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Abstract

The aim of this work is to develop methods for studying the deter-
minants of marriage incidence using marriage histories collected under
two different types of retrospective cross-sectional study designs. These
designs are: sampling of ever married women, that is, women who have
been married at least once before the cross-section, a prevalent cohort,
and sampling of women irrespective of marital status, a general cross-
sectional cohort. While retrospective histories from a prevalent cohort
do not identify incidence rates without parametric modelling assump-
tions, the rates can be identified when combined with data from a gen-
eral cohort. Moreover, education, a strong endogenous covariate, and
marriage processes are correlated. Hence, they need to be modelled
jointly in order to estimate the marriage incidence. For this purpose,
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we specify a multi-state model and propose a likelihood-based estima-
tion method. We outline the assumptions under which a likelihood ex-
pression involving only marriage incidence parameters can be derived.
This is of particular interest when either retrospective education his-
tories are not available or related parameters are not of interest. Our
simulation results confirm the gain in efficiency by combining data from
the two designs, while demonstrating how the parameter estimates are
affected by violations of the assumptions used in deriving the simplified
likelihood expressions. Two Indian National Family Health Surveys are
used as motivation for the methodological development and to demon-
strate the application of the methods.

Key Words : Correlated processes, Cross-sectional surveys, Event history
analysis, Incidence rate, Multi-state models, Prevalent cohort, Retrospective
histories

1 Introduction

In sociology and demography, population-based cross-sectional surveys have
been used to estimate rates of events such as marriage or cohabitation espe-
cially in the absence of reliable population registers (Hayford and Morgan,
2008, Raj et al., 2009). For estimation of marriage incidence rates, retro-
spective marriage histories, e.g. ages at first marriage, can be collected by
sampling at a cross-section. Two commonly employed sampling designs at a
cross-section are; (i) sampling of ever married women, women who have been
married at least once before the cross-section, a prevalent cohort, and (ii)
sampling of women irrespective of marital status, a general cross-sectional
cohort. Marriage histories are collected retrospectively under the two de-
signs. We refer to studies based on these two designs as retrospective cohort
studies I and II, respectively.

Similar designs are used in epidemiology to estimate incidence rate of a
disease based on retrospective disease histories, with methods described in
e.g. Keiding (1991), Keiding et al. (2012). Keiding (2006) gives an overview
of event history analysis and the cross-section with focus on complex sam-
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pling patterns. Further, Saarela et al. (2009) proposed combining retrospec-
tive event histories from individuals with prevalent disease and prospective
follow-up of disease free individuals at the cross-section, incident cohort, to
improve efficiency in estimating effects of time-invariant covariates on dis-
ease incidence. Gain in efficiency has also been demonstrated in estimation
of survival time from disease onset to death based on combined prevalent
and incident cohort data (Ning et al., 2017, Wolfson et al., 2019).

Although incidence rate estimation methods using retrospective event
histories are known in epidemiology, their application in other fields are
sparse. In the sociological context, retrospective event histories are typically
collected under the cross-sectional retrospective designs described earlier.
The quality of retrospective data on cohabitation by comparing data col-
lected in four surveys, all having the sampling design of type II above, has
been studied by Hayford and Morgan (2008). They estimated average prob-
abilities of cohabitation under discrete-time event history logit model with
fixed covariates. To estimate incidence of the outcome when the outcome
of interest is correlated with an endogenous covariate process, the outcome
and the covariate processes need to be modelled jointly. Moreover, the esti-
mation method should account for the sampling. In the absence of complete
covariate process histories at the cross-section, incidence rates estimation
may be possible only under special assumptions or sufficient background
information on the covariate processes.

The novelty of the present work is in modelling marriage and education
processes jointly using a multi-state model by combining the two retrospec-
tive cohort studies. We thus extend the existing likelihood-based methods
for estimation of incidence rates to simultaneously account for two different
sampling patterns; two correlated processes; and two time scales. We out-
line the assumptions under which the likelihood expressions for the marriage
incidence rates can be derived when complete retrospective histories of the
education process are not available or when parameters characterising the
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education process are not of interest. In a simulation study, we assess the
gain in efficiency due to using the proposed method over relying on data from
either of the two studies. We apply the methods to two nationally repre-
sentative Indian National Family Health Surveys (NFHS) data to study the
trends and determinants of marriage incidence in India. While we present
results in the context of education and marriage, the results are general and
can be applied to other similar settings.

The paper is organised as follows. Section 2 introduces the empirical
data from the two NFHS. Section 3 outlines the model of female marriage
incidence and derives the necessary likelihood expression of the model pa-
rameters to estimate them from cross-sectional data. Section 4 considers
calculation of predictive probabilities based on the model. A simulation
study and data analysis results are presented in sections 5 and 6. The paper
concludes with a discussion.

2 The data

The motivation for this work comes from the estimation of marriage inci-
dence rates and their determinants using two NFHS; surveys conducted in
India during 1998-99 (NFHS-2) and 2005-06 (NFHS-3). The NFHS-2, an
example of retrospective cohort study I, was a cross section of a nationally
representative sample of 91196 households with 90265 ever-married women
aged 15-49 years and gave a retrospective cohort of ever married women. The
NFHS-3, an example of retrospective cohort study II, included 109041 house-
holds with 124373 women aged 15-49 years irrespective of marital status and
gave a retrospective cohort, irrespective of the current status of marriage at
the time of survey. The data and reports of the NFHS are available through
the National Family Health Survey website (http://rchiips.org/nfhs/).
A schematic Lexis diagram illustration of the two cohorts is presented in
Figure 1. The x-axis represents calendar years and the y-axis represents age
in years. Each line shows the life of a woman where the solid line indicates

http://rchiips.org/nfhs/
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life before marriage and dashed line indicates life after marriage. A dot
shows the calendar time and age at the time of the first marriage. There is
no fully black solid line because study I included only ever married women.
The oldest birth cohort included in study I was 1949 and that in study II
was 1956. Education is known to be a key determinant of marriage (Dom-
maraju, 2009, Goswami, 2014, Kalmijn, 1991, Ruwali, 2018). Moreover, who
one marries depends on one’s education more so than in the past (Cherlin,
2010). Hence, we model the joint dependency of the education and marriage
processes in this context.

