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Two-stage Multilevel Latent Class Analysis with Covariates in the Presence of Direct 
Effects
Zsuzsa Bakk a, Roberto Di Mari b, Jennifer Oserc, and Jouni Kuha d

aLeiden University; bUniversity of Catania; cBen-Gurion University; dLondon School of Economics

ABSTRACT
In this article, we present a two-stage estimation approach applied to multilevel latent class analysis (LCA) 
with covariates. We separate the estimation of the measurement and structural model. This makes the 
extension of the structural model computationally efficient. We investigate the robustness against 
misspecifications of the proposed two-stage and the classical one-stage approach for models where 
a direct effect exists between indicators of the LC model and covariate, and the direct effect is ignored.
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Introduction

Latent class (LC) analysis is an approach used to create 
a clustering of a set of observed variables, based on an under
lying unknown classification. For example based on indicators 
such as intensity and type of internet use Hsieh and Yang 
(2011) used LC analysis to identify distinctive clusters of inter
net usage segments in Taiwan, such as business, amusement, 
entertainment and online shopping, and leisure. In multilevel 
LC analysis the respondents are assumed to belong to higher- 
level groups, such as students nested in schools, or entrepre
neurs in countries. Using multilevel LCA the higher-level 
dependency is modeled by assuming that respondents nested 
in the same higher level unit have more similar answers to each 
other than respondents coming from different units. For exam
ple, Hsieh and Yang (2011) found that the Internet user profiles 
in Taiwan can be clustered into three segments: Southern 
Taiwan, Northern Taiwan, and metropolitan.

Multilevel LCA is becoming increasingly popular in various 
fields. For instance, in educational research, to model students’ 
learning profiles in different school types (Fagginger Auer 
et al., 2016), or to model academic profiles (Lanza et al., 2010; 
Mutz et al., 2013) or to cluster psychol- ogy students in differ
ent attitude types toward learning statistics and at the same 
time obtaining university segments based on the incidences of 
the different student attitude types (Mutz & Daniel, 2013); in 
economics, to model asset ownership types of the elderly across 
Europe (Paccagnella & Varriale, 2013); or epidemiology and 
health studies to model substance abuse profiles nested in 
different communities (Horn et al., 2008; Rindskopf, 2006; 
Tomczyk et al., 2015; Zhang et al., 2012), to mention a few. 
Some further examples from political science include the mod
eling of heterogeneity of what Europeans think is the cause of 
poverty (Da Costa & Dias, 2015), or changes in social capital 
over time (Morselli & Glaeser, 2018) or a typology of trust 
orientation toward European institutions (Ruelens & Nicaise, 

2020). In most applications, the interest lies at the lower-level 
clustering, and the difference in the distribution of the lower- 
level classes at the higher-level unit.

In LCA creating a clustering is usually only the first step for 
applied researchers. The research interest often lies in explain
ing the clustering by covariates. Examples include relating 
heavy alcohol usage profiles to age, gender, education and 
religion (Rindskopf, 2006), or teen dating violence in China 
to demographic characteristics (Cheng et al., 2020).

While in single-level LCA different approaches are available 
for relating LC membership to external variables, in multilevel 
settings, only two classical approaches are used, both known to 
be suboptimal, namely, the one-step and classical three-step 
approaches. Using the one-step approach, the full LC model 
including covariates is estimated simultaneously (for example, 
Mutz and Daniel (2013)). Using the alternative three-step 
approach, after estimating the measurement model in step 1, 
respondents are assigned to latent classes in step 2, and this 
posterior assigned class membership is related to the predictors 
of interest through a multinomial logit regression in the third 
step (e.g. Tomczyk et al. (2015)). However, in the second step 
a classification error is introduced, that if not corrected for 
induces systematic bias in the step 3 model.

To correct for the bias in the step 3 model of the three-step 
approach, in recent years two bias-adjusted three-step 
approaches were developed for single level LC models – 
namely, the ML and BCH approaches (Bakk et al., 2013; 
Vermunt, 2010). The bias-adjusted three-step approaches cor
rect the bias in step 3 by explicitly modeling the classification 
error introduced in the previous step. An alternative stepwise 
estimator, the two-step approach (Bakk & Kuha, 2018) after 
estimating the measurement model in step one, directly con
ditions on the step one parameter estimates in the second step 
when estimating the structural model, in this way avoiding the 
problem of the classification error.
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The general recommendation in single-level LCA is to use 
the two-step or bias-adjusted three-step approaches to relate 
the LC measurement model to external variables of interest 
(Asparouhov & Muthén, 2014), with the understanding that 
the two-step approach is the most flexible to extend to more 
complex models (Bakk & Kuha, 2018; Di Mari & Bakk, 2018). 
The main reason for using these stepwise estimators instead of 
the one-step approach is that misspecifications in the structural 
model can influence the definition of the measurement model 
using the one-step approach. For example, direct effects 
between the covariate and some indicators measuring the LC 
variable can distort the parameters of interest, or perhaps can 
have an even more worrisome impact on latent class enumera
tion – extracting more classes than necessary to model the 
direct effects (also known as differential item functioning, 
DIF) (Cole et al., 2019; Masyn, 2017). Because they separate 
measurement and structural model the bias adjusted stepwise 
approaches are known to be more robust to misspecifications.

