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Preparation of the ground state of a Hamiltonian is a problem of great significance in physics, with
deep implications in the field of combinatorial optimization. The adiabatic algorithm is known to return
the ground state for sufficiently long preparation times that depend on the a priori unknown spectral gap.
Our work relates in a twofold way. First, we propose a method to obtain information about the spec-
tral profile of the adiabatic evolution. Second, we present the concept of a variational quantum adiabatic
algorithm (VQAA) for optimized adiabatic paths. We aim at combining the strengths of the adiabatic and
the variational approaches for fast and high-fidelity ground-state preparation while keeping the number of
measurements as low as possible. Our algorithms build upon ancilla protocols that we present, which allow
us to directly evaluate the ground-state overlap. We benchmark for a nonintegrable spin-1/2 transverse and
longitudinal Ising chain with N = 53 sites using tensor-network techniques. Using a black-box gradient-
based approach, we report a reduction in the total evolution time for a given desired ground-state fidelity
by a factor of 10, which makes our method suitable for the limited decoherence time of noisy-intermediate
scale quantum devices.

DOI: 10.1103/PRXQuantum.3.020347

I. INTRODUCTION

Remarkable scientific progress in recent years has led
to the first noisy intermediate-scale quantum (NISQ) [1]
devices. Current NISQ devices are still limited by the
number of qubits available, their gate fidelity, and the max-
imum circuit depth. Much research effort is put into the
investigation of algorithms for digital NISQ devices that
could hold the promise of a (practical) quantum advantage
[2,3]. Nevertheless, the simulation of large quantum many-
body systems on these devices will still remain challenging
over the coming years. Analog quantum simulators, how-
ever, are able to implement some quantum dynamics very
efficiently. Furthermore, analog quantum simulators are
especially well suited for probing universal features of
quantum many-body systems. Several powerful concepts
and experimental realizations of digital NISQ devices and
analog quantum simulators have been put forward [4–6].

One particularly important problem is to prepare the
ground state of quantum many-body systems, this being
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relevant for a wide range of physics applications and
closely related to combinatorial optimization tasks. Quan-
tum computers already save an exponential memory cost
compared to a classical computer in the representation of
the quantum state, making a quantum device the natu-
ral choice to compute desired quantum states. Moreover,
ground states are also of great importance for optimization
problems, as the solutions to combinatorial problems can
be naturally encoded into a classical Hamiltonian.

The problem of finding the ground state is known to
be quantum Merlin-Arthur (QMA) complete [7], which
translates roughly to the analog of nondeterministic poly-
nomial (NP) complete for a quantum computer. However,
two different promising heuristic approaches have been
established. First and most straightforwardly, there is the
adiabatic approach. In order to prepare the ground state
of a target Hamiltonian HT with a quantum adiabatic
algorithm (QAA) [8], one takes an adiabatic path H(s) =
(1− s)H0 + sHT. Starting from the ground state of a trivial
Hamiltonian H0 at s(0) = 0, the parameter s(t) is changed
with time up to the final value s(T) = 1. Given a nondegen-
erate ground state along the path, the adiabatic algorithm
is known to return the ground state for a sufficiently long
preparation time T. However, T is a function of the spec-
tral energy gap �(s) between the ground state and the first
excited state along the adiabatic path and is not known
a priori [9–12]. Due to the limited decoherence times of
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current NISQ devices and analog quantum simulators, the
preparation time T is of great relevance for the feasibil-
ity of the adiabatic approach. Different adiabatic paths can
be constructed and a linear time schedule is generally not
optimal in the sense of a minimal T. This is especially rel-
evant when the gap �(s) becomes very small, as it occurs
in the presence of a quantum phase transition.

Optimal adiabatic paths have been the subject of inten-
sive research efforts both in the framework of shortcuts to
adiabaticity as well as optimal control theory [13,14]. For
the problem of an unstructured search, Grover-type speed-
ups have been shown, where the full spectral information
about the problem is available [15,16].

Another approach to preparation of the ground state is
the quantum approximate optimization algorithm (QAOA)
[17], which seeks to overcome the limitations of the QAA.
It generalizes the QAA by splitting the total time into
chunks, {Ti}, where one alternates between H0 and HT,
and takes {Ti} as the variational parameters. The QAOA
includes the QAA in the sense that there exist Ti = iT/L,
where i = {1, . . . , L} and L is sufficiently large, corre-
sponding to the Trotter evolution of the QAA. However,
it is expected that the QAOA can provide a speed-up by
choosing the parameters {Ti} larger than in Trotterized
QAA.

In fact, the QAOA belongs to a wider class of variational
quantum algorithms (VQA) in the spirit of the variational
principle, which is widely used in physics. While the quan-
tum computer is used to prepare the states and perform
the measurements, the optimization of the parameters is
carried out classically. In practice, the performance of the
VQA can be curbed, since the number of measurements
necessary to estimate an objective function may scale
unfavorably, and due to the presence of plateaus in the
energy landscape, including noise-induced barren plateaus
[18–21].

In this work, we propose the concept of a variational
quantum adiabatic algorithm (VQAA) to find optimal
adiabatic paths for high-fidelity ground-state preparation,
thereby combining the strengths of adiabatic state prepara-
tion and the VQA. Akin to the QAOA, the times {Ti} are
treated as the variational parameters. However, the evolu-
tion in the different chunks is performed adiabatically, sim-
ilarly to the QAA. Here, the VQAA differs from the fixed
Hamiltonians found in the QAOA. The VQAA allows for
a significant acceleration compared to the QAA with a lin-
ear adiabatic path and yet requires fewer parameters and
measurements than the QAOA.

We discuss different approaches to finding such a
parametrized optimal adiabatic path. The approaches are
suited to different resource requirements, some making
use of ancilla protocols to estimate the ground-state over-
lap. These protocols rely on controlled unitary evolution,
which leads to many benefits in the quantum computing
setting. Besides being central to the canonical quantum

phase-estimation algorithm [22], it also allows us to access
overlaps between initial and final states for a given uni-
tary transformation by looking at the ancilla only and it
enables spectral projections on the state of the system if
one enables postselection on the ancilla [23].

The ancilla techniques presented here may prove to
be useful tools by themselves for other variational algo-
rithms. This is especially true for our protocol with two
ancilla qubits, as this constitutes a case of nontrivial dis-
tributed quantum computing. The interconnection of mul-
tiple quantum devices using a coherent link is a promising
path forward for the field of quantum computing [24].

We benchmark the different algorithms with a quantum
Hamiltonian and up to N = 100 qubits, which is what
is expected for the new generation of NISQ devices or
analog quantum simulators. We take a Hamiltonian that
is nontrivial (nonintegrable) but for which we can simu-
late the action of a quantum computer classically using
tensor-network techniques. In the case of a small gap in
the adiabatic path, in the presence of a phase transition, we
report significant reductions in the required evolution time
to reach a given desired ground-state fidelity. For a chain
of N = 53 qubits and a target fidelity of 90%, the VQAA
is able to reduce the total evolution time by a factor of 10
compared to a linear adiabatic path.

Having mentioned earlier that the spectral gap �(s) is
a priori unknown, obtaining knowledge about the spectral
gap �(s) can be as hard a problem as finding the ground
state itself. However, due to the interconnection between
the spectral gap and the performance of adiabatic state
preparation, we are able to propose a form of adiabatic
spectroscopy to find spectral-gap properties. By perform-
ing adiabatic sweeps on the system and being equipped
with either the ancilla protocols for ground-state estimation
or backward time evolution, a measure for both the posi-
tion and the smallness of the spectral gap can be obtained.
A related scheme using backward time evolution, albeit
initializing the evolution in a superposition, has been sug-
gested in Ref. [25]. Knowledge about the spectral gap
may be applied to gain important insights about quantum
many-body physics, obtain the phase diagram of a physi-
cal system, or formulate the optimal path for adiabatic state
preparation.

The structure of this paper is as follows. In Sec. II, we
outline our main results. Then, we discuss our approach
to adiabatic spectroscopy in Sec. III, and in Sec. IV we
present two protocols for estimating the ground state at
a given point along the adiabatic path using one or two
ancillas. In Sec. V, we introduce the general concept of a
VQAA for ground-state preparation and discuss different
specific algorithms with different resource requirements
(Sec. VI). After that, in Sec. VII, the model for bench-
marking our algorithms is described and we present our
results. Finally, we comment on the number of measure-
ments necessary in our approach (Sec. VII D) and the
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impact of noise on our algorithms (Sec. VIII). In the appen-
dices, we give the necessary background to make the paper
self-contained: a theoretical description of the adiabatic
algorithm and the QAOA as well as Bayesian inference for
beta-Bernoulli models, which are relevant for performing
hypothesis testing.

II. MAIN RESULTS

Our main results include (1) protocols for eigenstate-
closeness estimation and (2) a proposal for adiabatic spec-
troscopy, as well as (3) a concept for VQAAs, including a
black-box gradient-based method:

(1) Given the possibility of implementing controlled
unitary evolution on a quantum state, where the
dynamics are controlled by a single ancilla qubit,
information about the closeness to the next eigen-
state can be extracted from the ancilla. We show that
for a quantum state |ψ〉 =∑

j ψj |φj 〉 and Hamilto-
nian H =∑

j Ej |φj 〉 〈φj |, we need to obtain α :=
∑

j |ψj |2 exp(−iEj τ) by measuring the ancilla.
Then, for suitable τ , we can deduce that the state
|ψ〉 is an eigenstate of H only if |α| = 1. By a self-
consistent argument and suitable construction, the
closest eigenstate may be identified with the ground
state.

(2) The profile of the spectral gap �(s) between the
ground-state and the first excited-state energy of an
interpolating Hamiltonian H(s) is closely connected
to the evolution time T required for adiabatic state
preparation. We analyze the evolution time T(s) nec-
essary to prepare the ground state of H(s) with
a given target fidelity. The ground-state fidelity is
computed either by time evolving both forward and
backward and measuring the fidelity with the ini-
tial product state or by making use of the ancilla
protocol, which is generally expected to give supe-
rior results. After obtaining the data points for T(s),
we interpolate the curve and compute the deriva-
tive. Corresponding to physical intuition, the curve
of the evolution time features a strong increase when
a small gap is crossed. The derivative ∂T/∂s can
then provide the position and also a measure for the
smallness of the spectral gap (Fig. 1).

