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Refining and evaluating a Horvitz–
Thompson-like stand density estimator
in individual tree detection based on
airborne laser scanning
Kasper Kansanen, Petteri Packalen, Timo Lähivaara, Aku
Seppänen, Jari Vauhkonen, Matti Maltamo, and Lauri Mehtätalo

Abstract: Horvitz–Thompson-like stand density estimation is a method for estimating the
stand density from tree crown objects extracted from airborne laser scanning data through
individual tree detection. The estimator is based on stochastic geometry and mathematical
morphology of the (planar) set formed by the detected tree crowns. This set is used to
approximate the detection probabilities of trees. These probabilities are then used to calculate
the estimate. The method includes a tuning parameter, which needs to be known to apply the
method. We present a refinement of the method to allow more general detection conditions
than the previous papers and present and discuss the methods for estimating the tuning
parameter of the estimator using a functional k-nearest neighbors method. We test the model
fitting and prediction in two spatially separate data sets and examine the plot-level accuracy
of estimation. The estimator produced a 13% lower RMSE than the benchmark method in
an external validation data set. We also analyze the effects of similarity and dissimilarity of
training and validation data to the results.
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1. Introduction

Volume and biomass related attributes are usually of primary interest in remote sensing based
forest inventories. If these quantities are estimated at tree level, scaling them to area-level requires
information about stand density, which is most commonly measured using basal area or number of
stems. The number of stems can be used directly by multiplying the mean tree volume or biomass
by the estimated number of trees (if the joint behaviour of estimation errors of the two variables is
ignored). Scaling using basal area is also possible, but it requires additional information about the
diameter distribution in the form of quadratic mean diameter (Mehtätalo and Lappi, 2020, Chapter 11).

Two commonly used approaches for estimating stand density and other stand characteristics us-
ing remote sensing data, especially airborne laser scanning (ALS) data, are the area based approach
(ABA) and individual tree detection (ITD) (Vauhkonen et al., 2014). In ABA, stand density can be
estimated using parametric or nonparametric regression techniques. The resulting predictions typically
have relative root mean square errors (RMSE%) of 20-30% at the plot level (Næsset, 2007; Packalén
and Maltamo, 2007; Maltamo et al., 2014), which are rather high values compared to other total stand
attributes predicted by ABA. The reason for the rather low accuracy is mainly the high variability of
stand density with respect to remotely sensed predictors, which depends on how the existence of small
trees is considered in the data (e.g., minimum diameter limit applied in the field measurements). In
ITD, individual tree crowns are algorithmically detected from the data and stand density is directly
estimated as number of detected trees per area unit. A major limitation of ITD is that not all trees
can be correctly detected, which is especially true in forests with high stand density, vertically mul-
tilayered stand structures and tree groups with interlaced crowns (Vauhkonen et al., 2012). Typically,
detection rates detectrate (number of detected trees / number of field-measured trees) of ITD under
boreal managed forests vary between 40-90% (Lähivaara et al., 2014). The detection rate could further
be divided into omission and commission error rates, which can be estimated by linking detected trees
to a reference tree map.

newreferences Many kind of attempts have been done to correct the ITD for the bias of stand den-
sity. Maltamo et al. (2004) combined tree size distributions predicted by both ABA and ITD such that
small trees were predicted by the ABA and the ITD was used to calibrate the large tree fraction. Ene
et al. (2012) used stand densities predicted by ABA as a priori estimates to guide the ITD process.
Flewelling (2008) and Melville et al. (2015) revisited sampling theory in an attempt to improve the
precision of remotely sensed tree counts for plantation forests. Hou et al. (2016) first derived species-
specific diameter distributions from both ABA and ITD and then calibrated the large tree fractions
of the ABA-derived distribution by the corresponding fractions of the ITD. Breidenbach et al. (2010)
imputed crown segments with a summation of field reference attributes instead of treating them as
single trees, thereby reducing the area-level bias and also taking the commission errors into account.
Strub and Osborne (2021) modeled tree counts within delineated segments by using a zero-deflated
one-inflated Poisson model. Drone data has also been used to detect tree trunks within crown segments
to improve the detection of understory trees (e.g. Kukkonen et al., 2021). Mehtätalo (2006) and Kansa-
nen et al. (2016) presented methods based on stochastic geometry for estimating the true stand density
based on tree crown objects detected by ITD and Kansanen et al. (2019) presented how the method
could be used as a part of an ALS inventory chain.

This paper is continuation the work of Kansanen et al. (2016), where two different estimators were
proposed. We concentrate on the more promising one: the Horvitz–Thompson-like (HT-like) estimator
where the inclusion probability, called detectability, is estimated based on the ordered sequence of de-
tected tree crown segments. We implicitly think that trees with larger crown segments are also taller.
Therefore, their shortest distance to the measurement device is smaller, and the target-tree sized trees
can be hidden below their canopies. Computing the detectability of a target starts with the union of the
crown segments of trees that are larger than the target tree. If the target tree were located in that union,
it would not be detected because the tree is covered by larger tree crowns. Therefore, it is justified to
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define detectability as the ratio of the uncovered area and the total area of the sample plot. However,
we need to define more specifically when a tree is located within the union. Mehtätalo (2006) required
that the center point of the target tree is within the larger tree crowns, whereas Kansanen et al. (2016)
introduced a tuning parameter α (0 ≤ α ≤ 1) to model the condition for detectability so that α = 0
corresponds to the condition of Mehtätalo (2006) and α = 1 requires that the target tree crown is com-
pletely within the larger tree crowns to be hidden. comment4a Technically, a buffer is removed from
the union of larger crown segments and the detectability is based on the area of that set; a mathematical
formulation will be given later. Similar concept has also been applied to terrestrial inventory to take
into account the hiding of trees behind other trees in terrestrial laser scanning (Kansanen et al., 2021).
Also in that case, the order of trees is based on the shortest distance to the measurement device, but it
is not related to tree size.

