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ABSTRACT
Advancements in agriculture and increases in the human population have led to a surge in 
agricultural and aquacultural production. This increase in production has come at a cost. 
The consequences of current food production for the environment have never been so pro-
nounced in human history, threatening the relatively stable state in which the Earth system 
has remained over the past 11,700 years of the Holocene epoch. Intensive farming systems 
often rely heavily on external inputs such as pesticides, herbicides and fertilizers to sup-
press the natural process of species diversification on the land, which lead to problems such 
as eutrophication, soil exhaustion and desertification. Other examples of environmental 
impacts resulting from current agricultural practices include deforestation and land deg-
radation leading to the loss of valuable ecosystems and biodiversity, accelerated climate 
change, over-extraction of groundwater, terrestrial acidification, and biological crises such 
as the outbreak of COVID-19 pandemic. 

To reduce the environmental impacts of the food system, the search for more sustain-
able protein alternatives to replace animal-based proteins is one of the foremost research 
topics in food science and biotechnology today. Cellular agriculture — the production of 
agricultural products using cell-culturing technologies — is an approach that seeks to de-
couple food production from conventional agricultural farming, and, therefore, has the po-
tential to decrease the environmental burden of food production. Cell-culturing technolo-
gies usually utilize bioreactors, creating closed production processes that allow for efficient 
recycling of inputs, and control of emissions from the production process. Another benefit 
of cell-cultured products is increased resilience of the food production system towards en-
vironmental changes, due to reduced reliance on conventional agricultural inputs. How-
ever, estimates of the environmental impacts of cell-cultured foods are still mostly lacking 
due to the novelty of these products.

The aim of this dissertation is to improve the understanding of environmental impacts 
of protein-rich cellular agricultural products in comparison with those of existing protein-
rich food and feed ingredients originating from agricultural and aquacultural systems. The 
environmental impacts of protein-rich cellular agricultural products were quantified to 
gain an understanding of the production processes contributing most to these impacts, and 
how these differ from agricultural and aquacultural products. Lastly, the work presented 
in this dissertation seeks to explore how the environmental impacts of cellular agricultural 
protein products can be reduced through alterations to their production processes. How-
ever, as GHG emissions resulting from aquacultural production in mangrove forests have 
been systematically excluded from environmental impacts assessments, a fair comparison 
between protein produced by cellular agriculture and aquaculture is compromised. The 
work in this dissertation, therefore, additionally focuses on the development and applica-
tion of a method to quantify the GHG emissions caused by land use and land-use change 
(LULUC) of mangrove forest. 

The protein-rich food and feed ingredients studied were microbial protein produced 
using hydrogen-oxidizing bacteria (HOB) (hereafter referred to as MP) and ovalbumin 
produced using the Trichodora reesei fungi (Tr-OVA). Shrimp was selected on the basis 
that aquaculture products are often underrepresented in environmental assessment stud-
ies in contrast to their importance as a protein source for many people (Gephart et al., 
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2021). MP and Tr-OVA are recently developed cellular agricultural products that can be 
used either as food or feed ingredients and are examples of cellular (MP) and acellular (Tr-
OVA) products.

To address the aims of the research, the life cycle assessment (LCA) method was used. 
LCA allows for the quantification of inputs and outputs at all production stages throughout 
a product’s life cycle and the coupling of these to various environmental impact catego-
ries, such as global warming potential (GWP), land use, and eutrophication. This enables 
a fair comparison between different protein-rich food and feed products originating from 
distinctly different systems. The environmental impacts of the three protein-rich products 
studied were also compared to the environmental impacts of other protein-rich products 
found in literature.

GHG emissions caused by LULUC of mangrove forests are often overlooked in LCA 
studies, despite the large contribution of LULUC emissions to climate change (approxi-
mately 13% of global emissions in the year 2015). Article I, consequently, focuses on the 
introduction of a method to include this specific emissions source and on applying it to a 
case study of shrimp farming in mangrove areas. Article II quantifies the environmental 
impacts of MP production. MP is a single-cell protein in the form of a flour-like powder 
with a 65% protein content. Because MP production uses autotrophic HOB there is no 
reliance on any agricultural inputs. Article III investigates the environmental impacts of 
Tr-OVA production. Like MO, Tr-OVA is a protein-rich powder produced in bioreactors 
through a closed process and has a 92% protein content. However, unlike MP, its pro-
duction relies on glucose from agriculture. Using modern biotechnological tools, the gene 
carrying the blueprint for ovalbumin (SERPINB14) is inserted into the fungus, which then 
starts to produce the same protein — ovalbumin — that is normally found in chicken eggs. 
Cell-cultured ovalbumin can be used as a direct replacement for the chicken-based egg 
white that is widely used in food processing.

The results of this dissertation showed great potential for MP and Tr-OVA to reduce 
the environmental impacts associated with protein production — especially when replacing 
protein from livestock sources — with the greatest reductions seen in land use and GWP 
compared to other protein-rich food and feed sources. The amount of land needed to pro-
duce MP and Tr-OVA was 0.1-1.3% of the land required for beef herds. Even by comparison 
to peas, which generally require little land compared to other animal and plant-based pro-
tein sources, land use requirements were 73-97% less. Both MP and Tr-OVA production 
also led to reductions in GWP when compared to other protein-rich foods, especially by 
comparison to animal-based protein sources. However, agricultural protein alternatives 
with a lower GWP were also identified, such as peas, rapeseed cake and soybean meal. 

Differences in the impacts of MP and Tr-OVA production were mostly explained by 
the reliance of Tr-OVA on agricultural inputs. Depending on the impact category, up to 
94% of the environmental impacts of Tr-OVA production were related to its use of agricul-
turally sourced glucose. For MP, environmental impacts were mainly caused by the use of 
electricity; up to 90% depending on the category. For Tr-OVA, the impacts caused by the 
use of electricity were between 0% and 56%. The results for shrimp clearly indicated the 
importance of the inclusion of LULUC emissions from mangrove deforestation, as GHG 
emissions were 14-60 times higher for shrimp farming systems located in former man-
grove areas than for systems that were not. The GHG emissions of shrimp produced in 
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mangrove areas far outweighed the GWP of other protein-rich food sources and were 4.5 
times higher than that of beef production from beef herds. 

Despite the great potential of cellular agriculture products to reduce the environmen-
tal impacts of protein production, minor trade-offs were found. For example, the potential 
for ozone depletion and water scarcity were higher for Tr-OVA in comparison to other feed 
protein alternatives. The environmental impacts of cellular agricultural products could be 
further reduced by using renewable or low-carbon energy sources. However, the electricity 
requirements for cellular agricultural products are higher than those of agriculture and aq-
uaculture. As many sectors are looking to move away from fossil fuels towards low-carbon 
electricity sources, potential greater demand for electricity from the food sector will add 
further pressure to increase sustainable electricity production capacity.

The work in this dissertation focused solely on the environmental impacts of food 
production. Additional research is needed into the role of cell-cultured food within a sus-
tainable food system. This means that the research begun in this dissertation should be 
expanded to include other environmental impact categories such as biodiversity impacts, 
and the loss of ecosystem services. Additionally, there is a need to increase understanding 
of the social and economic implications of the introduction of cell-cultured foods, such as 
MP and Tr-OVA, into the food systems in different regions of the world.
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TIIVISTELMÄ
Ruoantuotannon ympäristövaikutukset eivät ole koskaan aikaisemmin olleet näin merkit-
täviä ihmiskunnan historiassa. Tehoviljelyjärjestelmät tukeutuvat usein voimakkaasti 
ulkopuolisiin tuotantopanoksiin, kuten torjunta-aineisiin ja lannoitteisiin, jotka tukah-
duttavat lajien luonnollisen monimuotoistumisprosessin maassa. Tämä johtaa rehevöity-
misen, maaperän köyhtymisen ja aavikoitumisen kaltaisiin ongelmiin. Muita esimerkkejä 
nykyisten maatalouskäytäntöjen aiheuttamista ympäristövaikutuksista ovat metsäkato 
ja maaperän köyhtyminen, jotka johtavat arvokkaiden ekosysteemien ja biologisen mon-
imuotoisuuden häviämiseen, ilmastonmuutoksen kiihtymiseen ja pohjaveden liialliseen 
käyttöön.

