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ABSTRACT

Objective: To facilitate patient disease subset and risk factor identification by constructing a pipeline which is

generalizable, provides easily interpretable results, and allows replication by overcoming electronic health

records (EHRs) batch effects.

Material and Methods: We used 1872 billing codes in EHRs of 102 880 patients from 12 healthcare systems. Us-

ing tools borrowed from single-cell omics, we mitigated center-specific batch effects and performed clustering

to identify patients with highly similar medical history patterns across the various centers. Our visualization

method (PheSpec) depicts the phenotypic profile of clusters, applies a novel filtering of noninformative codes

(Ranked Scope Pervasion), and indicates the most distinguishing features.

Results: We observed 114 clinically meaningful profiles, for example, linking prostate hyperplasia with cancer

and diabetes with cardiovascular problems and grouping pediatric developmental disorders. Our framework

identified disease subsets, exemplified by 6 “other headache” clusters, where phenotypic profiles suggested

different underlying mechanisms: migraine, convulsion, injury, eye problems, joint pain, and pituitary gland dis-

orders. Phenotypic patterns replicated well, with high correlations of �0.75 to an average of 6 (2–8) of the 12 dif-

ferent cohorts, demonstrating the consistency with which our method discovers disease history profiles.

Discussion: Costly clinical research ventures should be based on solid hypotheses. We repurpose methods

from single-cell omics to build these hypotheses from observational EHR data, distilling useful information

from complex data.

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Conclusion: We establish a generalizable pipeline for the identification and replication of clinically meaningful

(sub)phenotypes from widely available high-dimensional billing codes. This approach overcomes datatype

problems and produces comprehensive visualizations of validation-ready phenotypes.

Key words: electronic health records, clustering, electronic medical records, ICD, PhenoGraph, eMERGE

BACKGROUND AND SIGNIFICANCE

In many diseases, patients exhibit a wide variety of symptoms, treat-

ment responses, and disease outcomes. A tantalizing idea is that this

clinical heterogeneity might phenotypically cluster in meaningful

ways. Knowledge of these latent disease populations could enable

enhanced classification of patients into clinically relevant groups,

thus facilitating research into their specific etiology, risk factors,

prognosis, and treatment. This in turn could uncover opportunities

for the repurposing of medication, tailored comorbidity monitoring,

or enhanced population screening.

The increasing availability of electronic health records (EHR)1,2

creates a unique opportunity to discover these disease clusters, along

with their defining risk factors. This can be done in a data-driven

manner, therefore not requiring prior knowledge of the existence of

these subgroups or their characteristics. Databases of EHRs consist

of longitudinal, observational data on a large number of patients.

EHR data encompassing entire hospital systems can comprise mil-

lions of individuals each with thousands of clinical features.

Progress in many subdomains of the life sciences is propelled by

the combination of an ever-increasing data availability, closely fol-

lowed by the development of novel algorithms to analyze and inter-

pret these data. A prime example is the subfield of single-cell

analyses that aims to understand cellular heterogeneity, by analyzing

genomics data (genetic, gene expression, etc) acquired at a single-

cell level. Algorithms for graph construction, for example, K-Near-

est Neighbors (kNN),3 in conjunction with clustering algorithms,

for example, Louvain community detection,4,5 have been instrumen-

tal for exploring cell-to-cell heterogeneity.4–6 Such analytic methods

could be equally useful in the EHR field, in which we are similarly

interested in exploring the heterogeneity between samples with large

numbers of often strongly correlated variables.

It has previously been shown that data from EHR systems can be

used to support clinical research across the field. However, these

past ventures have largely focused on integrating as many EHR com-

ponents as feasible in order to answer questions pertaining to 1 spe-

cific disease.7–13 These algorithms rely on data that are not

universally available, which hampers replication. More in general,

replication of clustering across EHR systems is in our view underrep-

resented in available methods. Replication is challenging by the com-

plexity and data gluttony of the general frameworks, but in the end

crucial for unsupervised methodologies. Finally, clear visualization

remains a challenge in the field of clustering. Across the various

approaches, we observe a high prevalence of main findings reported

in tabular format and the use of network graphs. The latter is in our

view difficult to interpret, because important numerical values are

encoded in visual components such as edges. Interactive visualization

is sometimes used as solution, but they suffer from great loss of in-

formation when presented statically instead of interactively.9,11,14–16

We aspired to develop a pipeline for the identification of subgroups

within diseases which is replicable across different data sources and

different diseases. In order to intuitively show the value and applica-

bility of such a pipeline, clear and modular visualization is essential.