htlike The estimator was called the Horvitz-Thompson type estimator by Kansanen et al. (2016).
The change in terminology follows from the use of similar estimators and naming conventions in dis-
tance sampling (see e.g. Buckland et al., 2004), where HT-like estimators are used in estimation of
animal populations. The difference between these estimators and the standard Horvitz–Thompson esti-
mator (Horvitz and Thompson, 1952) is that the inclusion probabilities in the HT estimator are known
and fixed, whereas in HT-like estimators the detection probabilities have to be estimated, probably by
using a model. Therefore, HT-estimator is design-based whereas the HT-like estimator is model-based.
justdet The term detectability is also used in distance sampling and in estimation of animal populations
in general (Thompson, 2012).

The tuning parameter α of Kansanen et al. (2016) is intended to take into account the differences of
ITD algorithms in their ability to detect trees. The problem of selecting a value for the tuning parameter
was not studied. comment1a If the tuning parameter α is estimated empirically using observed field
data of training plots, the method can implicitly take into account other reasons for errors than hiding
below larger canopies. For example, if the density of trees of a certain size class differs between the
observable (uncovered) and hidden (covered) areas, the optimal value of α could simultaneously take
into account both the detectability condition and interaction of tree locations. Especially, the ratio
of hidden and visible parts is an unbiased estimator of detectability only if tree locations follow the
complete spatial randomness. If the spatial pattern of trees is clustered, the hidden parts have higher
stand density than the visible parts, and taking into account this implies smaller values of α than
suggested by the detection conditon alone. Under regular pattern, the situation is opposite. Therefore,
allowing a wider range to the tuning parameter might be justified. It is also justified to assume that the
optimal tuning parameter α varies among plots. Furthermore, one could expect that sample plots with
similar size distribution of detected trees could also have similar values of α. Therefore, a functional
k-nearest neighbors (k-NN) methodology (see e.g. Ferraty and Vieu, 2006) might be a good choice
for the problem at hand. In functional k-NN, the data is represented by functions (here empirical
cumulative distribution functions of detected trees) and the similarity between data points is determined
as distances between those functions. The use of functional k-NN in remote sensing inventory has been
previously studied for example by Peuhkurinen et al. (2008).

In this paper, we extend the method of Kansanen et al. (2016) to allow also negative tuning param-
eters, which corresponds to not detecting a tree even when the center point is not covered by larger
crowns. Furthermore, we evaluate the functional k-NN method for estimation of the tuning parameter.
The tuning parameter is estimated using a training data set and the performance is evaluated in a spa-
tially separate validation data set to evaluate the performance in the absence of local calibration field
plots from the target area. An area-based method is used as a benchmark.

2. Material

There are two data sets corresponding to two spatially separated forest areas used in this study,
Kiihtelysvaara and Liperi. Both of the study areas are typical boreal managed forest areas in Eastern
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Table 1. Information relating to the data gathering in the two data sets used in this study.

Kiihtelysvaara (training) Liperi (validation)
location 62◦ 31′ N, 30◦ 10′ E 62◦ 25′ N, 29◦ 10′ E
time of ALS June 26, 2009 July 2-10, 2016
scanning height, m 720 850
half angle, degrees 26 20
pulse repetition frequency, kHz 125 250
sampling density, pulses/m2 11.9 14.0
time of field measurements May-June 2010 May-August 2017
number of field plots 79 111

Table 2. Mean, standard deviation, minimum and maximum of
stand density (N ), quadratic mean diameter (QMD) and basal area
(BA) in Kiihtelysvaara. The full data contains 79 field plots, of
which 36 have ITD data.

Attribute n mean sd min max
N , stems · ha−1 79 1082.90 505.40 464 2850

36 1046.55 438.45 466.67 2175
QMD, cm 79 17.91 3.78 10.98 29.04

36 18.17 3.98 10.98 29.04
BA, m2 · ha−1 79 24.45 6.21 13.61 39.96

36 24.69 6.31 15.31 39.96

Finland. In Kiihtelysvaara, Scots pine (Pinus sylvestris L.) represents 73% of the volume, Norway
spruce (Picea abies [L.] Karst.) 16% of the volume and deciduous trees altogether about 11% of the
volume, whereas in Liperi the corresponding proportions are 39%, 43% and 18%, respectively. The
Kiihtelysvaara data are used as training data and the Liperi data as validation data.

The airborne laser scanning (ALS) data for Kiihtelysvaara were collected using an Optech ALTM
Gemini laser scanning system, whereas in Liperi an Optech Titan was used. Optech Titan is a multi-
spectral airborne LiDAR system that provides measurements from three different wavelengths, how-
ever, in this study we used only channel 2 (1064 nm). There is a side overlap of 55% in the data
acquisition in both areas, which means that each location was covered from two flight lines in order to
increase the probability that trees have ALS hits each side.

In both areas, field plots were placed subjectively in attempt to represent the species and size
variation over the area. In Kiihtelysvaara, plot size varies between 20 × 20 m2, 25 × 25 m2 and 30 ×
30 m2, whereas in Liperi all of the plots are 30 × 30 m2. In both areas, location, diameter at breast
height (DBH) and height of a tree were measured and species was registered. In Kiihtelysvaara, trees
were chosen under the criterion of either DBH ≥ 5 cm or height ≥ 4 m, whereas in Liperi DBH ≥5 cm
was the criterion for recording their information. Information relating to ALS data collection and field
measurements is presented in Table 1. Central plot-level attributes for Kiihtelysvaara are presented in
Table 2 and for Liperi in Table 3.