Solumaatalous on tuotantotapa, jolla pyritään irrottamaan ruoantuotanto tavan-
omaisesta maanviljelystä ja vähentämään ruoantuotannon aiheuttamaa ympäristökuor-
mitusta. Soluviljelytekniikoissa käytetään yleensä bioreaktoreita, joissa luodaan suljettuja 
tuotantoprosesseja, jotka mahdollistavat raaka-aineiden tehokkaan kierrätyksen ja tuotan-
toprosessin päästöjen hallinnan. Soluviljeltyjen elintarvikkeiden ympäristövaikutuksista ei 
kuitenkaan ole vielä tehty juurikaan arvioita näiden tuotteiden uutuuden vuoksi.

Tämän väitöskirjan tavoitteena on syventää ymmärrystä kahden proteiinipitoisen 
soluviljellyn maataloustuotteen - vetyä hapettavien bakteerien avulla tuotetun mikrobi-
proteiinin (MP) ja Trichodora reesei -sienen avulla tuotetun ovalbumiinin (Tr-OVA) - ym-
päristövaikutuksista verrattuna nykyisten maatalous- ja vesiviljelyjärjestelmistä peräisin 
olevien proteiinipitoisten elintarvikkeiden ja rehujen ainesosien ympäristövaikutuksiin 
elinkaariarvioinnin (LCA) avulla. LCA:n soveltaminen mahdollistaa ympäristöstä hyödyn-
nettävien ja ympäristöön päästettävien virtojen laskemisen tuotteen elinkaaren eri vaiheis-
sa sekä niiden yhdistämisen erilaisiin ympäristövaikutusluokkiin, kuten ilmaston lämmi-
tyspotentiaaliin (GWP). Tämä mahdollistaa tasapuolisen vertailun eri proteiinipitoisten 
elintarvikkeiden ja rehujen ainesosien välillä.

Tämän väitöskirjan tulokset osoittivat, että MP:lla ja Tr-OVA:lla on potentiaalia vä-
hentää proteiinintuotantoon liittyviä ympäristövaikutuksia, erityisesti silloin, kun niil-
lä korvataan tuotantoeläimistä saatavia proteiineja. Suurimmat vähennykset havaittiin 
maankäytön ja GWP:n osalta. Esimerkiksi MP:n ja Tr-OVA:n tuottamiseen tarvittava 
maa-ala oli 0,1-1,3 prosenttia lihakarjan tarvitsemasta. Sekä MP:n että Tr-OVA:n tuotanto 
johti myös GWP:n vähenemiseen verrattuna muihin runsasproteiinisiin elintarvikkeisiin, 
erityisesti eläinperäisiin proteiinilähteisiin verrattuna. MP:a ja Tr-OVA:a vertailtiin myös 
maataloudessa käytettäviin proteiinin lähteisiin, joiden GWP on alhaisempi, kuten hernei-
siin, rapsikakkuun ja soijajauhoon.

Erot MP:n ja Tr-OVA:n tuotannon vaikutuksissa selittyivät pääasiassa sillä, että 
Tr-OVA:n tuotanto on riippuvainen maatalouden raaka-aineista. Jopa 94 prosenttia Tr-
OVA:n tuotannon ympäristövaikutuksista liittyi maataloudesta peräisin olevan glukoo-
sin käyttöön. MP:n ympäristövaikutukset johtuivat pääasiassa sähkön käytöstä, poiketen 
maatalous- ja vesiviljelysektorin tavallisesti aiheuttamista ympäristövaikutuksista. Esi-
merkiksi entisissä mangrovemetsissä tapahtuvasta katkarapujen tuotannosta aiheutu-
vista GWP-päästöistä suurin osa johtui mangrovemetsien hävittämisestä aiheutuneista 
LULUC-päästöistä. Päästöt olivat 14-60 kertaa suuremmat entisillä mangrovemetsäalu-
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eilla sijaitsevissa katkarapujen kasvatusjärjestelmissä kuin sellaisissa, jotka eivät sijainneet 
mangrovemetsissä.

Huolimatta soluviljelytuotteiden suuresta potentiaalista vähentää proteiinintuotan-
non ympäristövaikutuksia, havaittiin myös joitakin haittapuolia. Esimerkiksi Tr-OVA johti 
muihin rehuproteiinivaihtoehtoihin verrattuna suurempaan otsonikatoon ja vesivarojen 
vähenemisestä johtuvaan ekosysteemien kuormitukseen. Solumaataloustuotteiden ympä-
ristövaikutuksia voitaisiin edelleen vähentää käyttämällä uusiutuvia tai matalapäästöisiä 
energianlähteitä. Vaihtoehtoiset glukoosin lähteet, kuten maatalouden sivuvirroista saata-
va glukoosi, voisivat edelleen vähentää Tr-OVA:n ympäristövaikutuksia.
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1.	 INTRODUCTION

1.1	 ENVIRONMENTAL CHALLENGES RESULTING FROM 		
	 AGRICULTURE 
Advancements in agriculture and an increase in the human population have led to a surge 
in agricultural and aquacultural production. However, this growth has come at a cost. En-
vironmental challenges caused by food production are now more severe than ever before 
in human history. In fact, current agricultural practices are threatening the relatively stable 
state in which the Earth system has remained over the past 11,700 years of the Holocene 
epoch, thereby threatening the success of agricultural harvests (Steffen et al., 2015). 

Intensive farming systems often rely heavily on the input of pesticides, herbicides, 
and fertilizers (Shukla et al., 2019) to suppress the natural process of species diversifica-
tion on the land, and lead to problems such as eutrophication, soil exhaustion and deser-
tification. Other examples of environmental impacts resulting from agricultural practices 
include deforestation and land degradation, that have contributed to the loss of valuable 
ecosystems and biodiversity, climate change due to increased greenhouse gas (GHG) emis-
sions, over-extraction of groundwater and terrestrial acidification (United Nations, 2021). 
At the same time, human presence, and the food systems that support us, have almost com-
pletely replaced mammalian wildlife. In 2018, human beings represent 36% of the total 
mammalian biomass and livestock made up a staggering 60%, meaning that wild biomass 
only accounted for 4% (Bar-On et al., 2018).

Pressures on the environment caused by the food system have also adversely affected 
agricultural production. As a recent article by FAO (2020b) pointed out, at no point in time 
have agricultural-food systems faced such a large amount of new threats, including mega-
fires, extreme weather events, unusually large desert locust swarms, and biological crises 
like the outbreak of COVID-19 pandemic. The annual occurrence of disasters has increased 
three-fold since the 1970s (FAO, 2020b). This steep increase in natural disasters is the 
consequence of human actions constraining the planetary boundaries, to the point that a 
new geological epoch has been proposed: the Anthropocene. This era is said to have started 
in the latter part of the 18th century when increased concentrations of carbon dioxide (CO2) 
and methane (CH4) in the atmosphere were first recorded (Crutzen, 2002). Steffen et al. 
(2015) illustrated the status of the planetary boundaries, and the extent to which we oper-
ate inside or outside of the safety zones. For biogeochemical flows, and the loss of genetic 
diversity, we are in a high-risk zone, beyond uncertainties of what will happen to the planet 
consequently. For many other categories, such as climate change and freshwater use, we 
are in the zone of uncertainty. Campbell et al. (2017) assessed the role of agriculture in each 
of the planetary boundaries, and found that the agricultural sector plays a major role in 
overshooting all of the planetary safety zones. 

Additionally, despite technological advancements in the agricultural sectors, famine 
and undernourishment are still a serious threat to many (Mazoyer & Roudart, 2006). The 
number of people that are affected by hunger has slowly increased since 2014 (FAO et al., 
2020). Conversely, the average caloric intake per capita has increased by about one-third 
since 1961 (Shukla et al., 2019), and consumption of vegetable oils and meat has doubled 
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between 1961 and 2019. This has led to increasing health problems such as diabetes and 
obesity (Willett et al., 2019). 

Meat is a good source of nutrients, with high levels of protein, iron, zinc, and vitamin 
B12. However, a diet high in red and/or processed meat can also lead to adverse health 
effects such as colorectal cancer (Forouzanfar et al., 2015). Additionally, the production 
of meat leads to more greenhouse gas (GHG) emissions per unit of energy than any plant-
based foods (Xu et al., 2021) and contributes greatly to land use and land-use change (LU-
LUC) (Clark et al., 2020; Crippa et al., 2021). One third of global cereal production ends up 
being used for feed necessary for the production of livestock (FAO, 2020a). About 80% of 
soybeans are used for animal feed. The combination of a growing human population and 
an increase in meat consumption, related to an increase in wealth, will most likely result in 
further increases in meat consumption in the future. Different models have estimated that 
meat consumption will increase by somewhere between 62% and 144% by 2050 (Valin et 
al., 2013).