The data used in the current analysis include each female participant’s
age at the time of the survey, age at the first marriage, birth cohort, state,
urban/rural residence, caste category, religion, and highest educational level
completed, categorized as in Table 1. For analytical purposes, we have cho-
sen, in addition to whole India, four Indian states , viz., Kerala, Maharashtra,
Punjab and Rajasthan that differ geographically, socially and economically
(cf. Appendix A). Caste refers here to the four administrative categories of
caste, viz., Scheduled Caste, Scheduled Tribe, Other Backward Class and
Other that are used by the Government of India to represent disadvantaged
groups and to provide reservations based on the caste system. Scheduled
Castes, Scheduled Tribes and Other Backward Classes are groups that have
faced a varying degree of social and economic discrimination in the past (De-
sai and Kulkarni, 2008, Government of India, 2011). The total number of
study subjects in the four states was 38052 as seen from Table 6, Appendix
A.

3 Joint modelling of education and marriage pro-
cesses and estimation of marriage incidence rates

As noted earlier, education is known to be a key determinant of marriage and
vice versa, and hence, are highly correlated with each other. We model the
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Figure 1: Lexis diagram illustration of the two cross-sectional surveys.
NFHS-2 (black, retrospective cohort study I) collected retrospective mar-
riage histories from ever married women only. NFHS-3 (red, retrospective
cohort study II) included also never married women and collected retrospec-
tive marriage histories from currently married women.

two correlated processes; at-school and marriage processes, in a multi-state
modelling framework. Here at-school process models continuing education
starting from the primary school to the highest possible university level
education, and marriage process models transition from never married state
to married state. In the sequel, never married is referred as unmarried. Our
interest is in the incidence of the first marriage and we thus do not model
the subsequent changes to other possible states such as divorced, widowed
or remarried. Each process has two states indicating respective status, and
the joint process can be described using a multi-state model as depicted in
Figure 2. The state space of the joint process is {at school and unmarried, at
school and married, out of school and unmarried, out of school and married,
dead }. We denote these five states as {1, 2, . . . , 5}, respectively. Of note, the
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Table 1: Covariates in the marriage incidence model. The reference cate-
gories are indicated as ‘ref.’

Covariate Category Notation
Birth cohort 1942-62 (ref.) x1 = 0

1962-72 x1 = 1
1972-82 x1 = 2
1982-92 x1 = 3

Residence status Urban (ref.) x2 = 0
Rural x2 = 1

Caste Scheduled Caste (SC, ref.) x3 = 0
Scheduled Tribe (ST) x3 = 1
Other Backward Class (OBC) x3 = 2
Other x3 = 3

Religion Hindu (ref.) x4 = 0
Muslim x4 = 1
Christian x4 = 2
Sikh x4 = 3
Other x4 = 4

Education None (< 5 years) (ref.) x5 = 0
Primary (5-9 years) x5 = 1
Secondary (10-12 years) x5 = 2
Higher (> 12 years) x5 = 3

at-school process jumps to out of school state when the formal education,
including university level education, ends and the marriage process jumps to
married state at the time of the first marriage. Let ae and a0 be the minimum
age of starting basic compulsory education and the minimum marriageable
age a0(> ae), respectively. In the Indian context, (ae, a0) are taken as (6, 12).

We denote the calendar time corresponding to age a as t(a) = t0 + a

where t0 is the birth year and define both processes in a Lexis diagram
with calendar time and age as the two time scales. We define the at-school
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Figure 2: At-school and marriage processes as a multi-state model (states
are: 1 = at school and unmarried, 2 = at school and married, 3 = out of
school and unmarried, 4 = out of school and married, 5 = dead)

process {N1(t, a), a ≥ 0, t = t(a)} as a stochastic process giving the education
status with N1(t, a) = 1 indicating being in school and N1(t, a) = 0 having
stopped formal education (out of school) by age a at time t(a). Similarly, the
marriage process {N2(t, a), a ≥ 0, t = t(a)} is a stochastic process giving the
marital status of a woman aged a at time t(a), with N2(t, a) = 0 indicating
unmarried and N2(t, a) = 1 married status. The corresponding histories are
defined as Fr(t, a) = {Nr(s, u), u ≤ a, s(u) ≤ t(a)}, r = 1, 2, respectively
and the joint history as F(t, a) = {(N1(s, u), N2(s, u)), u ≤ a, s ≤ t}. Note
that the four states defined earlier correspond to the at-school and marriage
processes taking values (1, 0), (1, 1), (0, 0), (0, 1), respectively, and the state
5 corresponds to dead.

The counting process N1(t, a) remains at zero between the age 0 and ae,
that is between the birth year t0 and the year t(ae). Because of minimum
marriageable age a0(> ae), the process N2(t, a) is zero for all age a < a0

and calendar time t < t(a0). The association between the two processes is
modelled through the dependence on the joint history F(t, a). Because the
two times grow together with the same pace we denote the history using
only one time scale as F(a). Time invariant information or fixed covariates
at birth (x) such as religion and caste are also included in this history. We
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also construct a deterministic counting process giving schooling years of a
woman aged a at time t(a), as the accumulated history of at-school process
{
∫

0≤u≤a N1(t(u), u) du}.
The intensities of making transition from at-school to out of school state

given that the marriage process is in state k = 0, 1, and the history of the
processses are defined as

α1,k(t, a | F(a−))

= lim
∆t→0

P (N1(t + ∆t, a + ∆t) = 0 | N(t−, a−) = (1, k), F(a−))
∆t

,

and similarly, the marriage intensities of making transition from unmarried
to married state given that the at-school process is in state k = 0, 1, are
defined as

λk,0(t, a | F(a−))

= lim
∆t→0

P (N2(t + ∆t, a + ∆t) = 1 | N(t−, a−) = (k, 0), F(a−))
∆t

,

where N(t, a) = (N1(t, a), N2(t, a)) and k = 0, 1. Since the process N1(t, a) =
1 until the transition happens, we drop the subscript 1 and simplify the no-
tation α1,k(t, a | F(a−)) to αk(t, a). Similarly, the process N2(t, a) = 0 until
the transition happens, and hence, we use λk(t, a | F(a−)) as a simplified
notation for λk,0(t, a). Furthermore, we define µjk(t, a) to be the intensity of
moving to state 5 (dead), where j, k ∈ {0, 1} represent the current schooling
and marriage status, respectively. Note that the transition intensities are
defined in relation to the at-risk process while the transition rates describe
how the process evolve over time.