As field data collection in Kiihtelysvaara and Liperi was performed using different criteria, we had
to make the data sets similar. Hence, all trees with DBH < 5 cm were removed from the Kiihtelysvaara
field data. We assume that these small trees would not be detected by the ITD.
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Table 3. Mean, standard deviation, minimum and maximum
of stand density (N ), quadratic mean diameter (QMD) and
basal area (BA) in the validation data set (111 field plots).

Attribute mean sd min max
N , stems · ha−1 1085.99 625.18 211.11 3900
QMD, cm 18.48 5.92 8.23 37.18
BA, m2 · ha−1 23.87 7.80 7.84 46.19

3. Methodology

3.1. Individual tree detection
The computational method used for ITD in this paper was presented by Lähivaara et al. (2014).

It is based on a 3D template matching type approach, where simplified, rotationally symmetric crown
shape models are fitted to ALS data. For each tree, the crown dimensions and shape are represented
by four parameters: the crown radius, crown height, lower limit of the living crown and a crown shape
parameter. In addition, the positions, i.e., horizontal coordinates of the tree crown center points are
considered as unknown parameters. The tree positions and crown size and shape parameters of all trees
are estimated simultaneously from the 3D ALS point cloud data by an iterative algorithm, which is
based on Bayesian inference. More specifically, the maximum a posteriori (MAP) estimates for the
parameters are computed.

The Bayesian inference used for the 3D-ITD is based on the prior model of the unknown parame-
ters and the likelihood model for the measurements. Both models are constructed as in Lähivaara et al.
(2014). For the unknown parameters, a Gaussian prior is used, written by combining data from field
measurements with allometric tree shape models given by Muinonen (1995). bayesdist In addition, the
prior model includes a constraint: center points of trees cannot be overlapped by the crowns of other
trees. A Gaussian approximation is written also for the likelihood. We note that by using non-Gaussian
likelihood model, the tree detection rates as well as height estimates could potentially be improved
(Luostari et al., 2018). However, because the use of non-Gaussian model also leads to high increase of
computational burden, and consequently, long computation times, the approach proposed by Luostari
et al. (2018) is not taken in the present work.

comment2a The ITD method needs training data for the Gaussian prior. Hence, 43 field plots of
the training data were used for this purpose. This leaves us the remaining 36 training plots to be used
as training data for our stand density estimator. Figure 1 shows an example of detected tree crown
segments and field measurements.

3.2. HT-like stand density estimation
Kansanen et al. (2016) presented a HT-like stand density estimator based on stochastic geometry

and mathematical morphology (Chiu et al., 2013). We interpret the forest as a realisation of a germ-
grain model of discs Ξ =

⋃
B(xi, Ri) and consider it in some area of interest W ⊂ R2. W is some

field plot in our studies. The xi are locations of crown center points, distributed as a homogeneous
point process of intensity N (the stand density). Closed discs B with random radii Ri correspond
to the projections of tree crowns to the ground; hereafter we will refer by word crowndef“crown” to
projections of crowns to the ground level. ITD produces estimates of the tree locations and crown radii
from which we derive Ξ̂ (the union of detected crowns). Model formulation assumes only omission
errors, and therefore Ξ̂ is a thinned version of Ξ. To combat possible edge effects, the detection should
be done in a larger window W+ that contains W , so that the effect of those crowns whose centers are
outside the sample plot but still cover parts of W on detectability would also be taken into account.

Let us assume that n trees with crown radii ri, i = 1, . . . , n and center points in W have been
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Fig. 1. An example of detected and field-measured trees in one sample plot of our data, with 25 detected and 28
field-measured trees. The gray discs show the detected tree crowns and crosses (x) their center points. The field-
measured stem locations (at breast height) are shown by +; the dashed circle around each of them is poroprtional
to tree DBH .

detected. Then the HT-like stand density estimator is

N̂ =
10000

|W |

n∑
i=1

1

p(ri)
, (1)

where the first term is just scaling N̂ to stems · ha−1, and p(ri) is the estimated inclusion prob-
ability, the detectability, of a tree with crown radius ri. As we already discussed in the introduc-
tion, the estimator is model-based if the detectability is estimated with a model, whereas the classical
Horvitz-Thompson estimator with fixed, known inclusion probabilities (Horvitz and Thompson, 1952)
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is design-based. The classical HT-estimator is unbiased, whereas the bias and variance properties of
HT-like estimator depends on how well the detectabilities have been estimated.

comment4b Estimation of detectability is based on a sequential construction, where trees are or-
dered according to the crown size (i.e., the area of the projection of tree crown onto the ground level)
from largest to smallest. We assume detectability 1 for the largest tree in W . For the other trees, we
start by defining the union of tree crowns for the larger trees, which is further modified by removing
or adding a buffer of width |α|r to determine where a tree with radius r would not be detectable (Fig.
2). Here −1 ≤ α ≤ 1 is a tuning parameter which needs to be estimated using a training data; the
negative value means that a buffer is added to the set of larger crowns and positive value means that it
is removed. The detectability is then the probability that a uniformly distributed random point would
not hit this set. This is written formally as

pα(r) =


1− |W∩[Ξ̂R>r⊖B(o,αr)]|

|W | , α > 0

1− |W∩Ξ̂R>r|
|W | , α = 0

1− |W∩[Ξ̂R>r⊕B(o,|α|r)]|
|W | , α < 0

, (2)

where r is the crown radius, Ξ̂R>r is a subset of the detected germ-grain model formed by crowns
with larger radii than r, B(o, r) is an origin-centered closed disc of radius r, and |.| is an area operator.
dilation The operator A⊖B(o, ρ) is the erosion (removing a buffer of width ρ) and A⊕B(o, ρ) is the
dilation (adding a buffer of width ρ) of set A.

