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A B S T R A C T

The Layout Analysis (LA) stage is of vital importance to the correct performance of an Optical Music
Recognition (OMR) system. It identifies the regions of interest, such as staves or lyrics, which must then
be processed in order to transcribe their content. Despite the existence of modern approaches based on deep
learning, an exhaustive study of LA in OMR has not yet been carried out with regard to the performance of
different models, their generalization to different domains or, more importantly, their impact on subsequent
stages of the pipeline. This work focuses on filling this gap in the literature by means of an experimental
study of different neural architectures, music document types, and evaluation scenarios. The need for training
data has also led to a proposal for a new semi-synthetic data-generation technique that enables the efficient
applicability of LA approaches in real scenarios. Our results show that: (i) the choice of the model and
its performance are crucial for the entire transcription process; (ii) the metrics commonly used to evaluate
the LA stage do not always correlate with the final performance of the OMR system, and (iii) the proposed
data-generation technique enables state-of-the-art results to be achieved with a limited set of labeled data.
1. Introduction

The digitization of music manuscripts helps preserve and dissemi-
nate this valuable heritage. However, simply obtaining a digital image
from the original source is not sufficient to enable the computational
use of this material, and it is, therefore, necessary to transcribe the
content into a digital format.

The manual transcription of music sources is a time-consuming task.
Given the countless number of music manuscripts scattered around the
world, there are ongoing efforts to automate this process by means
of artificial intelligence. The research field that studies how to auto-
matically transcribe music notation from scanned documents into a
structured digital format is denominated as Optical Music Recognition
(OMR) (Calvo-Zaragoza et al., 2020). The structural complexity of
music notation, along with the great variability as regards writing
styles, engraving mechanisms or types of notation – such as neumatic,
mensural or modern Western notation – makes the OMR challenge far
from straightforward.

Music manuscripts may contain not only music but also text, lyrics
or document metadata, and it is for this reason that several tasks in the
traditional OMR workflow focus on the document itself with respect
to the distribution of its different regions (Rebelo et al., 2012). This
is usually referred to as LA, which is also common in other document
contexts such as text recognition (Binmakhashen & Mahmoud, 2019).
The main purpose of LA is to identify the relevant information from the
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whole image, thus facilitating the eventual objective of these systems:
the transcription of their content. This can be done using two broad
possible strategies LA: pixel-wise, in which each pixel is explicitly clas-
sified according to a set of different categories or information layers
contained in images, such as staff lines, text, music notation, etc.; or
region-based, in which a list of polygons (typically bounding boxes)
defines the regions in which the elements are located. This work is
focused on the latter approach, i.e., the region-based approach.

Common formulations consider region-based LA as an object detec-
tion task, in which each meaningful element or region of interest is
located and classified into a set of predefined categories (Liu et al.,
2020). Despite its importance in the OMR context, and although the
literature contains a large number of general-purpose object-detection
approaches, no comprehensive study has been performed in order to
assess the behavior of different models for LA when applied to music
scores, unlike that which has occurred in other research fields, such as
Handwritten Text Recognition (Studer et al., 2019; Zhong et al., 2019).
In this work, we aim to fill this gap in the literature by performing
thorough experiments with several object-detection approaches that are
evaluated in different scenarios.

Furthermore, the state of the art as regards LA involves the use
of machine learning, and particularly deep learning techniques (Le-
Cun et al., 2015). The excellent performance demonstrated in several
vailable online 21 July 2022
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computer vision contexts makes this type of techniques appropriate for
the task discussed herein. However, the application of these techniques
to LA is not yet straightforward in real-world scenarios, since one of
the major challenges is the need for sufficiently representative ground-
truth data. This issue is particularly relevant in the context of music
documents, given that manuscripts are highly heterogeneous and that
very few manuscripts have been properly annotated. Reusing data
from different collections to process another is, therefore, reasonably
assumed to be ineffective. We propose to address this common issue
by using an algorithm with which to generate semi-synthetic images in
order to increment the set of available annotated data to be used as a
reference for the deep learning approach.

Moreover, it should be noted that no specific metric has been
designed for OMR in order to evaluate the performance of LA. One of
the most common metrics used for assessment in the object-detection
field is the mean Average Precision (mAP) metric, which has also been
employed in the context of music (Jia et al., 2021; Pacha et al., 2018).
However, no analysis has yet been carried out regarding whether it
is indeed an appropriate metric that correlates with the quality of the
bounding boxes extracted in order to eventually transcribe music. We,
therefore, discuss the results obtained with different metrics in order
to be able to state which is the most suitable for LA when applied in
OMR.

Finally, since LA is one of the earliest steps in the OMR workflow,
any inaccuracies might be critical for the eventual transcription, sig-
nifying that it is crucial to study its influence on the whole process.
It is essential to analyze the interaction between LA and the eventual
transcription in order to discover the most appropriate way in which
to address the OMR process. However, LA has usually been evaluated
as an individual task without properly analyzing this question, and no
existing study covers it.

To summarize, the contribution of this paper can be divided into
the following points:

• Carrying out the first comprehensive study of object-detection
models for LA in music score images.

• Analyzing and discussing the correlation between the common
metrics used in object detection and the quality of the bounding
boxes retrieved in the LA process for OMR.

• Proposing a new semi-synthetic data-generation method for LA,
in addition to carrying out a thorough study of its usefulness.

• A goal-directed analysis of the influence of LA on the eventual
transcription.

The remainder of this paper is organized as follows: the state of
he art of LA is detailed in Section 2, while the different architectures
onsidered and our data-augmentation mechanism for LA are described
n Section 3. The experimental setup, along with the corpora and
etrics considered, are explained in Section 4, and Section 5 shows

he results obtained after carrying out staff-retrieval and end-to-end
ecognition experiments, in addition to the corresponding analysis and
iscussion of them. Finally, the main conclusions of the work are
ummarized in Section 6.

. Background

Two main perspectives of LA can, in broad terms, be considered in
he context of OMR: processing the document at pixel level or at region
evel.

The former perspective was traditionally addressed through the use
f different strategies that can be found in literature. Before deep
earning techniques were applied, other conventional systems were
mployed by means of heuristic techniques. For example, in order
o separately extract the staff lines and lyrics from sheet music, Bur-
oyne et al. (2009) proposed a heuristic method based on the Hough
ransform that could be used to detect the waved text and staff lines.
2

lthough the staff lines are highly necessary as regards recognizing the
pitch of the symbols, many OMR workflows are based on this process,
which is employed to perform a connected component analysis of the
remaining music notation. There is a review that shows the earlier
methods used for staff removal (Dalitz et al., 2008), but new techniques
have also been developed in order to address this question through
the use of heuristic methods (Géraud, 2014; dos Santos Cardoso et al.,
2009). Of the topics related to OMR, there is, among others, a re-
view (Rebelo et al., 2012) that gathers this type of solutions together
in order to perform LA.

Despite the fact that these heuristic strategies may obtain good
results in controlled scenarios, they are poorly generalizable, signi-
fying that they are not, in practice, suitable for the processing of
scanned documents. The major challenge in this respect is the great
variability of this type of images owing to multiple factors, e.g. the
degree of degradation, contrast, the color of the ink employed or
skew variations, thus making it a difficult task to perform. The main
focus as regards obtaining more generalizable models has been ma-
chine learning techniques, and particularly deep learning techniques.
For example, Calvo-Zaragoza et al. (2018) presented a Convolutional
Neural Network (CNN)-based architecture with which to perform LA
by classifying each pixel of the image according to a set of categories.
However, the method takes a long time because it processes each pixel
in the image. An attempt has been made to address this time-consuming
issue by employing an image-to-image strategy (Castellanos et al.,
2018), which is based on a series of encoder–decoder architectures
(the so-called SAE) and trains each one in order to extract a particular
information layer.

The region-wise perspective can, meanwhile, be considered as an
object-detection process in which the objects are different parts of
the document, such as staff regions or lyrics. Several previous works
have followed this approach. One of the first was that of Bosch et al.
(2016), which used Hidden Markov Models to carry out LA in order
to extract text and staff regions from music score images, while Quirós
et al. (2019) proposed the use of an Artificial Neural Network archi-
tecture to extract the different regions of interest from a music docu-
ment. In their work, Pacha (2019) developed an incremental method
for the training of supervised models with a combination of anno-
tated and predicted images so as to extract the bounding boxes of
staves. Moreover, Waloschek et al. (2019) proposed a neural net-
work approach that could be used to extract the bounding boxes
of the system measures from a music score image, focusing on the
alignment between them. A full-page framework based on two steps
– staff recognition and end-to-end transcription – was recently pro-
posed (Castellanos et al., 2020). With respect to the first step, it
performed LA in order to extract the staff regions by means of an SAE
and connected-component analysis. In their work, meanwhile, Kletz
and Pacha (2021) proposed the use of Faster Region-based Convolu-
tional Neural Network (Faster R-CNN) (Ren et al., 2015) to detect the
bounding boxes of staves and measures.

