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Summary
Background Atypical cartilaginous tumour (ACT) and grade II chondrosarcoma (CS2) of long bones are respectively
managed with watchful waiting or curettage and wide resection. Preoperatively, imaging diagnosis can be challeng-
ing due to interobserver variability and biopsy suffers from sample errors. The aim of this study is to determine diag-
nostic performance of MRI radiomics-based machine learning in differentiating ACT from CS2 of long bones.

Methods One-hundred-fifty-eight patients with surgically treated and histology-proven cartilaginous bone tumours
were retrospectively included at two tertiary bone tumour centres. The training cohort consisted of 93 MRI scans
from centre 1 (n=74 ACT; n=19 CS2). The external test cohort consisted of 65 MRI scans from centre 2 (n=45 ACT;
n=20 CS2). Bidimensional segmentation was performed on T1-weighted MRI. Radiomic features were extracted.
After dimensionality reduction and class balancing in centre 1, a machine-learning classifier (Extra Trees Classifier)
was tuned on the training cohort using 10-fold cross-validation and tested on the external test cohort. In centre 2, its
performance was compared with an experienced musculoskeletal oncology radiologist using McNemar’s test.

Findings After tuning on the training cohort (AUC=0.88), the machine-learning classifier had 92% accuracy (60/
65, AUC=0.94) in identifying the lesions in the external test cohort. Its accuracies in correctly classifying ACT and
CS2 were 98% (44/45) and 80% (16/20), respectively. The radiologist had 98% accuracy (64/65) with no difference
compared to the classifier (p=0.134).

Interpretation Machine learning showed high accuracy in classifying ACT and CS2 of long bones based on MRI
radiomic features.
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Research in context

Evidence before this study

Radiomic studies to date have focused on the classifica-
tion of bone chondrosarcoma, including atypical carti-
laginous tumour and high-grade chondrosarcoma,
using radiomics alone or combined with machine learn-
ing. In long bones, therapeutic strategies for those
lesions are entirely different and mainly based on imag-
ing. In a recent study, we focused on CT radiomics-
based machine learning and the distinction between
atypical cartilaginous tumour and high-grade (II and
higher) chondrosarcoma of long bones, including 120
patients from two institutions. Machine learning had
75% accuracy with no difference compared to an expe-
rienced radiologist. Previously, we used machine learn-
ing in combination with MRI radiomics to discriminate
atypical cartilaginous tumour from high-grade chondro-
sarcoma. Only 58 patients from the same centre were
included and the machine learning classifier was inter-
nally tested using a hold-out set as a test cohort, achiev-
ing 75% accuracy.

Added value of this study

In the current study, we attempted to differentiate atypi-
cal cartilaginous tumours from grade II chondrosarcoma
of long bones using MRI radiomics-based machine learn-
ing. Higher-grade chondrosarcomas are more easily iden-
tified on MRI and were thus not included. The population
of our current study was larger than previous publica-
tions, including 158 patients from two specialized institu-
tions, which allowed for model validation on
independent data from the external test cohort. Our clas-
sifier had 92% accuracy based on T1-weighted MRI radio-
mics, overlapping a dedicated bone tumour radiologist
with 35-year experience who read all available MRI
sequences. Thus, compared to previous studies, our
method showed better performance to solve the most
relevant clinical problem of atypical cartilaginous
tumour/grade II chondrosarcoma differentiation.