The parameter α ∈ [−1, 1] can be thought of as controlling the proportion of radius that should be
covered by the larger trees for non-detection of the target tree. Positive parameter values correspond to
situations where the center point of a tree should be inside the set formed by larger tree crowns to be
hidden. Negative values correspond to situations where the center point of a crown can be outside the
crowns of the larger trees, but part of the tree canopy is still within the larger tree canopies and the three
is hidden. For example, α = 1 assumes that trees are hidden only if their crowns are fully covered by
larger ones. When α = −1, a tree will be detected only if its crown does not overlap with larger tree
crowns at all. When α = 0, we assume that the tree it is not detected if the center point of the crown is
covered by larger tree crowns but is detected otherwise. The case with erosion was considered in our
earlier works on aerial inventory (Kansanen et al., 2016, 2019) whereas dilation has been previously
used only in the very different situation of terrestrial laser scanning (Kansanen et al., 2021). To make
the connection between the estimator and the parameter α clear, we write our estimator as a function
of α, N(α).

comment1b Although we have justified the model and parameter α through the omission errors
caused by overtopping larger tree crowns, the estimation of α through matching the field-measured
stand density with N̂(α) will be affected by other factors, such as the spatial pattern of tree locations
and commission error rate. For example, if the true detection condition for the applied ITD algorithm
corresponds to the case α = 0 but the trees are located regularly so that all trees are detectable, the
estimate would be α̂ = 1. On the other hand, if the detection condition corresponds to α = 1 but the
tree locations are clustered, the fitted value of α would be less than 1 to compensate. Especially, our
definition of detectability implies an assumption of complete spatial randomness for the hidden trees,
but empirical estimation of α will compensate for the deviations from complete spatial randomness.
Furthermore, it can compensate for commission error rates as well, commission even though the esti-
mated number of stems cannot be smaller than the number of detected trees. Notice also that no model
assumptions are made about the point process of the observed trees and the size distribution of trees,
because the estimation is done conditional on the observed tree locations and sizes. In general, our
approach is based on rather weak model assumptions.

move1 The optimal value of α for each plot of the training data was estimated by determining such
value of α that minimizes the difference between observed stand density and the HT-like estimate. If
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Fig. 2. Illustration of the computation of detectability for the 5th (left) 15th (middle) and 25th (right) largest
tree in the sample plot of Figure 1 of when α is 0.5 (top) 0 (middle) and -0.5 (bottom). The thin circles show the
detected crowns for trees that are larger than the tree i, shown using thick circle and marked by (▲). A buffer of
width |α|ri is either removed from or added to the union of observed larger tree crowns (thin circles) to get the
shaded area where the center point of tree i should be located to make it undetected. Detectability for tree i, pi, is
the relative proportion of the non-shaded area of the plot area. Trees marked by (♦) are hidden under each of the
detection conditions.

the number of detected trees is smaller or equal to the true stand density and the tuning parameter α
is not restricted to range (−1, 1), the optimal value leads to an exact match. If the observed density
of detected trees is higher than the true density, then an optimal match cannot be found because the
HT-like estimate cannot give a lower estimate than the density of detected trees.
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3.2.1. Choosing α with functional k-NN
We assume that plots that have similar distributions of detected crown radii should also have similar

values of α. Therefore a functional k-nearest neighbors (k-NN) method (Ferraty and Vieu, 2006) is
used to find plots similar to the validation plots from the training data set and estimate α. The term
“functional” means that we are assessing the similarity via distance between plot-specific functions in
the target plot and in each plots of the training set. The function whose similarity is analyzed is the
cumulative size distributions of observed trees .

Let i ∈ I and j ∈ J be indices of plots in training and validation sets, respectively. For every j,
calculate the pairwise distances dij between the empirical cumulative distribution functions of crown
radii, where i goes over the training plots. Here we use the Kolmogorov-Smirnov statistic (also called
L∞), as the distance metric

dij = max
r∈[0,∞)

|Fi(r)− Fj(r)|, (3)

which is a widely used similarity measure between two distributions. cdfIn our case, Fi and Fj are
cumulative distribution functions of crown radii for two sample plots. For every validation plot j, we
choose from among the training plots a total of k neighbours with the smallest distances dij to form a
set K. The estimate αj is determined by minimizing the root-mean-squared error of stand density in
this set:

α̂j = min
α∈[−1,1]

√√√√∑
i∈K

(Ni − N̂i(α))2

k
. (4)

This minimizing procedure differs from the standard k-NN way of calculating an (inverse distance
weighted) average of the variable of interest from the nearest neighbors and using that as the predicted
value for new data. However, it should be noted that for k = 1 these procedures produce the same
results, and for k > 1, the αj based on (4) can also be considered as a weighted average of the α values
of the neighbors, where the weights are related to the plot-level estimation errors. Conceptually, our
approach first finds a training set of size k that corresponds well to a validation plot (i.e. all plots of
the training set are sufficiently close to the target plot in terms of distance 3) and then determines the
optimal α for that set.