In addition, note that a large number of region-based LA meth-
ods use mAP as a metric to evaluate the quality of the bounding
boxes (Huang et al., 2019; Kletz & Pacha, 2021; Pacha et al., 2018;
Waloschek et al., 2019), but no study of the suitability of this metric
for OMR can be found in the literature.

3. Methodology

This section provides a description of the methodology considered
for LA. It is divided into two parts: the description of the different
object-detection models deemed appropriate for this task, and the
definition of our data augmentation proposal with which to generate
new semi-synthetic images, which is particularly useful when there is

insufficient annotated data.
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3.1. Object-detection architectures for Layout Analysis

We considered several well-known general-purpose models for the
task of applying object detection in LA. These were selected owing
to their popularity and considerable capabilities in multiple areas, in
addition to the fact that they cover various neural strategies, such as
one-stage or two-stage models or even pixel-wise segmentation. We
specifically used those shown below:

• Faster R-CNN (Ren et al., 2015) is a two-stage detection model
that includes a Region Proposal Network (RPN) to Fast R-CNN
(Girshick, 2015). This model uses the last convolutional layer of
the backbone as a feature map and attempts to extract proposals
for classification and localization directly through the RPN. These
proposals are also used to train the classifier, enabling it to create
a unified network. Since convolutional features are shared, the
efficiency of training increases when compared to other previous
architectures such as Fast R-CNN and R-CNN. This model has
proven to be highly efficient and to perform well in several
scenarios, thus making it an ideal candidate for carrying out LA.
We consider this detector alongside the ResNet50 backbone (He
et al., 2016).

• RetinaNet (Lin et al., 2020) is a one-stage object-detection model
composed of a backbone and two sub-networks. The backbone
part computes the convolutional feature map over the input
image, typically relying on ResNet and adopting the Feature
Pyramid Network (FPN) in order to extract proposals. The sub-
network part is composed of classification and box regression
networks. RetinaNet attempts to solve the common problem of
imbalanced data, in which there are different numbers of samples
for each class. This issue usually causes a bias in the training
by tending to predict the majority class (usually, ‘‘background’’).
RetinaNet addresses this by means of a focal loss function, which
dynamically shifts weights in order to decrease the contribution
of well-classified samples and focuses on misclassifications by
means of the modulating factor of the focal loss. This model
is especially interesting for LA, since the content of a music
document is very varied and may contain disparate elements,
such as a different number of staff and text regions. We use this
detector in combination with ResNet50 and FPN.

• SSD (Liu et al., 2016) is a one-stage model that takes feature
maps in order to generate multi-scale proposal predictions. It
retrieves objects in one step and explicitly divides the predic-
tions by employing an aspect ratio. We use this detector with
VGG16 (Simonyan & Zisserman, 2015) as a backbone, since it is
the basis of the original work.

• SAE is a Fully-Convolutional Network (FCN), and specifically a
U-net architecture (Ronneberger et al., 2015), which is able to
classify each pixel in an image according to a set of categories.
This type of architecture is composed of two parts: an encoder
that extracts the relevant features with combinations of convolu-
tional and pooling layers, and a decoder that inverts the encoder
operation with convolutional and up-sampling layers until the
size of the input image is retrieved. The SAE model provides
a probabilistic map whose elements contain the probability of
each pixel belonging to a specific class. This model has been
successfully used for the staff-retrieval task with music score
images (Castellanos et al., 2020). It is important to highlight
that to be able to apply this method in LA, a post-process is
required in order to convert the probabilistic map obtained by
the neural network into a set of bounding boxes by performing a
connected-component analysis.

It should be noted that the three first architectures presented–Faster
R-CNN, RetinaNet and SSD–rely on the use of a handcrafted technique
called Non-Maximum-Suppression (Neubeck & Van Gool, 2006) to deal
3

with multiple detections of the same object.
Moreover, the SAE method has the restriction of being unable to
etect overlapped bounding boxes. We have, therefore, followed the
trategy of Castellanos et al. (2020) to vertically reduce the bounding
oxes by 20% of the ground truth in order to mitigate this restriction.
ith regard to the predictions, after extracting the coordinates of the

ounding boxes, the method vertically increases the predicted bound-
ng boxes by the same ratio. Note that this alteration is not necessary
or the other methods. In addition, SAE does not provide a confidence
alue for each precision, which is the degree of certainty that the model
as for its estimation, although the other models do provide it.

.2. Semi-synthetic data-generation for Layout Analysis

Let us consider , a collection of labeled images consisting of pairs
, ), in which  is an image and  is its respective ground-truth

bounding boxes or regions. In this work, global coordinates are used
to define each of these regions with its location within  and the
class to which it belongs—staff or text, but more classes could be
applicable. The idea behind our data-augmentation algorithm is to take
advantage of the often scarce ground-truth data available in the OMR
context in order to build new semi-synthetic images composed of a
combination of individual elements extracted from the original images.

Algorithm 1 Image-generation algorithm proposed.
1: function Image-Generation(, 𝑛, 𝛷)
2:  ← ∅
3: for 𝑖 ← 1 to 𝑛 do
4: , ← image-selection-policy()
5: 𝑠 ← background-estimation()
6: 𝑠 ← ∅
7: for each 𝑟 ∈  do
8: 𝑟𝑠, 𝑖𝑠 ← region-selection-policy(𝑟, )
9: 𝑥𝑟, 𝑦𝑟 ← reference-global-coordinates(𝑟)

10: 𝑟𝑠 ← update-global-coordinates(𝑟𝑠, 𝑥𝑟, 𝑦𝑟)
11: 𝑟𝑠, 𝑖𝑠 ← distortion-policy(𝑟𝑠, 𝑖𝑠, 𝛷)
2: 𝑠 ← 𝑠 ∪ 𝑟𝑠
3: 𝑠 ← ink-detection(𝑖𝑠)
4: for each (𝑥𝑠, 𝑦𝑠) ∈ 𝑠 do
5: 𝑠[𝑥𝑟 + 𝑥𝑠][𝑦𝑟 + 𝑦𝑠] ← 𝑖𝑠[𝑥𝑠][𝑦𝑠]
6: end for
7: end for
8:  ←  ∪ (𝑠, 𝑠)
9: end for
0: return 
1: end function

The proposed data-augmentation mechanism is described in Al-
gorithm 1. The parameters received by this algorithm comprise the
collection of images 𝐷, the number of new images 𝑛 that have to
be generated, and the distortion policy 𝛷 that configures the type of
distortion to be applied. The principal idea is to build a new dataset
 from  with 𝑛 generated images.  consists of a set of pairs in the
form of (𝑠, 𝑠), in which 𝑠 is a semi-synthetic image and 𝑠 is the
respective ground-truth data for the bounding boxes of 𝑠.

In order to obtain a realistic image 𝑠, the algorithm first selects
an existing image  and its respective ground-truth data  from  by
means of the function image-selection-policy(⋅, ⋅), as shown in line 4. In
this work, this selection was carried out randomly, but other policies
could also be applied.

The next step consists of generating a background for the new im-
age. This is performed in line 5 by the function background-estimation(⋅),
which applies a process to the selected image  in order to build the
basis of the new image. We propose using a blurring operation, with
the objective of fading the content of the image and obtaining an
empty image with a similar background to that of the original one. We

applied a Gaussian blur operation with a high kernel value (half of the
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Fig. 1. Overview of the data-generation algorithm proposed.
image size in our case). This usually erases all possible traces from ink
information shown in these documents, as shown in Fig. 1).

Once the background has been built, and in order to keep the
structure of the original image , we propose replacing each region 𝑟 ∈
 with another same-class region 𝑟𝑠 that is available in . For example,
if 𝑟 represents a bounding box of a music staff, the new region 𝑟𝑠 will
also be a staff region selected from all those available in  in order
to then locate them in the same position as 𝑟. This selection is carried
out in line 8 by the function region-selection-policy(⋅, ⋅), which applies a
selection policy in order to search for a replacement for each 𝑟 ∈ . In
our case, we consider a random selection of same-class regions. Note
that, in addition to extracting the new region 𝑟𝑠, the portion of image 𝑖𝑠
represented by the bounding box is also extracted.