Figure 3 exhibits an example sample paths of the two processes based on
the retrospective information collected at the cross-sectional age of 25. In
the example, the formal school ends at the age of 18 and marriage takes place
at the age of 21. The at-school process remains in state 1 between the age of
6 years (ae = 6) and 18 years, then jumps to state 0. The marriage process
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Figure 3: A sample path of at-school (blue) and marriage (green) processes.
Basic education starts at the age of 6 years and marriageable age is 12
years. The inner left y-axis indicates education status 0 (= out of school)
and 1 (= at school) and the outer left y-axis gives the accumulated schooling
years. The right y-axis is the marital status axis, 0 (= unmarried) and 1
(= married). Dashed black lines indicate observation period relevant for
marriage process and solid black line indicates the cross-section.

starts at the age of 12 years (a0 = 12) in state unmarried (0) and jumps
to state married (1) at the age of 21 years. In addition, the deterministic
counting process giving the accumulated schooling years is also shown. The
observation process stops at the first marriage and our main interest in the
joint processes is in the time interval between the age a0 and the age at the
first marriage. In the observation period, the multi-state process starts in
state 1 at age 12 and calendar year (t0 + 12) and moves to state 3 before
transitioning to state 4 at age 21 and calendar year (t0 + 21). The schooling
years at that time are 12 which are attained at the age of 18. In principle,
changes in the at-school process after marriage can be inferred based on the
method given below subject to the availability of data.

We derive the likelihood contributions for all possible event histories
conditional on being alive in either state 1 or 3 at age ae. Let us first
consider an individual born in the calendar time t0 and in state 1 (at school
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and unmarried) at age ae. Figure 2 shows possible transitions between the
five states. We develop the model following notation of Keiding (1991),
extending it to include two correlated processes. The probability density
of being unmarried and at school with w = z − ae years of schooling and
aged [z, z + dz) at time t, is proportional to β1(t − z, ae)k1(t, z, w), where
β1(t − z, ae) is the probability density of being born in year t − z and being
in state 1 at age ae and

k1(t, z, w) = exp
{

−
∫ z

ae

[µ10(t − z + u, u) + α0(t − z + u, u)] du

}
× exp

{
−

∫ z

a0
λ1(t − z + u, u) du

}
. (3.1)

Similarly, the probability density of being unmarried and out of school with
w years of schooling and alive aged [z, z + dz) at time t, is proportional to
β1(t − z, a0)k0(t, z, w) dz where

k0(t, z, w) = exp
{

−
∫ aw

ae

α0(t − z + u, u) du

}
× α0(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}0(t − z + u, u) du

}
× exp

{
−

∫ z

a0
λ1{u≤aw}(t − z + u, u) du

}
, (3.2)

where aw = ae + w < z, is the age when school ended with w years of
schooling attained.

Equations (3.2) and (3.1) can be combined and rewritten as follows.

k(t, z, w) = exp
{

−
∫ min(aw,z)

ae

α0(t − z + u, u) du

}
× α0(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}0(t − z + u, u) du

}
× exp

{
−

∫ z

a0
λ1{u<aw}(t − z + u, u) du

}
. (3.3)

Similarly, the probability density of being married and having w years of
schooling, alive and aged [z, z + dz) at time t and the first marriage at age
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[y, y + dy) is proportional to β1(t − z, a0)h(t, y, z, w) dy dz where h(t, y, z, w)
is defined as

h(t, y, z, w) = exp
{

−
∫ min(aw,z)

ae

α1{y<u}(t − z + u, u) du

}
× α1{y<aw}(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}1{y<u}(t − z + u, u) du

}
× exp

{
−

∫ y

a0
λ1{u<aw}(t − z + u, u) du

}
× λ1{y<aw}(t − z + y, y). (3.4)

The likelihood contributions of individuals starting in state 3 (women who
received no education) are defined similarly, but multiplied by β0(t − z, ae),
which is the probability density of being born in year t − z and being in
state 3 at age ae, and taking aw = ae, in which case the α intensities do not
appear in (3.1)-(3.4).

The probability density of the sampling event of being married, having
w years of schooling, alive and aged [z, z + dz) at time t is∫ z

a0
β1{ae<aw}(t − z, ae)h(t, y, z, w) dy.

Alternatively, if we were interested in estimating intensities for both mar-
riage and ending formal education, we could write the likelihood without
conditioning on the education history. However, because our interest is in
marriage intensity, we write the likelihood conditional on the education his-
tory, and consider conditions under which we can simplify the likelihood into
a function of the marriage intensities alone.

The conditional likelihood contributions of individuals i ∈ C2, in the
prevalent cohort, e.g. NFHS-2, at time t2 are

∏
i∈C2

L2i(θ) =
∏

i∈C2

β1{ae<awi }(t2 − zi, ae)h(t2, yi, zi, wi)∫ zi
a0

β1{ae<awi }(t2 − zi, ae)h(t2, v, zi, wi) dv

=
∏

i∈C2

h(t2, yi, zi, wi)∫ zi
a0

h(t2, v, zi, wi) dv
.
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The likelihood can be simplified under either of the following assumptions
related to the counting process for number of schooling years, combined
with the assumption that mortality is non-differential with respect to the
marriage status, i.e. that µj0(t, a) = µj1(t, a) = µj(t, a) for j = 0, 1.

A1. Schooling ends always before marriage or the intensity of stopping
schooling after marriage is negligible.

