. The
D-ADV+CNN uses twoResnet50 neural networks to learn the
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FIGURE 5. ROC curves for BEHAVE dataset.

LRF and UDF images without the top and the flatten layer
connected to two concatenated 2D global average pooling
layer (one per image stream) followed by a fully connected
layer of 4096 neurons. Moreover, D-ADV+Context and
D-ADV+CNN+Context uses the previous configurations
with a third stream: the context recognition. In this case,
a YOLO neural network trained with VOC has been used.
The weights used for training are wa = 0.9 (activity) and
wc = 0.1 (context). For all instances, two loss functions
has been used: the OC-SVDD [44] and the OC-NN [10].
The window size (ws) as the number of consecutive frames
considered in the accumulative process (see Figure 3) is 5 for
the Ped1 and Avenue dataset and 10 for Ped2. Finally, the
instances have been tested using the splits of training and tests
predefined in the datasets.

The experimental results considering the sensitivity and the
specificity as performance measure can be seen in Table 3.
As can be seen, high performances are obtained for all com-
binations in the different datasets. Having an average value
in all cases higher than 70% in all cases for both sensitiv-
ity and specificity, and reaching values on average close to
80% for the D-ADV-Context instance with OC-SVDD. This
configuration is the one that reaches the highest values for
the Ped2 and Avenue datasets. Reaching close to 90% in
both parameters for Ped2. Although the configuration with
OC-NN loss function has a very similar performance, it is in
the Ped1 dataset where it achieves the best results. As for the
use of the third stream with the Yolo object detection based
context, it is shown that in all cases it improves the accuracy
rates, avoiding a higher number of false alarms.
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FIGURE 6. ROC curves for INRIA dataset.

TABLE 4. Average performance results for the considered datasets considering sensitivity, specificity, AUC and EER for the different loss functions and
components.

1) ABLATION STUDY
In this section, an ablation study on the architecture to inves-
tigate the effect of each component of has been carried out.

First of all, the average performance results for the PED1,
PED2 and Avenue datasets have been calculated. As can be
seen in 4, the architecture trained with a OC-SVDD loss,
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FIGURE 7. ROC curves for CORRIDOR dataset for frame and sequence with windosize parameter value of 10 and 40.

TABLE 5. Ablation study performance for different losses and components.

without the CNN network, and using the context information
has the best results achieving an AUC of 86.12%. It will be
the reference architecture for comparison.

a: EFFECTIVENESS OF THE LOSS FUNCTION
The selection of a particular loss function is not signifi-
cant in view of the results obtained in Table 5. Differences

in performance is slightly about 1% per sensitivity, speci-
ficity and EER. Even considering AUC, the difference is
only 0.45%. The average results for both loss functions is
again very similar, obtaining a difference of less than 4%
compared to the reference architecture w.r.t. AUC, for exam-
ple (82.93 % → 86.32% and 82.48 % → 86.32 % for
OC-SVDD and OC-NN respectively).
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TABLE 6. Average performance details considering the CNN module for
the considered datasets.

b: EFFECTIVENESS OF THE CNN MODULE
This parameter has an important role in the performance.
As can be seen in Table 5 differences in performance
are above 5% for all parameters, being the AUC 5.53%
(85.47 %→ 79.94%) less if the CNN network is used. The
architecture without the CNN block uses a fully connected
layer of 1125 (15 × 15x5) neurons, as we said before, while
with the CNN block, two Resnet50 networks that end up in a
fully connected layer of 4096 neurons. Both the 1125 or the
4096 neurons are used as input parameters of the hyperspace
where the hypersphere that serves to decide normal or abnor-
mal behaviour is calculated. In other words, the number of
parameters to learn ismuch higher in the latter case (including
the training neurons of the Resnet50 models). In order to
explain it, it is important to see Table 6. The number of frames
of the training set for PED2 is the smallest (2550 frames)
having a difference in AUC parameter of 8.66% (91.85%w/o
CNN→ 83.18 % with it). Considering the Avenue dataset,
the number of samples is 6 times higher (15329) what reduces
drastically the difference in performance to an AUC of 2.87%
(82,11 % w/o CNN→ 79,23% with it). Therefore, although
the architecture allows training with small datasets, the larger
the input, the higher the performance achieved.