Objective
The aim of this study was to provide a generalizable framework for

employing longitudinally collected EHRs to classify heterogeneous

patient populations on disease diagnostic histories requiring only

billing codes. Through this framework, we aim to identify pheno-

typic clusters and their risk factors, in order to facilitate research

and treatment tailored to more homogenous disease populations. By

developing a concise and attractive visualization method (PheSpec)

along with a visual prevalence-based filtering, ranked scope perva-

sion (RSP), we aspire to a comprehensive comparison of the >1800

phenotypic codes comprising the diagnostic profiles. Using 2 illus-

trative examples of prostate cancer and headache complaints, we

strive to show both the clinical relevance as well as the cross-cohort

replicability of our framework.

MATERIALS AND METHODS

Patient data
We used data from 12 healthcare institutions included in the

eMERGE consortium of biobanks linked with EHR data. All data

are available on request via the eMERGE network. The data were

divided into 12 separate cohorts containing the de-identified disease

diagnosis histories of 102 880 patients gathered between June 1987

and June 2017 in the United States, shared in a secure data reposi-

tory at Vanderbilt University Medical Center. Events were coded us-

ing International Classification of Disease (ICD) codes, which we

translate to a higher hierarchical grouping, namely Phenotype Codes

(PheCodes).17–19 PheCodes combine similar individual ICD codes

into higher level phenotypic categories using a structured ontology

developed for use in Phenotype-Wide Association Studies (Phe-

WAS). These codes contain the full codified medical history of a pa-

tient interacting with a connected network of care providers.

Aggregation of ICD into PheCodes is important, as ICD codes were

recorded using both the 9th and the 10th revision (thus resulting in

codes with overlapping indications) as well as the fact that the

47 574 ICD codes represented a granularity, or specificity, which

conveys limited additional information for our purposes and leads

to a highly sparse dataset. PheCodes were both more distinct and

more informative, making them more suited to our purposes.

We construct a code frequency matrix of the 1872 PheCodes by

counting the number of times they appear during an individual’s

follow-up time, resulting in a sparse (median 0.98 (0.75–1) propor-

tion unobserved codes per individual) quantitative matrix of

102 880 by 1872.

The data collection was approved by the local institutional re-

view boards. We obtained approval from the eMERGE consortium

to use the data for the current study.

Mitigating center-specific batch effects
In order to prevent cohort-specific differences such as coding prac-

tice, referral preference, or diagnostic procedure from driving the

downstream analysis more than the clinical differences we are inter-

762 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/29/5/761/6525611 by Jacob H
eeren user on 20 June 2022



ested in, we employ a powerful batch correction method called Har-

mony.20 This tool models the contribution of unwanted sources of

variation, such as clinical center, to the data and uses mixture re-

gression modeling to remove this confounding variation during sub-

sequent clustering. Instead of modeling the 1872 codes directly,

Harmony projects the records into a linear low-dimensional space

with principal components analysis (PCA). We employed the first

500 principal components, explaining 0.49 of the variance in the

data, and ran Harmony with default parameters, as described in

Korsunsky et al.20

To visualize our data, we utilize a nonlinear technique called t-

distributed Stochastic Neighbor Embedding (t-SNE).21 t-SNE is ca-

pable of projecting the local structure of the high-dimensional data

onto a 2-dimensional plane without an assumption of linearity. It is

often employed in the omics field, for example, to visualize similari-

ties between thousands of samples on the basis of a large number of

cell markers.22 The effect of Harmony’s harmonization is depicted

by the Local Inverse Simpson’s Index (LISI) scores across t-SNE

space.20 The LISI is a measure of local diversity regarding a specific

marker, here center name, for example, how many centers are repre-

sented across the 2D visualization. Successful removal of batch ef-

fect should increase LISI, reflecting that clinically similar records

from different centers are joined together in the Harmonized space.