A2. The intensities of stopping schooling are non-differential. That is
the intensities of stopping schooling are the same before and after
marriage, and do not depend on the history of the marriage process
F2(t, a) = {N2(s, u), u ≤ a, s(u) ≤ t(a)}. In other words, this assump-
tion states that the education process is locally independent of the mar-
riage process; α0(t, a | F(a−)) = α1(t, a | F(a−)) = α(t, a | F1(a−)).
(Cook and Lawless, 2018)

3.1 Retrospective cohort study I: likelihood under the as-
sumptions of non-differential mortality and A2

Under the above-mentioned assumptions, equation (3.4) reduces to

h(t, y, z, w) = exp
{

−
∫ min(aw,z)

ae

α(t − z + u, u) du

}
× α(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}(t − z + u, u) du

}
× exp

{
−

∫ y

a0
λ1{u<aw}(t − z + u, u) du

}
× λ1{y<aw}(t − z + y, y). (3.5)
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The normalising factor becomes∫ z

a0
h(t, y, z, w) dy = exp

{
−

∫ min(aw,z)

ae

α(t − z + u, u) du

}
× α(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}(t − z + u, u) du

}
×

(
1 − exp

{
−

∫ z

a0
λ1{u<aw}(t − z + u, u) du

})
.

(3.6)

Now the terms containing α and µ cancel out from the conditional likelihood,
giving the likelihood contribution of an individual i ∈ C2 in the prevalent
cohort, e.g. NFHS-2, conditioned on the sampling event as

L2i(θ) =
exp

{
−

∫ yi
a0

λ1{u<awi }(t2 − zi + u, u) du
}

λ1{yi<awi }(t2 − zi + yi, yi)

1 − exp
{

−
∫ zi

a0
λ1{u<awi }(t2 − zi + u, u) du

} .

(3.7)
If we don’t include the number of schooling years in the sampling event

then the denominator will have to be integrated with respect to w as well as∫ z

a0

∫ z

ae

β1{ae<aw}(t − z, a0)h(t, y, z, w) dw dy.

The above expression can be simplified under the assumptions A1 or A2 but
the intensities α do not cancel out, so the resulting likelihood can be used
for estimating parameters characterising the education process, if these are
of interest.

3.2 Retrospective cohort study II: likelihood under the as-
sumptions of non-differential mortality and A2

The conditional probability density of the sampling event of being alive
with schooling years w and aged z at time t is the sum of the probabilities
of being unmarried, alive with schooling years w and aged z at time t, and
married, alive with schooling years w and aged z at time t. This is given
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by β1{ae<aw}(t − z, ae)[k(t, z, w) +
∫ z

a0
h(t, y, z, w) dy]. Thus, the conditional

likelihood contributions of individuals i ∈ C3 in the general cohort, e.g.
NFHS-3, at time t3 are

L3(θ) =
∏

i∈C3

β1{ae<awi }(t3 − zi, a0)h(t3, yi, zi, wi)δik(t3, zi, wi)1−δi

β1{ae<awi }(t3 − zi, a0)[k(t3, zi, wi) +
∫ zi

a0
h(t3, u, zi, wi) du] ,

(3.8)

where δi ≡ 1{yi≤zi} is an indicator of marital status at time t3. Under
the assumptions A2 and non-differential mortality with respect to marriage
status, as before, (3.3) reduces to

k(t, z, w) = exp
{

−
∫ min(aw,z)

ae

α(t − z + u, u) du

}
× α(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}(t − z + u, u) du

}
× exp

{
−

∫ z

a0
λ1{u<aw}(t − z + u, u) du

}
(3.9)

and h(t, u, z, w) to (3.6). Combining these, the normalising factor becomes

k(t, z, w) +
∫ z

a0
h(t, u, z, w) du

= exp
{

−
∫ min(aw,z)

ae

α(t − z + u, u) du

}
α(t − z + aw, aw)1{ae<aw≤z}

× exp
{

−
∫ z

ae

µ1{u<aw}(t − z + u, u) du

}
, (3.10)

which will cancel out with the similar term in the numerator of the condi-
tional likelihood. Thus, under these assumptions, the likelihood (3.8) under
the retrospective cross-sectional design II reduces to the standard likelihood
for right censored survival data, given by

L3(θ) =
∏

i∈C3

[
λ1{yi<aw}(t3 − zi + yi, yi)δi

× exp
{

−
∫ min(yi,zi)

a0
λ1{u<aw}(t − z + u, u) du

} ]
. (3.11)
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It is to be noted that the above likelihood expressions are constructed by
explicitly conditioning on the calendar time of the survey, the age and school-
ing status of the individual at the time of the survey. This is equivalent to
conditioning on the individual’s birth cohort, and hence, the birth rate can-
cels out and the likelihood expressions simplify by assuming non-differential
mortality and either A1 or A2 only. If the conditional likelihood were de-
rived by conditioning only on the age range used for the sampling and not
on the exact age of individuals then the probability of the conditioning event
needed to be integrated over z also. The same applies for education status.
In this case, stricter assumptions would be needed to carry out the estima-
tion of the incidence rate or external information on mortality, education as
well as birth rates would be required. Such information may not be avail-
able for all the stratifying groups that we will use in the real application.
In the following we use a likelihood conditioned on the covariates and the
sampling scheme for estimating the marriage incidence rate. The likelihood
is a product of L2(θ) and L3(θ) from the cohorts under design I and II,
respectively. We show in Appendix B that this is indeed a likelihood and
hence, the maximum likelihood theory applies for estimation of θ.

4 Predictive probabilities

In societies experiencing fertility decline and manifesting imbalanced sex
ratio at birth, marriage markets are affected by the marriage squeeze (Guil-
moto, 2012, Neelakantan and Tertilt, 2008, Schoen, 1983). ‘Marriage squeeze’
refers to excess supply of marriageable females or males within the endogamy
of religion, caste, language and characterised by age and education. The
marriage squeeze reflects the ways in which observed males’ and females’
age-specific marriage rates accommodate themselves to changes in the age-
sex composition and education of the population when the underlying mar-
riage preferences remain unchanged (Schoen, 1983). Prediction of marriage
squeeze has been one of the main aims of demographic models. Estimates of
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marriage intensities accommodating endogenous variables including educa-
tion can be used to calculate the probabilities of transition from unmarried
to married state in the future. Further, such predictive probabilities could
be used to evaluate the extent of marriage squeeze.