Implications of all the available evidence

Radiomics-based machine learning is an objective
method that may be used in clinical decision making by
accurately differentiating atypical cartilaginous tumour
from chondrosarcoma of long bones.
Introduction
Chondrosarcoma (CS) accounts for 20-30% of primary
bone tumours in adulthood.1 Based upon pathology,
conventional CS was graded into three categories, where
grade I, also called atypical cartilaginous tumour (ACT),
has an indolent biologic behaviour, whereas grades II-
III are aggressive malignant tumours with metastatic
potential and high recurrence rates after surgery.2 In
the 2020 edition of the World Health Organization
(WHO) classification, the term ACT is reserved for for-
merly named ACT/grade I CS only when located in
long bones.3 Cartilaginous tumours with the same his-
tology, but located in the axial skeleton, are classified as
grade I CS.3 ACTs of long bones are indolent as com-
pared to axial grade I CS and appendicular or axial grade
II-III CS. Also, the increase of prevalence of ACT sec-
ondary to increased use of MRI over the past decades,
relative to the lack of increase of grade II-III CS in the
long bones, does not support the previous opinion that
there is a risk of higher-grade CS developing in ACT.4

Thus, this new classification better connects to thera-
peutic options that are different between ACT and CS
grades I-III. Intralesional curettage, or even watchful
waiting has been proposed for ACT, whereas for CS
grades I-III, wide resection remains the therapy of
choice.5�8

As a consequence of these therapeutic options, clini-
cal management currently depends on our ability to dif-
ferentiate between ACT and grade II CS (CS2) of long
bones.8 Biopsy suffers from sample errors and is no lon-
ger standard of care in many tertiary centres.9 MRI is
the method of choice for diagnosis and differentiating
between ACT and CS2 in long bones.10 There is, how-
ever, discussion on accuracy of the various subjective
MRI parameters, and there is the inherent interobserver
variability.11,12 New imaging-based tools like radiomics
have recently been proposed to characterize cartilagi-
nous bone tumours more objectively.13,14 Radiomics
includes the analysis of quantitative features extracted
from imaging studies, known as radiomic features,
which can be combined with machine learning algo-
rithms to create classification models for the diagnosis
of interest.15�17

Machine learning has already shown good accuracy
in discriminating ACT from all-grade CS based on com-
puted tomography (CT) 13 and MRI 14 radiomics. How-
ever, no validated study to date has addressed the more
relevant and specific distinction between ACT and CS2.
Thus, the aim of this study is to determine diagnostic
performance of MRI radiomics-based machine learning
for classification of ACT and CS2 of long bones.
Methods

Ethics
Institutional Review Board from each involved centre
approved this retrospective study and waived the need
for informed consent (Protocols: “RETRORAD” in cen-
tre 1 and “G19.047” in centre 2). Patients included in
this study granted written permission for anonymized
data use for research purposes at the time of the MRI.
After matching imaging, pathological, and surgical
www.thelancet.com Vol 75 Month January, 2022



Figure 1. Flowchart of patient selection.