In the current paper, we introduce the two-stage approach 
to multilevel LC modeling as an alternative to the one-step 
and classical three-step approaches, since both are known to 
be suboptimal in single-level LC models. The proposed two- 
stage estimator separates each step of the model building, 
namely, first the lower level LC model is built. Next while 
keeping the lower-level measurement model fixed the higher- 
level mixing proportions are selected. Finally conditioning on 
the fixed parameter estimates of the two-level measurement 
model the structural model is estimated. We investigate the 
robustness of the one-step and two-stage approaches toward 
misspecifications of the covariate effect. We focus on one of 
the most common misspecifications, that is ignoring direct 
effect(s) between the covariate and indicators. Via 
a simulation study, we investigate the performance of the 
one and two-stage approaches with regard to bias and MSE 
when modeling and ignoring the direct effects. We also inves
tigate Type 1 error rate for models that misspecified the 
relationship between the external variable of interest and the 
measurement model.

First, we present the measurement model of the multilevel 
latent class model, and the inclusion of covariates using the 
one- and two-stage approaches. We discuss the inclusion of 
direct effects between the covariates and indicators for both 
modeling approaches, and following in a simulation study we 
investigate the impact of misspecification of direct effects on 
the two modeling approaches under different levels of viola
tions of the assumption of local independence. We apply both 
approaches to a real data setting, and we conclude.

The multilevel latent class model

Consider the vector of responses Yij ¼ ðYij1; . . . ;YijKÞ, where 
Yijk denotes the response of individual i in group j on the k-th 
categorical indicator variable, with 1 � k � K and 1 � j � J, 
where K denotes the number of categorical indicators and J the 
number of level 2 units (groups). In addition, we let nj denote 
the number of level 1 units within the j-th level 2 unit, with 
1 � j � J. For simplicity of exposition, we focus on dichoto
mous indicators.

LC analysis assumes that respondents belong to one of the T 
categories (“latent classes”) of an underlying categorical latent 
variable X which affects the responses (Goodman, 1974; 
Hagenaars, 1990; McCutcheon, 1987). The model for Yij can 
then be specified as 

PðYijÞ ¼
XT

t¼1
PðXij ¼ tÞPðYijjXij ¼ tÞ; (1) 

where the weight PðXij ¼ tÞ is the probability of person i in 
group j to belong to latent class t. The term PðYijjX ¼ tÞ is the 
class-specific probability of observing a pattern of responses 
given that a person belongs to class t. Furthermore, we make 
the “local independence” assumption that the K indicator 
variables are independent within the latent classes, leading to 

PðYijÞ ¼
XT

t¼1
PðXij ¼ tÞ

YK

k¼1
PðYijkjXij ¼ tÞ: (2) 

Note that the general definition in Equation (1) applies to both 
the standard and multilevel LC model. To be able to distinguish 
the simple and multilevel LC model, we can define the model in 
terms of logit equations. In the simple LC model 

PðXij ¼ tÞ ¼
expðγtÞ

1þ
PT

t¼2
expðγtÞ

; (3) 

for 1< t � T – where we have taken the first class as reference – 
and 

PðYijk ¼ 1jXij ¼ tÞ ¼
expðβk

t Þ

1þ expðβk
t Þ
: (4) 

In the simple LC model the parameters γ and β do not have the 
subscript j, thus assuming the clustering is independent of the 
higher level groups.

Extending the simple LC model to account for the multi
level data structure is possible by allowing the parametrizations 
(3) and (4) to take the grouping (level 2 units) into account by 
means of group-specific random coefficients. As such, the 
multilevel LC model can be seen as a random coefficients 
logistic regression model (see, for instance, Agresti et al., 
2000) for an unobserved dependent variable, which has several 
observed indicators (Vermunt, 2003). Therefore, the parame
trization of multilevel LC models can follow either the para
metric approach or the nonparametric approach (see also Finch 
& French, 2014). In the parametric approach, group-specific 
effects are assumed to arise from a certain continuous distribu
tion, typically Gaussian. In the nonparametric approach 
(Aitkin, 1999; Laird, 1978), instead of a continuous distribution 
we assume a multinomial distribution. Let Wj denote the value 
of group j on the latent class variable defining the mixing 
distribution with M mass points each with probability 
PðWj ¼ mÞ ¼ πm. In the nonparametric approach the model 
for the (individual) latent class probabilities is specified 
(Vermunt, 2003): 

PðXij ¼ tjWj ¼ mÞ ¼
expðγtmÞ

1þ
PT

s¼2 expðγsmÞ
: (5) 
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Also the mixing probabilities PðWj ¼ mÞ can be parametrized 
by means of logistic regressions as follows: 

PðWj ¼ mÞ ¼
expðδ0mÞ

1þ
PM

l¼2 δ0l
; (6) 

where parameters for m ¼ 1 are set to zero for identification 
and the related class is set as reference. This is the most 
commonly used specification in applied research due to its 
simplicity.