As an alternative to the plot-level selection of α, we also consider choosing one fixed α for the
whole validation set. This is done by taking the median of all estimates of αj estimated by the k-
NN. median Median was used instead of mean because it is more robust to exceptionally large or
small values. This approach can be seen as a model averaging strategy that could improve prediction
accuracy, especially if outliers are present among the estimated values of αj .

3.3. The benchmark method
We use the area based approach (ABA) as a benchmark method. A linear regression model is fitted

between the plot-level stand density and the explanatory variables derived from the ALS data. The
models were fitted in the training data set (79 plots). All combinations of two and three explanatory
variables were fitted and the model with the smallest root-mean-squared error in leave-one-out cross-
validation test was chosen. The potential explanatory variables were the mean and standard deviation sd
of ALS return heights, vegrat proportion of hits above the height of 2 meters, and the percentiles qk and
corresponding proportional densities pk of ALS-based canopy height distribution, k = 5, 10, . . . , 95.
In addition, several transformations of these variables were considered: squared, square root, loga-
rithmic and inverse. Models with larger number of explanatory variables were not considered to avoid
overfitting. fitcriteriaThe model was selected purely based on a good fit empirically. The models chosen
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for stand density N was

l̂ogN = β̂0 + β̂1
√
q5 + β̂2p

2
50 + β̂3

1

sd
. (5)

To diminish the bias introduced by the logarithmic transformation in the stand density model a bias
correction based on normal errors was introduced to the estimate biascorr (Mehtätalo and Lappi, 2020,
Section 10.2):

N̂ = exp(l̂ogN)× exp(0.5σ̂2) , (6)

where σ̂2 is the estimated variance of residuals in (5).

3.4. Evaluation
Root-mean-squared errors,

RMSE =

√∑n
i=1(ŷi − yi)2

n
, (7)

means of errors

ME =

∑n
i=1(ŷi − yi)

n
, (8)

and their normalized variants (RMSE%, ME%) calculated by dividing the error with the mean of true
values and multiplied by 100 are used to evaluate the results. In the formulas yi is the true value of a
plot-level statistic, ŷi the estimate and n the number of plots.

Our training data set is quite small. Therefore, the results on the performance of the methods may
partially be explained by lack of sufficiently good neighbours for some of the evaluation plots. To fur-
ther analyze the effect of this, we explore the effect of similarity (4) between the training and validation
data sets to the estimation errors. Especially, the k-NN method picks from among the training plots the
k nearest neighbours for each plot of the validation data. These neighbors are the nearest ones that we
have, but not necessary near enough, and a larger training data might lead to much better predictive
performance. Therefore, we explore the effect of distance to the neighbours to the accuracy of our
estimates of N as follows.

1. Order the validation plots based on the distance of the kth neighbor (the farthest among the k
nearest ones) to get a list where the validation plots are ordered in terms of the quality (tightness)
of the applied neighbourhood (worst is the last).

2. Compute the evaluation statistics in the current validation data set.

3. Drop the last plot from the list (the one with the worst neighbourhood) and repeat step 2 until
there is no plots in the set.

4. Report the accuracy for each applied size of validation data set.

More formally, we have a chain of sets J111 ⊃ J110 ⊃ . . . ⊃ Jj where set Jn contains n plots and
Jn−1 is obtained from it by removing the plot that has the largest distance to its kth neighbor.

We also examine the estimation errors in subsets determined by dominant species, which is the
species that has the largest share of the total plot volume. In the evaluation data set, 50 (45%), 42
(38%) and 19 (17%) plots are dominated by pine, spruce and deciduous trees, respectively. In the
training data set, the corresponding numbers are 61 (77%), 12 (15%) and 6 (8%) among the 79 plots
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available for the ABA estimator and 28 (78%), 6 (17%) and 2 (5%) among the 36 plots available for
the HT-like estimator comment2b (recall that 41 plots were used for training the ITD algorithm).

All calculations were done using R (R Core Team, 2017). The HT-like estimator was implemented
in function HTest of package lmfor (Mehtätalo, 2019), which further utilizes functions of spatstat
(Baddeley et al., 2015).

4. Results

The number of neighbors k in k-NN needs to be chosen before prediction. This choice can be done
with leave-one-out cross-validation in the training data, using the minimum RMSE as the criterion.
This value for the training data set is k = 7. We concentrate on the estimates produced by this number
of neighbors.

For the full validation data set, the lowest RMSE (24.1%) was produced by the HT-like estimator
using a common fixed value of clari tuning parameter α (Eq. (2)) for all plots (Table 4). It produced
a 51% improvement when compared to ITD, a 22% improvement when compared to the estimator
with plot-level α, and a 13% improvement when compared to ABA. ABA produced lower RMSE than
the HT-like estimator with plot-level α and has also the lowest ME value. The estimates produced
by ITD were accurate in low-density plots but underestimates on denser plots (Figures 3 and 4). The
HT-like estimator moves the point scatter closer to the identity line (Fig. 3) and zero line (Fig. 4)
but seems still underestimate stand density on the plots with highest densities. ABA does not show
similar underestimation but shows larger variance of estimation errors especially for high true densities.
The common estimate of α for all plots of the validation data set was 0.495, which implies erosion
with buffer 0.495ri. The plot-specific estimates of α, based on the functional k-NN ranged within
[0.395, 0.879].

move2 To analyze the potential of the method, it is interesting to look also at the performance of
the method using optimal values of α. The optimal values of α for each validation plot lead to RMSE%
of 1.0 and ME% of 0.3 and the estimates of α ranged within [−0.263, 1.000]. The errors are always
overestimates and caused by few plots where the ITD algorithm found so many trees that α = 1 led
to an overestimate. An optimal common α for all validation plots is 0.3548, which leads to RMSE%
19.4 and ME% 0.2. These figures imply that using a common α for all plots, the RMSE% cannot be
below 19.4, and the estimate with lowest RMSE% would also be (practically) unbiased. If each plot is
allowed to have its own α, the theoretical lower bound for RMSE% is 1 %.