Center 1 Center 2

Age 53 (45-62) years 62 (49-72) years

Sex Men: n=29

Women: n=64

Men: n=31

Women: n=34

Lesion location Femur: n=41

Fibula: n=9

Humerus: n=37

Radius: n=1

Tibia: n=5

Femur: n=46

Humerus: n=10

Tibia: n=9

Table 1: Demographics and clinical data. Age is presented as median and interquartile (1st-3rd) range.
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data, our database was completely anonymized to delete
any connections between data and patients’ identity
according to the General Data Protection Regulation for
Research Hospitals.
Study design and inclusion/exclusion criteria
Consecutive patients with ACT or CS2 of long bones
and MRI available at one of two tertiary bone tumour
centres (centre 1, IRCCS Orthopaedic Institute Galeazzi,
Milan, Italy; centre 2, Leiden University Medical Centre,
Leiden, The Netherlands) were considered for inclusion.
Information was retrieved through medical records
from the orthopaedic surgery and pathology depart-
ments. Inclusion criteria were: (i) ACT or primary cen-
tral CS2 of long bones that was surgically treated with
curettage or resection; (ii) definitive pathological diagno-
sis based on the surgical specimen assessment; (iii)
MRI scan with at least T1-weighted and fluid-sensitive
sequences in two directions performed within 3 months
www.thelancet.com Vol 75 Month January, 2022
before surgery. Exclusion criteria were: (i) metacarpal,
metatarsal, and phalangeal lesions; (ii) recurrent
lesions; (iii) presence of pathological fracture. A flow-
chart of the patient selection process is shown in
Figure 1.
Study cohorts
One-hundred-fifty-eight patients were retrospectively
included. The training cohort consisted of 93 MRI scans
from Centre 1 (n=74 ACT; n=19 CS2). The external test
cohort consisted of 65 MRI scans from Centre 2 (n=45
ACT; n=20 CS2). Patients’ demographics and data
regarding lesion location are detailed in Table 1. In Cen-
tre 1, examinations were performed on one of two 1.5-T
MRI systems (Magnetom Avanto, Siemens Healthi-
neers, Erlangen, Germany; or Magnetom Espree, Sie-
mens Healthineers, Erlangen, Germany). In Centre 2,
examinations were performed on a 3-T (Ingenia or
Intera, Philips Medical System, The Netherlands) or 1.5-
3
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T (Ingenia, Philips Medical System, The Netherlands)
MRI system. Also, externally obtained MRI scans of
patients referred to centre 2 were included in this study
as long as the minimal MRI protocol was available. MRI
specifications for Centre 1 and Centre 2 are summarized
in Supplementary Table 1. All DICOM images were
extracted and converted to the NiFTI format prior to the
analysis using the dcm2niix software.18
Segmentation
A 2-year-experienced musculoskeletal radiologist (S.G.)
performed contour-focused segmentation on preopera-
tive T1-weighted MRI using the freely available, open-
source software ITK-SNAP (v3.8).19 The axial, as first
choice, or coronal or sagittal sequence was used based on
availability and lesion location. In detail, bidimensional
regions of interest were manually annotated on the slice
showing the maximum lesion diameter. Radiomic analy-
sis was not performed on fluid-sensitive sequences based
on previous findings that, when extracting both T2- and
T1-weighted MRI features, only the latter passed feature
selection during dimensionality reduction.14 Contrast-
enhanced MRI was not available in all our cases, particu-
larly ACT in centre 1, and was also not used.

In order to meet the numerical requirements of a reli-
ability analysis according to the intraclass correlation
coefficient (ICC) guidelines by Koo et al.,20 namely 3
observers and 30 observations, segmentations were addi-
tionally performed by other two radiologists in a sub-
group of 30 patients randomly extracted from the
training cohort. The additional segmentations performed
by the second and third readers on this subset of 30
patients were exclusively used to assess feature reproduc-
ibility. The segmentations employed to build and test the
classification model were all performed by the first
reader. Each radiologist was independent and unaware of
the slice other readers selected for segmentation, as well
as blinded regarding lesion grading and disease course.
Feature extraction
Image pre-processing and feature extraction were per-
formed using PyRadiomics (v3.0.1).21

The suggested pre-processing steps were
employed22: image resampling, grey level normaliza-
tion and discretization. In particular, pixels were
resampled to a 1£1 mm in-plane resolution, z-score nor-
malized to a 0-600 grey level value range and discre-
tized with a fixed bin width. In order to determine the
ideal bin width value, a preliminary extraction exclu-
sively of the first order range parameter was performed
on training data alone. The parameter file for the radio-
mic data extraction is available in a freely accessible
online repository (https://github.com/rcuocolo/
mri_act_cs2).

Radiomic features were obtained from original and
filtered images, including Laplacian of Gaussian
filtering and wavelet decomposition. All available radio-
mic features for bidimensional masks were extracted
(https://pyradiomics.readthedocs.io/en/latest/features.
html), subdivided into the following classes: first-order
(histogram analysis), 2D shape-based, Gray Level Co-
occurrence Matrix, Gray Level Size Zone Matrix, Gray
Level Run Length Matrix, Neighbouring Gray Tone Dif-
ference Matrix and Gray Level Dependence Matrix.
Machine learning analysis
Radiomic data processing and machine learning analy-
sis were performed using the “irr” R package,23