Following the same logic, the conditional response prob
abilities of Equation (4) become 

PðYijk ¼ 1jXij ¼ t;Wj ¼ mÞ ¼
expðβk

tmÞ

1þ expðβk
tmÞ

; (7) 

for k ¼ 1; . . . ;K, t ¼ 1; . . . ;T and m ¼ 1; . . . ;M: This is the 
most general formulation that is equal to an unrestricted multi- 
\group LC model. In most applications, however, a more 
restricted version is used (Lukociene et al., 2010; Vermunt, 
2003) that assumes that item-conditional probabilities (see 
Equation (7)) do not depend on the level 2 units – as in 
Equation (4). This is the restriction we will apply also in the 
current paper (see Figure 1), leading to the following specifica
tion for Yij :

PðYijÞ ¼
XM

m¼1
PðWj ¼ mÞ

XT

t¼1
PðXij

¼ tjWj ¼ mÞ
YK

k¼1
PðYijkjXij ¼ tÞ:

(8) 

Under the parametrizations (3), (7) and (6), given a sample of 
observations from J groups – each with nj individual units, for 
j ¼ 1; . . . ; J, with N ¼

PJ
j¼1 nj – the log likelihood function for 

model (8) can be written as: 

log LðθÞ ¼
XJ

j¼1
log PðYijÞ; (9) 

which we maximize in order to find the vector of model 
parameters θ. The numbers of classes M and T are selected 
by comparing the goodness of fit of models with different 
values of M and T using information criteria like AIC and BIC.

All the parts of the multilevel LC model can be estimated 
simultaneously. However, the choice of the number of latent 
classes on level 1 and level 2 is not so obvious. A generally used 
recommendation is to use a stepwise procedure for model 
selection (Lukociene et al., 2010), by first fitting a single-level 
LC model at the level 1 – defined in Equations (3) and (4). 
Once the correct number of classes at the lower level is selected, 
this number is held fixed and the number of classes is estimated 
at the higher level. A general recommendation is that once the 
higher level classes are selected, these are kept fixed, and model 
selection is reiterated at the lower level one more time before 
adding covariates. In the stage of adding covariates the number 
of classes should be fixed, also to be in line with general 
recommendations for LCA with covariates (Masyn, 2017). 
Readers interested in model selection for multilevel LCA 
model can also consult Yu and Park (2014).

Extending the multilevel LC model to include 
covariates

Classical approaches

Level 1 and level 2 covariates can be included to predict class 
membership. Denoting one level 2 covariate by Z1j and a level 1 
covariate by Z2ij the multinomial logistic regression for Xij with 
a random intercept can be written as: 

PðXij ¼ tjWj ¼ m;Z1j;Z2ijÞ

¼
expðγ0tm þ γ1tZ1j þ γ2tZ2ijÞ

1þ
PT

s¼2 expðγ0sm þ γ1sZ1j þ γ2sZ2ijÞ
:

(10) 

A random slope for the level 1 covariate can be obtained by 
replacing γ2t by γ2tm.

Level 2 covariates can be used also to predict group class 
membership. To do so, the multinomial logistic regression for 
PðWj ¼ mÞ can be modified as follows: 

PðWj ¼ mjZ1jÞ ¼
expðδ0m þ δ1mZ1jÞ

1þ
PM

l¼2 expðδ0l þ δ1lZ1jÞ
: (11) 

Under the parametrizations (10) and (11) that now include 
covariates, the model for YijjZj, where Zj ¼ ðZ1j;Z2ijÞ

0, can be 
specified as 

Figure 1. The multilevel latent class model.
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PðYijjZjÞ ¼
XM

m¼1
PðWj ¼ mjZ1jÞ

XT

t¼1
PðXij ¼ tjWj

¼ m;Z1j;Z2ijÞ
YK

k¼1
PðYijkjXij ¼ tÞ; (12) 

where we have further assumed that the observed indicators 
are conditionally independent from the covariates given both 
level 1 and level 2 class memberships.

Using the one-step approach the full model needs to be 
reestimated every time a new covariate is added keeping the 
number of lower and higher level classes fixed. Given the 
complexity of such multilevel models, (1) estimating the full 
model multiple times can be time consuming and (2) misspe
cifications in a part of the model may destabilize also para
meters in other parts of the model.

Two-stage estimation of multilevel LC models

An alternative option that would fit the logic of the stepwise 
modeling procedure is to apply a two-stage estimation 
approach by extending the two-step approach proposed for 
simple LC models by Bakk and Kuha (2018) and applied to 
latent Markov models by Di Mari and Bakk (2018). We apply 
the two-step logic in the multilevel context using a stage-wise 
approach. Namely, first the lower level LC model is estimated 
(step 1 see Figure 2). Once the number of lower level classes are 
selected the higher level LC model is estimated keeping the 
measurement model fixed at the estimates from the previous 
step 1 (step 2a see Figure 3). In this way only the mixing 
proportions (at both levels) need to be reestimated, keeping 

the PðYijjXijÞ fixed at the values estimated in step 1. Similarly to 
the simultaneous estimation, once the higher-level LC model is 
selected, keeping this part fixed, the model for PðYijjXijÞ can be 
reestimated to adjust for possible missspecifications due to 
grouping at level 2 (step 2b see Figure 4). Finally, the covariates 
can be added to the model keeping the measurement model 
fixed (step 3 see Figure 5) . In the next section we describe in 
detail each step of the proposed estimator. We shall distinguish 
between the steps without covariates (steps 1, 2a and 2b) – 
which we refer to as stage 1 of multilevel LC model building – 
and the step(s) with covariates (step 3) – which we refer to as 
stage 2.