The quality of the applied 7-plot neighbourhood has a clear effect on the estimation accuracy. For
example, among the 20 validation plots with the best neighbourhood, the RMSE of the most accurate
estimator was approximately 15%, which is very low compared to the value 24% in the whole data set
(Figure 5 and Table 4). In the reduced sets of validation plots, the HT-like estimator with fixed α shows
lowest RMSE. The second best is the HT-like estimator with plot-level alpha if 40 plots with the best
neighbourhood are considered, but ABA when plots with less tight neighbourhood are also included
in validation. The common estimates of α for the 40 and 20 plots with best neighbourhood were
α̂ = 0.551 and α̂ = 0.497, respectively, and the plot-specific estimates ranged within [0.395, 0.762]
and [0.395, 0.617]. The optimal common values of α were α = 0.387 and α = 0.421, leading to
RMSE% of 12.87 and 12.39, respectively, and not meningful bias.

Both HT-like estimators perform better than ABA among plots dominated by Scots pine and Nor-
way spruce (Table 5), but worse among the plots dominated by deciduous trees. Also here, a fixed α
leads to lower RMSE and absolute ME than a plot-level α, and in all cases ABA has lowest absolute
ME.
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Table 4. The results of stand density estimation in the validation data
set when sequentially smaller subsets that are closer to the training
data are used for validation. ITD: estimator based on the number of de-
tected trees, ABA: the area based approach estimator, HT: the HT-like
estimator, where 7 nearest neighbors have been either used to choose
α for every plot (plot-level α), or the median of the estimated α is
used for every plot (fixed α). The column ”n” indicates the number of
validation plots used to calculate the errors.

n method RMSE RMSE% ME ME%
111 ITD 530.0 48.8 -384.5 -35.4

ABA 301.6 27.8 -8.5 -0.8
HT, plot-level α 335.3 30.9 -151.2 -13.9
HT, fixed α 262.2 24.1 -119.7 -11.0

40 ITD 559.9 40.7 -479.4 -34.8
ABA 313.4 22.8 -19.6 -1.4
HT, plot-level α 278.7 20.3 -169.4 -12.3
HT, fixed α 264.4 19.2 -188.7 -13.7

20 ITD 535.7 40.4 -451.1 -34.0
ABA 310.9 23.5 -31.4 -2.4
HT plot-level α 208.2 15.7 -78.0 -5.9
HT, fixed α 191.6 14.5 -94.1 -7.1

Table 5. The results of stand density estimation in the validation data set
when plots are divided into subsets based on their dominant species. ITD: es-
timator based on the number of detected trees, ABA: the area-based approach
estimator, HT: the Horvitz–Thompson-like estimator with 7 neighbors (plot-
level α), or using median α over all training plots (fixed α).

dominant method RMSE RMSE% ME ME%
pine ITD 506.3 46.4 -377.1 -34.6

ABA 315.4 28.9 -77.6 -7.1
HT, plot-level α 304.6 27.9 -145.2 -13.3
HT, fixed α 264.9 24.3 -126.9 -11.6

spruce ITD 494.4 47.6 -350.8 -33.8
ABA 305.9 29.5 87.8 8.5
HT, plot-level α 296.3 28.5 -134.4 -12.9
HT, fixed α 222.1 21.4 -94.5 -9.1

deciduous ITD 652.9 55.3 -478.4 -40.5
ABA 250.5 21.2 -39.2 -3.3
HT plot-level α 467.2 39.6 -203.9 -17.3
HT, fixed α 328.7 27.8 -156.6 -13.3

5. Discussion

This study explored the problem of determining stand density based on an individual tree detection
algorithm that utilizes aerial laser scanning data. We generalized the HT-like estimator of Kansanen
et al. (2016) to a situation where a tree can remain undetected even when the center point of the tree is
not covered by a crown of a larger tree. We also explored for the first time how the method performs
in an external validation data and how the tuning parameter should be determined in such situation.
Two strategies were presented for the estimation of the tuning parameter: using a common fixed tuning
parameter obtained as the median of plot-specific optimal values in the training data, and a value
specified separately for each plot by using functional k-NN method. The results were compared to an
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Fig. 3. The estimated stand densities vs. the true stand densities.

0 1000 2000 3000 4000

0
5

0
0

1
0
0

0
1

5
0

0
2

0
0

0
2

5
0

0
3

0
0

0
ITD

0 1000 2000 3000 4000
0

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0
3

0
0

0

ABA

0 1000 2000 3000 4000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

HT, plot�level α

0 1000 2000 3000 4000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

HT, fixed α

true stand density, trees � ha
−1

e
s
ti
m

a
te

, 
tr

e
e

s
�

h
a
−
1

area-based approach. Furthermore, the effect of the quality of the neighbourhood in the results was
analyzed in a novel way that might be generalized to other studies as well.

The HT-like stand density estimator performed better than the area-based method and the individual
tree detection approach without correction for hiding trees. The best way to find the tuning parameter
α was to use a the median over the optimal plot-level values of α. That method produced lower RMSE
in the full validation data than the benchmark method and the HT-like estimator with plot-level α.
Surprisingly, predicting α separately for each plot by using the functional k-NN did not perform as
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Fig. 4. The estimation errors (estimated - observed stand density) vs. the true stand densities.