“pandas” and “scikit-learn” Python packages.24 Radio-
mic feature selection was performed using the training
cohort data alone and consisted of stability, variance
and pairwise correlation analyses as well as cross-valida-
tion based least absolute shrinkage and selection opera-
tor (LASSO) regression and recursive feature
elimination (RFE). Feature stability was assessed by
obtaining feature ICC using a two-way random effect,
single rater, absolute agreement model. Features were
considered stable if the ICC 95% confidence interval
lower bound was � 0.75. Then, low variance (thresh-
old = 0.01) and highly intercorrelated (Pearson correla-
tion coefficient threshold � 0.80) were removed.
LASSO regression coefficient analysis followed by RFE
were finally used to determine the feature set to employ
for model training. RFE used an Extra Trees model with
default hyperparameters as its estimator and area under
the ROC curve as the reference score. Both LASSO and
RFE employed 10-fold stratified cross-validation.

Given the unbalanced nature of the training cohort,
the synthetic minority oversampling technique
(SMOTE) was used to balance the dataset by creating
new instances from the minority class in Centre 1, thus
increasing the number of CS2 to n=74.25 No oversam-
pling was performed in the external test cohort. Thus, a
machine-learning classifier (Extra Trees Classifier) was
tuned via 10-fold stratified cross-validation using a ran-
dom hyperparameter search on the training cohort.
Decision tree forests are a commonly employed ensem-
ble machine learning architecture. As decision trees
alone have a tendency to overfit the training data, the
use of random resampling through bootstrapping and a
subsample of the available features reduces model vari-
ance by introducing a degree of randomness. Compared
to Random Forests, Extra Trees also perform random
selection of feature thresholds within each tree node.
This leads to further reduce the variance of the final
ensemble (https://scikit-learn.org/stable/modules/
ensemble.html#forest). The random search hyperpara-
meter space was defined as follows:

1 Number of trees = 100-1000

2 Criterion = entropy, Gini

3 Maximum tree depth = 1-10
www.thelancet.com Vol 75 Month January, 2022
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Figure 2. Radiomics-based machine learning workflow pipeline. This workflow is similar to one recent study from our group 13, with
differences mainly related to feature selection process and machine learning classification.

Articles
4 Maximum number of features per tree = 1-All

5 Bootstrap = true, false

6 Maximum number of samples per tree = 0-100%

The training process also included sigmoid model
calibration via 5-fold stratified cross-validation nested
within each loop of the 10-fold stratified cross-valida-
tion. The final model consisted of the best performing
pipeline which was then fitted on the entire training
dataset and tested on the external test cohort. Our radio-
mics-based machine learning workflow is illustrated in
Figure 2. This workflow is similar to one recent study
from our group13, with differences mainly related to fea-
ture selection process and machine learning classifica-
tion. To offer some insights on the model’s predictions,
Shapley values were obtained for each feature using the
“SHAP” Python package.26 These provide a game-the-
ory based assessment of the contribution of each param-
eter to the final output of the classifier.
Qualitative imaging assessment
An expert bone tumour radiologist with 35 years of work
experience in a tertiary sarcoma centre (J.L.B.) read all
MRI studies from the external test cohort blinded to any
information about lesion grading, disease course and
radiomics-based machine learning analysis. All avail-
able MRI sequences were used for qualitative assess-
ment. The following parameters were assessed to
differentiate CS2 from ACT and give the final impres-
sion: peritumoral bone marrow oedema, expansion of
the medullary canal with thinner cortex, cortical break-
through, periosteal reaction and cortical remodelling,
reactive soft-tissue oedema and soft-tissue extension.10
Statistical analysis
Continuous data are presented as median and inter-
quartile (1st-3rd) range. Categorical data are presented as
value counts and proportions. The R “stats” package
www.thelancet.com Vol 75 Month January, 2022
was used for the following statistical analyses. Chi-
square test and Mann-Whitney tests were used to evalu-
ate sex and age differences between the training and
external test cohorts, respectively. In the external test
cohort, McNemar’s test was used to compare the classi-
fier performance with the radiologist’s one. A two-sided
p-value <0.05 indicated statistical significance.