Predictive probabilities defined in this section are the probabilities of
transition from unmarried to married state in the future based on existing
data. The data are used to estimate the parameters characterising the mar-
riage process, and the predictions are calculated at the estimated parameter
values. Given characteristics x, we might be interested in the predictive prob-
ability of an unmarried woman aged a1 (≥ a0) at time t and schooling years
w years being married before age a2. Because education is time-dependent,
generally calculation of these kinds of probabilities would involve prediction
of future education also. However, for women who already reached their
highest level of education (i.e. aw < a1), we can predict based on marriage
intensity and mortality estimates alone. Such predictive probability for fixed
schooling years is given by the cumulative incidence

PredProb(a2 | t, a1, w)

=
∫ a2

a1
k(t − a1 + a, a, w)λ0(t − a1 + a, a; θ) da

k(t, a1, w)

=
∫ a2

a1
k2(t − a1 + a, a, w)λ0(t − a1 + a, a; θ) da

k2(t, a1, w) , (4.1)

where

k2(s, a, w)

= exp
{

−
∫ a

a0
[µ00(s − a + u, u) + λ0(s − a + u, u; θ)}] du

}
.

Another predictive probability of interest is that of an unmarried woman,
with characteristics x and aged a1 at time t and schooling years w1 being
married before age a2, and being alive at a2, and is given by (for fixed
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schooling years)

∫ a2
a1

h(t − a1 + a2, a, a2, w1) da

k(t, a1, w1)

=
∫ a2

a1
h2(t − a1 + a2, a, a2, w1) da

k2(t, a1, w1) , (4.2)

where k2 is defined above and h2 is obtained from h in (3.4) by dropping
terms corresponding to education process. Under the assumption of non-
differential mortality with respect to both education and marriage, and pos-
sibly other covariates used to model marriage intensity, mortality rates based
on official statistics can be used in the calculation.

The first predictive probability (4.1) appears to be important for pop-
ulation models since it gives the proportion ever getting married, which
multiplied by the population count of age a1 (with characteristics x) gives
the ever-married population count. The second one (4.2) might be impor-
tant for questions like: what proportion of women of age a0 get married and
live until through a typical “child-bearing age” a1. Note that the mortality
rate is needed in order to compute above probabilities. We demonstrate the
former kind of predictive probabilities in Section 6.

5 Simulation study

We conducted a simulation study to assess the efficiency gain achieved by
combining data from the two retrospective cohort studies, compared to
analysing each one of these separately, as well as to study the impact of
various misspecification scenarios on the parameter estimates. We simu-
lated data from a multi-state model with states similar to Figure 2. The
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model was specified through the transition rate matrix

1 2 3 4 5
1 . λ1 = em+bx+c α0 = es+bx 0 µ10 = er+bx+c

2 0 . 0 α1 = es+bx+d µ11 = er+bx+c+g

3 0 0 . λ0 = em+bx µ00 = er+bx

4 0 0 0 . µ01 = er+bx+g

5 0 0 0 0 .

where the parameters of interest are m, characterising the baseline marriage
rate, b, characterising the effect of a time constant covariate x (taking values
1 or 0 with probability 0.5) on marriage rate, and c, characterising the effect
of being in school on marriage rate, as well as on mortality rate. Parame-
ters d and g characterise the effect of marriage on ending formal education
and mortality, respectively. Note that d = g = 0 under the non-differential
assumption. It is to be noted that the simulation model assumes constant
rates and hence, the term transition intensity is replaced by transition rate.
The initial state of the multi-state model at age a0 = 12 was drawn ran-
domly with probabilities expit(−1 + 0.5x) for state 3 (unmarried, out of
school) and 1 − expit(−1 + 0.5x) for state 1 (unmarried, at school). A cross-
sectional cohort was constructed by drawing year of birth uniformly from
[1965, 1993], and taking 2005 as the time of the cross-sectional survey, at
which time the age range was [12, 40]. The cohort under design I, cohort
I, was constructed by simulating 2,500 event histories and including only
individuals in the married states 2 and 4 at the time of the cross-section,
while the one under design II, cohort II, was constructed by simulating 2,500
event histories and including individuals in states 1-4 at the cross-section.
To these data, we fitted constant rate marriage models through maximizing
the joint likelihood expression using data from the two cohorts, the product
of (3.7) & (3.11), cohort I data only, (3.7), the likelihood expression (3.7)
without the correction term in the denominator, and cohort II data only,
(3.11). The data generation and model fitting were repeated 1,000 times,
resulting in average sizes of the two cohorts as (1,864, 2,229), respectively
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under the non-differential scenario. The likelihood expressions were max-
imised numerically using the R optim function (R Core Team, 2020), with
standard errors calculated by inverting the numerically differentiated Hes-
sian matrix at the maximum likelihood point.
The results under the non-differential scenario are given in Table 2. The
results indicate that there is a clear efficiency gain (in terms of the Monte
Carlo standard deviation of the point estimates) in combining the analysis of
the two cohorts, as opposed to analysing each of them separately. The three
types of parameters, baseline marriage intensity m, effect of a time-constant
covariate b, and effect of time-dependent covariate c can be estimated with-
out bias, with the cohort I likelihood needing the correction term in the
denominator to account for the sampling mechanism. The results under
the scenario of differential education process intensities are given in Table
3. These indicate that violation of the non-differential assumption for stop-
ping school mainly causes bias in the estimated effect of ending school on
marriage incidence, while the other two parameters are much less affected.
The retrospective cohort likelihood under design I is more susceptible to
this type of bias, but it is fairly small in all cases. Differential mortality
(Table 4) on the other hand causes bias in the baseline marriage incidence
estimates with both types of likelihood expression, with the covariate effect
estimates affected much less. Finally, both types of non-differential assump-
tions are combined in the scenario of Table 5, with the two different types
of biases essentially adding up. In summary, the simulation results confirm
the efficiency gain in combining two types of retrospective cross-sectional
cohort data, while demonstrating how the parameter estimates are affected
by violations of the assumptions used in deriving the simplified likelihood
expressions. Because the effect of the violations was relatively small, we pro-
ceed under the non-differential assumptions in the data analysis of Section
6.
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Table 2: Results from 1000 simulation rounds under non-differential mortal-
ity and stopping school (d = g = 0). Mean stands for mean point estimate,
MC SD for Monte Carlo standard deviation of the point estimates, Mean SE
for mean estimated standard error, and Coverage for 95% confidence interval
coverage probability.