0 1000 2000 3000 4000

�

2
0

0
0

�

1
5

0
0

�

1
0

0
0

�

5
0

0
0

5
0

0
ITD

0 1000 2000 3000 4000

�

2
0

0
0

�

1
5

0
0

�

1
0

0
0

�

5
0

0
0

5
0

0

ABA

0 1000 2000 3000 4000

�

2
0

0
0

�

1
5

0
0

�

1
0

0
0

�

5
0

0
0

5
0

0

HT, plot�level α

0 1000 2000 3000 4000

�

2
0

0
0

�

1
5

0
0

�

1
0

0
0

�

5
0

0
0

5
0

0
HT, fixed α

true stand density, trees � ha
−1

e
s
ti
m

a
ti
o

n
 e

rr
o

r,
 t

re
e

s
�

h
a
−
1

well as we expected: it provided noticeably larger RMSE than the best method, and also higher RMSE
than the area-based method in the full validation data set. comment2c However, when the validation
data set was restricted to 40 or less plots with the best neighbourhood, the accuracy of the HT-like
estimator was much better than in the full data, and both approaches for selecting α performed rather
similarly, as demonstrated in Figures 5 and Table 4. These results indicate that our training data of 36
plots could not provide a good neighbourhood of 7 plots for all validation plots and with larger training
data set that fills the function space where the distances between plots are calculated well, then the
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Fig. 5. The relative root-mean-squared error (top) and relative mean error (bottom)) of the HT-like estimator
as a function of number of validation plots, with 7 nearest neighbors used to choose α. Also results using the
benchmark method and using an optimal fixed alpha for all plots are shown.
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HT-like estimator could lead to relative RMSE of 15% for the number of stems.
If optimal values of α could be used on each plot separately, the number of stems could be esti-

mated without meaningful errors. If an optimal common valuer of α were used for all plots, practically
unbiased estimates of stand density would be obtained and the RMSE% would be approximately 20 in
the full data and 15 in the reduced data sets with 40 or 20 plots with best neighbourhood. Comparing
these values to the RMSE% and bias based on estimates of α from the training data shows that the
estimates based on the training data do not reach optimal performance, especially with the plot-level α.
It seems that the difference in the size distributions of detected trees does not include such information
of plot-specific properties (such as the spatial pattern of tree locations) that would lead to significantly
better choices of α than a common estimate for all plots.

The HT-like estimator produced better RMSE values than ABA in plots dominated by coniferous
trees, both with plot-level and fixed α (Table 5), and the deciduous plots are a major source of esti-
mation errors for the HT-like estimator. comment1d An explanation may be that the deciduous tree
crowns may have such an irregular shape that the ITD algorithm does not perform as well. In addition,
the detection conditions applied by our method may not be as well justified for deciduous tree crowns.
Also the small sample size of deciduous plots may have an effects especially because the training data
of ABA had more deciduous plots.

A functional k-NN method based on seven neighbors was used in choosing the plot-level value of
α. The distance between the empirical cumulative distribution functions of detected crown radii was
used as the measure of similarity between a target plot and its neighbors. Also other measures were
considered, such as empirical cumulative distribution functions of detected tree heights and laser return
heights, but neither of these options produced noticeably better results. As most of the statistics used
to study the behaviour of random sets are functional – for example the spherical contact distribution
function and set covariance function used in Diggle (1981) – their use in the functional k-NN method
is possible. In addition to the K-S metric (L∞) other Lp metrics

dij =
p

√∫
(Fi(x)− Fj(x))pdx (9)

could be used to measure the similarity. L2 metric was considered, but it did not produce better results
than L∞. A global choice of k = 7 Ferraty and Vieu (2006) was used. Also local choice was evaluated,
where for every validation plot the closest neighbor from the training set is selected. Then the optimal
k for estimating stand density for that closest neighbor would be chosen as the number of neighbors
used to estimate the stand density in the validation plot. This approach attempts to take advantage
of the structure of the function space used for k-NN. However, the local choice of k did not lead to
considerable improvement in results, and the chosen values of k did not correspond well to the optimal
values of k for the validation plots. However, the local choice of k could work better with a larger
training data.

One might question the necessity of the HT-like estimation step in our k-NN scheme as it is possible
to do also a more traditional k-NN estimation (Ferraty and Vieu, 2006): after k closest neighbors have
been chosen, a weighted mean of the stand densities in those neighbors could be calculated and used
as an estimate. The weights are usually the distances to the neighbors manipulated by some kernel
function, for example a quadratic kernel, to give larger weights for the closer neighbors and smaller
weights for the more distant ones. This procedure was tested. Again, the global number of neighbors
(k = 7) was chosen via leave-one-out cross-validation in the training data. Arranging the results again
to the chain of subsets induced by the distances of the 7th neighbors, RMSE% values in all of the
subsets were over 100, indicating that the HT-step was necessary.