The steps of the two-stage estimation for multilevel LC 
model with covariates

Stage 1: Unconditional LC model building

Step 1: Simple LC model
In this step (Figure 2) a simple LC model is estimated on the 
pooled data Tmax times, where Tmax is a prespecified maximum 
number of latent classes for X. We let θðTÞ1 ¼ ðβ1

21
; . . . ; β1

T1
;

. . . ; β1
TJ
; . . . ; βK

21
; . . . ; βK

T1
; . . . ; βK

TJ
Þ0 for each choice of 

T ¼ 1; . . . ;Tmax. Under the parametrizations (3) and (4), and 
a sample of N observations – where N ¼

PJ
j¼1 nj – the log 

likelihood function of the first step model can be specified as 
follows: 

log Lðθ1Þ ¼
XN

i¼1
log PðYijÞ; (13) 

Figure 2. Stage 1 step 1: simple latent class model on the pooled observations – multilevel structure of the data is not taken into account. This step is equivalent to 
simple LCA on the pooled observations.

Figure 3. Stage 1 step 2.a: multilevel latent class model with measurement model kept fixed at step 1’s values.
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which we maximize in order to find the ML estimates of the LC 
model parameters, which we call 
bθðTÞ1 ¼ ðbβ1

21
; . . . ;bβ1

T1
; . . . ;bβ1

TJ
; . . . ;bβK

21
; . . . ;bβK

T1
; . . . ;bβK

TJ
Þ0. Then, 

the optimal number of classes T� is selected such that T� ¼

min
T¼1;...;Tmax

IðTÞ – where IðTÞ is some information criterion like 

AIC or BIC – along with the corresponding ML estimates bθ1 

from which we have suppressed the superscript ðTÞ for simpli
city of notation.

Step 2.a: Multilevel LC model

In this step (Figure 3), the group level measurement model 
parameters of the multilevel LC model are estimated keeping 
measurement model parameters at the lower level fixed at bθ1. 
In the same way as for Step 1, this step has to be carried out 
Mmax times, where Mmax is a pre-specified by the user number 
of latent classes for W. We let θðMÞ2 ¼

ðδ2; . . . ; δM; . . . ; γ021; . . . ; γ0T1; . . . ; γ0TMÞ
0 for each choice of 

M ¼ 1; . . . ;Mmax. Under the parametrizations (4), (5) and 
(6), and a sample of J groups – each with nj individual units, 
for j ¼ 1; . . . ; J – the log likelihood function of the step 2.a 
model can be written as follows 

log Lðθ2jθ1 ¼ bθ1Þ ¼
XJ

j¼1
log PðYjÞ; (14) 

where jθ1 ¼ bθ1 indicates that the measurement model para
meters are kept fixed at bθ1. The function (15) is maximized 
with respect to the unknown θ2 to find ML estimates bθ2.

Step 2.b: Reupdate the measurement model
In this step (Figure 4) the level 1 measurement model is 
reestimated, keeping fixed the level 2 model parameters. 
This is done in order to readjust the lower-level measure
ment model if necessary based on the selected number of 
higher level classes. Note that in principle, as for step 1, 
this step can be carried out Tmax times – i.e. freeing also 
the parameters on X‘s equations and reestimating the 
optimal number of low-level classes. Such a full step 
maybe unnecessary in most situations (see Lukociene 
et al. (2010)).

Given a sample of J groups – each with nj individual units, 
for j ¼ 1; . . . ; J – and vector of estimates bθ2 from the previous 
step, under the parametrizations (4), (5), and (6), the log like
lihood function of the step 2.b model can be written as 

Figure 4. Stage 1 step 2.b: measurement model is updated to account for possible interaction effects with high level parameters.

Figure 5. Stage 2 step 3: covariates Z1j and Z2ij are loaded on Xij and Wj , keeping measurement model parameters fixed. Note that this step can be carried out either 
simultaneously or in two separate substeps: 3.a) covariates loaded only in the equations for Xij , for all j; 3.b) keeping the parameters estimated in 3.a fixed, covariates are 
loaded on Wj .
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log Lðθ1jθ2 ¼ bθ2Þ ¼
XJ

j¼1
log PðYjÞ: (15) 

This specification, with respect to that of Step 1, now takes the 
multilevel structure of the data into account.

Stage 2: Including covariates

Step 3: Including predictors for class memberships
As the next step the covariates can be added to the model 
(Figure 5). A decision needs to be taken whether a stepwise 
approach is preferred (adding first lower level covariates, and 
after fixing those adding at the higher level) or all covariates 
can be added in a single step. The benefit of the first option can 
be robustness; however, no simulation or theoretical results are 
available and this still needs further research. For sake of 
conciseness, we will present the simultaneous step; its split 
counterpart can be derived analogously.