The Food and Agriculture organization (FAO), estimated that by 2050 we would need 
to produce 60% more food to feed the estimated 9.3 billion people that will inhabit this 
planet by then (United Nations, 2021). This means that the agricultural sector will likely 
increase the pressure it puts on our planet unless we radically change the way we produce 
our food. As the human population continues to grow, we are faced with the question of 
how to feed everybody.

1.2	 ENVIRONMENTAL PRESSURE RESULTING  
	 FROM AQUACULTURE
Environmental pressures from food production are often considered taking agriculture as 
a starting point. However, humanity also depends on water as a growth medium to provide 
nutrition, or as a livelihood, or both (Pradeepkiran, 2019). Aquatic animals and plants are 
often highly nutritious and can serve as an essential source of protein, micronutrients, and 
minerals for poor people due to their affordability over land animals. They can, therefore, 
play an essential role in supplying food security (Pradeepkiran, 2019). In addition, research 
has shown that aquatic foods can play an important part in the transition to more sustain-
able diets (Gephart et al., 2016; Hallström et al., 2019). From the total production of fish in 
2018, about 46% was produced in aquaculture systems, reaching a record amount of 114.5 
million tons in live weight. The remaining 54% was captured wild stock. Approximately 
87% of total global fish production ends in human consumption, while the remainder is 
mainly used to produce fishmeal and fish oil. The majority (69%) of all fish is produced in 
Asia, with China alone accounting for 35% of global production (FAO, 2020b).

Despite the continuous growth of fish production, and the importance of its products, 
wild-stock fish capture and aquaculture production are often overlooked in environmental 
assessments by comparison to the high diversity of production options. This means that 
the environmental impacts caused by such systems are not as well understood as the im-
pacts of food produced on land (Gephart et al., 2021). 

The environmental impacts of aquaculture food products can differ substantially 
from those produced on land because of the different medium in which the products are 
produced. For example, many fish species require brackish water — water that has more 
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salinity than freshwater but less than seawater — leading to environmental impacts on 
coastal zone regions (Spalding & Leal, 2021). Mangrove forests are one of the ecosystems 
that have been under threat globally, due to increased demand for aquaculture products 
such as shrimp (Orchard et al., 2016).

Despite the contribution of aquaculture practices to mangrove deforestation, GHG 
emissions resulting from LULUC of mangrove forests have rarely been considered in quan-
tification of the environmental impacts of aquaculture products like shrimp. This can be 
partly explained by a lack of guidelines on emissions from wetland systems, that were ini-
tially missing from the 2006 guidelines for national greenhouse gas inventories produced 
by the International Panel for Climate Change (IPCC). These guidelines were only intro-
duced in 2013 (IPCC, 2014). When it comes to aquaculture practices, the supplementary 
guidelines are limited to CO2 emissions resulting from land-use change and nitrous oxide 
(N2O) emissions released during aquaculture use within mangrove forests. This means that 
both CH4 emissions resulting from the disturbance of the mangrove soils and the missed 
potential carbon sequestration from continuous carbon burial into the mangrove soils are 
not considered. There is, therefore, a need to expand on the existing guidelines to include 
all emissions resulting from LULUC of mangrove forests. There is also a need to apply this 
method to a case study on aquacultural production of shrimps and/or other species that 
have been linked to mangrove deforestation to gain scientific understanding of the envi-
ronmental impacts of aquaculture products.

1.3	 POTENTIAL OF CELLULAR AGRICULTURAL TO LOWER THE 	
	 ENVIRONMENTAL IMPACTS OF PROTEIN PRODUCTION
With the increasing pressures the agricultural sector places upon our planet’s system 
boundaries, the search for alternative, more sustainable, protein sources to replace animal-
based proteins has emerged. This is an expanding area of research in food science and 
biotechnology (Eibl et al., 2021; Rischer et al., 2020). Cellular agriculture relies on an ap-
proach that tries to decouple food production from conventional agriculture and animal 
farming (Ercili-Cura & Barth, 2021; Parodi et al., 2018). In doing so it has the potential 
to decrease the environmental burden associated with food production (Mattick, 2018; 
Pikaar, Matassa, et al., 2018; Sillman et al., 2019, 2020; Rischer, Szilvay and Oksman-
Caldentey, 2020).

Cellular agriculture is the process of producing agricultural products through the 
means of cell-culturing technologies. Cellular agriculture is mainly used for producing al-
ternatives or analogues to animal-based products, due to their relatively high environmen-
tal impact. Cells from micro-organisms, plants  or animals are cultivated in bioreactors, in 
combination with the additional nutrients required for cell growth (Mattick, 2018; Parodi 
et al., 2018; Rischer et al., 2020; Tuomisto et al., 2022). The use of bioreactors creates 
a closed production process that allows for the efficient recycling of inputs and the con-
trol of emissions originating from the production process. Another benefit of cell-cultured 
products is increased resilience towards environmental challenges such as drought,  due to 
reduced reliance on conventional agricultural inputs (Rischer et al., 2020).

Cell-cultured products are classified either as cellular or acellular. The distinction lies 
in whether the final product does or does not include the cultivated cells. The former is 
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referred to as cellular products and the latter as acellular. Examples of cellular products in-
clude cultivated meat and microbial biomass (single-cell protein) (Rischer et al., 2020; Sill-
man et al., 2020), whereas acellular products consist of organic molecules such as proteins, 
lipids, vitamins, enzymes, hormones, and flavors synthesized by microbes and separated 
from the cell mass (New harvest, 2021).

Several studies have focused on the potential of cell-cultured products to reduce the 
environmental impacts of food production. Examples include studies on cultivated meat 
(Lynch & Pierrehumbert, 2019; Mattick et al., 2015; Tuomisto et al., 2022; Tuomisto & 
Teixeira de Mattos, 2011), microbial protein (Linder, 2019; Pikaar, Matassa, et al., 2018; 
Sillman et al., 2019, 2020), cell-cultured protein using genetically engineered fungi (Perfect 
Day Inc., 2021), and other cell-cultured future foods, such as mycoprotein and insect-based 
products (Asim et al., 2021; Linder, 2019; Parodi et al., 2018; Upcraft et al., 2021). These 
studies have shown the potential of such products to reduce the environmental impacts of 
production compared to conventional protein sources, especially when replacing protein 
from livestock production (Humpenöder et al., 2022). 

Previous studies have estimated the land use, water use, global warming potential 
(GWP) and eutrophication potential of microbial protein production (Humpenöder et al., 
2022; Pikaar, de Vrieze, et al., 2018; Pikaar, Matassa, et al., 2018; Sillman et al., 2020). 
However, cell-cultured food production, such as microbial protein production, relies heav-
ily on industrial energy. Potentially important impact categories related to the production 
of industrial energy (i.e. ionizing radiation and the cumulative energy demand (CED)) were 
not included in these previous studies. Additionally, both food and energy production are 
major water users and this competitive situation has been referred to as the global food-
energy-water nexus (D’Odorico et al., 2018). Although the water use of cell-cultured food 
and feed production have been quantified in previous analyses (Pikaar, de Vrieze, et al., 
2018; Pikaar, Matassa, et al., 2018; Sillman et al., 2020), none have applied the latest con-
sensus characterization method to assess the impacts of water use taking into account the 
local availability of water. 

Not only are there limitations in the impact categories used, but the number of studies 
quantifying the environmental impact of cell-cultured food and feed ingredients is rather 
limited, as data about the production processes has been limited. Previous quantifications 
of the environmental impacts of microbial protein were based on the limited availability of 
theoretical estimates of the required inputs and outputs of microbial protein production. 
This meant that some process steps were not considered in quantification of the environ-
mental impacts of microbial protein production, such as cleaning of equipment, sourcing 
of required nutrients, and the treatment of wastewater from the system. More studies are 
needed, as environmental impacts tend to differ between cell-cultured products, due to 
their varying dependency on conventional agriculture for inputs (Tuomisto, 2019). 