(3) In our work, we present the concept of the VQAA
and give specific algorithms that attempt to improve
over the QAA. The main idea is to optimize the adi-
abatic path s(t) by performing a moderate number
of measurements. In our setup, s(t) depends on a
set of parameters, which are chosen through opti-
mization procedures. The key ingredient is to use
the overlap with the ground state as the figure of
merit. The algorithms presented in this work make
use of different protocols to estimate this overlap

FIG. 1. Adiabatic spectroscopy for a chain of N = 53 qubits
and a target ground-state fidelity of 0.7. For the Hamiltonian
H(J , g, h) =∑

i(Jσ
z
i σ

z
i+1 + hσ x

i + gσ z
i ), the adiabatic path is a

linear interpolation from H(0, 1, 0) to H(J , 1, 1). The minima of
the different curves correspond to the position and smallness of
the respective spectral gaps. In the lower plot,−�(s)−2, obtained
using density-matrix-renormalization-group (DMRG) methods,
is shown as a comparison. The match with the Landau-Zener
scaling is not exact, as higher-order corrections from adiabatic
perturbation theory play a role.

and are also distinguished in the way the optimiza-
tion is performed: either by intending to remain
in the ground state at intermediate steps in the
adiabatic path or by optimizing for a maximum
ground-state overlap at the end of the state prepa-
ration (as in the QAOA). The main feature of the
method presented in this paper is that it requires
fewer measurements. Our approach is well suited to
be used in NISQ devices or analog quantum sim-
ulators by reducing the required preparation time
and thus avoiding decoherence. Without knowing
the adiabatic spectrum beforehand, the optimal adi-
abatic paths yield the desired ground state with high
fidelity at only a fraction of the total evolution time
of a nonoptimized adiabatic algorithm (Fig. 2).

III. ADIABATIC SPECTROSCOPY

We seek to gain insights about the adiabatic spectrum of
the Hamiltonian

H(s) = (1− s)H0 + sHT. (1)

The Hamiltonian H(s) describes the adiabatic evolution
from the ground state of a trivial Hamiltonian H0 at s = 0
to the ground state of HT at s = 1, where s = t/T is the
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FIG. 2. Black-box VQAA results for 53 qubits and the ZZXZ
model for the case of a crossed phase transition (J = 3). Results
for three, five, and seven chunks, respectively, are shown. More
chunks do not improve the results as for one avoided level cross-
ing an optimized path can already be approximated with very few
chunks. The quantum-classical feedback loop converges to opti-
mized adiabatic paths that prepare the ground state with > 90%
fidelity for T � 100. In order to achieve this ground-state fidelity
with (nonoptimized) naive QAA, an evolution time about 10
times larger would be required.

parametrized time. The probability that the system transi-
tions out of the ground state in the course of the evolution
is intimately connected with the size of the spectral gap
�(s) = E1(s)− E0(s) between the ground-state and the
first excited-state energy. For each si in a set of data points
{si}, i ∈ {1, . . . , r}, in which r is the resolution of the spec-
troscopy, an efficient root-finding algorithm is used (e.g.,
using a bisection algorithm on the time variable Ti) to find
the evolution time Ti, which reaches a given target ground-
state overlap OT (for a simple algorithmic description, see
the Supplemental Material [26]).

If a small gap is crossed in the adiabatic path—e.g.,
at s∗—this will correspond to a large increase of {Ti}
around and beyond the value s∗. Hence, if we observe
such a rise in the required evolution times {Ti}, we con-
clude that a local minimum in the spectral gap �(s∗)
must be present. In this manner, the position of a small
spectral gap can be obtained. Moreover, the smallness of
�(s∗) is related to the steepness of the increase in the {Ti}
around s∗. For the Landau-Zener (LZ) model, we establish
the relation ∂T(s)/∂s ∼ 1/�(s)2 around the minimal gap
(Appendix A). Since the LZ approach is a toy model to
qualitatively study the property of the spectral gap in adi-
abatic algorithms, we presume that a similar scaling could
persist in a more general sense.

In order to obtain a measure for the ground-state over-
lap for given si, we propose two different approaches. The
first approach is to not make use of the ancilla protocol
and is thus very simple to implement. The initial ground
state |ψ0〉 at s = 0 is adiabatically time evolved forward

with evolution time T̃j , implemented by the unitary opera-
tor U0→si(T̃j ). Here, the T̃j denote the probing values in the
search. We seek to determine the forward time so that we
obtain the evolution time Ti that succeeds in reaching the
given overlap OT. Next, the interactions are reversed in a
backward time evolution from s = si to s = 0 implemented
by U0←si(T̃

B
j ). The backward time T̃B

j 	 T̃j is chosen to be
larger than the forward time evolution. This allows for a
trivial measurement of the ground-state overlap at s = 0,

Õj =
∣
∣
∣〈ψ0|U0←si(T̃

B
j )U0→si(T̃j )|ψ0〉

∣
∣
∣ , (2)

as the state |ψ0〉 is a product state. Once a T̃j is found for
which Õj ≈ OT, we set Ti := T̃j and proceed with the next
data point si+1. Note that it is also sensible to use a large
constant evolution time for the backward path.

We extend this approach by noting that if a small spec-
tral gap �(s∗) is found and we continue to probe for those
si for which si > s∗, it is economical to make use of the
spectral information already obtained. In the spirit of the
VQAA, the adiabatic schedule used in the spectroscopy
should be altered so that the evolution around s∗ is per-
formed very slowly. In this manner, multiple gaps in the
adiabatic spectrum could be investigated. This ancilla-free
approach provides the least stringent requirements on the
experimental setup in a NISQ framework.

However, with some additional effort, it is possible to
directly estimate the ground-state overlap without going
back to the initial state at s = 0. This second approach
hinges on the ability to obtain a measure for the eigenstate
closeness through an ancilla protocol. For every data point
in {si}, we obtain the ground-state overlap for different T̃j
directly:

Õ′j =
∣
∣〈GSsi |U0→si(T̃j )|ψ0〉

∣
∣ , (3)

where |GSsi〉 is the ground state at si. Now, just as in the
first approach, we search for the T̃j such that Õ′j ≈ OT and
set Ti := T̃j .

Hence, this form of adiabatic spectroscopy can provide
a tool in order to experimentally gain knowledge about
the adiabatic spectrum. We simulate this technique classi-
cally with N = 53 qubits for different spectral profiles and
present the results in Fig. 1 and Sec. VII B.

IV. PROTOCOL FOR GROUND-STATE
CLOSENESS ESTIMATION

A very important ingredient of our algorithms is the abil-
ity to estimate the overlap with a nondegenerate ground
state. In this section, we introduce two suitable protocols
using ancillas and comment briefly on their benefits. The
ancilla protocols only require the ability to implement uni-
tary evolution controlled on a single ancilla and to perform
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measurements on the ancilla. Controlled unitary evolution
is a valuable ingredient for quantum computing, e.g., in
the well-known quantum phase-estimation algorithm [22].
The use of ancilla measurements for ground-state prepa-
ration has been investigated previously and can be used
to construct spectral projection operators similar to the
quantum Zeno effect if one allows for postselection on the
ancilla [23]. In our work, we utilize the ancilla in order to
extract information about the eigenstate closeness, which
can then be used in the different applications of the VQAA
in a highly versatile manner.

A. Single-ancilla protocol

We first present a protocol for eigenstate-closeness esti-
mation using a single ancilla in the |+〉 state [27]. The
quantum circuit shown in Fig. 3 can be used to compare
the overlap of an initial quantum state |ψ〉 with the state
after the unitary evolution |ψevo〉:

〈ψ |ψevo〉 = 〈σx + iσy〉ancilla . (4)

For a fixed Hamiltonian H =∑
j Ej |φj 〉 〈φj | with the

unitary

U |φj 〉 = e−iHτ |φj 〉 = e−iEj τ |φj 〉 , (5)

we write the normalized state |ψ〉 =∑
j ψj |φj 〉 in the

eigenbasis of H . Then, we analyze the quantum circuit
for this choice of U. We obtain, for the density matrix
of the ancilla qubit after the controlled unitary evolution
(Appendix B 1),

ρa =
∑

j

|ψj |2
2

(
1 eiEj τ

e−iEj τ 1

)

. (6)

For a quantum state |ψ〉 that is an eigenstate, the rank of ρa
will be 1. Due to the specific structure of ρa, only one off-
diagonal matrix element is needed in order to determine
the rank of ρa. We note, using Eq. (B8), that

〈ψ |ψevo〉 =
∑

j

|ψj |2e−iEj τ =: α. (7)

For suitable τ , |ψevo〉 is an eigenstate only if |α| = 1.
The time τ needs to be chosen so that the complex sum-
mands of α with nonvanishing amplitude do not have

|ψ〉 U

|+〉

FIG. 3. The quantum circuit for unitary dynamics controlled
by a single ancilla qubit in the |+〉 state.

FIG. 4. An exemplary eigenstate clock featuring the complex
summands of α for τ=1. Here, the term corresponding to the
ground state |ψ0|2 exp(−iE0τ) and the first excited-state term
|ψ1|2 exp(−iE1τ) lie quite closely together in phase, which leads
to problematic constructive interference. However, as the point-
ers rotate with their respective eigenenergies, they will be well
separated for suitable larger τ . Note that in this instance, the sum-
mands corresponding to higher excited eigenstates are taken to be
very small and are not visible.

approximately equal phases. In this unlikely case of match-
ing phases, we would see constructive interference, so
that |α| = 1 could be true even if |ψevo〉 is not an eigen-
state. Visualizing the summands of α on a complex plane
(Fig. 4), this becomes rather intuitive. The choice for τ is
related to the spectrum of H . For the sake of this argument,
we assume that the overlaps with the ground state and the
first excited state are the only other nonvanishing over-
laps. Then, an arbitrary τ would correspond to choosing an
l ∈ Z in τ = π l/� at random (Appendix B 3). For l	 1,
the probability of choosing an odd value of l is approx-
imately 1/2. Therefore, by testing several random values
of τ ∈ O(�−1) it is possible to deduce information about
the system whether it is in a mixed state or an eigenstate
with high confidence (cf. the Chernoff-Hoeffding bound
in Sec. VII D). Through a self-consistent argument, we
can conclude that the main contribution to α comes from
the ground state, provided that we remain nearly adiabatic
throughout the path. We can bound the maximal error in
|α(τ)|2 by computing the average for up to large values of
an uniformly distributed τ as

E2 := lim
K→∞

Eτ ∼ unif. dist. in [0,K](|α(τ)|2) =
∑

i

|ψi|4. (8)

Then, we obtain

|ψ0|2 ≥ 1
2
+ 1

2

√
2E2 − 1 (9)

for the ground-state population |ψ0|2. In practice, terms
in Eq. (7) corresponding to higher eigenenergies will be
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rather small and will destructively interfere with each
other. Therefore, this bound is not tight and much smaller
errors are expected in an experiment (cf. Appendix B 4).