Clustering on diagnosis events
After harmonization, we want to partition patients based on clinical

similarity. Based on the knowledge that the pan-hospital data should

contain a large number of distinct phenotypes but without a clear a

priori idea of an exact number, we decided to use the PhenoGraph

algorithm with default parameters (k¼30), which uses k-Nearest

Neighbors (kNN) for graph construction and Louvain community

detection for optimization of the cluster definition (modularity opti-

mization).23 For each patient, the algorithm finds and connects the k

nearest neighbors in the high-dimensional space (>1800), thus con-

structing a graph of all patients based on their expression of the full

span of PheCodes. By subsequently identifying regions of the graph

which are strongly connected, communities, or clusters, of pheno-

typically similar patients can be extracted.

Clustered data are once more visualized using t-SNE. No optimi-

zation of the cluster parameters or clustering was performed based

on the 2D representation of the data, as we expected to find the

most relevant structure in the higher dimension and perfect cluster-

ing on this plane cannot be assumed to be reflected on the reduced

dimensionality embedding or vice versa.

Identification of residual structure
Obtained patient clusters may still show interesting heterogeneity af-

ter the initial clustering, which one might wish to explore further.

For this purpose, we included an additional, optional step in our

pipeline which takes all members of a previously identified cluster

and performs another cycle of the graph clustering using just these

patients.

Calculation of top 10 distinguishing features
In order to enhance the explainability of the clustering algorithm,

top 10 codes most predictive for cluster membership are determined

per cluster through 5 times repeated 5-fold cross validated elastic

net regularization. Counts of all 1873 codes are used as possible pre-

dictors and the binary status of being in a particular cluster as the

outcome for each individual. We take the 10 codes with the absolute

largest estimated coefficients and represent their importance through

the within-cluster prevalence, as coefficients from a model derived

using a regularization model are prone to misinterpretation when

taken out of the context of the full model. The decision to visualize

10 codes is based on a need for clear visualization but is otherwise

arbitrary and does not impact the clustering itself, it merely provides

a comprehensive explanation of the clustering “choices” made by

PhenoGraph.

Visualizing phenotypic patterns and defining features:

PheSpecs
To comprehensively visualize the phenotypic patterns that charac-

terize the clusters, we developed PheSpec’s (Phenotype Spectro-

graph). These graphs depict the proportion of patients in the clusters

labeled with each PheCode. To ensure readability, only the most

prevalent top 500 codes of each cluster are included. Peaks in the

main graph are colored based on ICD chapter, see Supplementary

Material 1.

The PheSpecs of the separate datasets also indicate the Pearson

correlation of the dataset-specific peak pattern with the peak pattern

of all datasets combined. This was done to investigate to what ex-

tent the overall phenotype of identified patient clusters generalizes

between individual participating centers. We similarly calculate the

Pearson correlation among the individual centers in order to assess

similarity in their specific patient populations. Both correlation

measures represent the level of correlation between the proportion

of patients expressing each PheCode in the compared sets; a high

correlation coefficient indicates that patients in the 2 groups have a

highly similar pattern of previous events in their medical histories

and can therefore be considered as representing the same clinical

phenotype. The comparison of individual sites to the combined

PheSpec therefore shows how individual sites have contributed to

the complete cluster and correlations among clinical sites shows

how consistent this phenotype is observed across our datasets.

The full phenotypic figure consists of 4 distinct graphs: the PheS-

pec of the entire cluster, the PheSpecs of the independent datasets, a

heatmap showing correlation of the phenotypic patterns between

datasets, and a cluster position graph. It also includes a complemen-

tary table summarizing the cluster’s top 10 codes most predictive of

cluster membership and their within-cluster prevalences. A white

background color indicates a positive regularization coefficient,

gray a negative one. Combined, these graphics show the general phe-

notype (peak pattern), degree of replication of this phenotype across

hospitals (miniatures and heatmap), a measure of cluster homogene-

ity (2D visualization), as well as the distinguishing features of the

phenotype when compared to other patients in our data (table).