Likeli- Para- Truth Mean Bias MC Mean Cover-
hood meter SD SE age

(3.7) & (3.11) m -1.500 -1.501 -0.001 0.029 0.030 0.947
b 0.500 0.501 0.001 0.037 0.037 0.951
c -0.500 -0.499 0.001 0.038 0.039 0.943

(3.7) m -1.500 -1.501 -0.001 0.049 0.050 0.954
b 0.500 0.501 0.001 0.059 0.060 0.942
c -0.500 -0.499 0.001 0.059 0.058 0.943

(3.7) m -1.500 -1.264 0.236 0.034 0.037 0.000
w/o b 0.500 0.394 -0.106 0.044 0.046 0.380

correction c -0.500 -0.474 0.026 0.052 0.052 0.901
(3.11) m -1.500 -1.501 -0.001 0.038 0.037 0.941

b 0.500 0.501 0.001 0.047 0.046 0.947
c -0.500 -0.500 0.000 0.052 0.052 0.947

Table 3: Results from 1000 simulation rounds under non-differential mortal-
ity (g = 0) and differential stopping school (d = 1).

Likeli- Para- Truth Mean Bias MC Mean Cover-
hood meter SD SE age

(3.7) & (3.11) m -1.500 -1.507 -0.007 0.030 0.030 0.948
b 0.500 0.502 0.002 0.036 0.037 0.951
c -0.500 -0.470 0.030 0.038 0.038 0.864

(3.7) m -1.500 -1.516 -0.016 0.052 0.051 0.944
b 0.500 0.501 0.001 0.060 0.060 0.953
c -0.500 -0.429 0.071 0.057 0.057 0.752

(3.7) m -1.500 -1.264 0.236 0.035 0.037 0.000
w/o b 0.500 0.395 -0.105 0.045 0.046 0.370

correction c -0.500 -0.478 0.022 0.051 0.052 0.932
(3.11) m -1.500 -1.500 -0.000 0.038 0.037 0.935

b 0.500 0.502 0.002 0.048 0.046 0.948
c -0.500 -0.505 -0.005 0.052 0.052 0.947
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Table 4: Results from 1000 simulation rounds under differential mortality
(g = 1) and non-differential stopping school (d = 0).

Likeli- Para- Truth Mean Bias MC Mean Cover-
hood meter SD SE age

(3.7) & (3.11) m -1.500 -1.547 -0.047 0.032 0.032 0.709
b 0.500 0.498 -0.002 0.040 0.041 0.954
c -0.500 -0.497 0.003 0.042 0.042 0.945

(3.7) m -1.500 -1.557 -0.057 0.058 0.056 0.831
b 0.500 0.501 0.001 0.070 0.069 0.946
c -0.500 -0.496 0.004 0.067 0.065 0.943

(3.7) m -1.500 -1.283 0.217 0.038 0.039 0.001
w/o b 0.500 0.393 -0.107 0.050 0.051 0.443

correction c -0.500 -0.467 0.033 0.057 0.056 0.904
(3.11) m -1.500 -1.543 -0.043 0.039 0.039 0.811

b 0.500 0.497 -0.003 0.050 0.051 0.951
c -0.500 -0.499 0.001 0.058 0.056 0.938

Table 5: Results from 1000 simulation rounds under differential mortality
and stopping school (g = d = 1).

Likeli- Para- Truth Mean Bias MC Mean Cover-
hood meter SD SE age

(3.7) & (3.11) m -1.500 -1.555 -0.055 0.032 0.032 0.595
b 0.500 0.498 -0.002 0.039 0.041 0.962
c -0.500 -0.469 0.031 0.043 0.042 0.874

(3.7) m -1.500 -1.577 -0.077 0.058 0.057 0.741
b 0.500 0.504 0.004 0.068 0.069 0.952
c -0.500 -0.419 0.081 0.065 0.063 0.748

(3.7) m -1.500 -1.282 0.218 0.038 0.039 0.000
w/o b 0.500 0.394 -0.106 0.049 0.051 0.472

correction c -0.500 -0.478 0.022 0.057 0.056 0.921
(3.11) m -1.500 -1.542 -0.042 0.040 0.039 0.809

b 0.500 0.496 -0.004 0.052 0.051 0.944
c -0.500 -0.509 -0.009 0.057 0.056 0.947
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6 Analysis of marriage incidence in India and four
states based on NFHS-2 and -3 data

6.1 Model

Our main focus is on estimation of marriage incidence and hence, we apply
estimation method based on likelihood expressions (3.7) and (3.11). The
NFHS data did not include complete retrospective histories of education
and hence, we constructed histories of education process up to the time of
marriage by employing the structure of the Indian education system and
assuming that everyone starts school at the same age ae, and stays at school
continuously after that until stopping.

For the purpose of illustration, we considered only four states, Kerala,
Maharashtra, Punjab and Rajasthan, as described in Section 2 which are ge-
ographically spread across India and differ by way of literacy rates, women’s
position, and sex-ratio at birth. From the cross-sectional data from NFHS-2
and NFHS-3 surveys, the age a and calendar time t effects turned out to be
strongly correlated, so instead of estimating age- and calendar period-specific
marriage incidence rates, we used age as the main time scale of the analysis,
and birth cohort as a covariate. Table 1 lists the covariates used in the mar-
riage incidence model. We applied a proportional hazards model in which
the covariates act multiplicatively on an age-dependent baseline rate, as-
sumed piecewise constant over one-year age intervals except for the first and
the last intervals. This results in 17 age bands [12, 15), [15, 16), . . . , [29, 30),
and [30, 50) years, denoted by [aj , aj+1), j = 1, . . . , 17.

The effect of education was modeled by defining the marriage incidence as
a function of the current highest education level being attempted, defining
the education level x5j at age band j as a time-dependent covariate by
modifying the woman’s highest attained level x5, recorded at the time of
survey, so that x5j = min(x5, 1) when in age band j = 1, x5j = min(x5, 2)
when j ∈ {2, 3, 4}, and x5j = x5 otherwise. For example, consider a woman



44 Journal, Indian Statistical Association

aged 25 years at the time of survey, married at the age of 21 years, has
reported education level Secondary (x5 = 2, cf. Figure 3 and Table 1).
In the analysis, her contribution to the education variable will be Primary
in the age band [12, 15) and Secondary in the bands [15, 16), [16, 17), · · · ,
[20, 21) and [21, 22) to span the age range from 12 years to the age at her
marriage.