Since 𝑟𝑠 contains coordinates that are relative to the original image
from which 𝑟𝑠 was extracted, it is necessary to adjust the coordinates
to those relative to the new image. The method, therefore, extracts the
reference coordinates 𝑥𝑟, 𝑦𝑟 from 𝑟 by means of the function reference-
global-coordinates(⋅) shown in line 9. In our case, we use the upper-left
corner of the bounding boxes as reference coordinates. These coordi-
nates are then used to update the coordinates of the new bounding box
𝑟𝑠 by means of the function update-global-coordinates(⋅, ⋅, ⋅), which is in
line 10.
4

For the sake of more variability, in line 11, the function distortion-
policy(⋅, ⋅, ⋅) applies a distortion policy 𝛷 to 𝑖𝑠 as an image-augmentation
process. We apply a slight random rotation with respect to the center
of each region. This rotation is of between −3◦ and 3◦ – a range used in
previous work (López-Gutiérrez et al., 2021) for data augmentation in
OMR – with respect to the original skew, and this is the same value for
all the regions on a page, but is different for other pages. It should be
noted that excessive rotation could lead to the overlapping of multiple
bounding boxes, which would lead to the attainment of unrealistic
images. This function also updates the coordinates of 𝑟𝑠 according to
the distortion applied. 𝑟𝑠 must subsequently be included in 𝑠, as stated
in line 12, and, therefore, 𝑟𝑠 ∈ 𝑠.

At this point, the algorithm must dump the content of the new
bounding box 𝑖𝑠 onto the image generated 𝑠. However, it is important
to emphasize that although the background is obtained by processing
a real image, it is not exactly the same as that in the original images.
We, therefore, propose the use of only the relevant information from
𝑖𝑠 – the pixels with ink – and avoiding the background pixels. In
order to perform this, in line 13, the function represented as ink-
detection(⋅) returns the set of coordinates 𝑠 in the form (𝑥𝑠, 𝑦𝑠), which
represent the relative positions of the ink within 𝑖𝑠. Literature contains
countless binarization approaches that can be used for this purpose (He
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& Schomaker, 2019; Pastor-Pellicer et al., 2015). In this work, we have
applied the well-known local-thresholding algorithm for binarization
developed by Sauvola and Pietikäinen (2000), but any other could
be used. The ink pixels in the 𝑖𝑠, which are indicated by the relative
oordinates 𝑠, are then dumped onto 𝑠 by using 𝑥𝑟, 𝑦𝑟 to properly
ocate the ink information. This is performed in lines 14–16 of the
lgorithm.

Finally, once the above process has been completed for all the
egions in , the new semi-synthetic image 𝑠 and its respective
round-truth data 𝑟𝑠 are included in , as stated in line 18, which
ontains the augmented dataset that will be returned at the end of the
lgorithm. The entire process is then repeated until 𝑛 new images have
een generated. The algorithm described is also shown schematically
n Fig. 1.

It should also be noted that, although the documents belong to the
ame manuscript, the same-class regions of crossing pages may be of
ifferent sizes. We, therefore, considered skipping those replacements
n which the inclusion of 𝑟𝑠 within 𝑠 causes overlapping between
ifferent bounding boxes or a part of the new region falls outside 𝑠.

. Experimental setup

This section covers the description of the corpora and metrics
onsidered, along with the configuration of each model employed for
his study. For the experimentation, each corpus was divided into three
artitions: a training set, a validation set, and a test set. The training set
s always fixed to 64 pages for all corpora (to ensure similar conditions
n all of them), while the validation and test sets are equally divided
ith the remaining pages—which vary depending on the corpora (see
able 1 below). Note that the images from the testing set were not
mployed in the training process. This configuration was maintained
hroughout the experimentation, including the three evaluation sce-
arios studied in this work. Moreover, all the models considered in
his experimentation were trained through 300 epochs with an early
topping of 30 epochs without improvement to the validation. We used
stochastic gradient descent (Bottou, 2010) optimizer with a learning

ate of 0.001 and a momentum of 0.9. More information on the con-
iguration of each model can be found in Appendix A.1 Note also that
e considered the generation of 100 semi-synthetic images with our
ata-generation method (see Algorithm 1) in our experimentation, but
here is no restriction on the quantity of images that can be generated
n practice.

.1. Corpora

Several music corpora were considered for the experimentation.
hese were selected because of their dissimilar nature, as depicted in
ig. 2, in order to attain a better understanding of the generalization
f the proposed methodology. We additionally selected collections
ontaining the proper annotations for not only the layout analysis stage
ut also an eventual music transcription with an end-to-end approach.
his was necessary in order to assess the impact of the layout analysis
rocess in subsequent stages. We specifically considered the following
orpora, whose details are shown in Table 1:

• Seils: This dataset contains 150 typeset pages of the Il Lauro Secco
manuscript (Parada-Cabaleiro et al., 2019) corresponding to an
anthology of 16th-century Italian madrigals in mensural notation.

• Capitan: This corpus is a compilation of 17th and 18th cen-
tury manuscripts from the ‘Cathedral of Our Lady of the Pil-
lar’ in Zaragoza (Spain).2 This dataset is an evolution of the
‘Zaragoza‘ corpus, which was created manually and introduced
by Calvo-Zaragoza et al. (2016).

1 The code involved in the experimentation shown in this paper can be
ound in https://github.com/fjcastellanos/music_region_layout_analysis.

2 RISM Code ‘E-Zac’ at https://rism.info/.
5

Table 1
Description of the corpora. The ‘‘Descr.’’ column represents the description. Moreover,
in the ‘‘Engraving’’ row, ‘‘Hw.’’ signifies handwritten pages, whereas ‘‘Pr.’’ represents
printed pages.

Descr. Seils Capitan FMT-M FMT-C

Engraving Pr. Hw. Hw. Hw.
Pages 150 96 703 140
Lyrics 2 237 695 1 241 452
Staves 1 430 775 1 508 1 435
Symbols 31 589 17 115 11 327 5 766

• FMT: The ‘Fondo de Música Tradicional IMF-CSIC’ corpus (Ros-
Fábregas, 2021) consists of a collection of four groups of hand-
written score sheets for popular Spanish songs transcribed by
musicologists between 1944 and 1960. As it contains various
manuscripts with dissimilar features, such as page color, image
resolution or staff-region size, among others, these manuscripts
have been clustered by similarity into two datasets: FMT-M and
FMT-C, whose graphic differences are depicted in Figs. 2(c) and
2(d), respectively.

Please note that the regions in all the corpora considered in this
work are represented as rectangular bounding boxes, regardless of the
underlying skew of the pages.

Furthermore, when evaluating LA, we study the behavior of the
object-detection models in situations in which a different number of
annotated images is used for the training process. In order to perform
the same experiments for all the corpora, we, therefore, fixed a max-
imum of 64 pages to train the models, increasing from 1 to 64 in
powers of two. Note that the number indicates the real pages. The
experiments with synthetic data generation always make use of 100
images generated through the use of Algorithm 1, which takes only
the real training pages indicated. Although we have considered 100
generated images, there is no limitation to the number of synthetic
pages, since all regions are randomly selected and rotated in order
to increase the variability of data. The other real pages were divided
equally into validation and testing partitions.

4.2. Metrics

The proposed methodology was evaluated by considering different
metrics, according to the specific experiment being carried out.

With regard to the LA experiments, we considered the COCO mAP
metric (Lin et al., 2014), which is widely used to evaluate object-
detection models. This metric computes the area under the precision–
recall curve, considering a range of values of Intersection over Union
(IoU), ranging from 0.5 to 0.95 in intervals of 0.05.

However, the importance of LA in OMR lies mainly in the region
retrieval and not so much in how well the predictions fit the ground-
truth bounding boxes. This signifies that mAP is not an appropriate
metric for LA, as will be discussed at greater length in Section 5.2. We
shall, therefore, also evaluate LA in terms of precision P, recall R and
the harmonic mean F-score (F1), which are computed as follows:

P = TP
TP + FP , R = TP

TP + FN , (1)

F1 = 2 ⋅ P ⋅ R
P + R , (2)

where TP, FP, and FN (in our context) represent True Positives or
correctly classified regions, False Positives or type I errors refer to
those predictions that do not match a real bounding box, and False
Negatives or type II errors refer to the real regions that have not been
detected, respectively. This matching between the predicted and the
real bounding boxes is carried out in two steps. First, predictions
are filtered by confidence value, except for the SAE (which does not
provide such value). Then, these bounding boxes are assigned to a

https://github.com/fjcastellanos/music_region_layout_analysis
https://rism.info/
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Fig. 2. Samples of the corpora considered for the experimentation.
ground-truth box according to the IoU value and a threshold that is
empirically studied. This is described in more detail in Section 5.2.
Note that these metrics are evaluated and computed with respect to one
class. For the evaluation of multiple classes using a single value, these
metrics can instead be reformulated as the macro average, in which
macro-precision, macro-recall and macro-F1 – henceforth mP, mR and
mF1 are, respectively – the average of P, R and F1 for all the classes
involved.