Accuracy measures of the classifier performance
included, among others: F-score, which is the harmonic
average of precision (also known as positive predictive
value) and recall (also known as sensitivity) and ranges
from 0 to 1 (perfect accuracy); area under the precision-
recall curve, which is an alternative to the area under
the ROC curve and more informative for imbalanced
classes.
Role of funding source
This research was partially funded by the Young
Researchers Grant awarded by the European Society of
Musculoskeletal Radiology (S.G.). The funding source
provided financial support without any influence on the
study design; on the collection, analysis, and interpreta-
tion of data; and on the writing of the report. The first
author had the final responsibility for the decision to
submit the paper for publication.
Results
No statistical difference in sex (p=0.053 [Chi-square
test]) was present between the training (64 women and
29 men) and external test (34 women and 31 men)
cohorts. Age was younger (p=0.001 [Mann-Whitney
test]) in patients from the training cohort (53 [45-62]
years) compared to the external test cohort (62 [49-72]
years). A bin width value of 3 presented the best results
for feature extraction, with a median of 34 (22-55) bins
in the training cohort. A total of 919 radiomic features
were extracted from each lesion. The rate of stable fea-
tures was 78% (n = 720). Removing low variance (n = 2)
5



Feature name Feature class Source image

10th percentile First Order Original

Minor Axis Length 2D shape Original

Informational Measure of Correlation 2 GLCM LoG (sigma = 1)

Inverse Difference Normalized GLCM LoG (sigma = 1)

Run Entropy GLRLM LoG (sigma = 1)

Informational Measure of Correlation 1 GLCM LoG (sigma = 2)

Dependence Variance GLDM LoG (sigma = 2)

Small Area Emphasis GLSZM LoG (sigma = 3)

Dependence Variance GLDM LoG (sigma = 3)

Informational Measure of Correlation 1 GLCM LoG (sigma = 4)

Informational Measure of Correlation 1 GLCM LoG (sigma = 5)

Small Area Emphasis GLSZM LoG (sigma = 5)

Gray Level Non-Uniformity GLDM Wavelet (low-high pass filter)

Informational Measure of Correlation 1 GLCM Wavelet (high-high pass filter)

Size-Zone Non-Uniformity Normalized GLSZM Wavelet (high-high pass filter)

Short Run Low Gray Level Emphasis GLRLM Wavelet (low-low pass filter)

Large Area Emphasis GLSZM Wavelet (low-low pass filter)

Table 2: List of selected features by feature class and source image, including original, Laplacian of Gaussian-filtered (LoG) and wavelet-
transformed images.

Abbreviations. GLCM, Gray Level Co-occurrence Matrix; GLDM, Gray Level Dependence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level

Size Zone Matrix.

Figure 3. ROC curve showing the classifier performance in the external test cohort.
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and highly inter-correlated (n=633) features yielded a
dataset of 87 features. Next, features with LASSO coeffi-
cients shrinking to zero (n=67) were removed. Of the
remaining features, an optimal number of 17 features
was identified with RFE, as summarized in Table 2.

After tuning on the training cohort (AUC=0.88), the
machine-learning classifier had 92% accuracy (60/65)
in identifying the cartilaginous bone lesions in the exter-
nal test cohort. Specifically, its accuracy in classifying
ACT and CS2 was 98% (44/45) and 80% (16/20),
respectively. Areas under the ROC (Figure 3) and preci-
sion-recall (Figure 4) curves were 0.94 and 0.90,
respectively. Other evaluation metrics are derived from
confusion matrix in Table 3 and detailed in Table 4.
Figure 5 depicts the calibration curve of the classifier in
the external test cohort. The Brier score was 0.09, with
lower values suggestive for better calibration. Shapley
values for the model are presented in Figure 6. The
model, its implementation instructions, all required
files for data extraction and processing are available in
the online study repository (https://github.com/rcuo
colo/mri_act_cs2).