To sum up, the model for the marriage incidence rate λ(a; x, θ) = λj(x, θ),
a ∈ [aj , aj+1), j = 1, . . . , 17, conditional on covariate values x, Table 1, was
specified as

log{λj(x, θ)} = αj +
3∑

i=1
β1i1{x1=i} + β21{x2=1} +

3∑
i=1

β3i1{x3=i}

+
4∑

i=1
β4i1{x4=i} +

3∑
i=1

β5i1{x5j=i}, (6.1)

with 31 parameters, including 17 log-baseline rates and 14 covariate effects,
log-rate ratios. The same model was fitted for each state separately, and
in addition to all-India data (all 29 states) to assess how the state-specific
patterns differ from the national pattern, by maximising the product of
likelihood expressions of the form (3.7) and (3.11), but because the age
at marriage was only reported at the precision of one year, expressing the
numerator contribution for married women as∫ ⌈y⌉

⌊y⌋
λ(a; x, θ) exp

{
−

∫ a

a0
λ(u; x, θ) du

}
da

= exp
{

−
∫ ⌊y⌋

a0
λ(u; x, θ) du

} [
1 − exp

{
−

∫ ⌈y⌉

⌊y⌋
λ(u; x, θ) du

}]

where ⌊y⌋ and ⌈y⌉ = ⌊y⌋ + 1 denote the floor and ceiling of the exact age
y at which the marriage took place. The joint likelihood expression was
maximised with respect to the parameter vector θ using the optim function
of the R statistical environment (R Core Team, 2020). The standard errors
were evaluated by inverting the numerically differentiated observed informa-
tion matrix at the maximum likelihood point. The results were presented as
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point estimates and 95% confidence intervals. Of note, by letting the mar-
riage rate depend on the birth cohort, the third possible time scale (calendar
time) can be omitted.

6.2 Results

Figure 4 presents the estimated age-specific baseline marriage rates in the
four Indian states and in all India. Although the hazard of first marriage
after age 30 has remained low in each state, different patterns emerge other-
wise. The rate is generally lowest in Kerala, in particular in comparison to
Maharashtra and Punjab. In Rajasthan, the rate starts increasing earliest
in age.

Figure 5 shows the estimated covariate effects on the marriage rates.
The rate decreases by birth cohort x1, except for Punjab where the rate is
the highest for the 1972-1982 cohort (x1 = 2). By the last cohort (1982-
1992, x1 = 3) in this analysis, the rates have declined considerably in all
four states. Since this birth cohort, being 6-16 years of age at the time of
survey, was underrepresented in NFHS-2, we repeated the analysis by using
only the NFHS-3 data and the estimates of marriage rates were essentially
unchanged (results not shown).

Unsurprisingly, women in rural areas (x2 = 1) have a larger rate of
marriage (all India incidence rate ratio of 1.19) compared to urban areas
(x2 = 0, ref.), except in Punjab where the reverse is true. The higher rate
in rural areas is particularly striking in Kerala and Maharashtra. At the
India level, the marriage rates are similar for OBC (x3 = 2) and SC (x3 = 0,
ref.) while ST (x3 = 1) and Other caste (x3 = 3) have lower marriage rates.
However, this pattern is not evident in all of the four the state-level results.
In Punjab, the confidence interval for ST is wide because this caste is rare
(Table 6).

There are clear differences in the marriage rate across religions (x4). At
the India level, the marriage incidence rates are clearly smaller in Christian
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Figure 4: Age-specific baseline rates for a woman to marry in India and
the four selected states. The horizontal lines show the maximum likelihood
estimates of parameters exp{αj} in (6.1), and their corresponding 95% con-
fidence intervals.
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(x4 = 2), Sikh (x4 = 3) and other religions (x4 = 4) as compared to Hindu
(x4 = 0, ref.). The same pattern emerges in the state-level analysis, except
for Muslims (x4 = 1) in Kerala. Again, to interpret the state specific re-
sults we note that not all religions were sufficiently represented in each state
(Table 6).

The effect of education (x5) is evident. There is a clear decrease in the
incidence rate when moving from no education (x5 = 0, ref.) to higher
education levels (x5 = 3) in India and in all the four states. In the all India
analysis, the incidence rate for a woman with primary education (x5 = 1) to
marry at any given age is about half that for a woman with no education.
The corresponding rates are 31% and 28% of the uneducated rate for a
woman with secondary (x5 = 2) and higher education. The same patterns
shows up in all four states although the effect of education level is relatively
smaller in Kerala.

Predictive probabilities of type (4.1) for marrying by age a1 were calcu-
lated as discussed in Section 4, with amin = a0 = 12, using 2010 mortality
rates based on census data, and marriage incidence rates corresponding to
different calendar periods (Figure 6). The covariate values were set to the
reference categories (urban area, scheduled caste, Hindu religion, and un-
educated). Clearly, the women’s absolute probability of marrying by late
twenties has remained consistently high, but in Maharashtra there has been
a clear shift towards marrying at a comparatively higher age. The patterns
in Kerala and Rajasthan are more difficult to interpret, as the high estimated
marriage rates in late twenties in the later calendar periods actually results
also in higher projected absolute probabilities in late twenties. However,
this projection does not reflect all the changes in the background popula-
tion, since the overall education level has increased over time, bringing the
population marriage incidence rates down, while in this projection education
was fixed to the reference level. In Punjab, any changes over time have been
comparatively small.
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Figure 5: Forest plots of the estimated covariate effects on marriage incidence
rates of women for India and the four selected states. The horizontal lines
correspond to the rate ratio estimate, and 95% confidence interval.
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Figure 6: Predictive probabilities for women to be married by age a by
birth cohort, calculated by combining 2010 mortality rates with the marriage
incidence model. The other covariates were set to the reference levels.

7 Discussion

In this article we formulated a multi-state model for modeling an outcome
and a covariate process jointly in two types of retrospective cross-sectional



50 Journal, Indian Statistical Association

cohort studies. Our methodological contributions can be summarised as fol-
lows. (i) Combined analysis of retrospective histories from two types of cross-
sectional cohorts; (ii) multi-state modeling of retrospective histories of two
correlated processes in two time scales; (iii) assessment of the performance
of the method based on combining the two retrospective cross-sectional co-
hort designs against using either of the two; and (iv) illustration through
an application to the estimation of marriage incidence rates. We have used
explicitly the structure of the Indian education system in building the joint
model and also extracting retrospective information from the cross-section.
We also assume that everyone adheres to that. When retrospective history
on schooling is available, in addition to the cross-section, this assumption
can be relaxed.