We shall also evaluate the quality of the regions detected in terms
of the ability of a state-of-the-art OMR model to retrieve the musical
symbols from them. In this case, the effectiveness of the transcription
system is typically measured using the Symbol Error Rate (SER) met-
ric (Calvo-Zaragoza et al., 2019). Let 𝐻 be the hypothesized sequence
of music symbols and 𝑅 be the ground-truth sequence, and let SER be
computed by dividing the Levenshtein distance between 𝐻 and 𝑅 by
the length of 𝑅. Note that, if a staff region is recognized as two or
more regions, only the region with the greatest IoU is selected to be
matched with the ground-truth staff. In this case, the other regions are
considered to be FP.

5. Results

In this section, we analyze the results obtained after carrying out
three evaluation scenarios. Various means were employed to analyze
the performance or the goal of the experiment: (i) a standard eval-
uation, in which the typical metric in object detection (mAP) was
used to assess the predicted bounding boxes; (ii) an evaluation in
terms of retrieved regions, in which the estimations were measured
by employing P, R and F1, thus emphasizing the retrieval of bounding
boxes rather than IoU; and finally, (iii) a goal-directed evaluation in
which a study of the influence of the IoU and the confidence provided
by the LA model in the final transcription – scored by means of SER
– is discussed. Note that these metrics cannot, in practice, be used to
evaluate the final results since annotations of the bounding boxes of
the images are required in order to calculate the IoU of the predicted
regions when compared to the real ones. They can, however, be used
to validate the training of the models with a reference set (validation
set) in order to determine whether or not the quality of the regions
retrieved is better. They can also be calculated in order to optimize the
results concerning the validation set in the training process.

5.1. Evaluation scenario I: Standard evaluation

In this section, we present the results obtained after experimenting
with a series of object-detection models whose purpose is to perform
6

the LA process on music score images at the region level, as described
in Section 3.1.

The models are evaluated in terms of COCO mAP in different
situations of data availability with the aim of studying their behav-
ior according to the number of annotated pages used to train them.
Because of the cost of manually annotating music manuscripts, it is
particularly relevant to analyze their behavior when limited annotated
data is provided. We, therefore, also study the benefits of the algorithm
proposed in Section 3.2 as regards building 100 semi-synthetic images
and increasing the number of pages and variability of data. Fig. 3
provides a graphic representation of this metric in order to study the
effectiveness of each model according to the number of real pages used
to train them. It also shows the results obtained after the application of
our data augmentation proposal when compared with the use of only
the original images.

First note that the results are, in general, quite modest, mainly
because of the rigorousness of the metric used. Moreover, although
the amount of pages is crucial as regards optimizing mAP, a higher
number of pages does not guarantee good results, depending on the
difficulty of the corpus. Indeed, FMT attains more overlapping and a
greater density of bounding boxes, especially in the case of FMT-C,
which considerably increases the difficulty of the predictions and which
translates into worse detection quality.

Despite this, it will be observed that, as expected, there is a similar
trend for almost all the models, in which the fewer the number of
actual pages, the worse the detection gets, since the models do not
have sufficient reference data with which to learn patterns in order
to generalize the detection. Nevertheless, when our data-augmentation
algorithm is applied, these results are drastically improved, obtaining
models that are more robust to the lack of ground-truth data.

RetinaNet and Faster R-CNN benefit most from data-augmentation,
with improvements to all the datasets and nearly all the training data
sizes, especially when a few real pages are available for training the
models. The results show an increase in stability for these models, since
they achieve more robustness, especially in those cases in which the
data are limited. The results for SAE and SSD are also improved with
our data-augmentation algorithm, but there are fewer cases in which
the augmented data are better than the original ones, depending mainly
on the corpus considered. These last models would appear to be more
sensitive to the overlapping of the regions, since they are the models
that attain the worst results as regards FMT-C. In this respect, Faster R-
CNN with data augmentation obtains the best figures in this challenge
corpus, although the results do not reach 25% of mAP in either case.
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Fig. 3. Results, in terms of COCO mAP(%), obtained for different object-detection models in different scenarios, in which the number of original documents available is scarce. The
‘Non-augmented’’ bars indicate the results obtained with only original images, whereas the ‘‘Our augmentation’’ bars represent the cases in which our data-generation algorithm
s used to build 100 synthetic images.
It should be noted that deep neural networks generally require great
mounts of data in order to train the models (Goodfellow et al., 2016).
f there is insufficient data for training, the models may be unstable,
eading to over-fitting and the attainment of unexpected results. For
xample, in the case of Capitan, note that SAE obtains about 25% of
AP with 4 real pages and about 20% when 16 real pages are used.
here is no doubt that these metric values of less than 25% support
he idea that there is a need for larger training sets with which to
uild usable models for this field. Almost all the experiments show
his phenomenon when a few real pages are available, and when our
ugmentation algorithm is applied to generate 100 augmented images,
he model undergoes an important boosting, mainly when the training
ize is insufficient. Note that this phenomenon can be found when
round 4 real pages are used, and taking into account all of the above,
he results are, therefore, within the expected range.

Table 2 shows the average results for all corpora and for each object-
etection model for analysis purposes. The results show that the models
7

without augmentation are not feasible in those cases in which few train-
ing pages are available, since poor figures are obtained. This table also
shows that SAE achieves the best value of mAP when there are 16 or
more real pages available for training, with a maximum mAP of 34.2%
and 37.8%, when our data augmentation is used or not, respectively.
Note that the latter occurs when using 64 real pages for training—the
case with the largest number of pages within those considered. When
a limited number of pages are available – 8 or fewer – Faster R-CNN
seems the best option since it outperforms the performance of the rest
of models. An interesting point when comparing the cases with and
without image augmentation is that, on average, all the models obtain
more stable figures in all cases. This is particularly interesting because
it justifies the need for an algorithm with which to obtain more robust
models, and this improvement is especially noteworthy when few pages
are available to train them.

In either case, this experiment makes it possible to conclude that,
on average, the model that should be used for LA, at least according to
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Table 2
Results obtained for object detection in terms of COCO mAP (%) for scenarios with a
different availability of ground-truth data. The figures in bold type indicate the best
results obtained for each scenario according to the number of real pages available.

Model Available real pages

1 2 4 8 16 32 64

RetinaNet

Non-augmented 7.4 6.6 8.0 11.3 12.2 22.4 29.6
Our augmentation 23.6 24.6 25.6 25.6 26.8 26.7 25.2

Faster R-CNN

Non-augmented 1.6 0.8 0.8 0.1 3.8 14.8 26.3
Our augmentation 29.9 29.5 31.0 30.6 30.4 30.6 31.8

SSD

Non-augmented 1.8 1.5 1.2 0.7 4.1 3.9 10.5
Our augmentation 10.8 12.5 12.6 12.6 15.9 14.0 17.6

SAE

Non-augmented 1.2 2.1 13.6 0.0 19.8 35.3 37.8
Our augmentation 23.8 26.0 21.4 27.3 34.2 34.1 31.9

mAP, depends on the training size, being Faster R-CNN the best model
hen up to 8 pages are available for training and SAE from there. The

uitability of this metric as regards representing the retrieval of regions
s analyzed in the evaluation scenario shown below, since it is the most
mportant factor for a successful LA.

.2. Evaluation scenario II: Evaluation in terms of regions retrieved

The mAP metric does not directly measure object detection per-
ormance. For the OMR pipeline, the detection or non-detection of
egions is presumably a more relevant indicator of how useful the LA
omponent is, rather than the extent to which the detected regions
btain high confidence values or perfectly match the ground truth
egion boundaries. In this scenario, we discuss the appropriateness of
he popular metric mAP when used in object detection and explore
hether it correlates with a greater number of detected regions, which

s really the main goal of region-based LA. As mentioned above, this
an be measured using mP, mR and mF1, and we, therefore, compare
he conclusions extracted from the previous evaluation scenario with
hose obtained by means of these metrics.