Our protocol takes inspiration from semiclassical
approaches to the quantum phase-estimation algorithm
[28,29]. However, these algorithms also seek to determine
the energy. As we argue above, the ground-state overlap is
better suited as the cost function for algorithms for finding
the ground state. Therefore, we devise the ancilla proto-
cols, which are oblivious to the energy value at any given
point.

B. Entangled-ancillas protocol

Building upon the single-ancilla protocol, we introduce
a protocol using two identical quantum systems with one
ancilla each. The protocol is motivated by the intuition that
the single-ancilla protocol gathers information about the
complex phase of 〈ψ |ψevo〉, which is of no practical use to
us. Instead, we would like to estimate |α| directly, which
this protocol achieves.

We require the possibility of conducting an entangling
measurement (i.e., a Bell measurement) between the two
ancillas of the two systems. Such an entangling measure-
ment could be performed with a microwave quantum link
between two superconducting circuits [24]. This protocol
constitutes an instance of distributed quantum computing
for such a quantum network. Moreover, it is well suited to
existing NISQ devices that lack an all-to-all connectivity,
where the adiabatic evolutions could be implemented on
separate but connected subgraphs [30].

Our goal is to determine the purity of the ancilla. In
general, there is the relation that ρ is pure if and only if
Tr[ρ2] = λ2

1 + λ2
2 = 1 for density matrices, where λ1 and

λ2 are the eigenvalues of ρ. We write the density matrix
and its square as

ρa =
(

a b
c d

)

and ρ2
a =

(
a2 + bc ·
· bc+ d2

)

, (10)

where matrix elements irrelevant to our protocol are
denoted with a dot. With the Bell state |�−〉 =
(|00〉 − |11〉) /√2, we construct a Bell measurement. The
diagonal matrix elements of ρ2

a may then be attained by
considering a composite system where the second sys-
tem has controlled negative time evolution (implementable
by changing the sign of H ). Then, the density matrix of
the ancilla of the second system effectively corresponds
to the transpose of the density matrix of the first ancilla
ρa2 = ρT

a1. The composite system gives

ρa1 ⊗ ρa2=

⎛

⎜
⎜
⎝

a2 · · bc
· · · ·
· · · ·

bc · · d2

⎞

⎟
⎟
⎠ =

1
4

⎛

⎜
⎜
⎝

1 · · |α|2
· · · ·
· · · ·
|α|2 · · 1

⎞

⎟
⎟
⎠ .

(11)

If |ψ〉 is in an eigenstate, the density matrix of the ancilla
ρa is pure and the expectation of the |�−〉 measurement is

〈ρa1 ⊗ ρa2〉|�−〉 =
1
4
(1− |α|2) = 0, (12)

allowing for very-low-variance measurements when |ψ〉
is in the vicinity of the ground state. This protocol is
especially well suited for hypothesis testing (cf. the Sup-
plemental Material [26]).

V. VARIATIONAL QUANTUM ADIABATIC
ALGORITHMS

Preparation of the ground state of a Hamiltonian is a
problem of great significance in physics, with deep impli-
cations in the field of combinatorial optimization. While
adiabatic state preparation is known to return the ground
state for sufficiently long preparation times only, varia-
tional quantum algorithms require a very large number of
measurements in the training phase. We present a toolbox
for VQAAs. Our objective is to prepare the ground state of
a problem Hamiltonian HT with high fidelity while keep-
ing the number of measurements in the process as low as
possible. We aim at finding an optimized profile for the
adiabatic evolution H(s) from the ground state of H0 to the
ground state of HT. For reasons of completeness, we refer
to the Supplemental Material [26] for a treatment of the
adiabatic algorithm and its implementation.

In order to find an optimized adiabatic evolution, we
choose a positive resolution L ∈ N for this velocity pro-
file and split up the adiabatic path into L chunks. Then, for
every chunk i ∈ {1, . . . , L}, an optimal adiabatic evolution
time Ti needs to be determined (Fig. 5).

In every optimization task, it is paramount to keep the
number of parameters to be optimized as low as possible.

E

s
10

1 2 3

T1 T2 T3

|0〉

|1〉

L-1 L

TL-1 TL

FIG. 5. An illustration of a VQAA by splitting the adiabatic
path into L chunks. The ground-state and higher excited-state
energies of H(s) are shown here, being separated by a finite spec-
tral gap. In an adiabatic algorithm, the ground state is prepared
by following a path from a trivial Hamiltonian ground state at
s = 0 to the target Hamiltonian at s = 1.
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This is because every new parameter yields an additional
cost in terms of the number of repetitions necessary to
make all the estimations that are required in the optimiza-
tion of that parameter. In a VQAA, two different options
are possible. One could distribute the total time budget T
for the evolution from s = 0 to s = 1 onto the L chunks
(e.g., evenly spaced) and optimize the chunk lengths. Or,
alternatively, one could distribute the chunks in a given
way and optimize the Ti. For both options, we present
suitable specific algorithms with different resource require-
ments. An essential ingredient for the algorithms is the
ability to obtain information about the closeness of the
quantum state at a given point in the adiabatic path with
the ground state.

VI. PRESENTATION OF THE ALGORITHMS

The concept for the VQAA allows flexibility in the ques-
tion of whether the chunk lengths or the chunk evolution
times Ti are the parameters to be optimized. Also, different
specific classical algorithms can be used for the optimiza-
tion process. Here, we present three different algorithms for
finding the chunk lengths for a fixed total evolution time
and one algorithm for finding the chunk evolution times for
a flexible total T. These algorithms have different resource
requirements and can make use of different ground-state
closeness protocols. The results stated in the abstract are
obtained using the gradient-based black-box optimization
for a fixed total time (Sec. VI A 3).

A. Fixed-total-time optimization

Our proposal for the VQAA allows us to set a maximum
total time for the adiabatic evolution, which is well suited
for the limitations of current quantum devices. Here, the
total adiabatic evolution time T is allocated evenly between
the chunks of the adiabatic path, so that

Ti = T/L ∀i ∈ {1, . . . , L}. (13)

The chunk lengths become the variational parameters to
be optimized, effectively controlling the density of the
adiabatic steps.

1. Ancilla-free optimization for a fixed total time

In order to optimize |〈ψ(s = 1)|GS〉|, we try to keep the
loss in fidelity in the ground-state overlap along the adia-
batic path as small as possible. The chunks are initialized
with equal lengths so that the end positions of each chunk
are at

si = i/L ∀i ∈ {1, . . . , L}, (14)

reproducing what we call naive QAA. The chunk lengths
are s̄i = si − si−1, with s0 = 0. Then, an adiabatic evo-
lution is performed from the initial trivial product state

|ψ0〉 = |ψ(s = 0)〉 = |−〉⊗N up to the end points of each
chunk. This adiabatic evolution is then time reversed (at
the same speed) by changing the sign in the unitaries. The
total forward and backward time evolution between s = 0
and s = si are described by W0→si and W0←si , respectively,
with the backward evolution being slower than the for-
ward evolution. By going back to the initial product state
|−〉⊗N , the implementation of this protocol is rather simple
and allows for low-variance ground-state overlap measure-
ments without ancillas. We denote the individual adiabatic
evolution operators for chunk j from sj−1 to sj in time Tj
with the unitaries Vsj−1,sj (Tj ), so that we write

W0→si =
i∏

j=1

Vsj−1,sj (Tj ), W0←si =
1∏

j=i

Vsj ,sj−1(T
B
j ).

(15)

Now, we compute

Oi =
∣
∣〈ψ0|W0←siW0→si |ψ0〉

∣
∣ (16)

for all i ∈ {1, . . . , L} with O0 = 1. The consecutive ratios
of the overlap are

Ri = Oi

Oi−1
∀i ∈ {i, . . . , L}. (17)

These Ri correspond to the drop in ground-state overlap
with each next chunk along the adiabatic path. In order to
find chunk lengths that correspond to a smooth decrease
of the ground-state overlaps, chunks i where the drop in
ground-state overlap is larger than the average,

Ri >
1
L

L∑

i=1

Ri, (18)

are made smaller and vice versa (where Rj is below aver-
age, the j th chunk is made larger). The sum of the chunk
lengths is kept normalized to one (

∑L
i=1 s̄i = 1). Then, new

values Oi are computed and the procedure is repeated until
convergence.

Clearly, what is optimized here is not exactly the instan-
taneous ground-state overlap because the reversed adia-
batic evolution will accumulate extra phases, distorting the
results slightly. Nevertheless, this method can be a useful
compromise between a protocol that is very simple to exe-
cute and one that can still yield improved results for an
optimized adiabatic routine (Sec. VII C 2).

2. Forward-only evolution for a fixed total time

As an improvement over the ancilla-free algorithm, this
algorithm makes use of the ancilla-based ground-state
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closeness protocol (Sec. IV A) in order to estimate the
ground-state overlap at the point si in the adiabatic path

O′i =
∣
∣〈GSsi |W0→si |ψ0〉

∣
∣ , (19)

without backward time evolution. Here, |GSsi〉 is the
instantaneous ground state at point si of the adiabatic
path. The rest of the procedure is an analog to the pre-
vious algorithm. This algorithm enables us to try to keep
the quantum state along the adiabatic path close to the
instantaneous ground state for a fixed total adiabatic run
time.