Ranked scope pervasion
While our hypothesis-free approach means we avoid filtering of fea-

tures prior to the clustering, our initial visualization showed an over-

representation of certain codes across clusters, which obscured

relevant differences between clusters. We therefore developed a code

score which can be used to filter at the visualization level without af-

fecting the actual clustering, by removing codes that are abundant

but not discriminatory. Ranked Scope Pervasion (RSP) scores are

fully dependent on the scope which one intends to visualize (eg, top

10 most prevalent PheCodes in a cluster) and are calculated for

those codes which occur at least once within this prespecified scope

across all clusters. The scores and upper limit used for filtering are

derived using the following set of functions:

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5 763

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/29/5/761/6525611 by Jacob H
eeren user on 20 June 2022

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac008#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocac008#supplementary-data


RSP ¼
XN

i¼1
1� 1

S
� pi � 1ð Þ

Upper Bound ¼ N � 1� S� 1

S

� �

where N is the number of clusters in the dataset, S the size of the

scope of interest, i an arbitrary cluster index, and pi the position of

the specific PheCode in the ranked scope of cluster i. These calcula-

tions translate to scores which increase the more often a code is ob-

served to rank highly within a cluster and which are thus inversely

proportional to the cluster specificity of the code. The RSP score

maxes out for a hypothetical code which ranks first across all clus-

ters at a value of N and reaches its minimum value of 1
S when a code

is observed merely once at the lowest scope rank. The calculation of

the upper bound we use to determine which codes ought to be fil-

tered out of our visualizations has been constructed such that any

code more pervasive than a hypothetical code which takes the low-

est within-scope position for all clusters is excluded. This results in

the removal of 9 codes from the prevalence-based PheSpec graphs.

Importantly, RSP filtering was applied to the graphs and thus not

performed on the table component of the PheSpec compositions.

Identification of relevant clusters
In order to facilitate inspection, we wanted to identify clusters char-

acterized by an overexpression of a PheCode of interest, in other

words where the PheCode was both part of the top 10 most preva-

lent codes and more prevalent than in the total dataset. We use

“other headache syndromes” as an example.

Clinical expertise validation
We want to assess the level of clinical coherence of our identified

clusters, therefore 3 unaffiliated clinical experts reviewed our clus-

tering. They were asked to reduce the top 10’s of all clusters to a

“logical” clinical phenotype in a parsimonious manner, requiring as

little alteration to the top 10 as possible, by indicating which codes

would need to be removed for the phenotype to be unambiguous.

To enable us to draw any conclusions from these results, we also in-

cluded 10 randomly generated top 10 PheCodes, obtained through

random sampling without replacement of the full list of possible

PheCodes. A coherence measure was derived from the clinician ver-

dicts by taking the proportion of PheCodes left after reduction and

averaging this value over all clinicians.

Programs
All analyses and visualizations were performed using “R” version

3.6.3.24 A list of specific packages can be found in the Supplemen-

tary Material 2. All scripts are publicly available at https://github.

com/MarcMaurits/EHRClustering

RESULTS

Our developed pipeline aims to identify phenotypically similar

groups of patients from highly heterogeneous EHR data. Our ap-

proach combines several existing algorithms (Harmony, Pheno-

Graph) with bespoke analysis tools (PheSpecs, RSP) (Figure 1).

We applied this pipeline to the EHR data of 12 U.S. healthcare

centers of the eMERGE network (demographic and data structure

characteristics in Supplementary Table S1).

We demonstrate that with our analytical pipeline can:

a. Overcome batch effects while maintaining principal differences

between datasets;

b. Obtain clinically meaningful clusters; and

c. Identify phenotypically divergent subsets of diseases.

Harmonization increases cohort mixing without loss of

relevant structure
Due to center-specific conventions concerning EHR usage and treat-

ment decisions, we expect any patient clustering performed on the

pooled data of all 12 cohorts to be at least partially confounded by

between-study variation. In order to account for such batch effects,

we applied Harmony, which stimulates mixing. This mitigated exist-

ing batch effects, as illustrated by a mixed pattern of cluster contri-

butions by cohorts (Supplementary Figure S1). The median (range)

number of cohorts contributing at least 10% of a single cluster is ob-

served to be 3 (1–5). Conversely, the median (range) number of clus-

ters each cohort contributes at least 10% to is 12.5 (2–96). After

applying Harmony, we observe an overall increase in the LISI score,

reflecting that patients form different cohorts now have more similar

characteristics (Figure 2).

Relevant structure should be maintained throughout batch cor-

rection with Harmony, as some disease populations will invariably

be tied to specific datasets, such as children’s hospitals. Harmony is

capable of this, as illustrated by the developmental disorders cluster

with a median age of 5.15 years old (Figure 2); this cluster is very

much dominated by the 2 children’s hospitals in eMERGE, which

are correctly kept together and separate from the remaining datasets.