To the best of this author’s knowledge, peer reviewed articles reporting the environ-
mental impacts of ovalbumin produced using the Trichoderma reesei (T. reesei) fungi (Tr-
OVA) did not exist before 2021. This means that there is an urgent need for research that 
analyzes the environmental impacts of cell-cultured foods and compares these impacts to 
those associated with existing protein-rich food and feed ingredients.
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2.	 OBJECTIVE OF  
	 THE DISSERTATION

2.1	 AIM OF THE DISSERTATION
The aim of this dissertation is to improve the understanding of the environmental impacts 
of protein-rich cellular agricultural products in the context of the environmental impacts 
of existing protein-rich food and feed ingredients originating from agricultural and aqua-
cultural systems. The work in this thesis focuses on quantification of the environmental 
impacts of two examples of protein production through cellular agriculture. Subsequen-
tially, these environmental impacts are compared with those of existing protein-rich food 
and feed ingredients in order to understand how cellular agriculture could reduce the envi-
ronmental impacts that are associated with protein-production. The quantification of envi-
ronmental impacts at each production stage of the two cellular agricultural products helps 
to understand during which part of production impacts occur, and how these differ from 
existing protein-rich products that originate from agricultural and aquacultural systems. In 
addition, the quantification enables an understanding of how environmental impacts can 
be reduced through alterations to the production processes of cellular agricultural products.

However, as GHG emissions resulting from aquacultural production in mangrove 
forests have been systematically excluded from environmental impact assessments, a fair 
comparison between protein produced within cellular agriculture and aquaculture has, 
hitherto, not been possible. The work in this dissertation, therefore, also undertook the de-
velopment and application of a method to quantify the GHG emissions caused by LULUC 
of mangrove forest. 

The protein-rich food and feed ingredients studied are shrimp, microbial protein 
produced using hydrogen-oxidizing bacteria (HOB) (hereafter simply referred to as MP), 
and Tr-OVA. Shrimp was selected on the basis that aquaculture products are often under-
represented in environmental assessment studies in comparison to their importance as a 
protein source to many people (Gephart et al., 2021) and have been linked to mangrove 
deforestation (Orchard et al., 2016). MP and Tr-OVA are recently developed cellular agri-
cultural products that can be used either as food or feed ingredients and are examples of 
cellular (MP) and acellular (Tr-OVA) products.

The research questions associated with the aims of this dissertation are:

RQ1: What are the product-level environmental impacts associated with the production of 
shrimp, MP and Tr-OVA?

RQ2: How does the environmental impact of MP and Tr-OVA produced through cell-cul-
turing techniques compare to those of protein-rich food and feed ingredients originating 
from agriculture, such as beef, or aquaculture, such as shrimp?

RQ3: What are the associated emissions sources of shrimp, MP, and Tr-OVA production 
and during which production stage(s) do these emissions occur?

RQ4: How can the environmental impacts of MP and Tr-OVA be reduced through altera-
tions of the production design.
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Comparisons were performed using the life cycle assessment (LCA) method, that allows 
for the quantification of the inputs and outputs of all production stages throughout a prod-
uct’s life cycle, and the coupling of those to various environmental impact categories, such 
as GWP, land use, and eutrophication. This enables a justified comparison between dif-
ferent protein-rich food and feed products originating from distinctly different systems. 
The environmental impacts of three different protein-rich food and feed ingredients were 
quantified separately in the three articles that constitute this dissertation. The environ-
mental impacts are compared on a protein basis. Additionally, the environmental impacts 
of three patties are compared using shrimp, MP, and Tr-OVA separately as the main source 
of protein in each patty.

 2.2	 ARTICLES INCLUDED IN THE DISSERTATION
This dissertation includes three articles that aim to answer the afore mentioned research 
questions (Table 1). Article I introduced a method for inclusion of GHG emissions from 
LULUC of mangrove forests. Quantification of GHG emissions from LULUC enables a fair 
comparison between products, by aligning the system boundaries of food and feed prod-
ucts. The alignment of system boundaries means that the production phases included in 
the studies are the same. In the case of food systems, the production process starts with 
the extraction of raw materials and includes any emissions that are associated with this 
first phase, such as deforestation to establish a production site. In order to put LULUC 
emissions originating from shrimp farming in mangrove areas into perspective, article I 
compared the results of a case study to that of the GHG emissions resulting from the entire 
life cycle of shrimp farming in semi-intensive and intensive production chains, using the 
LCA method (ISO, 2006).

Article II was concerned with the quantification of environmental impacts associated 
with MP production. The environmental impacts of MP production have been studied to 
an extent, but only based on the theoretical input requirements found in the literature (Pi-
kaar, Matassa, et al., 2018; Sillman et al., 2019; 2020). Article II used empirical data on 
the actual inputs and outputs associated with MP production to build an LCA model that 
increases understanding of its environmental impacts. This research expanded on existing 
knowledge of the environmental impacts of MP, by including more environmental impact 
categories into the LCA model. 

Article III provided a first estimation of the environmental impacts associated with 
Tr-OVA production. It performed a contribution analysis to identify the production stages 
that contributed most to the environmental impacts of Tr-OVA production. Different sce-
narios were created to explore the possibilities to reduce the found environmental impacts. 
Additionally, an LCA model of chicken-based egg white protein powder was created, and 
its environmental impacts were compared to that of Tr-OVA. The LCA model for Tr-OVA 
was based on empirical data on actual inputs and outputs, collected from a pilot-scale pro-
duction site, and energy and mass balances.
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Table 1: 	 Contribution of articles I-III to answer the research questions of this dissertation.

Research question Article I Article II Article III Dissertation

RQ1: What are 
the product-level 
environmental 
impacts associated 
with the production 
of shrimp, MP, and 
Tr-OVA?

-  Literature review 
on carbon stocks in 
mangrove forests and 
CH4 and N2O fluxes from 
aquaculture ponds

-  Development of 
method to estimate 
GHG emissions from 
LULUC in mangrove 
forests

-  Spatial analysis of the 
contribution of different 
types of shrimp 
farms on mangrove 
deforestation 

-  Quantification of the 
GWP resulting from 
shrimp farming in 
mangrove areas

-  Collection of data 
on inputs and 
outputs related 
to the production 
of MP

-  Performance of 
an LCA on MP 
production, based 
on empirical data

-  Performance of an 
uncertainty analysis

-  Collection of data on 
inputs and outputs 
related to the 
production of Tr-OVA 
and chicken-based 
egg white protein 
powder

-  Performance of 
an LCA on Tr-OVA 
production, based on 
empirical data

RQ2: How does 
the environmental 
impact of MP and 
Tr-OVA produced 
through cell-
culturing techniques 
compare to those 
originating from 
agriculture or 
aquaculture?

-  Comparison of the GHG 
emissions resulting 
from shrimp farming 
in mangrove areas to 
existing LCA results on 
shrimp farming

-  Comparison of 
the environmental 
impacts of MP 
production with 
existing studies on 
MP and alternative 
protein-rich foods 
and feed ingredients

-  Performance of an 
LCA for chicken-
based egg white 
protein powder 
production, based 
on an existing model 
from literature

-  Performance of an 
uncertainty analysis 
for Tr-OVA and 
chicken-based egg 
white protein powder

-  Comparison of 
the environmental 
impacts of Tr-OVA 
production with 
those of chicken-
based egg white 
protein powder

-  Comparison of 
the environmental 
impacts of shrimp, 
MP and Tr-OVA 
with alternative 
protein-rich 
foods and feed 
ingredients. 

-  Comparison of 
the environmental 
impacts from 
shrimp, MP and 
Tr-OVA as protein 
ingredients in an 
imagined patty

RQ3: What are 
the associated 
emissions sources 
of shrimp, MP, and 
Tr-OVA production, 
and during which 
production stage(s) 
do these emissions 
occur?

-  Quantification of the 
LULUC emissions 
associated with 
different shrimp farming 
practices

-  Comparison of 
the contribution of 
LULUC emissions with 
emissions from other life 
cycle steps

-  Performance of a 
contribution analysis 
of MP production to 
identify substantial 
production 
processes within the 
product system

- Performance of a 
contribution analysis 
of Tr-OVA production 
to identify substantial 
production processes 
within the product 
system

RQ4: How can 
the environmental 
impacts of MP and 
Tr-OVA be reduced 
through alterations 
of the production 
design?

-  Design of two main 
MP production 
scenarios

-  Performance of 
sensitivity analyses

-  Design of four 
alternative Tr-OVA 
production scenarios 

-  Performance of 
sensitivity analyses



28 THE PLANET WE EAT 
NATASHA JÄRVIÖ

3.	 BACKGROUND

3.1	 ENVIRONMENTAL IMPACTS
To understand the environmental impacts of cellular agriculture in the context of those of 
existing protein-rich food and feed ingredients originating from agricultural and aquacul-
tural systems, it is necessary to first understand what are the commonly-identified envi-
ronmental impacts associated with existing protein production. The following sub-sections 
will discuss and explain several environmental issues that are often associated with agri-
cultural production. Campbell et al. (2017) identified the agricultural sector as the main 
activity driving destabilization of the planetary boundaries. These issues are also the main 
environmental impact categories that are often considered in LCA studies of food products 
(i.e. Poore & Nemecek, 2018b). After the overview of commonly-identified environmental 
impacts of protein production, this section continues by elaborating on the conflict be-
tween shrimp farming and mangrove forests and why mangrove deforestation is a pressing 
issue. Discussing these environmental issues in detail contributes to understanding of how 
the production of protein-rich food and feed ingredients are destabilizing the Earth sys-
tems current stable state, and where possible solutions can be found (Steffen et al., 2015). 
Through understanding of the impacts discussed below, it is possible to identify how cellu-
lar agricultural products could potentially decrease the environmental impacts associated 
with protein production.   