Let us define θ3 ¼ ðγ12; . . . ; γ1T ; γ22; . . . ; γ2TÞ
0. With the 

parametrizations specified in Equations (4), (10) and (11), the 
model log-likelihood can be written as follows: 

log Lðθ2; θ3jθ1 ¼ bθ1Þ ¼
XJ

j¼1
log PðYjjZjÞ; (16) 

which we maximize with respect to θ2 and θ3 keeping θ1 fixed 
at its step 2.b values bθ1.

Modeling direct effects between covariates and indicators 
of the LC model

While the model defined in Equation (12) assumes conditional 
independence between the indicators and the covariate given 
the latent class variable, in some cases this assumption can be 
violated. Such violation is also known as differential item 
functioning (DIF). Such violation exists for example when an 
item has a different difficulty for boys and girls in an educa
tional tests (lower level Z) or an item has different difficulty in 
different countries (higher level Z). The LC model can be 
extended to relax the conditional independence assumption, 
by allowing a direct effect. Keeping the assumption that the 
measurement model does not depend on W we modify 
Equation (2) as: 

PðYij ¼ 1Þ ¼
XT

t¼1
PðXij ¼ tÞ

YK

k¼1
PðYijkjXij ¼ t;Z1j;Z2ijÞ: (17) 

The model defined in Equation (17) can be expressed in terms 
of a logit equation: 

PðYijkjXij ¼ t;Z1j;Z2ijÞ ¼
expðβk

t þ β1tkZ1j þ β2tkZ2ijÞ

1þ expðβk
t þ β1tkZ1j þ β2tkZ2ijÞ

:

(18) 

Equation (18) defines the most general form to allow for direct 
effect on the indicators from covariates at the lower and/ or 
higher level.

Using the one-step approach the full LC model is estimated 
allowing for all necessary direct effects. Using the two-stage 
approach on the other hand the measurement model is kept 
fixed at the estimates from Stage 1 step 2b for the indicators for 
which no DIF is assumed, and the conditional item probabil
ities are reestimated using Equation (18) for the indicators for 
which the assumption of DIF is being relaxed. In this way the 
two-stage approach is more parsimonious. Using the classical 
or even the bias-adjusted three-step approaches the modeling 
of DIF is not possible.

While modeling direct effects with both one and two-stage 
approaches is possible this is often not done in practice. The 
reasons for these are diverse: most importantly increased 
model complexity makes interpretation more difficult. 
Furthermore, detecting direct effects is difficult. The literature 
recommends using overall fit statistics or residual statistics 
(Oberski et al., 2013), but no clear consensus exists about the 
power of detecting such effects for multilevel LC models 
(Nagelkerke et al., 2015).

In the current paper we focus on understanding the effect 
on parameter bias of the parameters of interest (XjZ) if direct 
effects are ignored.

Simulation study

We carry out a simulation study to investigate the perfor
mance of the proposed two-stage estimator as compared 
to the simultaneous estimator with regard to bias and 
efficiency. Next to the situation where all model assump
tions are met we also investigate the impact of ignoring 
direct effect(s) in multilevel LCA. For this purpose we 
generated data from five population models with different 
types of direct effects. We followed the setup by Nylund- 
Gibson and Masyn (2016), who investigated the impact of 
DE misspecification on class enumeration for single-level 
models. We go a step further and investigate the impact 
on parameter bias in multilevel setting. Two of the five 
settings are population models where only indirect effect 
between X;Z exist via a direct effect of Z on indicator(s) 
Y . While this situation can be a common population 
model, it is hardly used in data analysis, as most models 
include the direct X;Z association. As such investigating 
how modeling the X;Z association while ignoring the true 
Y;Z association shows Type 1 error rates in such complex 
settings.

Population models

We generate data from 5 models with DE for 2 separate Z 
variables, namely, at the lower and higher level, so that we 
have 10 data generating models. The five models are pre
sented in Figure 6 for the Z at lower level. The same effect 
size measures are used for Z at the higher level as well. All the 
population models were specified to be measured by five 
binary indicator variables, measuring two classes at the 
lower level with all indicators having a high probability of 
a positive answer (PðYjXÞ ¼ 0:80Þ) in one class, and low in 
the other class (PðYjXÞ ¼ 0:20Þ). At the higher level we have 
W ¼ 2 classes. We have two scenarios for class sizes, with 
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equal and unequal class sizes at both the lower and higher 
level. In the equal class sizes scenario the class sizes were set 
at π1 ¼ π2 ¼ 0:5 at both the lower and higher level, and in 
the unequal class sizes scenario to π1 ¼ 0:8; π2 ¼ 0:2. We 
generated data from a population with 20 groups at the 
higher level, and with sample size nj 500 and 1000 at the 
lower level.

In model PA, PB, and PC, β1t for the effect of Z2ij on Y4 was 
set to 1 in the models with a lower-level covariate. In models 
with a higher level covariate β2tZ1j was set to 1 as well. In model 
PB, PD, and PE the size of the direct effect of Z on Y4, was set to 
1 for both the lower (β1t4Z2ij) and higher level (β2t4Z1j) setting. 
In model PC, the direct effect in class one was set to 0.5, and in 
class two to 1.5.