3. Black-box optimization for a fixed total time

We present a black-box optimizer routine that makes
use of the gradient to find optimized chunk lengths {s̄i}.
Here, the chunk lengths are optimized in a quantum-
classical feedback loop similar to typical variational quan-
tum algorithms. In our approach, the vector containing
the chunk lengths is used as the input for a quantum
black box (Fig. 6). The chunk lengths remain normal-
ized to 1. Within the quantum black box, an optimized
adiabatic evolution is implemented according to the cur-
rent chunk-length vector and the output of the black box
is the final ground-state overlap at s = 1. The ground-
state overlap may be obtained by, e.g., making use of our
proposed one-ancilla protocol (Sec. IV A). This value of
the ground-state overlap is fed into a classical optimizer,
which updates the input vector. Our cost function is the
ground-state overlap that we seek to maximize. We use
the (quasi-Newtonian) bounded limited memory BFGS (L-
BFGS-B) algorithm [31] or the gradient-free Nelder-Mead
(or downhill-simplex) algorithm [32] for the classical opti-
mization. To make the setting of the optimizer more real-
istic for an experimental setup, we fix the relative step size
in L-BFGS-B to be larger than 1% of the chunk lengths
{s̄i}. The feedback loop is repeated until convergence or

Quantum
black box

Ground-state
overlap

Update

FIG. 6. The quantum-classical feedback loop for optimizing
the chunk lengths of an adiabatic evolution while keeping the
total time fixed. A parameter vector containing the chunk lengths
is used as input for a quantum black box. The black box imple-
ments an optimized adiabatic evolution accordingly and outputs
the ground-state overlap. Making use of a classical optimizer,
the chunk-length vector is updated in order to maximize the
ground-state overlap.

until another suitable termination criterion is reached, e.g.,
a desired ground-state fidelity.

B. Target fidelity profile with a flexible total time

The concept of the VQAA also allows for flexible-total-
time optimization. Here, the goal is to find an optimized
adiabatic evolution that gives a final fidelity as close as
possible to a given threshold

|〈ψ(s = 1)|GS〉| � θL. (20)

The adiabatic path is split up into L chunks of length s/L,
with respective evolution times Ti. The state |GS〉 is the
ground state at the end of the adiabatic path at s = 1. By
smoothly interpolating from θ0 at s = 0 to θL at s = 1, the
intermediate target thresholds θi are set.

Starting with the first chunk, we now search for the evo-
lution time T1 that suffices so that |〈ψ(s1 = 1/L)|GS〉| �
θ1. Here, we can make use of hypothesis testing, which
is highly efficient with regard to the number of mea-
surements (cf. the Supplemental Material [26]). Search
algorithms such as bisection methods feature exponentially
fast convergence. The {Ti} define the optimized adiabatic
evolution. This algorithm is then able to follow a target
fidelity profile with resolution L as closely as possible. We
note that due to the limited decoherence time of NISQ
devices, a maximal value for the Ti can be fixed.

VII. BENCHMARKING AND RESULTS

For benchmarking purposes, we choose a nontrivial
problem where we are able to simulate the evolution of
a quantum computer with and without noise on a classical
computer. Simulation of the dynamics of a large quantum
system on a classical computer is, in general, very hard,
as the number of coefficients necessary for the classical
description increases exponentially with the system size
N . For this reason, we choose a gapped one-dimensional
Hamiltonian as our system. In the algorithms we propose,
the state is always close to the ground state, i.e., it has
only a few excitations. The ground states of gapped one-
dimensional systems can be described efficiently using a
matrix-product-state (MPS) ansatz. We give a brief out-
line of the tensor-network techniques [33] that we use to
simulate our algorithms classically in the Supplemental
Material [26]. Therefore, even though MPS cannot approx-
imate time evolution in general, it is ideally suited for our
problem, since our states have few excitations.

A. Model

For benchmarking a simple, yet nonintegrable, quantum
model, we use the translationally invariant Ising model
with transverse and longitudinal fields, hereafter referred
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FIG. 7. The zero-temperature phase diagram of the ZZXZ
model in the thermodynamic limit. The antiferromagnetic phase
(AF) is separated from the paramagnetic phase (PM) by a second-
order phase transition (red line). At the multicritical point at
(h, g) = (0, 2), the model becomes classical, resulting in a first-
order phase transition. For different interaction strengths J , the
adiabatic evolution follows different paths in the phase diagram.
The phase diagram is after Ref. [35]: note that their differ-
ent Hamiltonian formulation results in an appropriately rescaled
phase diagram.

to as the ZZXZ model,

HT =
N∑

i=1

(Jσ z
i σ

z
i+1 + hσ x

i + gσ z
i ), (21)

as a finite system with open boundary conditions [34]. For
J > 0, we are considering the antiferromagnetic ZZXZ
model. A choice of the coefficient J = 1 places the
model in the paramagnetic phase (Fig. 7) and an adia-
batic evolution from the trivial Hamiltonian H0 =

∑
i hσ x

i
stays entirely within the paramagnetic phase; therefore, no
phase transition is crossed [35,36]. This is different for
choices—e.g., J = {2, 3, 5, 7}—where the adiabatic paths
crosses a second-order phase transition from the paramag-
netic phase into the antiferromagnetic phase. The adiabatic
spectrum following a linear interpolation from H0 to HT
is discrete for the lowest-energy eigenstates (for a dis-
cussion on smooth reparametrizations of the path, see the
Supplemental Material [26]).

B. Results for adiabatic spectroscopy

We benchmark the adiabatic spectroscopy for the ZZXZ
model on a qubit chain with N = 53 sites. For our model,
the spectral gap �(s) is obtained using density-matrix-
renormalization-group (DMRG) methods (Fig. 8). In our
simulations, we compute the ground-state fidelity directly
using tensor contractions; however, in an experiment, this
information would be gathered using our ancilla protocols
(Sec. IV). In an experimental setting, every time we would

FIG. 8. The spectral gap�(s) for the ZZXZ model for N = 53
qubits and different values of J , obtained using DMRG meth-
ods. The energy difference between the ground state and the first
excited state is plotted along the adiabatic path in s. The min-
imal spectral gap along the adiabatic path is smallest for large
interaction strength J and the phase transition is crossed earlier
in parametrized time s.

like to make a measurement to estimate |α(τ)|, we can
choose to evolve uniformly at random for different val-
ues of τ between 0 and some very large K . Under these
assumptions, a simple analytical formula for the expecta-
tion value E2 of |α(τ)|2 can be given (Appendix B 4) and
a target ground-state fidelity of |ψ0|2 = 0.8 translates to

E2 := lim
K→∞

Eτ ∼ unif. dist. in [0,K](|α(τ)|2) ≥ 0.68. (22)

In the adiabatic spectroscopy, we obtain the evolution
times T(s) required to reach this target for a given value of
s (Fig. 9). Clearly, there is a strong increase in T around the
position of the minimal spectral gap for respective values
of J . By computing the derivative of the (cubic) splines,
we extract the position and smallness of the gap that cor-
respond to the position and steepness of the increase in
T in the T(s) plot. For a closer resemblance to the actual
spectral-gap profile, we plot −∂T(s)/∂s (and clip values
above zero) in Fig. 1.

C. Results for VQAA

Here, we compare the benchmarking results obtained
for the different algorithms and interpret their respective
behavior. In particular, we would like to highlight that
there are two regimes where an optimized adiabatic path
is an improvement over nonoptimized (or naive) QAA.
When a phase transition is crossed in an adiabatic evolu-
tion, as intuition would suggest, optimal adiabatic paths
concentrate the majority of the evolution time around the
position of the spectral gap. We also examine the case
without a phase transition (J = 1) and benchmark for sys-
tems with up to N = 100 qubits. Here, we observe that
rotations in the low-energy eigenspace can significantly
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FIG. 9. Adiabatic spectroscopy for N = 53 qubits and a given
target ground-state fidelity of 0.8. We perform adiabatic sweeps
from 0 to s and find the evolution time T required to reach the tar-
get fidelity. We obtain data for 50 values of s, linearly distributed
along the x axis. When a phase transition needs to be overcome,
T increases to a much larger value. The steepness of the curve
at this point provides a measure for the smallness of the spectral
gap.

improve the performance of the quasiadiabatic evolution.
Moreover, we find that leaving the instantaneous ground
state can pay off in finding a better final ground-state over-
lap. This seems to be especially significant for short total
evolution times.

1. Black-box optimization for fixed total time

The best results for a fixed time are achieved with
the black-box algorithm. Even for large system sizes,
this algorithm can improve significantly over naive QAA
for a fixed total time. Good results are already usually
achieved for a handful of chunks and the performance of
the algorithm does not improve much further for a greater
number of chunks (which would correspond to a higher
resolution in the adiabatic velocity profile). This is the case
both when a small spectral gap needs to be crossed and
also in the absence a phase transition. In the latter case, the
black-box algorithm very often returns an adiabatic path
including one or even several very small chunks.

These rotations can be understood in the following way.
The setup of the VQAA with fixed time allows some chunk
length s̄i to become very small. An amount of time Ti is,
however, still spent in these small chunks. The evolution
in such a chunk in the limit of s̄i → 0 is implemented by a
unitary

Urot(Ti, si) = e−iTiH(si), (23)

which effectively changes the local phases of |ψ(si)〉,
thereby physically changing the quantum state. As |ψ(si)〉
in our algorithm is expected to have a considerable ground-
state population and also small populations in the lowest

excited states, the change in the local phases of |ψ(si)〉 cor-
responds to a rotation in the low-energy eigensector. Some
rotations eventually become beneficial for the performance
of the adiabatic routine. Rotations in the low-energy eigen-
sector have also been considered in the context of the
eigenstate thermalization hypothesis [37].

In the case of a phase transition, the improvement in
the evolution time T between naive QAA and an opti-
mized adiabatic evolution is much larger than without a
small gap. For very few chunks only, target fidelities of
over 90% in a system of 53 qubits are reached at around
T ≈ 100. With a nonoptimized adiabatic path, this would
have required very long (a factor of approximately 10
longer) preparation times, as depicted in Fig. 2. The classi-
cal optimizer used for obtaining the data in this figure is the
Nelder-Mead algorithm. In our simulations, Nelder-Mead
proves to be more robust at large T at the expense of requir-
ing more measurements. Being a gradient-free method,
we expect it to behave better than the gradient-based
L-BFGS-B for noisy systems.

In Fig. 10, the evolution of the chunk positions for an
instance of the black-box algorithm is shown for 53 qubits
and J = 3. Here, the total time is T = 5 and L-BFGS-B is
chosen as the classical optimizer due to its faster conver-
gence in the classical simulations. The adiabatic spectrum
for J = 3 features a small gap around s = 0.34. This can
be captured approximately with only three chunks. Over a
few iterations, the center chunk becomes smaller around
the position of the gap, so that in the adiabatic evolution
more time is spent there.