3.1.1	 GLOBAL WARMING
Global warming is being caused by increasing amounts of GHG in the atmosphere that are 
primarily a result of human activities (NASA, 2021). This has led to a global (land-ocean) 
mean surface temperature rise of about 1°C since the pre-industrial period (Shukla et al., 
2019). A recent estimate suggested that about one third of all global anthropogenic GHG 
emissions are caused by our food system (Crippa et al., 2021). By far the largest contri-
bution came from agricultural (including the cultivation of food and non-food crops, and 
livestock production) and LULUC activities (Crippa et al., 2021).

The three main GHG emissions resulting from agriculture and aquaculture are CO2 , 
N2O and CH4 (Clark et al., 2020; Crippa et al., 2021). Clark et al. (2020) summarized the 
main sources of these emissions based on the historic data of the emission times series by 
Gütschow et al. (2019): 

	 the production and application of fertilizers and other agrichemicals are leading 
to CO2, N2O and CH4 (N fertilizers alone contributed up to an estimated 21.5% of 
agricultural emissions in 2018 (GRAIN et al., 2021))

	 major fluxes of CH4 are caused by enteric fermentation in ruminants (such as cows, 
sheep and goats) (17% of agricultural related emissions (Crippa et al., 2021)) and 
by production of rice in paddies (3.5% of agricultural related emissions in 2015 
(Ritchie et al., 2020))

	 CH4 and N2O emissions result from livestock manure and its management (2% of 
agricultural related emissions in 2015 (Crippa et al., 2021))
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	 food production processes are causing CO2 emissions (4% of agricultural related 
emissions in 2015 (Crippa et al., 2021)), and

	 LULUCs mainly lead to fluxes of CO2 and N2O, and are one of the largest sources 
of emissions within the food-system (32% of agricultural related emissions in 2015 
(Crippa et al., 2021)).

In addition, the natural processes of wetlands and the burning of biomass are major sourc-
es of CH4 emissions (Forster et al., 2007). The total emissions from LULUC were 5.7 Gt 
CO2-eq in the year 2015, approximately 13% of global GHG emissions (Crippa et al., 2021; 
The World Bank, 2022), which were mainly caused by deforestation and the degradation 
of organic soils. Although most of the LULUC emissions occur in developing countries 
(Crippa et al., 2021), input-output analyses have shown that most of the emissions are as-
sociated with food consumption in industrialized countries (Wood et al., 2018). Develop-
ing countries were responsible for 73% of all agriculture-related GHG emissions. Of these 
emissions, the land-based sector was the dominant contributor. Just over half of food-sec-
tor emissions were caused by downstream energy-related sectors in industrial countries. 
Despite the growth of food-system related GHG emissions overall, the emissions-intensity 
of food production has decreased during the period 1990-2015 (Crippa et al., 2021).

To limit global temperature increases to 1.5°C, or at least well below 2°C, GHG emis-
sions will need to be reduced rapidly (Rogelj et al., 2018). In 2020, CO2 levels were 412.5 
parts per million (ppm), higher than at any other point in the past 800,000 years (Lindsey, 
2020). The zone of uncertainty for the climate change planetary boundary is considered to 
be between 350-450 ppm CO2 (IPCC, 2012). This means that humanity might end up in a 
high risk situation if we continue on a business-as-usual path (Steffen et al., 2015). Over-
shooting the planetary boundaries for climate change has been predicted to decrease crop 
yield (Asseng et al., 2014; Challinor, 2014). This will potentially lead to a destructive cycle 
in which lower yield will result in additional land-use changes, further increasing global 
GHG emissions and starting a new cycle. Crop yields have already started to decrease as 
a result of global temperature rises (D. K. Ray et al., 2019). Certain regions of the world 
will be more at risk, while others might benefit from global temperature rises (D. K. Ray 
et al., 2019). Southern Africa is one of these regions that has experienced reduced crop 
yield. Madagascar has been reported to be the world’s first country experiencing a climate-
change related famine (UN Madagascar, 2021).

One potential path to reducing the absolute amount of GHG emissions from the food 
sector is by changing food consumption patterns (Poore & Nemecek, 2018b): to replace 
food items with high emissions with those that cause generally low emissions, while keep-
ing in mind nutritional requirements (Willett et al., 2019). This would mean moving away 
from animal-based products, as they result in a higher amount of GHG emissions compared 
to plant-based foods (Poore & Nemecek, 2018b; Xu et al., 2021). One of the main reasons 
that animal products contribute to GWP is the high amount of CH4 emissions emitted by 
ruminants (Clark et al., 2020). Although having a low half-life in the atmosphere, CH4 has 
a relatively high GWP in comparison to CO2 (Eurostat, 2021). Another reason is the feed 
requirements of ruminants and the associated loss of energy at each trophic level (Xu et al., 
2021). This also links back to emissions resulting from land clearance for feed production. 
A reduction in meat consumption seems especially effective in countries where meat-con-
sumption is generally high (Godfray et al., 2018; Springmann et al., 2018) and would also 
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lead to a reduction in adverse health effects related to a high intake of meat (Forouzanfar et 
al., 2015; Willett et al., 2019). To stay within the 1.5°C temperature limits and increase the 
overall health of the population, the EAT–Lancet Commission has concluded that global 
consumption of red-meat and sugars will need to be reduced by 50% while consumption of 
fruits, vegetables, nuts and legumes will need to double (Willett et al., 2019).

A further way to decrease emissions from the agricultural sector is by reducing food 
losses. Food losses at various stages of the life cycle contribute substantially to the total 
GWP caused by the food system and are estimated to make up 8% of the food systems GHG 
emissions (EC, 2012). About one third of all food produced is wasted every year, while up to 
811 million people are still undernourished and are unable to live a healthy and active life in 
2020 (FAO et al., 2021). Most of the food waste occurs within the developed nations (FAO, 
2014). Reducing food waste would therefore not only help to reduce the GWP of food, but 
also reduce pressure on other planetary boundaries, and help in achieving the sustainable 
development goals of the United Nations (UN) (Lemaire & Limbourg, 2019).

3.1.2	 WATER USE
Agriculture is the largest global user of freshwater, responsible for 70% of withdrawals, 
making humans the largest consumers of the earth’s freshwater resources (Campbell et al., 
2017; FAO, 2020a). Most freshwater consumption takes place through the transpiration of 
crops and the evaporation of water held in soils and irrigation structures (Campbell et al., 
2017). During the past two decades, annual freshwater resources have declined by 20%. 
The two main reasons for increased water consumption for agricultural purposes are the 
growing population, and the shift towards more water-intensive food sources such as beef 
(Campbell et al., 2017; FAO, 2020a; Poore & Nemecek, 2018b). Sugar and coffee producers 
are also large consumers of water (Kassem et al., 2021). 

The greater water consumption associated with animal products is mostly explained 
by the low agricultural efficiency of livestock farming: large amounts of crops are produced 
(and irrigated) for livestock feed production. Recent research has suggested that dietary 
changes, where animal products are replaced with increased consumption of pulses, nuts, 
fruits and vegetables, cereal products, and other meat replacements such as insects, could 
also result in decreased global water consumption (Kassem et al., 2021; Poore & Nemecek, 
2018b; Vanham et al., 2018). 

Growing thirst of water is having a detrimental effect on the environment, with 41% 
of current global water irrigation occurring at the expense of environmental flow require-
ments (FAO, 2020a). Both ground and surface water, as well as soil moisture, are extract-
ed in favor of crop and animal production leaving less available for local ecosystems. In 
some regions, groundwater levels are experiencing a rapid depletion that is causing con-
cern (Campbell et al., 2017). One such example is in California’s Central Valley, where the 
dropping groundwater level is causing deformation of the surface area (Vasco et al., 2019). 
However, there are many other examples of agricultural areas worldwide that depend on 
groundwater for irrigation to the extent that groundwater levels are rapidly falling (Cotter-
man et al., 2018). 