Analysis models

In all instances, we analyze the data using the PA model (which 
is the most common model used in practice) and the true data 
generating model, using the one and two-stage approaches. R is 
used for data manipulation and Latent GOLD for the estima
tion of the LC models.

Results

In Table 1, we show the simulation results for the data gen
erating models PA, PB, and PC for the data generated with 
equal class sizes at both levels, and group level Z. We zoom in 
on the main effect of Z on X, and show for each data generating 

Figure 6. Population models.
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condition the results with the PA model (ignoring DE between 
Z and Y), and the true data generating model. The results 
under the PA data generating model show that when all 

model assumptions are met both the one and two-stage esti
mators are unbiased, with very similar coverage (somewhat 
above the nominal 95% rate), MSE and SE/SD.

For the data generating models PB and PC analyzing the 
data ignoring the direct effect introduces a bias in the para
meter of interest with both the one and two-stage approaches 
(the effect size of the bias is marginally smaller with the two- 
stage approach). Interestingly enough the coverage even with 
the PA model is above the nominal level, possibly due to 
a larger SE estimate.

Table 2 presents some results for data generated under models 
PD and PE, that have a direct effect between Z;Y , but no relation
ship between Z;X. Analyzing these populations with model PA, 
which assumes no direct effect between Z and any of the indica
tors, only indirect effect via X sheds light on the Type 1 error 
using the wrong PA model. As the last column of Table 2 shows 
this Type 1 error rate is above 5% in all situations, and with the 

Table 1. Parameter bias, coverage, MSE and SE/SD for γ1 ¼ 1 measuring the direct effect of XjZ for data generated from models PA, PB, and PC, analyzed with model PA 
for even class sizes, group level Z.

Data analysis model/ One-step Two-stage

Sample size Data generating model: PA
PA model Bias Coverage MSE SE/SD Bias Coverage MSE SE/SD
500 0.01 0.96 0.05 0.94 0.01 0.96 0.05 0.94
1000 0.00 0.97 0.02 1.00 0.00 0.97 0.02 1.00

Data generating model: PB
PA model
500 −0.17 0.99 0.08 0.93 −0.15 0.99 0.07 0.94
1000 −0.16 1.00 0.05 0.96 −0.14 1.00 0.04 0.97
PB model
500 −0.01 0.98 0.05 0.95 −0.01 0.98 0.05 0.95
1000 0.00 0.97 0.02 0.99 0.01 0.97 0.02 0.98

Data generating model: PC
PA model
500 −0.11 1.00 0.06 0.95 −0.09 1.00 0.06 0.96
1000 −0.11 0.99 0.04 0.99 −0.10 0.99 0.03 0.99
PC model
500 0.01 0.98 0.05 0.98 0.01 0.98 0.05 0.98
1000 0.01 0.97 0.02 0.99 0.01 0.97 0.02 0.99

Table 2. (Average) bias, coverage and MSE of the direct effect(s) of Z on Y for 
models PD and PE, and type 1 error rate for PðXjZÞ for analyzing data generated 
from models PD and PE with model PA even class sizes, group level Z.

Model Sample size Bias Coverage MSE Type 1E

Data generating model PD
PD model PA model

One-step 500 −0.01 0.97 0.06 0.11
1000 0.00 0.98 0.03 0.16

Two-stage 500 0.00 0.97 0.06 0.11
1000 0.00 0.97 0.03 0.15

Data generating model PE
PE model Average effects PA model

One-step 500 −0.02 0.99 0.07 0.29
1000 −0.02 0.98 0.04 0.56

Two-stage 500 −0.02 0.99 0.07 0.29
1000 −0.01 0.97 0.04 0.56

Table 3. Parameter bias, coverage, MSE and SE/SD for γ1 ¼ 1 measuring the direct effect of XjZ for data generated from models PA, PB, and PC, analyzed with model PA 
and the data generating model for the two levels of sample size conditions. Uneven group-level class sizes group level Z.

Data analysis model/ One-step Two-stage

Sample size Data generating model: PA
PA model Bias Coverage MSE SE/SD Bias Coverage MSE SE/SD
500 −0.01 0.96 0.03 1.00 −0.00 0.96 0.03 0.94
1000 0.00 0.97 0.01 1.00 0.01 0.97 0.01 1.00

Data generating model: PB
PA model
500 0.11 0.86 0.04 1.00 0.13 0.83 0.04 0.94
1000 0.10 0.82 0.02 0.92 0.12 0.77 0.03 0.92
PB model
500 −0.00 0.97 0.01 1.00 0.01 0.97 0.03 1.00
1000 −0.01 0.97 0.01 0.99 −0.00 0.97 0.01 1.00

Data generating model: PC
PA model
500 0.10 0.87 0.04 1.00 0.13 0.83 0.04 0.94
1000 0.09 0.85 0.02 0.92 0.11 0.78 0.03 0.92
PC model
500 −0.00 0.97 0.03 1.00 0.01 0.96 0.03 1.00
1000 −0.01 0.98 0.01 1.00 −0.01 0.98 0.01 1.00
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number of direct effects increasing it can go as high as 56% in the 
conditions presented. The Type 1 error rate is also higher under 
both the PE and PD data generating model for the larger sample 
size. Using the correct data generating model to analyze the data 
with both one and two-stage approaches the bias is negligible in 
the parameters of interest, and the coverage rate above the nom
inal rate. This is also the case for the models PA to PC.