Obtaining clinically meaningful phenotypes
We were presented with 114 clusters with a median (range) number

of patients of 657 (88–4817). Reduction of disease diagnosis data

from 1872 to 2 dimensions using t-SNE showed distinct clusters of

patients (Supplementary Figure S2). With scope of 10, chosen for

brevity and clarity, we derive an upper RSP bound of 11.4, above

which 9 PheCodes (eg, 1010 “Other tests,” 401.1 “Essential hyper-

tension”) are excluded from visualization (Supplementary Table S2).

The identified clusters represented meaningful clinical pheno-

types; of our 114 clusters, 94 (82%) were at least 50% coherent

Figure 1. Full pipeline flowchart. Overview of the full pipeline described in

this manuscript. As indicated by the legend, steps in the green field are part

of Harmony and those in the purple field are part of PhenoGraph.
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(codes conforming to a conceivable phenotype) according to the av-

eraged clinician opinions. Only 20% of the fake clusters reached

this same threshold (Supplementary Figure S3). A further example is

the cluster with diabetes and several cardiovascular complications

such as coronary atherosclerosis and peripheral vascular disease

(Supplementary Figure S4). This shows how clusters highlight the re-

lation between risk factors (eg, diabetes) and adverse health out-

comes (eg, cardiovascular problems), without assumptions of

causality. We will discuss a few selected examples below (full results

in Supplementary File 1).

We further illustrate the results of our framework by discussing

a cluster which is characterized by prostate cancer. This cluster is

unsurprisingly a male-dominated patient cluster (Figure 3) consist-

ing of 1888 patients (92% male). As expected, female patients with

highly similar phenotypes form only a small portion of the cluster.

The PheSpec gives us an insight into the phenotype by highlighting

the top 3 most prevalent codes: “erectile dysfunction,” “hyperplasia

of prostate,” and “cancer of prostate.” This is complemented with a

table of the most distinguishing PheCodes; the codes most predictive

of cluster membership are consistent with a prostate cancer patient

population. A similar phenotypic pattern is seen across 8/12 datasets

(correlations range from 0.82 to 0.97), meaning highly similar pa-

tient populations are present across various centers.

Upon a t-SNE-based visual inspection, we noted interesting re-

sidual heterogeneity. We therefore reran our pipeline on just the

patients included in the original prostate cancer cluster. The newly

identified clusters mapped well to the visual heterogeneity detected

with the t-SNE. These subsets are indicative of prostate cancer in

differing stages of the diagnostic process, ranging from very early

problems such as urinary retention to the actual diagnosis of pros-

tate cancer (Supplementary Figure S5).

The elastic net prediction models for all clusters can be found in

the Supplementary File 2. We note that these models are built to dis-

criminate between the specific clusters in this particular dataset and

should not be interpreted as accurate models for cluster prediction

in a different setting.

Identifying phenotypically divergent subsets of

diseases
When analyzing the patient clusters, one sees that different clusters

could be enriched for the same disease code yet would differ in other

co-occurring disease codes. In effect, such patient clusters can be

viewed as phenotypically different subgroups of the same disease.

To systematically identify such relations between patient clusters,

we employed prevalence-rank plots. In the total set, we observed 67

disease terms enriched in more than 1 patient cluster (Supplemen-

tary Figure S6).

We further elaborate on 1 such disease term “other headache

syndromes,” as it is an intuitive example of a clinical manifestation

with a very heterogeneous etiology. We distinguished 6 groups of

patients presenting with headache symptoms (Figure 4). Their PheS-

pecs showed clearly distinguishable clinical features in each group

(Figure 5); clusters were characterized by migraine, swelling of the

eye, joint pain, convulsions, pituitary gland disorders, or injury

(Supplementary Figure S7). Each of these subpopulations replicated

well across multiple datasets, with on average 6 (2–8) individual co-

hort populations correlating strongly (�0.75) to the full cluster.

Each cluster consisted of at least 2 datasets contributing at least

10% of the total number of cluster members.