In the case without a phase transition, for J = 1, we find
reductions of the total evolution time by a factor of over 3
when comparing with naive QAA. Here, we benchmark

FIG. 10. An instance of a black-box optimizer for the case
when crossing a phase transition, here for J = 3 and N = 53.
The stacked chunk lengths are shown for the first nine iterations
as the middle chunk becomes smaller. This leads to the evolu-
tion time being spent effectively around the smallest gap around
s ≈ 0.34. In this instance, the final fidelity is nearly 7 times larger
using the VQAA compared with a linear sweep.
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FIG. 11. The large-T black-box optimizer benchmark for the
two classical optimization algorithms L-BFGS-B and Nelder-
Mead (NM). The data for NM are only obtained up to T = 50
and require, in general, more measurements than gradient-based
methods. However, the optimization with L-BFGS-B becomes
increasingly unstable for large T > 40 and NM is observed to be
more robust, because a very large amount of fine tuning of the
initial step size is required for the different values of T.

the black-box optimization routine for large values of T
and 100 qubits (Fig. 11). We note that for T > 40, the
classical L-BFGS-B algorithm is in most cases unable to
find an optimized adiabatic path. We make sure that this
is not due to memory limitations in the optimizer, the rel-
ative step size, or tolerance values for the termination of
the algorithm. Increasing the number of chunks does not
generally help in finding better-optimized paths. However,
sequential initializations of the optimizers can improve the
performance. Instead of starting with naive QAA, the opti-
mizer then begins with the chunk lengths of the previous
shorter-time optimizer instance.

A typical black-box algorithm instance (for J = 1, i.e.,
no small gap) is shown in Fig. 12, where the small chunks
can be easily observed around s ≈ 0.4. Indeed, the ground-
state fidelity is maximized and the energy minimized in
only five iterations. In Fig. 13, the fidelity between |ψ(s)〉
and the ZZXZ ground state or the instantaneous ground
state of H(s), respectively, is shown. The exact ground
states are obtained using DMRG methods. A discontinuity
in the path of the optimized QAA is clearly visible for s ≈
0.4 due to the implemented rotation. As the black-box opti-
mizer only has access to the ground-state overlap at s = 1,
it is agnostic to the actual curve of the optimized QAA for
values below s < 1. It is interesting to observe that, in fact,
leaving the instantaneous ground state can lead to better
final results at s = 1, as also discussed for adiabatic evo-
lutions in Ref. [38] and in a related way, in the context of
diabatic transitions in QAOA, in Ref. [39]. This feature can
also be observed in a black-box optimizer instance for a
smaller system in Fig. 14, where the optimized QAA curve
gives a final fidelity of approximately 0.999 and recovers

FIG. 12. Stacked chunk lengths adding to s = 1 display the
evolution of an instance of a black-box optimizing routine. The
chunks are initialized with equal lengths and their lengths are
optimized using a L-BFGS-B optimizer with regard to a maximal
final fidelity with the ground state of the ZZXZ Hamiltonian. A
confluence of chunks can be observed around s ≈ 0.4.

most of its ground-state fidelity in only the last 20% of the
adiabatic evolution path.

2. Converging fidelity ratios for a fixed total time

Besides the black-box approach to VQAA, we present
other algorithms that aim to stay close to the instantaneous
ground state along the adiabatic path. Both the ancilla-
free and the one-ancilla method seek convergence in the
fidelity ratios between consecutive chunks. The one-ancilla
method is cleaner in the sense that it directly uses the over-
lap and does not accumulate extra transitions and phases on
the backward path (Sec. VI A 2). The one-ancilla method
can achieve a smooth adiabatic path that remains as close
as possible to the ground state at all times for a fixed total
evolution time. However, the ancilla-free method finds adi-
abatic paths that effectively implement a rotation in the
low-energy eigensector. This property is also observed in
the gradient-based black-box method (Sec. VII C 1) and
seems to be very relevant for preparation of the ground
state on NISQ devices. Therefore, for these two algo-
rithms, which method will perform better is likely quite
model dependent.

3. Target fidelity profile for a flexible total time

The flexible-total-time algorithm with a given target
fidelity with the ground state at the end of the adiabatic
evolution is well suited in the kind of instances in which
staying close to the ground state is desired. As we observe
in Fig. 15, the naive QAA will occasionally leave the
ground state, leading to oscillations in the instantaneous
ground-state fidelity. Considering the adiabatic path split
up into several chunks, due to the changing Hamiltonian
H(s), different evolution times {Ti} for each chunk are
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fidelity

fidelity

FIG. 13. The ground-state fidelity is plotted along the adia-
batic path for different values of s. The results are for N = 100
and fixed total time T = 1. The optimized QAA curve (blue) dif-
fers significantly from naive QAA (green curve) in the region
of very small chunks around s ≈ 0.4. Note that the spectral gap
between the ground state and the first excited state is not min-
imal in this region but decreases strictly monotonically with s.
At the end of the evolution, optimized QAA achieves a ZZXZ
model ground-state fidelity of 17.8%, while naive QAA results
in a fidelity of 5.2%.

necessary in order to achieve a given fidelity with the
ground state at the end of the adiabatic evolution. The val-
ues for the {Ti} depend strongly on the spectral gap �(s)
between the ground state and the excited state, as well as
on the Berry connections (cf. the Supplemental Material
[26]).

We observe that our algorithm is able to reduce the
total adiabatic evolution time compared to naive QAA in
this toy example. This is because it uses the time avail-
able in a more economic way by spending much of the
evolution time only when required to stay close to the
ground state. One useful property of this algorithm is the
fact that it is self-verifying in the sense that the hypothe-
sis testing at the end of every chunk guarantees, with high
confidence, that the ground-state fidelity is larger than a
given value. Further developments of this algorithm can be
envisioned where the {Ti} are optimized to follow a more

fidelity

FIG. 14. In this instance, albeit for N = 10, we see near per-
fect ground-state preparation for T = 10 without increasing the
total time budget. Even though the instantaneous ground-state
fidelity with H(s) along the adiabatic path is smaller, the final
ground-state fidelity is 0.999.

complicated profile. Moreover, the results of this algorithm
serve as a good initial point for the gradient-based black-
box algorithm for a fixed total evolution time.

Here, we set the chunk lengths {s̄i} to equal values.
Adaptations of this algorithm with unevenly spaced chunks
are also possible. The inclusion of additional chunks with a
very small chunk length could possibly provide better per-
formance of the algorithm by making it possible to imple-
ment rotations in the low-energy eigensector at the expense
of an increased number of measurements (Sec. VII C 2).

D. Implementation cost

In every variational algorithm, the number of measure-
ments needed in order to obtain satisfactory results is of

fidelity

FIG. 15. The instantaneous ground-state fidelity for QAA
optimized with the flexible-total-time algorithm compared to
naive QAA with the same time budget. The target fidelity at
s = 1 is set to θ = 0.99 and linearly interpolated along the adia-
batic path. The search interval for the time spent in each chunk is
upper bounded such that Ti ≤ 20 ∀i.
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the utmost importance, as it directly determines the fea-
sibility of the approach. Here, we discuss the number of
measurements necessary for each of the respective algo-
rithms presented in this paper. We focus on the number of
ground-state overlap evaluations necessary in our classical
simulations. To obtain the ground-state overlap from |α|, a
small overhead is required (Sec. IV A).

Both the ancilla-free and the one-ancilla fixed-time
algorithms converge with very few iterations even for large
system sizes (N = 100). The resolution of the velocity pro-
file in the adiabatic evolution is the number of chunks
chosen. In our case, the number of ground-state overlap
evaluations is fairly low, with

number of GS overlaps

= number of iterations× number of chunks � 100,
(24)

which suffices for our simulations. The number of chunks
is the number of parameters to be estimated and for the
flexible-total-time algorithm this corresponds to the num-
ber of bisection searches required. As these search algo-
rithms converge exponentially fast, roughly 10–20 ground-
state overlap estimations per search are usually sufficient
for the highest accuracies of the optimized {Ti} values. In
this algorithm, the two-ancilla algorithm is used, which is
suitable for hypothesis testing. The hypothesis testing con-
verges exponentially fast as well, requiring about another
ten measurements for each ground-state overlap estima-
tion. Exemplary numbers for hypothesis testing are given
in the Supplemental Material [26].

The black-box algorithm depends on ground-state over-
lap evaluations in order to estimate the gradient. The
number of ground-state overlap evaluations necessary in
the optimization process is directly related to the number
of chunks. Good results can already be obtained using this
method with just a few iterations, so that for five chunks,
we achieve good results for N = 100 and T = 1, with sig-
nificantly fewer than 50 ground-state overlap evaluations
in total (Fig. 19). For a random variable X with values
in [a, b], �̄ = b− a and independent and identically dis-
tributed samples, the Chernoff-Hoeffding inequality [40]
gives an upper bound on the probability of finding the
measurement deviating more than ε from its expectation
value μ:

Pr(|X − μ| ≥ ε) ≤ e−2mε2/�̄2 =: η. (25)

For Pauli measurements, we can have either +1 or −1 as
results, so �̄ = 2 and the number of measurements

m ≥ 2
ε2 log

(
1
η

)

(26)

depends on the η and ε needed. Setting the precision
ε to [1− (GS fidelity)]/20 and the failure probability so

that one in two experiments is successful with all estima-
tions within the deviation ε, we estimate the number of
measurements necessary to be of the order of 103.

The number of ground-state fidelities required to reach
very high fidelities > 0.9 at larger T is naturally larger
than what is stated above for T = 1. In Fig. 2, the maxi-
mum number of ground-state fidelity evaluations is set to
1000, while typically a few hundred evaluations suffice to
find an adiabatic path with a maximal ground-state fidelity
up to 10−8 relative accuracy (i.e., the relative accuracy
of the optimization process). Without doubt, this accu-
racy is unattainable in current experiments and many fewer
ground-state evaluations already give very good results.
In fact, we observe that for N = 53 in the case of a
phase transition and T ≈ 100, when obtaining fewer than
200 ground-state evaluations, the Nelder-Mead method
yields results of practically the same quality. These esti-
mations suggest a very low number of measurements even
for optimizing the adiabatic evolution of large quantum
systems.