Table 3 shows the results for data generated from models PA to 
PC for uneven class sizes with Z at higher level. The results are 
similar to the previous condition with regard to bias, coverage, 
MSE and SE/SD. The two-stage model shows similar performance 
to the one-stage approach. As the strength and amount of mis
specification increases the bias in the PA model increases. Table 4 
shows the results for models PD and PE for the uneven class size 
model with Z at higher level. Similarly to the even class size 
condition when PA model is used the Type 1 error rate is high 
with both estimators, but using the correct data generating model, 
the bias is almost nonexistent with both estimators. The supple
mentary materials show the results for data generated with Z at 
the lower level. The results show the same tendencies there as well.

Application: Predicting task variety in self managing 
teams

We illustrate the use of the two-stage estimator based on 
a dataset collected by Van Mierlo et al. (2005) in 5 large-scale 
health care organizations in the Netherlands. The dataset is 
available as example dataset in Latent Gold (Vermunt & 
Magidson, 2013) and was used by Vermunt (2003) when 

introducing the one-stage multilevel latent class model. The 
LC model is based on five indicators measuring the perception 
of task variety of employees. The initial four response cate
gories were collapsed into two. The five items (translated from 
Dutch) are (with the shorthand notation in parentheses):

● Do you always do the same things in your work 
[Nonrepetitive]

● Does your work require creativity? [Creativity]
● Is your work diverse? [Diverse]
● Does your work make enough usage of your skills and 

capacities? [Capacity]
● Is there enough variation in your work? [Variation]

Following Vermunt (2003) we present a model with two classes 
at both the higher and the lower level using the non parametric 
parametrization (see Table 5).1 On the employee level, the 
larger class, the “Diverse” (65%) class is characterized by high 
levels of task variation, diversity, and creativity. On the other 
hand the “Structured” class (35%) is characterized by repeti
tive, not creative, and unvaried tasks. On the group-level 
members of teams in the first group-level class (66% of 
teams) are most likely to belong to the first individual-level 
class, having more diverse tasks, involving more capacity and 
variation. The second group-level class is comprised of teams 
whose members are most likely to belong to second individual 
level class, having more uniform, repetitive tasks.

In the next step, we add covariates to the model, explaining 
membership in the task variety employee level classes by age, job 
tenure, working hours and gender (for all covariates the same 
recording is applied as in the dataset that can be found in Latent 
GOLD as example dataset for multilevel LCA (Vermunt & 
Magidson, 2013)). The estimates obtained with the one and two- 
stage estimators are very similar as we can see in Table 6. Tenure 
and working hours have a significant effect on class membership. 

Table 4. (Average) bias, coverage and MSE of the direct effect(s) of Z on Y for 
models PD and PE, and type 1 error rate for PðXjZÞ for analyzing data generated 
from models PD and PE with model PA. Uneven group-level class sizes group 
level Z.

Model Sample size Bias Coverage MSE Type 1 E

Data generating model PD
PD model PA model

Model Sample Bias Coverage PD MSE Type 1E
One-step 500 −0.03 0.98 0.07 0.35

1000 −0.02 0.98 0.04 0.45
Two-stage 500 −0.02 0.98 0.07 0.34

1000 −0.01 0.98 0.04 0.44
Data generating model PE

PE model Average effects PA model
One-step 500 0.00 0.97 0.07 0.47

1000 −0.01 0.97 0.04 0.54
Two-stage 500 0.00 0.97 0.07 0.46

1000 −0.01 0.97 0.04 0.52

Table 5. The multilevel latent class model of task-variety.

Class 1 Class 2 Class 1 Class 2
Diverse Uniform Diverse Structured

Size 0.66 0.34 0.65 0.35
Nonrepetitive 0.43 0.28 0.51 0.14
Creative 0.61 0.44 0.71 0.27
Diverse 0.80 0.49 0.97 0.20
Capacity 0.74 0.58 0.83 0.42
Variation 0.77 0.46 0.93 0.17
Class 1 0.79 0.39 . .
Class 2 0.21 0.61 . .

Table 6. Covariate effects on the task-variety latent classes estimated using one- 
step and two-stage approaches for no direct effect and with direct effect on the 
capacity item.

One-step Two-stage
β SE β SE

Age (young) −0.20 0.09 −0.20 0.09
Age (mid) −0.07 0.07 −0.07 0.07
Age (old) 0.05 0.08 0.05 0.08
Tenure (low) −0.18 0.08 −0.17 0.08
Tenure (high) −0.08 0.08 −0.08 0.08
Working hours (part time) −0.25 0.07 −0.25 0.07
Working hours (full time) 0.15 0.08 0.15 0.08
Gender (male) −0.06 0.10 −0.06 0.09