However, in order to define what a correctly detected region is, it is
ecessary to apply two thresholds: one for confidence and another for
oU. Confidence is, as mentioned in Section 3.1, the level of certainty
hat the object-detection model has when predicting the bounding
oxes, whereas IoU indicates the degree of overlapping between the
redicted and real regions. The results obtained for a region considered
o be a correct prediction should, therefore, have sufficient confidence
nd IoU, signifying that those predicted regions that do not surpass
hese thresholds are discarded. For this reason, and because of their
mportance, exhaustive experimentation has been performed to obtain
he best combination in the validation set. For the confidence threshold,
e considered a range of values of between 0.05 and 0.95 with intervals
f 0.1, while in the case of IoU, we explored common values used in
bject detection, specifically between 0.5 and 0.95 with a granularity
f 0.05. Note that SAE does not provide any confidence value. That
s, the results of this model cannot be filtered through any threshold,
nlike the other models. Precisely, this is disadvantage of the SAE in
ractice.

We subsequently considered mP, mR and mF1 in order to evaluate
he results. Table 3 shows the average results obtained for the best
ombination of thresholds in each case after optimizing F1. Table B.7
hows the specific confidence values employed to optimize that metric.
hese values are calculated by using all the datasets in order to obtain
ore generalizable conclusions. Note that confidence is a value that

ould be used in practice, since it is provided by the object detection
8

Table 3
Average results in terms of mP, mR and mF1 (%). Figures in bold type represent the best
alues for each metric and for each scenario considered, i.e., for a different number
f available real pages. Underlined values indicate the best results for each metric,
onsidering all the cases. Note that, because of the nature of the metrics shown in
his table, the IoU threshold is necessary to determine when a predicted region can
e considered as TP (see Eqs. (1) and (2). Note also that this threshold optimizes the
esults in the corresponding validation sets.
Scenarios With augmentation

No Yes

mP mR mF1 mP mR mF1

1 page

RetinaNet 7.2 14.2 9.6 61.9 62.6 62.3
Faster R-CNN 5.2 31.0 8.9 71.1 60.5 65.3
SSD 5.3 20.5 8.4 56.8 46.6 51.2
SAE 100 2.9 5.7 62.1 28.0 38.6

2 pages

RetinaNet 6.4 12.8 8.5 53.7 70.6 61.0
Faster R-CNN 45.2 25.1 32.3 80.9 51.6 63.0
SSD 71.4 17.6 28.2 53.2 46.0 49.3
SAE 18.1 6.6 9.7 66.4 38.2 48.5

4 pages

RetinaNet 6.2 32.8 10.4 76.5 55.2 64.1
Faster R-CNN 30.2 36.0 32.8 54.8 69.6 61.3
SSD 61.3 11.8 19.8 59.9 38.7 47.7
SAE 36.4 23.3 28.4 38.2 32.8 35.3

8 pages

RetinaNet 32.2 40.0 35.7 61.8 71.6 66.4
Faster R-CNN 6.7 7.9 7.2 66.6 66.0 66.3
SSD 31.2 6.1 10.2 64.9 23.4 34.4
SAE 0.0 0.0 0.0 40.9 36.1 38.3

16 pages

RetinaNet 67.9 41.9 51.8 60.2 77.6 67.8
Faster R-CNN 51.1 31.1 38.7 65.0 69.6 67.2
SSD 52.3 28.8 37.2 42.9 42.2 42.6
SAE 42.5 31.1 35.9 50.7 55.0 52.8

32 pages

RetinaNet 66.1 58.6 62.1 56.0 73.4 63.6
Faster R-CNN 43.4 49.4 46.2 68.9 63.2 65.9
SSD 67.9 9.4 16.5 45.5 45.5 45.5
SAE 53.5 54.8 54.1 54.6 51.7 53.1

64 pages

RetinaNet 93.4 54.8 69.1 75.7 68.0 71.6
Faster R-CNN 61.1 64.6 62.8 75.1 57.7 65.2
SSD 75.0 29.6 42.5 65.9 55.1 60.0
SAE 53.6 57.9 55.7 51.8 51.0 51.4

model, but that the IoU can be used only in controlled scenarios,
since it is computed by using the ground-truth data. These scenarios
include the experiments addressed in this paper, along with the training
process, since a validation set of annotated images could be used as
a criterion to optimize the metrics required. The combination of both
thresholds, therefore, provides a reference of the best results that could
be obtained.

It will first be noted that mAP and mF1 do not match in the model
containing the best figures. As shown in Table 2, in the case of mAP,
the highest value was obtained by SAE, with an average of 37.8% for
64 original pages and non-augmentation. This model also achieved the
best performance with 16 or more real pages as training set, while
Faster R-CNN was the best option when 8 or less training pages are
available. However, as depicted in Table 3, the mF1 metric indicates
that the best results are provided by RetinaNet in combination with our
data-augmentation algorithm when 64 real pages are available, with
a mF1 of 71.6%. Moreover, most of the augmented scenarios seem to
indicate that RetinaNet is the best option in terms of mF1, which is a
different model to those suggested by the mAP. What is more, the mF1
figures are considerably higher than the mAP figures, and, as will be
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Fig. 4. Selected extractions of object detection by using RetinaNet, in which correct and incorrect estimations are shown. Blue bounding boxes represent predictions of staff regions,
whereas the orange boxes represent the lyric areas obtained.
seen later in Fig. 4, visually, higher values are more correlated with the
regions retrieved.

Focusing on the results, it will be observed that the augmentation
algorithm proposed is crucial in terms of mF1. In none of the non-
augmented cases does this metric supersede the augmented scenarios,
and this, therefore, justifies the theory that this algorithm is able to in-
crease the robustness of the models as regards extracting the bounding
boxes. There are some examples of the non-augmented experiment in
which mP improves the results obtained after augmentation, particu-
larly in the case of SAE with 1 page, which obtains 100%–because of
the lack of FP in this case–while RetinaNet yields 67.9% and 93.4% for
16 and 64 pages, respectively. However, when focusing on the values
of mR for these cases, it will be noted that SAE attains only 2.9%,
and RetinaNet obtains 41.9% and 54.8%, respectively. This signifies
that, in these cases, the models prioritize the detection of real regions
over the miss-detection of regions in which there is no information. In
other words, there are regions that have to be manually discarded. This
situation could be interesting depending on the task being carried out,
but a balanced model could, in general terms, be beneficial as regards
obtaining good results with less human intervention.

As shown in Table 3, the augmented scenarios attain more stable
and balanced results in terms of mP and mR, impacting directly on
better mF1 figures. Indeed, all the experiments evaluated using this
metric with augmentation were, on average, better than the non-
augmented cases. According to these metrics, the best model for LA
is RetinaNet being a potential solution since it obtains the highest mF1
value – 71.6% – with 64 pages, and the best mR with a value of 77.6%.

However, in the experiment shown in Section 5.1, Faster R-CNN
and SAE were reported as the best models; therefore, the conclusions
from the two experiments are different. It is precisely this situation
which justifies our claim that mAP metric might not be suitable for
evaluating LA, since the real importance of this process is the extraction
of bounding boxes as discrete objects, and not only the evaluation of
their overlapping and confidence values.

In order to complement the LA experiments, Fig. 4 shows an ex-
ample from Capitan in which the bounding boxes are correctly pre-
dicted and another example from FMT-M in which there are several
miss-detections.
9

In the first example, which is shown in Fig. 4(a), it will be observed
that the retrieval region is generally of good quality. In this example,
the bounding boxes retrieved appear to correctly contain the relevant
information, but, it should be noted that the staff retrieval in this
example obtains an average IoU of 79% and a confidence of 55%,
whereas the text retrieval obtains an IoU of 74% and a confidence of
39%. This signifies that, although the prediction of the bounding would
appear to be graphically suitable and correct, since the objects are large
and regular, a slight error, especially on the vertical side in our context,
may considerably worsen the IoU. This, therefore, means that it is not
necessary to attain a perfect matching of IoU in order to cover the data
that has to be retrieved, and this also explains why the mAP obtains
significantly lower figures, since the range between 80% to 95% would
not, on average, contain any bounding boxes. Moreover, the confidence
of the model is, on average, very poor when compared to what might
be expected after visual inspection, signifying that a particularly low
confidence threshold is needed for this metric in order to prevent these
regions from being discarded.