While the number of measurements seems to be the most
relevant figure of merit to assess the cost of the methods
presented here, we also include a short discussion of the
number of gates required on different architectures of quan-
tum devices. On analog quantum simulators, for instance,
the ancilla-free optimization method can be implemented
natively, with the only overhead being the additional
parametrized adiabatic sweeps to find optimized adiabatic
paths. In a gate-model architecture, for a qubit-chain with
N = 53 sites and only allowing for nearest-neighbor inter-
action, we upper bound the total number of controlled-NOT
(CNOT) gates for one unit of time at around 120 CNOTs per
N . Here, we consider a decomposition of the unitary gates
in the Trotterized evolution of the numerical simulation.
The actual number of gate counts is significantly lower,
because the circuit is optimized for the respective exper-
imental hardware platform. In the single-ancilla protocol,
an upper bound on the number of CNOTs per unit of time
(τ = 1) including the required SWAP gates for the chain
topology is set at around 2100 CNOTs per N . We note that
with τ scaling as the inverse of the spectral gap �(s), the
cost of the protocol is not excessively demanding, espe-
cially at the end of the adiabatic sweep (s = 1) where the
gap is large. A more detailed discussion of the gate count
is provided in the Supplemental Material [26].

VIII. NOISE

A. Noise in adiabatic quantum computation

The noise in current quantum devices severely limits the
performance of many quantum algorithms [41]. Therefore,
we discuss some important properties of noisy quantum
adiabatic algorithms. A general inherent robustness of adi-
abatic evolution has already been established for some
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time [42]; here, we focus on a few points that are especially
important to our method.

In a gate-model quantum algorithm without error correc-
tion, a flipped qubit will in the worst case render the whole
quantum computation nonsensical. This is quite different
in an adiabatic algorithm, as for physical instances, low-
energy spectral lines are rare [Fig. 21(a)]. While a flipped
qubit in the preparation of the ground state in an adiabatic
algorithm can also lead to a quantum state orthogonal to
the ground state, the energy, however, of this orthogonal
excited state will still be a very good approximation to the
ground-state energy. Intuitively, one bit flip corresponds to
a single excitation of the system. We can therefore assume
that errors increase the energy only by O(1) for fixed time,
when flipped qubits are rare. Also, the position s0 in the
adiabatic path, where a flipped qubit occurs, is not criti-
cal [Fig. 21(b)]. This may seem somehow surprising but
it can be explained because a perfect adiabatic evolution
suppresses all transitions between the eigenstates. It does
not only apply to the ground state but also to excited states.
Therefore, in the regime of an adiabatic evolution, a noise-
induced excitation will not lead to further deviations from
the ground-state energy.

However, for time evolutions that are faster than an adi-
abatic evolution, which is in general the case for quantum
devices limited in coherence time, we would generally
expect light-cone spreading of noise through the spin
chain. Yet, in our simulations this is not observed to be
problematic for the performance of the VQAA. In general,
the noise behavior of adiabatic algorithms is encouraging,
as it suggests very benign noise features in these kinds of
algorithms, making them a suitable candidate for NISQ
devices.

B. Impact of noise in the presented algorithms

Here, we include a qualitative discussion about the
expected performance of the algorithms presented in this
paper in the presence of noise. We expect the adiabatic
spectroscopy to be quite robust to noise, as the information
obtained using this method relies on multiple data points
and a rather distinctive feature in the T(s) curve result-
ing from a small spectral gap. Noise effects will become
stronger toward the end of the adiabatic evolution as noise
accumulates in the circuit. However, as the results of this
spectroscopy are quite pronounced, a qualitative descrip-
tion of the gap is likely only slightly impaired by moderate
noise in the circuit.

Regarding the VQAA algorithms, when considering
noise, there are two main points to consider. First,
noise can substantially impede the training phase of the
algorithm, when the search is for the parameters of an opti-
mal adiabatic path. Second, in order to prepare the ground
state with a desired high fidelity, an adiabatic evolution
time T that is only a fraction of the T required for naive

QAA suffices with an optimal adiabatic path. This may
help strongly in suppressing errors.

Following a target profile is especially tricky when
noise comes into play. This is because noise strongly alters
the required target profile. Therefore, concerning the target
profile method, we do not expect this method to be very
robust to noise, especially when finite-size effects are play-
ing a role. In the presence of noise, optimizing with regard
to the final ground-state overlap instead is thus advisable.

For the black-box method, in classical simulations with
noise, we observe that the gradient-based training is not
too well behaved. Convergence to optimized paths that
improve over naive QAA is often impossible even when
only a few bit flips occur in the quantum circuit. Classi-
cal optimization routines that are more robust toward noise
seem to be required here, i.e., a classical optimizer that is
combined with an error-mitigation technique so that noisy
outputs of the quantum black box can be corrected. We
note that gradient-free optimization methods are expected
to be more robust to noisy environments and could pro-
vide better performance in an experimental setup than a
gradient-based method. For this reason, we make use of
the COBYLA method [43]. In Fig. 16, it can be observed
that small amounts of noise significantly impair the train-
ing process of an optimized adiabatic path. For small noise
strengths p , however, the results can be an improvement
even over naive QAA. For simulating the noisy quantum
circuit, 100 MPS samples are taken. For more details on the
noise model, we refer to the Supplemental Material [26].

Besides noise in the adiabatic evolution, noise also
is present in the measurement process. For both the
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FIG. 16. The noisy benchmark of the black-box algorithm for
N = 53, J = 1, and a maximum of seven optimizer iterations.
The noise strength p determines the expected number of noisy
qubits. Noise is applied in the circuit both in training and in the
testing phase. The pink curve (p = 10−7) lies behind the blue
curve due to the very rare noise events (cf. the Supplemental
Material [26]). No measurement noise is considered and naive
QAA is given as a reference without noise. COBYLA is used as
the classical optimizer.
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FIG. 17. The simulation of shot noise in the black-box
algorithm for N = 53 and J = 1 using the one-ancilla method.
The number of measurements taken for every ground-state over-
lap estimation is given by m. Note that no extra noise is applied
during the circuit. COBYLA is used as the classical optimizer.
For m > 103, the results begin to converge and the shot noise is
sufficiently small.

one-ancilla method and the two-ancilla method, we bench-
mark the black-box routine numerically. The shot-noise
simulation is performed by finite sampling of m inde-
pendent measurements and taking the average of these
measurements. From the numerical data, we can conclude
that for a large system, around 10 000 measurements can
reduce the shot noise sufficiently. This is one order of
magnitude larger than the estimations made earlier, in
Sec. VII D. The benchmark for the one-ancilla method is
shown in Fig. 17, while the plot for the two ancilla method
can be found in Fig. 22 (Appendix C).

A further comment is needed to specifically address the
noise in the black-box algorithm, which makes use of a
gradient to optimize the adiabatic path. In a recent work,
it has been shown that the gradient in a variational quan-
tum algorithm vanishes exponentially with the number of
qubits N when the number of layers scales as poly(N )
[18]. These noise-induced barren plateaus severely hinder
the scalability of variational quantum algorithms on NISQ
devices. In our work, however, the algorithms either opti-
mize the adiabatic path for a fixed total evolution time
(which includes the gradient-based black-box algorithm)
or have a maximum time budget in the case of the target-
fidelity-profile algorithm. Thus, the (maximum) circuit
depth is fixed in our approach, which makes the results on
noise-induced barren plateaus not directly applicable.

IX. DISCUSSION

In this paper, we present a toolkit for quantum adiabatic
computation. This toolkit includes a proposal for adia-
batic spectroscopy and ancilla protocols for estimating the
ground-state overlap, as well as the VQAA as a flexible yet

powerful framework for variationally optimized adiabatic
paths for high-fidelity ground-state preparation.

The adiabatic spectroscopy offers a straightforward
approach to obtaining information about an adiabatic spec-
trum. Our method relies on protocols to evaluate the close-
ness of an N -qubit quantum state |ψ〉 to an eigenstate using
controlled unitary evolution. By remaining sufficiently adi-
abatic throughout the evolution, a self-consistent argument
applies, enabling us to identify this eigenstate with the
ground state. We note that the error in the ancilla proto-
cols presented is smallest when being close to an eigen-
state. The protocol that we propose requires the ability to
implement controlled time evolution on a single-ancilla
qubit. Current technology already meets the requisites of
our protocol: conditional dynamics have been explored in
the context of trapped-ion simulators and Rydberg-atom
arrays [44,45] and they can be implemented efficiently in a
gate model.

A natural requirement for the spectroscopy is that the
decoherence time of the quantum device is not a lim-
iting factor to determining the evolution time required
in order to reach the target overlap. The applications of
the adiabatic spectroscopy go beyond obtaining the spec-
tral gap for a given Hamiltonian H(s). By aggregating
spectral information from several adiabatic paths that cut
through the phase diagram of a target Hamiltonian HT,
rich properties of quantum many-body systems may be
acquired.

We note that the numerical results presented in Fig. 1
support our argument that this technique is suitable for
the derivation of information about the spectral gap. How-
ever, the relation ∂T(s)/∂s ∼ 1/�(s)2, which is obtained
from the LZ model, is only a first-order approximation.
Improvements of the quantitative validity of the adia-
batic spectroscopy are left for future work and might
build upon the rich literature on adiabatic perturbation
theory [46].

We now discuss the VQAA from two perspectives: first,
the perspective of VQAA as a quantum algorithm for
optimal adiabatic paths; and, second, the VQAA as a
variational quantum algorithm that requires only a few
measurements.

Adiabatic quantum computation is known to prepare the
ground state of a target Hamiltonian HT for a sufficiently
long preparation time T. However, T scales as a func-
tion of the minimal spectral energy gap �(s). For general
HT, the best rigorous bound on T has a inverse cubic gap
dependence T = O{[mins�(s)]−3} [11]. Due to the lim-
ited decoherence time of NISQ devices, the large evolution
times necessary for high-fidelity ground-state preparation
can be a difficulty. If it was possible to reduce T to fit into
the coherent time frame of a quantum device, it would
become possible to adiabatically prepare ground states,
e.g., the solution of an optimization problem, which has
remained unattainable up to now.
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The question of finding an optimal path for the adiabatic
evolution has already been the focus of research efforts for
several years and for the unstructured search problem, the
Grover-type speed-up has been recovered using an opti-
mized adiabatic sweep [15]. However, the position and size
of the spectral gap are, in general, a priori unknown and it
can be as hard a problem to obtain the spectral properties of
the adiabatic path as it can be to prepare the ground state.
Therefore, the question of how an optimized adiabatic path
can be obtained when no or only little spectral informa-
tion is available remains a challenge. One recent work has
employed techniques from reinforcement learning to find
an optimal adiabatic path [47]. In our work, we phrase the
problem of finding an optimized adiabatic path as a prob-
lem to be solved through a variational quantum algorithm
with a step-wise adiabatic velocity profile.