Direct effects
Age (young) −0.20 0.09 −0.20 0.09
Age (mid) −0.07 0.07 −0.07 0.07
Age (old) 0.05 0.08 0.06 0.08
Tenure (low) −0.18 0.08 −0.17 0.08
Tenure (high) −0.08 0.08 −0.08 0.08
Working hours (part time) −0.23 0.07 −0.23 0.07
Working hours (full time) 0.15 0.08 0.15 0.08
Gender (male) −0.06 0.10 −0.06 0.09
Working hours on capacity −0.36 0.11 −0.36 0.11
Working hours on capacity −0.04 0.14 −0.04 0.14

1Readers interested in a detailed description of model selection for this dataset can consult Nagelkerke et al. (2015), in the following, we focus on the simplest model 
introduced by Vermunt (2003) that suffices for our example.
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The first cluster has the oldest workers, while the younger age 
groups are more likely to be associated with the second Structured 
class. At the same time the Structured class is associated with less 
working hours than the Diverse class. Gender and age are not 
significant predictors. After running the model with covariates, we 
investigated the residual association between the items of the LC 
model and the covariates using the bivariate residuals (BVR), see 
Table 7. As a rule of thumb values higher than 3 show evidence of 
some residual association2 As working hours showed a high resi
dual association with capacity (BVR = 5.89), we allowed for 
a direct effect between the two. The model with direct effects is 
shown in the lower half of Table 6. We can see that adding the 
direct effect the general conclusions do not change significantly in 
this case. The effect of working hours on the latent classes 
decreases marginally, and the direct effect is significant, showing 
a higher effect of working hours on the first class. The overall 
conclusion for the rest of the model is not affected.

Discussion
We introduced a two-stage estimator of the multilevel latent 
class model, that separates the estimation of the measurement 
and structural model by fixing the measurement model para
meters to values estimated at the first stage when estimating the 
structural model (second stage). The proposed estimator is flex
ible enough to allow for freeing parameters of the measurement 
model while estimating the structural model where necessary.

We investigated the bias, coverage and MSE of the proposed 
two-stage and the alternative mainstream one-stage estimator. 
When all model assumptions hold the proposed two-stage 
estimator has similar properties to the one-stage estimator.

We investigated the bias of both estimators in conditions 
where a direct effect between the covariate and item(s) of the 
latent class model are present. The performance of the two esti
mators was very similar in these situations as well, namely, as the 
severity of the underlying violations increases ignoring them leads 
to bias with both approaches. When analyzing the data with the 
correct data generating model the two-stage approach performs 
well.

We generated data from models (model PD and PE) where no 
effect exists between the latent variable and the covariate, only 
direct effect(s) between the covariate and indicator(s). Analyzing 
these data assuming no DE, but only regressing class membership 

on the covariate introduces a Type 1 error rate above the nominal 
level. The more unmodeled direct effects are present the higher 
the Type 1 error rate is ignoring these effects.

An issue to take into account with two-stage estimators is 
how to account for the uncertainty about the fixed parameters 
in the calculation of the stage two standard errors. Pseudo ML 
estimates have two sources of variability: the variability due to 
sampling in step two, but also that of the sampling variability of 
step one (Gong & Samaniego, 1981). For single level two-stage 
LCA models variance estimators that correct for the uncer
tainty due to the step 1 estimates are available (Bakk & Kuha, 
2018). However simulation studies show that the correction 
factor is negligible for models where the measurement model is 
strong and the sample size large enough. As such in the current 
paper, we ignore the variability due to the sampling variability 
in the step one estimates. The results show that in all condi
tions while the coverage is marginally lower than for the one- 
stage model, the difference is very small.

An alternative stage wise estimator, the bias-adjusted three- 
step approach has already been investigated for latent Markov 
models for longitudinal data that have a similar nested data 
structure – units nested in time points. However, while formulas 
to compute the classification error in such models are easy to 
derive based on the LM model assumptions and of the Markov 
properties, computation of the classification error probabilities is 
not as straightforward for “pure” multilevel data due to the inter
action of the individual level latent variable with the group level 
one; in addition, the bias-adjusted three-step approach focuses 
only on the structural model in the third step. Thus possible 
misspecifications in the measurement model – like unmodeled 
direct effects – cannot be detected. How to extend the three-step 
approach to multilevel LC modeling can be an interesting topic for 
future research.
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Table 7. Bivariate residual statistics for the model with covariate effect on the lower-level classes.

Dependent Nonrepetitive Creative Diverse Capacity Variation

Nonrepetitive
Creative 1.1982 .
Diverse 0.009 4.2479 .
Capacity 0.6336 0.1291 2.1765 .
Variation 0.0461 1.0044 0.2956 1.6647 .
Independent Nonrepetitive Creative Diverse Capacity Variation
Age 2.6127 1.8704 0.1405 0.3997 0.0986
Tenure 3.2531 1.2789 0.001 3.0518 0.1009
Working hours 1.995 1.3908 0.3431 5.388 1.0515
Gender 4.1779 3.3911 0.3207 2.715 0.857
Two-level Nonrepetitive Creative Diverse Capacity Variation
Group 1.5345 1.3146 0.6537 0.9965 0.6484
Pairs 1.3852 1.8547 0.0892 0.1948 0.0737

2This rule of thumb is based on the assumption that the bivariate residuals follow a chi-square distribution with 2 df that does not hold, yet given the complexities of 
approximating the distribution of the BVR statistic this rule of thumb is often used.
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