Groundwater is of the utmost importance to many ecosystem services, a fact that has 
often been neglected (Khorrami & Malekmohammadi, 2021). Dropping groundwater lev-
els alter the flow of water from the groundwater source to streams, resulting in potentially 
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devastating effects on aquatic ecosystems (de Graaf et al., 2019). The abstraction of water 
for food production can have severe impacts on the local ecosystems, especially in areas 
where water availability is generally low, such as arid areas where potential evapotranspi-
ration outweighs water received through precipitation by five times (Boulay et al., 2015). 
At the same time, water use by the agricultural sector in these arid areas is generally high: 
~87% on the African continent, and even ~90% in some of the Arab countries (Campbell et 
al., 2017). Human-induced climate change will put further stress on both the food system 
and natural ecosystems due to the predicted increase in extreme weather events, which 
increases the risk of drought that will, in turn, further increase reliance on groundwater 
resources (de Graaf et al., 2019).

Overuse of freshwater resources may affect not only nature conservation but also food 
security (Schyns et al., 2015). A recent analysis on the effects of groundwater depletion in 
India, the world’s largest user of groundwater, suggests that crop production may decrease 
by 20% throughout the nation and up to 68% in groundwater depleted regions. This would 
mean an increase in dependency on irregular rainfall patterns (Jain et al., 2021). Direct 
rainwater consumption has increased steadily for agricultural purposes. This limits the wa-
ter that is allowed to flow naturally, with potential adverse effects on valuable ecosystems 
(Schyns et al., 2019). 

 

3.1.3	 FERTILIZER USE AND EUTROPHICATION
Modern agriculture relies heavily upon external inputs such as industrially produced fer-
tilizers, for which demand is expected to increase as global demand for crops will likely 
double by 2050 compared to 2005 (Tilman et al., 2011; X. Yu et al., 2021). Approximately  
80% of current global consumption of phosphorus (P) is used in the production of fertilizer 
necessary to sustain current agricultural yields (Van Vuuren et al., 2010). Globally, soil 
P levels are low, increasing the need to apply P fertilizers manufactured from phosphate 
rocks (X. Yu et al., 2021). The potential depletion of P resources could inhibit the further in-
tensification of agriculture necessary to meet predicted increases in agricultural demands 
(Van Vuuren et al., 2010). Changes in agricultural management are therefore essential to 
increase the efficient use of P fertilizers. P fertilizer use efficiency (PFUE) is further affected 
by regional climate and soil characteristics (X. Yu et al., 2021).

The production of ammonia (NH3), the foundation of modern-day nitrogen (N) ferti-
lizer, was invented as a response to the growing need for food, and the concomitant need 
to replace field N losses due to crop harvesting. It is produced in a process known as the 
Haber-Bosch process (Erisman et al., 2008). The invention of this process transformed 
the world and was necessary to support human population growth (Erisman et al., 2008; 
Smil, 2001). Approximately 80% of chemically-produced NH3 (produced from N and hy-
drogen) is used as fertilizer to support the growth of crops and fiber (Erisman et al., 2007). 
However, the amount of N actually reaching humans is only 5-15% (Erisman et al., 2007).

Overuse of P fertilizers leads to large amounts of P entering the environment caus-
ing both freshwater and marine eutrophication. The additional input of N has now been 
recognized as the main contributor to coastal eutrophication with an estimated 24% of 
anthropogenic N released into coastal watersheds reaching coastal ecosystems. This excess 
input of nutrients leads to algal blooms and scum, toxic phytoplankton events and massive 
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growth of macrophytes. This, in turn, leads to oxygen depletion in water, limited primary 
production in some systems, and the loss of biologically engineered habitats that together 
can lead to a potential development of dead zones (Howarth & Marino, 2006; Malone & 
Newton, 2020; Van Vuuren et al., 2010).

Furthermore, the production of N requires a high amount of energy often supplied 
by the consumption of natural gas and oil (Erisman et al., 2007). Agricultural emissions 
resulting from low nitrogen use efficiencies and the consequential partial release of N2 into 
the atmosphere contribute to GWP. An estimated 65% of global NH3 emissions are linked 
to agriculture (Erisman et al., 2007). However, national governments have an opportunity 
to reduce the application of N and the consequent eutrophication effects, with only a minor 
increase in the yield gap (Wuepper et al., 2020).

3.1.4	 LAND USE 
Forest cover has been steadily disappearing on land areas suitable for agricultural pur-
poses since before the start of the industrial era (Kaplan et al., 2009). Approximately three-
quarters of total global ice-free land surface area was affected by human activity in the year 
2015. Cropland covers approximately 12-14% of this ice-free surface. 60-85% of all forests 
and 70-90% of other natural ecosystems are currently impacted by human activities. This 
agricultural land use has resulted in an 11-14% decrease in global biodiversity (Shukla et 
al., 2019). An estimated 49% of global ice-free surface land is reserved for agriculture use. 
Approximately a quarter of this agricultural land area is used to grow crops while the rest is 
occupied by livestock for meat and dairy production. (Ritchie & Roser, 2019; Shukla et al., 
2019). However, meat and dairy supply a minority of global calories and protein (Ritchie 
& Roser, 2019).

Land use for agricultural production not only causes GHG emissions through the loss 
of above-ground, below-ground, and soil-organic carbon storage, it also leaves less land 
available for natural vegetation and ecosystems, therefore contributing to biodiversity and 
ecosystem service losses (Marques et al., 2019; Metzger et al., 2006; Newbold et al., 2015). 
These losses are considered a loss of life forms and genetic variability, but they also present 
a threat to human prosperity as degraded ecosystems cannot provide the same goods and 
services that humans need to prosper (Cardinale et al., 2012). 

The loss of wild areas is closely linked to both carbon stock and biodiversity losses, 
which means that both problems can potentially be addressed at the same time (Soto-Na-
varro et al., 2020). One solution would be to decouple agricultural activities from natural 
resource use and reduce the pressure on biodiversity-rich regions (Venter et al., 2016). 
Unfortunately, despite the observed decoupling of economic growth from resource use, 
many places in the world are faced with increasing pressures from human activities, of 
which agriculture is a major part. A mere 3% of biodiverse hotspots are currently free from 
human-induced pressure (Venter et al., 2016).

The widespread use of land for agricultural purposes and the overexploitation of the 
soil are negatively affecting both the earth and the agricultural system leading to reduced 
productivity and ultimately soil death. Soil organic matter — containing about 58% of soil 
organic carbon (SOC) — provides ecosystem services such as climate regulation, water fil-
tration and purification, and support of biodiversity (Timmis & Ramos, 2021; Trivedi et al., 
2018). Sustainable agricultural and land-use practices are therefore of huge importance 
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in combating land degradation and desertification (Trivedi et al., 2018). After all, we are 
dependent on healthy, productive soil for nearly all the food we produce. Desertification 
— known as land degradation in arid, sub-arid, and dry sub-humid areas — has already 
reduced agricultural productivity and agriculture-associated income and led to an increase 
in biodiversity losses. An estimated 500 million people were affected by desertification in 
2015. As desertification is most likely to hit regions where the human population is project-
ed to increase the most in the coming years, changes in agricultural practices are required. 
(Mirzabaev et al., 2019).

3.1.5	 LAND COMPETITION BETWEEN MANGROVE FORESTS  
	 AND SHRIMP FARMING
Mangrove forests are woody trees and shrubs that grow in coastal intertidal regions of the 
world between approximately 30°N and 30°S latitude (Giri et al., 2011; Kaiser et al., 2005). 
They are unique because they are able to live in waterlogged, salty, and often unstable and 
harsh conditions (Kaiser et al., 2005; Spalding & Leal, 2021). Mangrove forests are known 
for a vast variety of ecosystem services, such as coastal protection, providing support for 
life in estuaries and near-shore water, and the provision of nursing grounds and habitats 
for aquatic animals (Duarte et al., 2005; Eong, 1993; Kristensen et al., 2008; Mcleod et al., 
2011; Nagelkerken et al., 2008; Spalding & Leal, 2021).

One ecosystem service that makes this habitat unique is the capacity of mangrove 
forests to sequester carbon from the atmosphere. Half the amount of carbon stored in the 
marine environment is stored in these forests (UNEP, 2009). This is because, unlike other 
terrestrial forests, mangrove forests do not saturate with carbon but continue to sequester 
carbon into their forest floor, accreting sediments vertically. This process of carbon seques-
tration into the depth of the soil has been estimated to continue over millennia (Duarte et 
al., 2005; Eong, 1993; Mcleod et al., 2011). Estimated sequestration rates can be as high as 
3.53 t C ha-1 year-1 (Sanders et al., 2010), compared to a carbon sequestration rate of 0.007-
0.131 t C ha-1 year-1 of terrestrial forests (Mcleod et al., 2011). This makes them one of the 
most productive natural tropical ecosystems in the world (Donato et al., 2011; Eong, 1993; 
Mcleod et al., 2011; Spalding & Leal, 2021; Twilley et al., 1992). 