Statistical methods have been developed and applied for the estimation
of incidence rates from cross-sectional cohorts, with or without subsequent
prospective follow-up (Keiding, 1991, 2006, Keiding et al., 2012, Saarela
et al., 2009). The incidence rate, in general, is not identifiable from data
under retrospective cross-section desing I only without supplementary in-
formation, e.g., data from design II. The estimation is simplified under as-
sumptions such as time homogeneity and non-differential mortality before
and after the incident event (Keiding, 1991). Much of the existing litera-
ture has focused on nonparametric estimation of cumulative incidence and
survival functions through appropriately weighting the risk sets. Herein our
main focus was in factors that modify the incidence rates, and therefore we
applied likelihood-based methods for piecewise constant hazard models. For
this purpose, we needed to combine likelihood functions arising from two
different sampling plans, namely the cross-sectional cohort setting of NFHS-
2, and the setting of NFHS-3. To combine information collected under the
different sampling plans, the likelihood contributions from the individual
surveys are conditioned on the specific sampling plan employed in the sur-
vey, with the overall likelihood expression obtained simply as the product of
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these.

This result was applied in the estimation of the marriage incidence rates
in four Indian states as functions of age and birth cohort, as well as demo-
graphic characteristics. Unlike previous approaches (Kashyap et al., 2015) to
estimate marriage rates, the proposed method allows combining information
from more than one survey and modelling education and marriage jointly.
This brings several advantages. First, the increased sample size leads to
more powerful analyses of age at marriage data at the sub-population level
(e.g. Indian states). Second, it also allows learning of calendar time trends
in the strength of association of many factors affecting marriage rates.

The analysis goes beyond simply describing the age- and sex-based mar-
riage rates and puts forward a model which takes into account the well-
recognised factors driving the marriages in India. The marriage incidence
rates differ regionally (or state-wise) and hence the rates obtained using the
India-level data may not bring out the real marriage squeeze problem exis-
tent in social strata defined by caste, religion and education. Although the
caste effect on the marriage incidence rates did not differ much by state,
those of education and religion did. Our analysis provides strong evidence
towards religion, education and urban/rural area as the main factors af-
fecting the marriage pattern among women in India. Education levels or
qualifications seem to be replacing the earlier role of caste in shaping the
marriage market in India. The effects of women’s educational expansion on
marriage incidence have been studied worldwide and found to have some
impact. However, a considerable portion of the reduction in early marriage
is not explained by changes in levels of education (Mensch et al., 2005). To
predict the real magnitude of the marriage squeeze problem in India, predic-
tions of married and unmarried populations in different age and social strata
defined by state, caste, religion, urban/rural, and education are needed. The
model proposed here will have a direct application for such predictions.
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Appendices

Appendix A: Data selection and description

The NFHS reports clearly bring out differences between the states with re-
spect to education (http://rchiips.org/nfhs/). All four states considered
here show increasing trends in the proportion of women attaining higher ed-
ucation but differ by education attainment. There is a decreasing trend in
the proportion of primary and no education, and increasing trend in the
secondary and higher education level. Rajasthan stands out when looking
the education levels of women, with the highest proportion of women with
no education.

Punjab has suffered from an imbalanced child sex ratio, starting already
in the 1980’s (908 girls per 1000 boys in 1981) when the child sex ratios were
still normal in most other states in India. Rajasthan has remained as a state
with a relatively high total fertility unlike the other states examined (TFR
4.1 in 1998). Kerala has enjoyed replacement level fertility since the early
1990’s. Maharashtra has come to suffer from imbalance in child sex ratio
during the last two decades, combined with replacement level fertility since
the 2000’s.

Appendix B: Likelihood conditioning on the sampling pattern

To see that the likelihood obtained by multiplying (3.7) and (3.11) is still a
conditional probability (less multiplicative terms), and thus a conditional
likelihood, we partition the data collected under survey j as (vj , wj) ≡
{(vij , wij) : i ∈ Cj}, j = 2, 3, where (vij) represents the conditioning event
or sampling pattern. Further, (wij) denote the retrospective marriage his-
tories recorded through the survey. Let Θ = (θ, β(t), µ(t, a)) denote the
parameters of interest θ as well as birth and mortality rates (β(t), µ(t, a)).
The parametrised joint distribution of all observed data p(vj , wj , j = 2, 3 | θ)

http://rchiips.org/nfhs/
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Table 6: Observed proportions (in %) of women by state: categorical vari-
ables used are birth cohort, urban/rural, caste, religion, and education.
(Source: NFHS-2 and -3 data)

Kerala Maharashtra Punjab Rajasthan India
N 6450 14424 6477 10701 214638

Birth cohort
1942-1962 22 15 19 18 16
1962-1972 33 28 30 30 28
1972-1982 28 33 30 36 33
1982-1992 17 24 21 16 23

Urban 33 66 36 28 40
Caste

SC 10 15 30 18 17
ST 1 8 0.1 14 13

OBC 38 25 12 31 30
Other 51 52 58 38 40

Religion
Hindu 55 75 41 89 75

Muslim 30 13 3 10 13
Christian 15 2 1 0.1 7

Sikh 0 0.3 55 0.5 2
Other 0.1 10 0.4 1 3

Education
None 16 34 35 73 48

Primary 39 34 30 18 28
Secondary 31 20 26 6 16

Higher 14 12 10 4 8

may now be decomposed as

p(v2, w2, v3, w3 | Θ) = p(w2, w3 | v2, v3; Θ)p(v2, v3 | Θ)

=
3∏

j=2
p(wj | vj ; θ)p(vj | Θ)

=
3∏

j=2

∏
i∈Cj

p(wij | vij ; θ)p(vij | Θ)

θ∝
3∏

j=2
Lj(θ)

3∏
j=2

p(vj | Θ),
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where conditioning on the sampling plan (ignoring
∏3

j=2 p(vj | Θ)) may
result in some loss of information on θ, but results in valid inferences.
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