In the second example depicted in Fig. 4(b), there are certain issues
as regards both staff and text retrieval. In visual terms, the staff at
the top appears to have been correctly retrieved, although the area
detected is higher than the staff itself. The principal problems with
the staves in this case are that one staff is not detected, the last one is
partially retrieved, and two music symbols are missed. These issues are
crucial for the eventual transcription, and a manual correction would,
therefore, be required in order to correctly extract the bounding boxes.
With regard to the text regions, only one bounding box is retrieved, but
it does not cover the text at all. Two other text lines are not detected,
and manual corrections would, therefore, also have to be performed
for a full digitization. In this example, the staff predictions have 57%
of average IoU with respect to the ground truth, whereas RetinaNet
provides an average confidence of only 28%. In the case of the text
regions, the IoU obtained is 25%, despite the fact that the text is quite
well detected, and the confidence reaches 59%.

This qualitative analysis, therefore, reinforces the idea that it is not
necessary to obtain a perfect matching of the bounding boxes, and
that it is sufficient to obtain regions that encompass the content. This
demonstrates that mAP is not an appropriate metric with which to
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evaluate the objects retrieved, since it places much more importance
on the overlapping with the ground truth. It is consequently possible
to conclude that the mF1 metric is more suitable than mAP for the LA of
music score images, despite the popularity of mAP in object detection.
To complete and confirm our analysis, in the next evaluation scenario,
we further analyze the influence of IoU and confidence on the final
transcription.

5.3. Evaluation scenario III: Goal-directed evaluation

We have, until this point, performed a thorough analysis of the LA
stage on its own, without any specific context. However, it is important
to recall that this stage is not, in most cases, an objective in itself, but
merely an intermediate step within a pipeline employed to transcribe
the content of music score images. In this section we, therefore, study
the relationship between the operation of LA and the transcription
process itself, focusing particularly on the music notation (regions with
staves). To this end, we selected RetinaNet as being representative of
an automatic layout analysis stage, given that it was, according to our
previous experiment, the best option.

For this goal-directed experiment, we employed a state-of-the-art
model for OMR that was built as a Convolutional Recurrent Neural
Network (CRNN) and was directly trained to retrieve the sequence of
musical symbols found in the image of a single staff. Since the CRNN is
used here as a black box, the reader is referred to a number of works for
further details on its operation (Calvo-Zaragoza et al., 2019; Shi et al.,
2016; Wick & Puppe, 2021).

The experiment outlined in this section is as follows:

1. For each corpus, and using the training and validation parti-
tions, the CRNN is trained by means of the ground-truth regions
along with their corresponding transcripts, thus ensuring the
best possible recognition model.

2. With regard to the test partitions, we employ the LA model to
automatically retrieve the staff regions, along with their confi-
dence.

3. Each predicted staff is matched with all the ground-truth regions
of the test partition for which the IoU is greater than 0.55. This
specific value was the one that maximized the mF1 over the
validation set in the previous experiment.

4. For each match, both the detected and the ground-truth staves
are processed with the CRNN in order to retrieve their music
symbols.

We denote as SER the difference in SER between the symbols
etrieved from the ground-truth staff and the symbols retrieved from
he detected staff. This will be used as a measure of the impact of the
ayout analysis: if 0, this signifies that there is no actual difference
etween retrieving the content using the manually-annotated region
nd retrieving the content using the automatically-detected region (a
airly ideal scenario). As this difference grows, the loss in performance
aused by the layout analysis is greater. In turn, it might occur that the
ER is smaller in the region predicted automatically, signifying that the

SER would be negative. Whatever the case may be, for each detected
region, we eventually obtain a tuple (SER, confidence, IoU).

Furthermore, before reporting the results of this experiment, it
should be taken into account that some deviations in the detected re-
gions could be alleviated by training the CRNN with data augmentation
by, for example, slightly modifying the corners of the training staff re-
gions. The effect of data augmentation on staff-based OMR with CRNN
has already been studied in previous works (López-Gutiérrez et al.,
2021), although not comprehensively in the context of its connection
with an imperfect layout analysis. Here we shall, therefore, consider
the CRNN with and without this type of data augmentation in order to
also carry out the study from this perspective.

Fig. 5 shows the contrast of the confidence and IoU values (𝑥-axes)
of the detected regions with the SER (𝑦-axes), highlighting the different
10
Table 4
Pearson’s correlation coefficient between IoU and SER and between the
confidence value and SER. The columns ‘‘No’’ and ‘‘Yes’’ indicate the
use of the data augmentation mechanism.

Corpus IoU - SER Confidence - SER

No Yes No Yes

Capitan −0.87 −0.67 −0.82 −0.65
Seils −0.81 −0.67 −0.88 −0.66
FMT-M −0.40 −0.59 −0.06 −0.40
FMT-C −0.11 −0.34 −0.07 −0.28

corpora. An initial remark is that, as might be expected, the LA has less
impact on the regions that have a higher confidence and a higher IoU
(right-hand side of the images), in which the SER is closer to 0. As the
model has less confidence in the regions or the IoU decreases, this value
clearly increases. This even produces cases of SER = 1, signifying that
he CRNN perfectly retrieves the symbols for the ground-truth region
ut completely fails in the case of the predicted one.

The aforementioned phenomenon has a double reading, particularly
n the case of confidence (Figs. 5(a) and 5(c)): while it is true that the
esults are quite poor when transcribing the staff from the less reliable
egions, these could easily be discarded. The full OMR system should
onsider only those regions for which the confidence is high and for
hich a positive result is, in most cases, expected. For this LA model,
nd for all corpora in general, it appears that a suitable threshold for
uch a purpose would be 0.6.

Furthermore, the correlation between the IoU and the SER also
produces a clear trend (Figs. 5(b) and 5(d)): the higher the IoU, the
lower the deterioration of the transcription. Unlike confidence, this
case cannot be predicted in practice, since the IoU can be computed
only in controlled experiments in which the true bounding box of a
region is known. However, these results could serve to better validate
the models in training time. In this case, the threshold beyond which
the results drastically change the SER depends on the CRNN that is
used, as discussed below.

If we compare the results of the base CRNN (Figs. 5(a) and 5(b))
with a CRNN trained with data augmentation for the regions (Figs. 5(c)
and 5(d)), it is clear that the latter is more robust to an (imperfect)
automatic LA, as would be expected with this type of techniques.
In the case of confidence, there is not much difference; however, in
the case of IoU, the results are notably better. While without data
augmentation, the threshold for which the results are reliable is around
0.9 – signifying that an almost perfect match is required – the data
augmentation manages to enable the CRNN to correctly recover the
musical symbols with an IoU of above approximately 0.7, signifying
a much more reasonable case to attain in practice.

It should be noted that FMT-C has a different trend for the lowest
onfidence values. This phenomenon is aligned with the fact that data
ugmentation improves the results for ground-truth staves, but the
redicted regions do not undergo this improvement. However, as seen
n Section 5.1 (and also supported by Appendix B), the corpus with
he worst quality in the layout analysis process is FMT-C. This means
hat the predicted regions do not have the quality required to obtain a
sable model. We attribute this low quality to the density and degree of
verlapping of consecutive regions, thus affecting the region-retrieval
rocess and, in turn, making it more difficult to recognize the sequence.

Finally, we also provide a correlation measure in order to verify
he previous analysis. Table 4 shows the Pearson’s correlation between
he variables that appear in the graphs in Fig. 5, which is a typical
etric for measuring the relationship between two variables. These

orrelations are bounded between −1 and 1; values closer to 1 represent
igh correlation, values closer to 0 denote lack of correlation, and
alues closer to −1 indicate inverse correlation. As observed in the
able, all the figures are negative, indicating an inverse correlation. This
s to be expected, because SER represents the error made by the end-

to-end approach, and, as seen in Fig. 5, this error generally increases
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when IoU and confidence decrease, leading to an inverse relationship
between these variables. This causes the correlation coefficient to be
negative in all cases. In addition, note that Capitan and Seils attain
particularly high negative correlations for both measures, without and
with data augmentation.

Focusing on the case without data augmentation, the correlations
between IoU and SER are −0.87 and −0.81 for Capitan and Seils, whereas
he correlations between confidence and SER are −0.82 and −0.88.

These are the cases where the lowest values are achieved, which
corroborate the fact that these two datasets obtain better results in
region retrieval, and therefore, the quality of the regions is usually high.
As the regions are properly recovered with high IoU and confidence,
the end-to-end approach is able to obtain low SER values for both the
predicted staves and the ground-truth staves, signifying that SER is also
low. This explains the correlation values obtained in these cases. In
addition, when data augmentation is applied, the IoU-SER correlations
achieve −0.67 for both datasets, and the confidence-SER correlations
obtain −0.65 for Capitan and −0.66 for Seils. Despite this increase in
correlation, the values continue to be negative and, as shown in Fig. 5,
data augmentation improves the results for Capitan and Seils. This
means that, as expected, the IoU and confidence of the regions lose
importance when data augmentation is applied, since, although the
correlations are slightly higher than in the non-augmented cases, the
SER results are better.