c: EFFECTIVENESS OF THE CONTEXT MODULE
The use of more streams in the architecture is affected by
this parameter. The experiments have used a Yolo network
to identify objects in the scene. Differences in performance
are important, achieving about a 2.5% per sensitivity, speci-
ficity and EER. Considering AUC, the difference is about 2%
(81,72%→ 83,70%). Hence, the use of context information
improves the overall performance of the architecture.

2) COMPARSION WITH OTHER METHODS
Finally, the experimental results are showed and compared
with other state-of-the-art methods in Table 7 at frame-level.

TABLE 7. Comparison of D-ADV-OC results at frame level with other
methods with PED 1, PED 2 and Avenue datasets. Cells containing the
letters N/A indicate that no data is available.

Results for the UCSDPed 1 dataset show that the lowest value
of EER is 23.50% provided in the work by Vu et al. [53] and
the highest AUC value is 86.26% in the work by Lu et al. [33].
According to EER for the UCSDPed2 dataset, the best results
(4.68%) are obtained again in the work by Vu et al. However
in AUC, themaximum value is achieved by Ionescu et al. [22]
(97.80%). For the Avenue, the best AUC is again for the
work by Ionescu et al. (90.40%) and the best EER for other
work proposed by Li et al. [28] (21.50%). Our proposed
architecture with the different instances is not the best for
any dataset but the performance is in accordance with those
obtained in the other works. As can be seen, if we compare
our workwith the average results obtained by the state-of-the-
art works, itimproves in all cases except for Avenue’s AUC
(our work achieves 82% compared to an average of 83%).
The best configurations for AUC and EER are with the
D-ADV+Context configuration and with a loss function
OC-NN for Ped1 and Avenue, and OC-SVDD for Ped2.

VI. CONCLUSION
In this paper a generic deep learning architecture based on
the analysis of local movements has been provided which
allows the classification of group activities independently of
the number of people and activities. The architecture is com-
posed by multi-streams, being the two main streams the deep
learning variant of the Activity Description Vector (D-ADV).
The D-ADV consists on a transformation of a sequence of
images into two sequences of local movements that occur in
specific regions of the scene. The other streams correspond
to context information information (e.g. location, time, etc.)
used to strengthen the classification of activities. The use of
theD-ADV as input queues of deep learning classifiers allows
to learn from the characteristics of the descriptor, reducing
the space of solutions. The proposed architecture has been
urged to address multi-class classification (D-ADV-MC)
and one-class classification (D-ADV-OC) in a robust
way. The starting hypothesis has been validated with the
D-ADV-MC experimentation using small datasets in which
the number of people in the scene varies improving the results
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of the state of the art. Regarding the experiments for the
D-ADV-OC classification, large datasets have been used to
validate the use of context in improving the performance of
the model, outperforming the state-of-the-art approaches.

In terms of future lines, it is proposed to include new
streams in order to determine which ones can have a greater
impact on performance. In addition, in the short term, it is
proposed to replace the calculation of the displacement of
the D-ADV with a deep learning-based optical flow module
to speed up the calculations. Similarly, in the medium term,
it is proposed to study the inclusion of the calculation of
the D-ADV directly in the network architecture. This would
imply the design of a deep network that would allow the
calculation of the displacements (based on optical flow), the
background and the accumulations over time. In addition,
in the long term, we plan to study higher levels of semantics
for groups or crowds. In this case, given the difficulty of
having a larger time window, the generation of new datasets is
proposed. Finally, we plan to transfer the study to other areas
such as the study of groups of vehicles, animals, etc.
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