The mechanisms behind this high carbon sequestration rate are a combination of hy-
poxic conditions, the lack of other high-energy oxidants, and the paucity of fungi, which 
together limit the process of degradation (Middleton & McKee, 2001). The result is several 
meters of organic material, making up one of the largest carbon reserves in the terrestrial 
biosphere (Chmura et al., 2003; Lovelock, 2008). This is what makes mangrove forests a 
vital partner in our battle to decrease atmospheric CO2 emissions and prevent global tem-
peratures from rising further. 

Mangrove forests have been under threat globally for many years (Spalding & Leal, 
2021). Historic annual deforestation rates of mangrove forests have been between 0.7-
2.4%, exceeding those of inland tropical forests (B. C. Murray et al., 2012). Between 1996 
and 2016 there was a 4.3% net loss of mangrove forests worldwide. However, the rate of 
mangrove deforestation has slowed down in recent years, possibly because of the recogni-
tion of the importance of mangrove forests and their ecosystem services. Many organiza-
tions and countries have started collaboration to attempt to both slow further losses and 
rehabilitate former mangrove forests back to their original state (McNally et al., 2010; 
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Spalding & Leal, 2021). The reasons for mangrove deforestation have been demand for fire-
wood and conflict of land use demands, such as urban and leisure coastal developments, 
and the establishment of aquaculture ponds (McNally et al., 2010; Spalding & Leal, 2021).

Shrimp are one of the many species that can naturally be found in mangrove forests. 
Production of the giant tiger prawn (Penaeus monodon), specifically, has grown substan-
tially since the mid-1980s, driven by demand mainly from Europe, the USA and Japan 
(FAO, 2005; Lebel et al., 2002). This shrimp species is predominantly produced in aq-
uaculture ponds in South East Asia (FAO, 2009). Vietnam is one of the main exporters 
of shrimps. The giant tiger prawns are produced mainly in the Mekong Delta area due to 
topographical and geographical features that make the region a perfect location for aqua-
culture production (Phan et al., 2011). Ca Mau province is especially suitable to shrimp 
production, and more than half of the land surface in this area is used for aquaculture pro-
duction. It is also the area where one third of Vietnam’s mangrove forests are found (Jonell 
& Henriksson, 2015). An estimated 74% of all mangrove forests in Ca Mau were lost, for 
the most part due to the growth of the aquaculture industry during the period 1979 – 2013 
(Son et al., 2015).

3.2	 CELLULAR AGRICULTURE
The following sub-sections give an introduction to the MP and Tr-OVA products. They 
briefly explain the characteristics of these cellular products and how they can be used as ei-
ther protein-rich food or feed ingredients. Details of the production processes of the prod-
ucts can be found in article II (MP) and III (Tr-OVA).

3.2.1	 MICROBIAL PROTEIN
Most cell-cultured products rely to some extent on agricultural input by using hetero-
trophic organisms that eat other plants and animals to acquire energy and nutrients. Often 
glucose is required in the production process as an energy source. Currently, glucose is 
typically extracted from agricultural crops such as grain, corn or sugar crops (Tuomisto, 
2019). However, there are examples of organisms that are completely independent from 
agricultural inputs, and these are referred to as autotrophic microbes, such as methano-
trophic bacteria that obtain energy and nutrients from methane and carbon (Cumberlege 
et al., 2016). Technologies utilizing methanotrophic bacteria to produce feed ingredients 
are already in commercial-scale production (Cumberlege et al., 2016). 

Another example of autotrophic microbes is HOB that obtain their energy from hy-
drogen and CO2. Technologies to bring HOB to market as food or feed ingredients are cur-
rently under development (Pikaar, de Vrieze, et al., 2018; Ritala et al., 2017). Cupriavidus 
necator (formerly Ralstonia eutropha) is one example of an HOB that can be utilized for 
this purpose (Liu et al., 2016; J. Yu, 2014), and it is used for the production of MP.

Just as many other cellular agricultural products, MP cannot replace an existing ag-
ricultural product one-to-one due to its powdery form. However, it can be used in meals 
(such as in the production of pancakes or patties) to replace animal-based ingredients due 
to its high-quality protein. For example, protein availability in proteolytic enzymes has 
been shown to be greater than that of wheat, and the composition of their essential amino 
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acids is similar to that of animal protein (Matassa et al., 2016; Volova & Barashkov, 2010). 
Microbial protein can also be used as a feed ingredient (Pikaar, Matassa, et al., 2018), re-
placing other protein sources such as soybeans that are often associated with destruction 
of rainforests (Brown, 2009; M. H. Costa et al., 2007). As such, the impacts of microbial 
protein can be compared with alternative protein sources used in food and feed, based on 
the protein content of the ingredients.

3.2.2	 CELL-CULTURED EGG OVALBUMIN
Yearly production of chicken eggs reached 86.7 million t in 2020 (FAOSTAT, 2021). Egg 
white, separated from egg yolk and processed into a powder, is a high-quality protein 
source that is widely used in the food industry. Ovalbumin makes up over 50% of the egg-
white protein. However, egg production is associated with many environmental burdens 
(Crippa et al., 2021; Poore & Nemecek, 2018b; Smil, 2002; Van der Warf & Petit, 2002). 
Intensive chicken farming has also resulted in zoonotic disease outbreaks and has attracted 
ethical criticisms (C. K. Johnson et al., 2020). Regardless, the market for egg white protein 
powder is expected to expand (Markets & Markets, 2019). To meet this growing demand, 
while potentially decoupling ovalbumin production from the aforementioned issues, the 
development of alternatives to chicken-based egg white protein powder has started to gain 
interest within the food industry (Eibl et al., 2021).

The techniques used in cellular agriculture had already made it possible to produce 
ovalbumin in a bioreactor using genetically modified bacteria (Escherichia coli) by 1995 
(Takahashi et al., 1995). Since then, technological advancements have made it possible to 
produce recombinant or cell-cultured ovalbumin in a large enough scale for it to be consid-
ered an economically feasible alternative to chicken-based egg white protein (Voutilainen 
et al., 2021). This novel process involves using a well-established and efficient production 
organism of the mesophilic filamentous ascomycete fungus T. reesei. T. reesei is also able 
to produce other proteins such as the milk protein β-lactoglobulin.

Tr-OVA is currently produced in bioreactors on a pilot scale. This is done by means of 
using biotechnological tools to insert the gene carrying the blueprint for ovalbumin (length: 
386 amino acids) into the fungus. The coding gene SERPINB14 (https://www.uniprot.org/
uniprot/P01012) used in the process comes from chickens (Gallus gallus domesticus). Af-
ter the modification, the fungus starts secreting the same ovalbumin protein found in eggs 
produced by chickens. The process results in a protein powder with comparable functional 
properties to chicken-based egg white protein powder. The product can be used directly 
as a replacement ingredient in foods. Tr-OVA is an example of an acellular product as the 
fungal mass is removed from the final product.

3.3	 LIFE CYCLE ASSESSMENT
LCA was applied in the environmental impact assessment of shrimp, MP, and Tr-OVA as 
a means to include emissions at all stages of production. The section below gives a general 
introduction to the LCA method and how it was applied in the research presented in this 
dissertation. The quantification of GHG emissions resulting from LULUC within an LCA 
is discussed after this.
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3.3.1	 OVERVIEW OF LIFE CYCLE ASSESSMENT
Environmental (LCA) was introduced in the 1980s as a method to quantify the environ-
mental impact of products throughout their life cycle. It has been employed to address 
difficult questions that could only be answered by taking into account the entire production 
system behind each product alternative (Guinée et al., 2011). 

As the application of LCA has increased, so has the need for standardization of the 
method. The International Organisation for Standardisation (ISO) developed guidelines 
for LCA standardization that resulted in the first international standards published in 2006 
(ISO, 2006). ISO describes LCA as the activity of gathering an overview of all inputs, out-
puts and the potential environmental impacts related to a product or service through its 
lifetime (ISO, 2006).