DISCUSSION

With this proof-of-principle study we have described our methodol-

ogy to expose hidden subpopulations in EHR data and to identify

additional phenotypes in these populations. We used established

Figure 2. The effects of dataset harmonization. Overview showing (A) the t-SNE embedding of all 102,880 individuals colored for LISI score prior to harmonization

with Harmony and (B) the same post-harmonization, as well as (C) an example showing that relevant structure is maintained by (D) not forcing dataset mixing

where local structure is best represented by a small selection of datasets (developmental disorders in children’s hospitals, green arrows in A and B).
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single-cell approaches and applied them to the processing and subse-

quent analysis of complex medical record data. We ascertain that

our methods are capable of extracting subpopulations more intricate

than 1-on-1 disease associations, without any prior knowledge of

the potential existence of such latent structure. As our approach

overcomes heterogeneity between medical centers, it also allows rep-

lication of these results. Our RSP filtering offers a way to reduce

noise by removing noninformative features, which combined with

our PheSpecs facilitates visual data exploration for the identification

of cluster defining factors. To show the efficacy of our framework,

we applied it to 12 different cohorts, which we harmonized into 1

dataset while maintaining the structure inherent in the EHR. Graph-

based clustering identifies higher dimensional neighborhoods and is

able to extract patient clusters which consist of individuals with

high expression similarity of over 1800 PheCodes. From the similar

expression patterns observed across multiple contributing cohorts

within clusters, we conclude that the stratifications shown here are

not the product of random clustering. Moreover, by inspecting sev-

eral headache associated populations, we highlight the fact that this

methodology is capable of differentiating people with similar pheno-

typic characteristics into clinically coherent and relevant subgroups.

The potential to distinguish as-of-yet unknown patient populations

in complex diseases seems clear. All 6 clusters are composed of

patients presenting with the same symptom (headache); however,

we are looking at very different subgroups with regard to medical

history. This would, in a hypothesis generating study, provide inter-

esting factors to investigate for an etiological role.

Our pipeline offers a solution to the problem of multiple latent

(sub)phenotype, which exists in many complex diseases. Conven-

tional methodologies are ill-suited to this task, as they rely on prior

assumptions of linearity (principal component analysis), specific risk

factors (controlled cohort study), or both (linear regression analy-

sis). More sophisticated tools tend to combine data sources and re-

quire additional individual-level data, such as sex and

age.9,11,13,15,25 Our single-cell inspired approach uses only deidenti-

fied medical history data to simultaneously identify the subsets as

well as important risk events, overcoming the unknown subpopula-

tion paradox; not being able to identify risk factors when the dis-

eases are heterogeneous, while simultaneously not being able to

identify disease subsets when independent risk factors are unknown.

Previous studies have focused on genetics when aiming for further

classification of patients,26 have developed their methodology for

the investigation of 1 particular disease,27 or used a very limited

number of features.28 Some work has also been performed in the di-

Figure 3. Prostate cancer cluster PheSpec composition. PheSpec composition showing the phenotypic profile (¼ profile of medical events) of one of the identified

clusters as captured by the methodology described in this paper. The main PheSpec graph (A) is a representation of the harmonized dataset where the frequency

(y-axis) reflects the proportion of total cluster members with each RSP filtered top 500 Phenotypic code (PheCode) (x-axis), the top 3 most prevalent codes are la-

beled. In the main PheSpec, all PheCodes are grouped and colored by ICD chapter (Supplementary Material 1). Table (B) shows the prevalence of the 10 most pre-

dictive codes of cluster membership (selected by elastic net), white background indicates a positive predictor, gray a negative one. The miniatures (C) show the

replication of the phenotype cluster of prostate cancer across the separate cohorts, by splitting the cluster into its individual centers. Correlations of the cluster’s

phenotypic profile between each centers are shown as a heatmap (D). Localization of the cluster in t-SNE space is shown in purple (E).
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rection of disease prediction from EHR data and investigators have

tried a more generalist approach, aiming to improve clustering by in-

corporating various other variables (eg, lab values, demographics).

Finally, investigators have created algorithms to phenotype individ-

ual patients based on their EHR. However, our approach provides a

more comprehensive method for gaining insight into the underlying

structure of illness by clustering patients on purely their phenome-

wide disease history. The fact that these phenotype clusters are

shown to transcend cohorts, through multicenter replication with

Harmony and clinical validation by several experts, is further proof

of the relevance of this approach.