There are also negative correlations in the case of the FMT datasets,
although not as extreme as in the cases explained above. This supports
that as the quality of the regions retrieved in these cases are signifi-
cantly worst in terms of both IoU and confidence, the SER values are
not so low. There is, therefore, less difference between the variables,
and this makes the correlation values higher than in the case of Capitan
and Seils. In the non-augmented case, there are IoU-SER correlations
f −0.4 and −0.11 for FMT-M and FMT-C, respectively, whereas the
onfidence-SER correlations are −0.06 and −0.07. In these cases, when
ata augmentation is applied, these values decrease to −0.59 and −0.34

for the IoU-SER correlations, and −0.4 and −0.28 for the confidence-
SER correlations. Because of the difficulty of using these datasets in
the two processes studied (region retrieval and end-to-end recognition),
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the SER metrics are significantly worse (higher) when compared with
Capitan and Seils, even for ground-truth staves. In these cases, as the
SER values are high, they can easily be improved, and indeed, the
results of the end-to-end often improve when data augmentation is
applied, signifying that both predicted and ground-truth staves undergo
a boosting in this music-sequence recognition, and in these cases, the
ground-truth results improve to a greater extent. Note that the IoU and
confidence of the predicted staves are extremely low, meaning that
even if data augmentation is applied to the end-to-end model, a limited
improvement can be observed in predicted staves. This improvement is
significantly greater in the case of the ground-truth staves, and SER,
therefore, generally increases their values. As the IoU and confidence
values are low, and SER increases, the correlation values decrease in
these cases.

In conclusion, when the staff retrieval has high quality, the end-to-
end model attains high-performance results as regards music-notation
recognition, even if no data augmentation is applied. However, when
data augmentation is applied, the correlation between IoU/confidence
and SER increases slightly, signifying that when sufficient quality in the
staff recognition is achieved, the perfection with which they have been
detected is less important. This occurs in the cases of Capitan and Seils.
However, when a difficult corpus such as FMT-M or FMT-C is employed,
the recognition of the staves is significantly weaker, and the recognition
of the music sequence is, therefore, affected. Even if data augmentation
is applied to the end-to-end model, the predicted staves do not undergo
a relevant improvement, although the ground-truth staves may undergo
important boosting. This coincides with the analysis of Fig. 5, since low
IoU and confidence values often coincide with high SER values.

. Conclusions

This work presents comprehensive experiments carried out in order
o assess the region-based LA process for music score images. This
as done by carrying out three specific evaluation scenarios in which
ifferent aspects and goals were assessed.

The first scenario focused on an analysis of the behavior of several

ell-known object-detection models in different scenarios according to
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the availability of ground-truth data, which are often scarce. In order
to palliate this situation when few annotated images are provided,
we have proposed and evaluated a data-augmentation algorithm with
which to generate semi-synthetic images from the bounding boxes of
the original pages. In this scenario, we considered a common metric
used in object detection in multiple contexts: the mAP. When detecting
the different regions, the results obtained when employing this metric
suggest that Faster R-CNN is the best option when 8 or less real pages
are available for training the model, while the SAE is the best option
when the training set has at least 16 real pages. In addition, of all
models considered, SAE provided the highest mAP value. RetinaNet also
obtains competitive mAP figures, whereas the model with the lowest
performance when this metric is employed is the SSD.

The objective of the second scenario was to demonstrate that the
metric considered previously – mAP – is not necessarily the best means
of evaluating models for the LA of music score images. This metric
addresses the assessment as an overlapping problem; however, in OMR,
the number of predicted regions considered as being correct is even
more crucial than the overlap between the predicted and the real
bounding boxes, as long as the relevant information is included within
these regions. We have, therefore, carried out an evaluation by using
the macro average versions of precision, recall and f-score—mP, mR
and mF1, respectively. After the analysis, the model that obtained the
highest mR and mF1 was RetinaNet, with 77.6% and 71.6%, respec-
tively, and it generally attained more stable and balanced figures for
all the models. This also proves that the results obtained by the mAP
metric do not coincide with those extracted from mF1. Whereas mAP
prioritizes the matching of the area with the ground truth, mF1 does so
with the region retrieval. Note, however, that prioritizing the matching
of the area depends on a subjective component, since the ground truth
is often obtained by hand, and, as studied in previous work (Castellanos
et al., 2020), a staff-level music-sequence recognition trained with
‘‘perfect’’ bounding boxes may not be aligned with better transcriptions
since the predicted regions will not be perfect either. It is, therefore,
possible to conclude that F1-based metrics are more aligned with that
which is required in OMR systems.

With regard to the third scenario, we attempted to evaluate the
relationship between the overlapping of predicted and annotated staff
regions, the confidence provided by the LA model, and the error
obtained in the final transcription through the use of an end-to-end
strategy by means of CRNN, measured with the SER metric. We ad-
ditionally explored the influence of the data augmentation shown in
previous works on these relationships. One of the main conclusions
obtained was that high confidence and IoU values are strongly aligned
with low transcription errors. Indeed, in the case of all the corpora
evaluated, we observed an abrupt reduction in the error from a cer-
tain value of confidence and IoU. This supports the idea that using
thresholds to filter the LA regions is a correct way in which to discard
those regions that may cause errors in the transcription. This ensures a
certain quality of the transcriptions, which could be used to train other
end-to-end models.

As the aforementioned results show, no model detects all the regions
of interest in music score images. A specific object-detection model for
LA in OMR could be a promising avenue for further research, in which
specific characteristics of this type of documents could be exploited,
such as the fact that their general structure is regular or that their
regions are usually wider than taller. Another interesting aspect of this
topic that could be explored is the usage of transfer learning techniques,
along with an analysis of the contribution of pre-trained models in
OMR, since there is a gap in literature in this context. A generic music
corpus with which to perform this task could also be created. Fur-
thermore, it would be interesting to evaluate the performance of these
models in cross-manuscript cases (a model trained for one collection
and used in another) and to propose improvement strategies in this
12

regard using un- or semi-supervised domain adaptation techniques.
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Appendix A. Configuration of the neural networks

This appendix shows the configuration of the neural network models
used in our experiments.

A.1. RetinaNet

We have considered the PyTorch implementation3 of RetinaNet pre-
trained on COCO 2017. The number of output classes of the model was
changed in order to retrieve staves and lyrics. We used the same hyper-
parameters as in the original paper (Lin et al., 2020). The backbone
used was a 50-layer Residual Net (He et al., 2016) with its original
hyper-parameters. Input images were resized internally to 224 × 224
px.

A.2. Faster R-CNN

We used the PyTorch implementation4 of Faster-RCNN with Feature
Pyramids (Ren et al., 2015), pre-trained on COCO 2017. The number
of output classes of the model was changed to match our requirements
(staves and lyrics retrieval). We used the same hyper-parameters shown
in Ren et al. (2015). The anchors used were 3 scales with box areas
of 128, 256 and 512 squared pixels and 1:1, 1:2 and 2:1 for RPN
(Region Proposal Network), as in the original paper. The backbone used
was a 50-layer Residual Net (He et al., 2016), and its original hyper-
parameters were maintained. As in the case of RetinaNet, the images
were resized internally to 224 × 224 px.

A.3. SSD

With regard to the architecture used for SSD, we employed the
PyTorch implementation,5 details of which can be found in the original
paper (Liu et al., 2016), and pre-trained on COCO 2017. The number
of output classes of the model was modified in order to retrieve staves
and lyrics. The backbone used was a VGG-16 (Simonyan & Zisserman,
2015). The images were internally resized to 224 × 224 px.

3 http://torchvision.models.detection.retinanet_resnet50_fpn.
4 http://torchvision.models.detection.fasterrcnn_resnet50_fpn.
5
 http://torchvision.models.detection.ssd300_vgg16.

http://torchvision.models.detection.retinanet_resnet50_fpn
http://torchvision.models.detection.fasterrcnn_resnet50_fpn
http://torchvision.models.detection.ssd300_vgg16
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Table B.5
Quantity of staves (%) that are considered as TP. The columns ‘‘No’’ and ‘‘Yes’’ indicate the use of our data augmentation mechanism.