Turning now toward a discussion of the VQAA as a
variational algorithm, we begin by noting that the ground-
state overlap can be a suitable cost function for quantum-
classical feedback loops. Variational approaches such as
the quantum approximate-optimization algorithm (QAOA)
[17] have sparked intensive research interest in recent
years. The number of measurements necessary to esti-
mate an objective function scales with O(ε−2), where ε
is the maximum error that can be tolerated in the optimiza-
tion process. The proposal of the VQAA aims to reduce
the number of measurements by requiring relatively fewer
parameters that need to be optimized and by considering a
cost function with a low variance.

Variational approaches for preparing a ground state gen-
erally make use of the energy as a cost function and that
energy is estimated via the local observables that com-
pose the Hamiltonian [48]. As the actual ground state will
generally not be an eigenstate of the Hamiltonian local
terms (e.g., if there is frustration), a low variance in the
estimates cannot be guaranteed. Moreover, the orthogonal
eigenstates in the low-energy sector typically yield sim-
ilar energy values, hindering convergence to the ground
state. If we were indeed able to directly measure in the
eigenbasis of the Hamiltonian at a given point in the
adiabatic path, we would seek to exploit the property
of proximity to an eigenstate, which is inherent to adia-
batic algorithms. The textbook approach for this problem
would be a quantum phase-estimation (QPE) algorithm
and direct implementation requires an ancilla overhead
[22]. Recent semiclassical approaches are able to use a
single ancilla only by utilizing postprocessing schemes
[28,29]. For the VQAA, we suggest the overlap with the
ground state as a figure of merit. In the case of the adi-
abatic algorithm, the optimal value of some other figures
of merit, such as the energy, are not directly accessible.
Therefore, we present two protocols to evaluate the close-
ness to an eigenstate using controlled unitary evolution.
The entangled-ancillas protocol offers the possibility of
performing low-variance measurements by harnessing the

power of hypothesis testing when being close to an eigen-
state. We note that in the case of a small spectral gap, e.g.,
when a phase transition is crossed, the ground-state over-
laps are in general very small and special care is needed to
extract useful information with the ancilla protocol.

In the limit of very large depth, the QAOA has the
possibility of recovering a Trotterized adiabatic evolution.
Therefore, a black-box VQAA algorithm bears some simi-
larities to the QAOA. Several key differences are remarked
upon, though. First, analogous to the evolution times in
a (Trotterized) adiabatic evolution, the unitaries in the
QAOA feature angles as parameters. However, for a quan-
tum cost function HT, the optimized angles could be too
large for the decoherence limit of the NISQ device on
which the algorithm is supposed to be implemented. On
the contrary, limiting the maximum angles could be rather
problematic for the performance of the QAOA. This issue
does not arise in the black-box VQAA, as the total evolu-
tion time is fixed. Second, even for large system sizes with
53 or 100 qubits, the VQAA is a significant improvement
over naive QAA for a very small number of parameters
L only. In the QAOA, it is generally expected that deep
circuits are necessary to obtain good results for large sys-
tems. Finally, even for very small L, the performance of
the VQAA is lower bounded by the QAA with a linear time
profile. This is true for the QAOA only when the angles are
initialized akin to a Trotterized adiabatic evolution, which
requires a large-depth QAOA.

X. SUMMARY AND OUTLOOK

We seek to combine the best from two worlds by com-
bining the strengths of the adiabatic and the variational
approaches. We present a toolbox for the VQAA building
upon ancilla-based methods to evaluate the ground-state
fidelity at any point in the adiabatic path. Our approach
only obtains information about the proximity to the ground
state and is deliberately oblivious to the actual value of
the energy throughout the adiabatic path. Due to the small
parameter space and the ground-state overlap as our cost
function, the number of measurements necessary in the
optimization of the adiabatic evolution is dramatically
lower than for typical variational quantum algorithms such
as the QAOA. On the whole, our work suggests that a fur-
ther exploration of NISQ algorithms based on variational
adiabatic concepts is indicated.

For instance, there seems to be room for sequential
VQAA algorithms. In some instances, when going toward
larger T, the black-box VQAA does not improve in a
strictly monotonous manner. By reusing information from
shorter T, the optimized paths for larger T might be
improved upon and obtained more rapidly. In a similar
direction, it will be interesting to see how the informa-
tion gathered through adiabatic spectroscopy is used for
the optimal adiabatic path in an experimental setting. If

020347-16



ADIABATIC SPECTROSCOPY AND VQAA. . . PRX QUANTUM 3, 020347 (2022)

it was possible to use adiabatic spectroscopy to eliminate
or drastically reduce the quantum-classical training phase
of the VQAA, this would surely be a large advancement
in NISQ algorithms for ground-state preparation. Also, it
remains to be seen what bounds can be established on how
quickly and closely the VQAA can find an adiabatic path
that is optimal.

Furthermore, there is increasing research interest in
error-mitigation techniques for NISQ devices [49,50] and a
further exploration of how the VQAA might benefit from
these techniques appears promising. More generally, the
protocols for estimating the ground-state overlap presented
in this work could make a wide range of new exciting
quantum algorithms for ground-state preparation possible.
This might include the opportunity for an algorithm to
find optimized adiabatic paths using techniques from rein-
forcement learning or a combination of the protocols with
techniques such as projected measurements and the quan-
tum Zeno effect [51]. Besides, in the regime where the
time evolution is not strictly adiabatic, high final ground-
state fidelities might be achieved by not starting in the
ground state of the initial Hamiltonian but in an appro-
priate superposition in the low-energy sector of the initial
Hamiltonian.
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APPENDIX A: ADIABATIC STATE PREPARATION
IN THE LANDAU-ZENER MODEL

We seek to better understand adiabatic spectroscopy
as presented in the main text. Therefore, we would like
to obtain a qualitative relation between the spectral gap
�(s) along the adiabatic path and the evolution time T(s∗)
required to prepare the ground state of H(s∗) with a given

target fidelity. In order to do so, we turn toward the well-
known LZ model, which describes a simple two-level
system [53,54]. The model Hamiltonian is given as

H = λ(t)σ z + gσ x =
(
λ(t) g

g −λ(t)
)

. (A1)

With tan θ = g/λ(t), we write the eigenvectors as

|a〉 =
(

sin(θ/2)
− cos(θ/2)

)

and |b〉 =
(

cos(θ/2)
sin(θ/2)

)

. (A2)

The eigenenergies are given as E± = ±
√
λ(t)2 + g2 and

the coupling is assumed to be a linear function in time
λ(t) = δt. This implies that the minimum of the spectral
gap (the avoided level crossing) is found at t = 0, i.e., an
adiabatic evolution parametrized by s from 0 to the posi-
tion of a small gap s∗ is understood to be mapped onto the
LZ evolution from very small initial t to t = 0.

A perturbative approach yields the probability

|α+(tf )|2 ≈ δ2

16g4

{
g6

[g2 + λ(ti)2]3 +
g6

[g2 + λ(tf )2]3

}

(A3)

of finding the system in the excited state at tf after initial-
izing in the ground state at ti [55]. Assuming the beginning
of the adiabatic evolution at ti = −∞, we are given

|α+(tf )|2 ≈ δ2

16g4

g6

[g2 + λ(t)2]3 =
δ2g2

16E+(t)6
(A4)

where we identify t with tf . Now, we set a target fidelity
A2
+ := |α+(t)|2 and assume that the total evolution time T

scales as T ∼ 1/δ:

T ∼ 1
δ
≈ g

4A+E+(t)3
. (A5)

As we are interested in the change of T, we compute the
time derivative of T,

Ṫ ∼ −3
4

gδ
A+E+(t)5

= −3
1

E+(t)2
, (A6)

where we use Eq. (A5) in Eq. (A6). Because of �(t) =
2E+(t) in the LZ model, we obtain Ṫ ∼ 1/�(t)2 as an
approximation to the scaling of Ṫ up to coefficients and
possible corrections.
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APPENDIX B: CALCULATIONS FOR THE
ONE-ANCILLA AND ENTANGLED-ANCILLAS

PROTOCOL

1. Single-ancilla protocol

The combined system after the unitary evolution can be
written as

C-U |ψ〉 |+〉 = 1√
2

[|ψ〉 |0〉 + U |ψ〉 |1〉] =: |ζ 〉 . (B1)

Denoting the quantum state after the unitary evolution
as |ψevo〉 = U |ψ〉, we note the following relationships
regarding Pauli measurements of the ancilla:

〈ζ |1⊗ σx|ζ 〉 (B2)

= 1
2
[〈0| 〈ψ |U |ψ〉 |0〉 + 〈1| 〈ψ |U† |ψ〉 |1〉] (B3)

= 1
2

[〈ψ |ψevo〉 + 〈ψevo|ψ〉] = Re(〈ψ |ψevo〉) (B4)

and

〈ζ |1⊗ σy |ζ 〉 (B5)

= i
2
[〈0| 〈ψ |U |ψ〉 |0〉 − 〈1| 〈ψ |U† |ψ〉 |1〉] (B6)

= i
2

[〈ψ |ψevo〉 − 〈ψevo|ψ〉] = −Im(〈ψ |ψevo〉), (B7)

so that

〈ψ |ψevo〉 = 〈σx − iσy〉ancilla =
〈(

0 0
2 0

)〉

ancilla
. (B8)

For a fixed Hamiltonian H =∑
j Ej |φj 〉 〈φj | with the uni-

tary U |φj 〉 = e−iHτ |φj 〉 = e−iEj τ |φj 〉, we write the state
|ψ〉 =∑

j ψj |φj 〉 in the eigenbasis of H with |ψ〉 nor-
malized (

∑
j |ψj |2 = 1). The total quantum system can be

expressed as

|ζ 〉 = 1√
2

[|ψ〉 |0〉 + U |ψ〉 |1〉] (B9)

= 1√
2

⎡

⎣

⎛

⎝
∑

j

ψj |φj 〉
⎞

⎠ |0〉 +
⎛

⎝
∑

j

e−iEj τψj |φj 〉
⎞

⎠ |1〉
⎤

⎦

(B10)

= 1√
2

⎡

⎣
∑

j

ψj |φj 〉
(|0〉 + e−iEj τ |1〉)

⎤

⎦ , (B11)

which we now use to calculate the density matrix of the
ancilla qubit:

ρancilla = Trnonancilla (|ζ 〉 〈ζ |)

= 1
2

∑

j ,m

Trnonancilla

⎧
⎪⎨

⎪⎩
ψjψ

∗
m

[|φj 〉 〈φm|
]

︸ ︷︷ ︸
δj ,m

× [|0〉 + e−iEj τ |1〉] [〈0| + eiEmτ 〈1|]
⎫
⎪⎬

⎪⎭
(B12)

=
∑

j

|ψj |2
2

[|0〉 + e−iEj τ |1〉] [〈0| + eiEj τ 〈1|]

=
∑

j

|ψj |2
2

(
1 eiEj τ

e−iEj τ 1

)

. (B13)

2. Entangled-ancillas protocol

Our goal is to determine the purity of the ancilla. In
general, there is the relation that ρ is pure if and only if
Tr[ρ2] = λ2

1 + λ2
2 = 1 for density matrices, where λ1 and

λ2 are the eigenvalues of ρ. We write the density matrix
and its square as

ρancilla =
(

a b
c d

)

and ρ2
ancilla =

(
a2 + bc ·
· bc+ d2

)

,

(B14)

where matrix elements irrelevant to our protocol are
denoted with a dot. With the Bell state

|�−〉 = 1√
2
(|00〉 − |11〉) , (B15)

we construct the Bell-measurement operator

|�−〉 〈�−| = 1
2

⎛

⎜
⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞

⎟
⎠ . (B16)

The diagonal matrix elements of ρ2
ancilla may then be

attained by considering a composite system where the sec-
ond system features a controlled backward time evolution
(implementable by changing the sign of H ). Then, the
density matrix of the ancilla of the second system effec-
tively corresponds to the transpose of the density matrix
of the first ancilla ρancilla2 = ρT

ancilla1. Using Eq. (B13), the
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composite system then gives

ρancilla1 ⊗ ρancilla2 = ρancilla1 ⊗ ρT
ancilla1 (B17)

=

⎛

⎜
⎜
⎝

a2 · · bc
· · · ·
· · · ·

bc · · d2

⎞

⎟
⎟
⎠ =

1
4

⎛

⎜
⎜
⎝

1 · · |α|2
· · · ·
· · · ·
|α|2 · · 1

⎞

⎟
⎟
⎠ . (B18)

If |ψ〉 is in an eigenstate, the density matrix of the ancilla
ρancilla is pure and the expectation of the |�−〉 measure-
ment is

〈ρancilla1 ⊗ ρancilla2〉|�−〉 =
1
4
(1− |α|2) = 0. (B19)

3. Choosing suitable time values in the ancilla protocol

We argue that a measure for the eigenstate closeness is
given by

〈ψ |ψevo〉 = 〈σx − iσy〉ancilla =
∑

j

|ψj |2e−iEj τ =: α,

(B20)

using the one-ancilla protocol. For suitable τ , |ψevo〉 is an
eigenstate of the fixed Hamiltonian H only if |α| = 1. The
time τ needs to be chosen so that the complex summands
of α with nonvanishing amplitude do not have approx-
imately equal phases. In this unlikely case of matching
phases, we would see constructive interference so that α =
1 could be true even if |ψevo〉 is not an eigenstate. Visualiz-
ing the summands of α on a complex plane (Fig. 18), this
becomes rather intuitive. The choice for τ is related to the
spectrum of H . It is reasonable to assume and confirmed in
our simulations that a quantum state in our algorithm has
the largest overlap with the ground state. As transitions to
high-energy excited states are extremely rare, for this argu-
ment we assume that the overlap with the first excited state
is the only other nonvanishing overlap. Then, we simply
have

α = |ψ0|2e−iE0τ + |ψ1|2e−iE1τ . (B21)

In the case of destructive interference,

|α| = min
τ
|α(τ)|, (B22)

which corresponds to

e−iE0τ + e−iE1τ != 0⇔ τ(E1 − E0) =π(2k + 1) (B23)

⇔ τ =π
�
(2k + 1), (B24)

where k ∈ Z and � = E1 − E0. An arbitrary τ would cor-
respond to choosing an l ∈ Z in τ = π l/� at random. For

FIG. 18. The eigenstate clock for a second larger value of
τ = 10. For τ=1, the summand corresponding to the ground state
and the summand corresponding to the first excited state lie quite
closely together in phase, which leads to problematic construc-
tive interference (Fig. 4). However, as the pointers rotate with
their respective eigenenergies for changing τ , they are well sep-
arated for τ = 10. Then, we find destructive interference in the
summation, which is necessary for the explanatory power of the
protocol. Note that in this instance, the summands corresponding
to higher excited eigenstates are very small and not visible.

l	 1, the probability of choosing an odd value of l is
approximately 1/2. Therefore, by testing several random
values of τ ∈ O(�−1), it is possible to deduce informa-
tion about the system—whether it is in a mixed state or an
eigenstate—with high confidence.

4. Bound for the single-ancilla protocol

We extend the discussion about suitable values of τ .
As argued above, an answer is generally dependent on the
spectral properties of H , which are not available a priori.

We provide a bound for the single-ancilla method with-
out any knowledge about the spectrum of H or the pop-
ulations of the different eigenstates. A side effect of this
generality is that the bound is not tight. This is because in
a realistic setting of a (quasi)adiabatic evolution, the eigen-
state populations of higher excited states are expected to be
very small.

We consider the expectation value [56] of α(τ):

Eτ ∼ unif. dist. in [0,K][|α(τ)|2] (B25)

= 1
K

∫ K

0
|α(τ)|2dτ (B26)

= 1
K

∫ K

0

∑

i,j

|ψi|2|ψj |2e−iEiτe−iEj τdτ (B27)

=
∑

i,j

|ψi|2|ψj |2sinc[(Ei − Ej )K]. (B28)
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FIG. 19. The number of iter-
ations required for this explicit
instance. The optimizer algorithm
is L-BFGS-B without any further
adjustments. Very good results are
already obtained after three itera-
tions and fewer than 25 ground-
state overlap evaluations. The data
correspond to the first eight itera-
tions of an instance of the black-
box optimizer with five chunks
for fixed total time T = 1 and
N = 100.

In the limit of large K , we obtain

lim
K→∞

Eτ ∼ unif. dist. in [0,K][|α(τ)|2] =
∑

i

|ψi|4 =: E2,

(B29)

where the spectral dependence has entirely averaged out.
Such an E2 corresponds to what one would observe in the
laboratory. We note that |ψ0|2 is the ground-state overlap
of |ψ〉. As |ψ〉 is normalized, we can write

|ψi|2 ≤ 1− |ψ0|2 ∀i > 0, (B30)

i.e., for all i that do not correspond to the ground state.
Then, multiplying by |ψi|2i>0 yields

|ψi|4 ≤
(
1− |ψ0|2

) |ψi|2 ∀i > 0. (B31)

As the latter inequality holds for all i > 0, we obtain

∑

i=1

|ψi|4 ≤
(
1− |ψ0|2

)∑

i=1

|ψi|2 =
(
1− |ψ0|2

)2
. (B32)

For the expectation value E2, we can now write down the
inequality

E2 = |ψ0|4 +
∑

i=1

|ψi|4 ≤ |ψ0|4 +
(
1− |ψ0|2

)2
. (B33)

Solving for |ψ0|2, we obtain

|ψ0|2 ≥ 1
2
+ 1

2

√
2E2 − 1, or |ψ0|2≤ 1

2
− 1

2

√
2E2− 1.

(B34)

So far, we have not made any assumptions about the pop-
ulations. Letting the ground-state population |ψ0|2 be the
largest of the eigenstate populations, we have

|ψ0|2 ≥ 1
2
+ 1

2

√
2E2 − 1 (B35)

as a lower bound for |ψ0|2 for E2 ≥ 1/2. Also, Eq. (B34)
implies that in this case the smaller ground-state popula-
tions are therefore upper bounded as

|ψi|2 ≤ 1
2
− 1

2

√
2E2 − 1 ∀i > 0. (B36)
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FIG. 20. The number of mea-
surements for this explicit instance
obtained using the Chernoff-
Hoeffding inequality and the
assumptions mentioned in the
main text. For a total of a few
thousand measurements, the end
result of the adiabatic evolution
is already improved significantly.
The data correspond to the first
eight iterations of an instance of
the black-box optimizer with five
chunks for fixed total time T = 1
and N = 100.
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(a) (b)

FIG. 21. Further plots on the robustness of the adiabatic evolution. (a) The energy density of states of the ZZXZ model for N = 12.
Low-energy spectral lines are rare for physical instances. (b) The relative energy difference with the ZZXZ ground state, obtained
using DMRG methods for adiabatic ground-state preparation. The total time is fixed to T = 1, corresponding to 16 discrete adiabatic
steps. Pauli noise is applied either before the first unitary (step 0) or after each unitary to the center qubit of the spin chain. We observe
that there is no qualitative difference regarding the position in the adiabatic path at which noise occurs. Note that for a σ x noise gate,
there is no difference in the energy at the beginning of the adiabatic path because the initial Hamiltonian H0 commutes with σ x.

For E2 < 1/2, no nontrivial bound for |ψ0|2 (apart from
|ψ0|2 ∈ [0, 1]) can be given in the limit of very large K
(with this approach).

APPENDIX C: PLOTS ON THE NUMBER OF
MEASUREMENTS AND NOISE

We include plots showing the number of ground-state
overlaps for an instance of the black-box algorithm for
N = 100 and five chunks. Also, we present an estimate of

1 
- 

Fi
na

l G
S
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id

el
ity

Two Ancilla, COBYLAfive chunks

1×104

1×105

1×106

1×107

FIG. 22. The simulation of shot noise in the black-box
algorithm for N = 53 and J = 1. Here, the two-ancilla method
is used. The number of measurements taken for every ground-
state overlap estimation is given by m. Note that no extra noise is
applied during the circuit. COBYLA is used as the classical opti-
mizer. For m > 103, the results begin to converge and the shot
noise is sufficiently small.

the number of measurements needed using the Chernoff-
Hoeffding inequality (Fig. 20). For a discussion of the
inherent robustness of adiabatic algorithm, we show the
energy density of states for N = 12 for the ZZXZ model
[Fig. 21(a)] and an analysis of the relative energy error
due to a noisy gate at different positions in the adiabatic
evolution [Fig. 21(b)].
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