The experienced radiologist had 98% accuracy (64/
65 correct diagnosis provided) in classifying the lesions
with no statistical difference compared to the classifier
(p=0.134 [McNemar’s test]). The radiologist’s accuracy
www.thelancet.com Vol 75 Month January, 2022
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Figure 4. Precision-recall curve illustrating the classifier performance in the external test cohort.

Predicted class

ACT CS2

Actual class ACT 44 1

CS2 4 16

Table 3: Confusion matrix for the external test cohort.

Class Precision Recall F-score

ACT 0.92 0.98 0.95

CS2 0.94 0.80 0.86

Weighted average 0.92 0.92 0.92

Table 4: Classifier accuracy metrics weighted average and by
class in the external test cohort.

Figure 5. Calibration curve in

www.thelancet.com Vol 75 Month January, 2022
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was 100% (45/45) and 95% (19/20) in classifying ACT
and CS2, respectively. The radiologist and the classifier
agreed on the final diagnosis in 94% (61/65) of cases,
as one case was misdiagnosed by both.
Discussion
The main finding of our study was that our machine
learning method was 92% accurate in differentiating ACT
from CS2 of long bones based on T1-weighted MRI radio-
mic features. This result was achieved in an independent
cohort of patients from a second institution (external test
cohort) and did not differ compared to a dedicated bone
tumour radiologist with 35-year experience.

Our findings have clinical relevance as therapeutic
strategies for ACT and CS2 in long bones are entirely
different and mainly based on MRI. The difference in
treatment strategies between ACT and enchondroma is
disappearing, as watchful waiting in ACT has become
the external test cohort.

7



Figure 6. Beeswarm plot of feature Shapley values in the final model.

Figure 7. Native and fat-saturated post-contrast T1-weighted sequences show three different cases of cartilaginous bone tumors,
including ACT of the femur (a-b), CS2 of the femur (c-d) and CS2 of the humerus (e-f). Cortical breakthrough and soft-tissue exten-
sion are highly suspicious of high-grade lesion in the femur (c-d), whereas no suspicious feature is qualitatively seen in the humerus
(e-f). Post-contrast images were qualitatively assessed by the radiologists, but they were not included in the radiomics-based
machine learning analysis.

8
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an increasingly favoured option over intralesional
curettage.6�8 Thus, radiological focus has shifted from
differentiating enchondroma from ACT towards identi-
fying high grade CS. The exact, conservative, options for
managing enchondroma and ACT are currently under
evaluation, but there is consensus that CS2 needs wide
resection.8 Additionally, clinical outcome strongly
depends on tumor grading, as reported 5- and 10-year
www.thelancet.com Vol 75 Month January, 2022
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overall survival rates are 87-99% and 88-95% for ACT/
grade I CS, while they are 74-99% and 58-86% for CS2,
respectively.3,4

Radiomic studies to date have focused on the classifi-
cation of cartilaginous bone tumours, such as enchon-
droma, ACT and high-grade CS, using radiomics
alone27�29 or combined with machine learning.13,14 Par-
ticularly, in a recent study we focused on CT radiomics-
based machine learning and the distinction between
ACT and high-grade CS of long bones, including CS2,
grade III and dedifferentiated CS in the latter group.13