Our training and validation sets are different in several aspects. Even though the means of stand
density, quadratic mean diameter and basal area are quite similar, there is more variation and larger
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range for these values in the validation data (Tables 2 and 3). The spatial scale of the data sets is also
different: the area of the convex hull containing all 79 plots of the training data set is roughly 550 ha,
whereas in the validation data set the area is roughly 44500 ha. This difference in scales could lead
to differences in the scale of spatial variation. From the ITD standpoint, the plot-level detection ratios
also differ: in the training data set, these range from 58% to 100% of trees detected, whereas in the
validation data set the range is from 35% to 115% (notice that these ratios are just simple ratios of
numbers of trees given by ITD vs. the number of field measured trees). Optimal plot-level values of α
are connected to these detection ratios: the fewer trees that have been detected, the smaller α needs to
be to minimize the estimation error. The correlations between the detection ratios and optimal values
of α are 0.87 and 0.84 in training and validation data sets, respectively. The values of α reach in both
data sets the upper bound 1, whereas the lower bound is 0.16 in the training data set and −0.26 in
the validation data set. If the validation set is chosen from the full validation set in such a way that
the detection ratios fall to the range that is present in the training data, leading to a validation set of 72
plots, and α is estimated by minimizing RMSE over the whole training data, then the HT-like estimator
achieves a RMSE% 18.8, which is much lower than compared to RMSE% 28.9 in the full validation
data set of 111 plots. For comparison, ABA produces RMSE% 28.9 in this smaller validation set
with 72 plots. It seems that if the training and validation sets have similar detection ratios the HT-like
estimator produces good results even without k-NN. Of course, the detection ratio for a new data set
meant for estimation is not known and hence this is not a viable strategy for choosing a similar training
set in a prediction situation.

varianceThe variance of Horvitz-Thompson estimator is known (Horvitz and Thompson, 1952)
and one might therefore consider application of it also here in a similar way as it was applied in
the TLS context by Kansanen et al. (2021). However, in the TLS context, trees remain unobserved
if they are located behind each other. With approximately circular tree stems and high-density TLS
device, one can rather accurately derive the plot geometry based on observed tree stem diameters and
locations. Therefore, the estimation errors are mainly caused by sampling error, which can be well
approximated by the general formulas for HT-estimator under complete spatial randomness. In the
aerial case, additional uncertainty is caused (at least) by irregular tree size and empirical estimation
of α. Analysis and derivation of the variance estimators is therefore rather complex and was left as a
future work.

bayesalphaThe model formulation was justified by crown overlap. In our case, the prior distribution
of the ITD algorithm was formulated so that tree crown is not allowed to overlap with the center points
of other trees, which is consistent to choosing α = 0. However, as we already mentioned in Section
3.2, the spatial structure of forest and commission and omission errors also affect the optimal value of
α. Furthermore, the order of trees in terms of height is not exactly same as the order in terms of crown
size, which causes further errors in estimation. Therefore, we suggest empirical estimation of α instead
of a value based on the inter-tree distance restrictions implemented in the ITD algorithm.

To analyze the effect of spatial pattern on the results, Clark–Evans indices (Clark and Evans, 1954)
were calculated using the field-measured tree locations to assess their spatial structure. These indices
were also used to test the plots for complete spatial randomness (CSR) at significance level 0.05. Both
data sets exhibit positive correlation between the detection ratios and the index values, 0.46 for the
training data and 0.57 for the validation data set. Hence, larger portion of trees has been detected
in plots where the trees are in a regular pattern than in plots where they are clustered. Correlations
between the index values and plot-level optimal α values were similar, 0.41 and 0.56. As the HT-like
estimator has an inbuilt assumption of CSR, one might assume that fitting α in CSR training plots and
predicting in CSR validation plots would produce better results. However, the optimal α over the CSR
training plots is 0.544, whereas in CSR validation plots it is 0.282. This difference results in severe
underestimation and RMSE% 32.4. The effect of spatial structure – at least given by the Clark–Evans
index – on detection seems to be different in the two data sets. This can also be seen in Fig. 6. Although
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Fig. 6. The detection ratios of ITD and Clark–Evans indices of training (■) and validation (◦).

0.8 1.0 1.2 1.4 1.6

0
.4

0
.6

0
.8

1
.0

Clark�Evans index

d
e

te
c
ti
o

n
 r

a
ti
o

the scatter plots in both data sets have a similar shape, on average the detection ratios in the training
data set are higher than in the validation data set for similar index values.

comment1c We restricted α within the range −1 to 1, which is justified if we assume that detection
and non-detection of a tree is related to the overlap of the tree crown with the crowns of larger trees.
However, on might expect that very small trees are hard to detect by ITD even if they are not in contact
with the large tree crowns. This could justify a very small (negative) value of α for small trees to model
the very small detectability, or using a constant detectability that does not depend on mathematical
morphology of the larger tree crowns at all. On the other hand, if we let α to grow without limit, the
HT-like estimator would equal the estimate given by ITD. This would make it possible for the HT-like
estimator to give the best estimate in cases where ITD has detected all of the trees in a plot. These
expansions would lead us from interpreting α as a parameter to model the detectability due crown
overlap to just as a general tuning parameter based on a of a geometric transformation. The tuning
parameter α could also be a function of crown size.

Another way of modifying the detectability without changing the interpretation of α would be
adding other parameters to the model. For example, pα(r) could be replaced in the estimator with
θpα(r) and bounding this value to the interval (0, 1] to preserve its nature as a probability. One natural
way of modelling θ would be to connect it to the spatial structure of the forest: for an area where
the trees are CSR, the value of θ would be 1, for clustered patterns it would be less than 1, and for
regular patterns greater than 1. The magnitude of the deviance from CSR would affect the value of θ.
Estimation of θ could be based on a sequential spatial point process models, such as the one introduced
in Penttinen and Ylitalo (2016) and applied to forestry by Yazigi et al. (2021). Modelling θ this way
would remove the effect of spatial structure from the values of α. Of course, in addition to the detection
conditions related to trees covering each other, α would still contain variation induced by other possible
factors, such as scanning angles and other data gathering parameters. As discussed above and shown
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in Fig. 6, different data sets can also differ on the way that the spatial structure influences detection.
This way of modelling θ would also require estimating a statistic describing the spatial structure, such
as the Clark–Evans index, from the remote sensing data.
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