Corpus Available real pages without (No) and with (Yes) data augmentation

model 1 2 4 8 16 32 64

No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Capitan

RetinaNet 83.3 87.5 70.8 87.5 62.5 90.3 83.3 84.7 86.8 90.3 88.9 88.9 99.3 83.3
Faster R-CNN 0.0 93.1 49.3 99.3 1.4 99.3 0.0 99.3 81.9 100 99.3 100 99.3 100
SSD 42.4 83.3 42.4 77.1 43.8 86.8 23.6 82.6 60.4 84.7 63.9 86.8 79.2 85.4
SAE 0.0 75.1 0.0 63.4 66.0 77.4 0.0 72.8 19.0 75.6 38.2 71.2 20.8 81.5

Seils

RetinaNet 0.0 86.3 0.0 85.2 61.2 83.5 75.9 82.5 84.5 86.3 87.3 80.8 89.0 83.5
Faster R-CNN 51.5 85.9 0.0 88.7 51.9 85.2 0.0 89.3 0.0 83.2 69.8 83.2 84.5 88.3
SSD 52.6 81.8 50.5 83.2 47.8 80.4 0.0 81.4 59.5 82.5 0.0 84.2 84.5 80.8
SAE 0.0 83.8 0.0 88.3 21.0 0.0 0.0 71.1 89.7 84.5 89.7 64.9 90.0 76.6

FMT-M

RetinaNet 0.0 61.6 0.0 66.9 70.1 68.5 59.3 55.3 0.0 63.8 71.7 69.0 31.2 48.7
Faster R-CNN 2.4 65.1 0.0 85.4 0.0 86.5 23.0 81.5 88.9 84.1 73.3 83.6 75.9 78.3
SSD 0.0 56.6 0.0 59.3 0.0 74.9 0.0 0.0 52.4 68.5 7.7 74.6 0.0 66.9
SAE 0.0 19.3 35.4 20.4 75.1 60.6 0.0 45.2 51.9 80.7 58.5 83.1 62.2 77.0

FMT-C

RetinaNet 49.2 81.7 60.5 74.0 69.5 85.5 73.6 88.7 71.1 86.8 71.7 83.0 80.1 83.6
Faster R-CNN 63.7 83.0 70.1 89.4 70.7 85.5 0.0 86.8 81.0 80.4 78.1 85.2 79.1 83.6
SSD 48.9 0.0 36.7 0.0 0.0 0.0 16.7 0.0 29.6 0.0 0.0 0.0 0.0 55.0
SAE 19.0 0.0 0.0 17.4 0.0 22.8 0.0 19.3 28.6 23.2 26.7 19.9 27.7 21.2
Table B.6
Quantity of lyrics (%) that are considered as TP. The columns ‘‘No’’ and ‘‘Yes’’ indicate the use of our data augmentation mechanism.

Corpus Available real pages without (No) and with (Yes) data augmentation

model 1 2 4 8 16 32 64

No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Capitan

RetinaNet 1.0 92.2 1.2 96.6 2.1 94.8 82.8 96.6 82.8 96.6 87.1 95.7 88.8 87.9
Faster R-CNN 21.6 95.7 0.9 94.8 0.9 93.1 0.0 95.7 0.0 95.7 80.2 96.6 80.2 95.7
SSD 36.2 70.7 40.5 64.7 31.0 79.3 47.4 77.6 47.4 77.6 50.9 69.0 66.4 84.5
SAE 0.0 91.2 0.0 92.9 0.0 88.2 0.0 93.9 0.0 90.7 40.2 91.7 19.8 83.8

Seils

RetinaNet 0.0 59.6 0.0 66.1 0.0 69.3 31.2 61.9 31.2 61.9 85.7 68.8 74.9 70.9
Faster R-CNN 0.0 41.5 1.5 57.7 0.0 47.8 1.1 43.4 1.1 43.4 33.9 55.6 66.9 61.3
SSD 0.0 41.1 0.0 52.8 0.0 55.4 0.0 33.9 0.0 33.9 0.0 55.2 57.9 55.6
SAE 0.0 5.5 0.0 30.9 0.0 30.5 0.0 0.0 0.0 46.1 46.9 30.5 49.1 37.9

FMT-M

RetinaNet 0.0 40.8 0.0 37.6 0.0 55.5 0.0 65.3 0.0 65.3 57.6 62.4 71.4 35.5
Faster R-CNN 0.0 39.6 0.4 12.7 0.4 27.8 0.4 46.1 0.4 46.1 17.6 38.4 32.7 33.1
SSD 0.0 34.3 0.0 19.2 0.0 8.6 0.0 0.0 0.0 0.0 0.0 28.6 0.0 38.8
SAE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.2 0.0 15.5 46.1 42.4 59.2 26.5

FMT-C

RetinaNet 0.0 54.8 0.0 14.0 0.0 22.6 0.0 22.6 0.0 22.6 0.0 17.2 9.7 23.7
Faster R-CNN 0.0 50.5 0.0 55.9 0.0 31.2 4.3 49.5 4.3 49.5 0.0 55.9 5.4 23.7
SSD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.1
SAE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table B.7
Confidence threshold that optimizes the F1 metric in the validation set. The columns ‘‘No’’ and ‘‘Yes’’ indicate the use of our data augmentation mechanism. Note that the SAE
model does not provide confidence values in its output, and this model is not, therefore, included in this table.

Type of region Available real pages without (No) and with (Yes) data augmentation

Model 1 2 4 8 16 32 64

No Yes No Yes No Yes No Yes No Yes No Yes No Yes

Staves

RetinaNet 0.25 0.35 0.25 0.35 0.15 0.35 0.25 0.35 0.25 0.35 0.25 0.35 0.35 0.35
Faster R-CNN 0.05 0.65 0.05 0.75 0.05 0.65 0.45 0.65 0.15 0.75 0.15 0.55 0.35 0.85
SSD 0.15 0.15 0.15 0.15 0.15 0.25 0.15 0.15 0.15 0.25 0.15 0.15 0.15 0.15

Lyrics

RetinaNet 0.05 0.35 0.05 0.25 0.05 0.35 0.15 0.25 0.15 0.25 0.15 0.25 0.25 0.25
Faster R-CNN 0.35 0.35 0.45 0.35 0.45 0.15 0.05 0.25 0.15 0.25 0.15 0.25 0.15 0.25
SSD 0.05 0.05 0.15 0.05 0.15 0.15 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15
13
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A.4. SAE

The implementation considered for the SAE architecture is defined
in Castellanos et al. (2020). The model consists of a U-net architecture
with encoder and decoder sections. The encoder part includes 3 blocks
in which each block has a convolution of 128 filters and a kernel filter
of 5 × 5 of size, a Rectifier Linear Unit (ReLU) activation and a max-
pooling operator, and the decoder part also contains 3 blocks in which
each block contains a convolution layer with the same properties as that
used in the encoder: a ReLU activation and an up-sampling operator.
Finally, a convolutional layer of one filter and the same kernel and
a sigmoid activation was applied in order to provide the probabilistic
map in which each element contains the probability of the pixel being
part of a region. As occurred in the paper mentioned, the input images
were resized to 512 × 512 px. before being processed by the neural
etwork. After this processing, the result was then resized again to
atch with the original image. Finally, a connected component analysis
as performed to retrieve the coordinates of the bounding boxes with

espect to the original image.
Note that, because this type of architecture limits its predictions

o one class per pixel, it may experience difficulties in cases with a
igh degree of overlapping between the bounding boxes. In order to
essen this issue, we reduced the vertical size of the bounding boxes by
0% before the first resizing of the image, as proposed in Castellanos
t al. (2020). The size was then recovered after the detection of the
oordinates of the predicted bounding boxes.

.5. Convolutional recurrent neural network

In the last experiment, we make use of a Convolutional Recur-
ent Neural Network (CRNN) to retrieve the transcription (sequence
f music symbols) of each detected staff. Its configuration follows
he best hyper-parameterization found in the work of Calvo-Zaragoza
t al. (2019): four convolutional, two recurrent layers, and one dense
ayer, trained by employing the Connectionist Temporal Classification
oss function. The hyper-parameters of each layer are detailed in the
riginal paper.

ppendix B. Supplementary layout analysis results

The results provided in this appendix complement those shown in
ection 5. First, Tables B.5 and B.6 provide a reference to the amount of
egions that have been recognized, measured in % for both staves and
yrics, respectively. These tables, therefore, represent the number of
egions that can be interpreted as TP in the computation of the metrics
sed in Section 5.2, i.e., precision, recall and the F-score metric.

Table B.7 shows the confidence threshold used for the computation
f the metrics used in Section 5.2. These values are those that optimize
he F-score value in the validation set for all the corpora considered.
his table provides the thresholds used for the cases with and without
ata augmentation, according to the number of real pages available in
he training set.
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