One-hundred-twenty patients were included from two
institutions (IRCCS Orthopaedic Institute Galeazzi in
Milan and IRCCS Regina Elena National Cancer Insti-
tute in Rome, Italy) and split into training and external
test cohorts, as done in our current study. Machine learn-
ing had 75% accuracy in identifying the lesions in the
external test cohort with no difference compared to an
experienced radiologist.13 Previously, we used machine
learning in combination with non-contrast MRI radio-
mics to discriminate ACT from high-grade CS.14 Only 58
patients from the same centre were included and the
machine learning classifier was internally tested using a
hold-out set as a test cohort, achieving 75% accuracy. In
this work, radiomic features were extracted from both T1-
weighted and T2-weighted sequences, but only T1-
weighted MRI features were selected during dimension-
ality reduction (i.e. feature selection) process.14 Based on
this preliminary finding, in the current study we inten-
tionally focused on T1-weighted MRI radiomics. Our cur-
rent study addressed the most relevant clinical issue of
differentiating between ACT and CS2 of long bones,8

thus excluding higher-grade CS, that more easily identi-
fied on MRI. The population of our study was larger than
previous publications, including 158 patients from two
specialized institutions (IRCCS Orthopaedic Institute
Galeazzi in Milan, Italy and Leiden University Medical
Centre in The Netherlands), which allowed for model val-
idation on independent data from the external test
cohort. In the present study, the workflow was similar to
the above discussed CT-based study from our group,13

although some differences mainly related to feature
selection process and machine learning classification
existed. Particularly, the pipeline was improved by
employing a random search hyperparameter tuning pro-
cess and classifier calibration through nested cross-vali-
dation. Our classifier (Extra Trees classifier) had 92%
accuracy overall, 98% in identifying ACT and 80% in
identifying CS2 in the external test cohort based on T1-
weighted MRI radiomics, respectively, overlapping a ded-
icated bone tumour radiologist with 35-year experience
who read all available MRI sequences. Thus, although
the different outcome cannot be distinctly attributed to
larger population, differences in workflow or input image
(MRI, rather than CT as in13), our current method
showed better performance than previous studies13,14 to
solve the clinical problem of ACT/CS2 differentiation.
www.thelancet.com Vol 75 Month January, 2022
Some limitations of our study need to be addressed.
First, the design of our study is retrospective that, how-
ever, allowed including a large number of patients with a
relatively uncommon disease. Also, a prospective analysis
is not strictly necessary for radiomic studies.30 Second,
we performed bidimensional segmentation on the MRI
slice showing the largest lesion diameter. This decision
was taken following our recent finding that no difference
in reproducible feature rates exists between bidimen-
sional and volumetric MRI-based texture analysis 31, and
the latter would also be less easily performed in clinical
practice. Third, ACT was over-represented compared to
CS2 in our population of study. However, this accurately
reflects the incidence of ACT and CS2 in clinical prac-
tice,4 and class balancing was performed to artificially
oversample the minority class in the training cohort.25

Fourth, contrast-enhanced MRI was not used for radio-
mics-based machine learning analysis. On one hand, our
intention was to keep our model as simple as possible by
focusing on a single sequence and non-contrast T1-
weighted images are almost always part of MRI protocols
in these patients. On the other hand, we favoured having
a large population of study over including contrast-
enhanced MRI, which was not available in all our cases.
Our findings open the possibility for future studies to
investigate the added value of machine learning and con-
trast-enhanced MRI radiomics for classification of carti-
laginous bone tumours. Finally, while a clear correlation
of specific radiomic features with lesion phenotypical
characteristics remains complex to identify, the Shapley
value plot offers a degree of explainability and insight on
the inner workings of our model.

In conclusion, our machine learning method was
highly accurate in discriminating ACT from CS2 of
long bones based on radiomic features obtained from
T1-weighted MRI. Our large population of study and the
excellent performance achieved using independent data
from different institutions ensure the generalizability of
our findings. Thus, radiomics-based machine learning
is an objective MRI method that may be used in clinical
decision making by accurately differentiating between
ACT and CS2. Future studies are warranted to verify
the transferability of our findings into clinical practice,
particularly involving inexperienced radiologists, who
may mostly benefit in using this tool. Additionally, our
findings from the present and previous works may be
compared with other studies from different groups,
using meta-analysis, in order to deeper investigate the
theoretical aspects of radiomics and machine learning
regarding cartilaginous bone tumours.
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