Although our approach overcomes several of the current limita-

tions in the field of EHR clustering, several potential limitations ex-

ist. First, by harmonizing the separate cohorts we potentially reduce

informative patient differences. This does not appear to pose a large

problem, as we do not observe forced introduction of members from

each cohort in clusters where certain centers are expected to domi-

nate (eg, children development in children’s hospitals). A further

complication of the Harmonization is the need to collate all data in

1 digital location, something which could hamper adoption of our

pipeline when data cannot be shared. Recently an adaptation to

Harmony, called Symphony, was released which is capable of har-

monizing data based on a comprehensive atlas, thus only requiring

the sharing of a representative sample of data to construct said atlas,

after which downstream analyses could be contained to individual

sites.29 Second, we utilize elastic net regularization, while we aim to

eliminate any assumption of linearity throughout the pipeline, as we

are convinced that the disease history associations of interest go be-

yond linear 1-on-1 connections. We nonetheless chose to rely on EN

for the identification of the top 10 most discerning PheCodes of a

cluster, as it is but one aspect of the downstream analysis of identi-

fied clusters. Linearly identified discerning codes are informative

and therefore serve an important supporting explainability role in

the visualization. A further subjective decision is the use of RSP fil-

tering of the visualizations. One might argue that highly pervasive

codes are still of interest because they are common complaints; how-

ever, our approach aims to facilitate the superficial screening of

truly distinct phenotypes in order to generate hypotheses. Further-

more, the development of RSP filtering was spurred by screening of

preliminary results and is thus a tailored solution which could lead

to reduced generalizability. However, by using a subjective, data-

driven measure, we believe this issue is greatly mitigated. The pipe-

line proposed here could guide further studies, in which study-spe-

cific factors will likely lead to different parameter selections. The

flexibility of the individual components (unsupervised clustering,

variable visualization scopes, etc) results in a highly adaptable

framework in which parameters such as the k value in PhenoGraph

can be tweaked according to prior knowledge. We opt for an “out-

of-the-box” approach to avoid overfitting to our specific datasets,

for while optimizing might lead to improved results in our specific

case, it would surely reduce the generalizability of the pipeline. We

have to note that co-occurrence and longitudinal associations be-

tween PheCodes could be the result of clinician behavior. We there-

fore emphasize that our approach is hypothesis-generating and that

validation of such hypotheses beyond our 12-cohort replication is

important. In applied studies, integration of the extended EHR (eg,

lab values, medications, demographics) could further aid in the clari-

fication and validation of any results.

The next step of our research will be to apply the methodology

to complex diseases known to be highly heterogeneous, such as

rheumatoid arthritis, in order to uncover novel patient subgroups.

CONCLUSION

Our EHR clustering pipeline can identify latent subgroups of patients

with the same phenotype but different etiologies, comorbidities, and

prognoses together with their corresponding diagnostic events. Lack-

ing stringent dependency upon prior knowledge and researcher

assumptions this approach can lead to novel hypotheses in incom-

pletely understood diseases. We overcame replicability and generaliz-

Figure 4. Prevalence–rank plot “other headache syndromes.” Clusters of interest for PheCode “Other headache syndromes.” The Prevalence-rank plot depicts

the proportion of patients in the cluster with the code of interest on the y-axis and the prevalence rank of the code within the cluster on the x-axis. The prevalence

of PheCode 339 (“Other headache syndromes”) in the entire set was 0.27 (dotted line). We labeled the clusters (arbitrary cluster identifier) where the prevalence

of this code was higher than its overall prevalence and where the code was present in the clusters’ top 10 most prevalent codes.
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Figure 5. Overview of 6 headache subgroups. N is the number of patients located in the cluster. Location of clusters characterized by “other headache syn-

dromes” in t-SNE space (A) and their corresponding phenotypic profiles (B). The frequency (y-axis) reflects the proportion of total cluster members with each

RSP filtered top 500 code (x-axis). The graphs summarize the data from all cohorts together. For complete PheSpec compositions, see Supplementary Figure S5.
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ability limitations of conventional cluster methods in EHR data by us-

ing widely available high-dimensional billing code data. Through sev-

eral bespoke visual and computational tools we demonstrated that our

method is robust and provides clinically informative results.
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