However, ISO standards were never developed to guide LCA practitioners in the de-
tails of LCA, nor is there a common agreement among scientists on how to interpret the 
ISO rules (Heijungs et al., 2021; B. Weidema, 2014). For example, the ISO guidelines are 
ambiguous on the matters of system expansion and substitution, creating confusion over 
the definition of the two methods available for dealing with the multi-functionality prob-
lem (Heijungs et al., 2021). System expansion refers to the expansion of the FU by includ-
ing all co-products of the system to the FU (e.g., both meat and milk become part of the FU 
of the system). Substitution refers to the process of solving the multi-functionality problem 
by subtracting avoided environmental burdens related to the co-product that are not in-
cluded in the FU (Heijungs et al., 2021).

Despite the standardization of the LCA method there has been a divergence of ap-
proaches such as consequential versus attributional LCA (B. P. Weidema et al., 2019), the 
anticipatory LCA (Wender et al., 2014), prospective LCA for emerging technologies (G. 
Thomassen et al., 2019), hybrid LCA and environmental input and output based LCA (EIO-
LCA) (Stadler et al., 2018), and specialized tools such as the carbon footprints (Pandey et 
al., 2011) and water footprints (Hoekstra et al., 2011). Additionally, the social LCA (SLCA) 
(Dreyer et al., 2010) and life cycle costing (LCC) were developed to expand on the sustain-
ability assessment of a product system (Woodward, 1997).

One of the most common divisions between LCA methods is the attributional vs the 
consequential LCA. Attributional LCA calculates the average impact associated with dif-
ferent inputs while consequential LCA studies the impact of the marginal supplier that 
can respond to increased demand in the required inputs of the studied production process 
(Schaubroeck et al., 2021; M. A. Thomassen et al., 2008). Both approaches require model-
ling choices that will lead to potentially different results when applied to the same product. 
For example, a common practice within consequential modelling is to apply substitution to 
avoid allocation in the case of multi-functionality, while allocation is a commonly used way 
to divide emissions within the attributional LCA (Consequential-LCA, 2015a; Schaubroeck 
et al., 2021). Ecoinvent has developed a separate database that can be used for consequen-
tial LCA. While the attributional LCA databases focus on the average impact of a process 
(e.g., the average electricity mix of a country), the consequential LCA database focuses on 
the marginal supplier of an increase in demand for a product. This means, in the exemplary 
case of electricity, that only certain suppliers are able to meet the extra demand for electric-
ity in the short-term (Consequential-LCA, 2015b; M. A. Thomassen et al., 2008).
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One ongoing discussion within the LCA method concerns the choice of functional unit (FU) 
that should be used in the comparison of different products or services. The environmental 
impacts of a product are quantified based on the function a product provides (ISO, 2006). 
A FU can be as simple as ‘1 kg of product’, but in the case of food can also be set as ‘one 
meal’, ‘1 kg of protein’, or ‘1 kcal’ depending on the main function of the item and the goal of 
the study (Cucurachi et al., 2019; Poore & Nemecek, 2018b). Of particular concern to LCA 
of food products has been discussion as to what the function of food is (e.g., the delivery of 
an individual nutrient or the alleviation of the feeling of hunger). Along these lines, ques-
tions remain about how to account for the differing nutritional aspects of food products as 
the nutritional content of two products usually vary considerably, thereby complicating 
comparison. (Mclaren et al., 2021; Saarinen et al., 2017; B. P. Weidema & Stylianou, 2020).

3.3.2	 LAND USE AND LAND-USE CHANGE EMISSIONS IN LCA
Although LCA began primarily as a method to assess industrial production processes, con-
cern over the impacts of the agricultural sector has led to the inclusion of food products 
(Roy et al., 2009). Eventually, the application of LCA extended to aquaculture products 
when the first assessment was performed in the early 2000s by Papatryphon et al. (2003) 
on salmon feed. In 2019, Cururachi et al. (2019) published an article on the principles of, 
and steps required for conducting an LCA study on food systems.

LULUC emissions are a major part of the life-cycle related emissions of food prod-
ucts (Clark et al., 2020; Crippa et al., 2021). Emissions can occur from changes in above-
ground, below-ground, litter, and soil carbon stocks, or the application of fertilizers (IPCC, 
2006a, 2014). Historically, these emissions have often been excluded from LCA and LCA 
databases due to lack of data, methodological debates on the correct estimations for LUC 
emissions, or a lack of understanding on the causal relationship between deforestation and 
land use (Donke et al., 2020; IPCC, 2006a; Schmidt et al., 2015). For example, land soil 
carbon stock fluxes are often overlooked within LCA food studies, which can partly be ex-
plained by the lack of a well-defined procedure to account for them (Goglio et al., 2015). 
The potential for agricultural soil worldwide to store carbon from the atmosphere has been 
estimated to be somewhere between 0.4-1.2 Gt of CO2, the equivalent of 5-15% of global 
fossil fuel emissions by changing land management practices and decreasing LUC (Goglio 
et al., 2015). Additionally, indirect LUC is poorly represented in LCA studies, leading to 
potential underestimation of GHG emissions and poor decision making. Indirect LUC oc-
curs when the demand for crops in one region causes changes such as LUC, intensification 
or reduced consumption in another (Schmidt et al., 2015).

Efforts are constantly being made towards better estimates of LULUC and the imple-
mentation of LULUC emissions into existing guidelines and databases (Donke et al., 2020; 
IPCC, 2014; Nemecek et al., 2016; Schmidt et al., 2015).
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4	 METHODS AND DATA

4.1	 USE OF LCA IN ARTICLES I, II AND III
The LCA method has been applied in all three articles presented in this dissertation to 
quantify the environmental impacts of shrimp farming (article I), MP (article II), and Tr-
OVA production (article III). The impact categories that were used in the analyses included 
those that are typically associated with the agriculture and aquaculture sector such as GWP, 
land use and water consumption. Because of the industrial nature of cellular agriculture, 
with a high reliance on electricity and natural gas, these impact categories where extended 
to include a number of categories generally associated with industrial production processes 
such as human carcinogenic and non-carcinogenic toxicity, and ionizing radiation (Gésan-
Guiziou et al., 2019; Noya et al., 2018; Santos et al., 2017; Tsai et al., 2020; Zouaghi et al., 
2019). For the same reason, the CED was also assessed using the CED V1.11 method by 
ecoinvent (Althaus et al., 2007). The impacts of water consumption were quantified using 
the AWARE method developed by Boulay et al. (2018). The AWARE method considers the 
general water scarcity of the region from which water is extracted when quantifying the 
environmental impacts of water consumption.

A cradle-to-gate system boundary was applied to all three studies. This includes all 
inputs and outputs related to the processes, from resource extraction up to the factory 
or farm gate. Land use of the cellular agricultural facilities was allocated over a 20-year 
production period. However, the production and construction of production facilities was 
excluded from the system boundaries due to their relatively small contribution to the envi-
ronmental impacts of the products. Additionally, facilities has typically been excluded from 
LCA studies used in the comparison of protein-rich food and feed ingredients (Poore & 
Nemecek, 2018b). Similarly, packaging processes were excluded from the analyses as well. 

Three FUs were applied in this dissertation. The first FU was based on the products’ 
weight and was defined as 1 kg or 1 t of product. This was chosen to explore the environ-
mental burden of the product. A second FU was based on the protein content of the prod-
ucts and allowed for the comparison of protein-rich products that each have a different 
protein concentration. The third FU, that was applied to study the environmental impacts 
of different protein sources, was based on a meal and defined as 1 patty using shrimp, MP, 
or Tr-OVA as the main protein source.

The main difference between the estimated environmental impacts of the shrimp 
farming system and the production of MP and Tr-OVA is that the latter two were based on 
data from one production facility while the former was based on multiple cases (N=11). The 
sensitivity and uncertainties of the MP and Tr-OVA model related to this limitation were 
captured using Monte Carlo (MC) analyses and sensitivity analyses. MC analyses were per-
formed with the Simapro 9.1.0.11 PhD software package (PRé Consultants, 2020) using 
100 iterations with a 95% confidence interval. A parametric bootstrap method was applied 
to handle the extremely large uncertainty ranges of the AWARE water scarcity method (Lee 
et al., 2018). For this purpose, Python 3.0 was used, applying 1,000 simulations using a 
sample size of 300 and allowing for replacements.
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4.2	  ARTICLE I: METHOD, DATA AND SYSTEM DESCRIPTION
Research performed for article I was divided into two parts. Part one describes a general 
method for accounting for LULUC emissions resulting from mangrove deforestation based 
on a literature review on carbon stocks in mangrove forests. This method is recommended 
when no other details are known about how the new land use has affected the mangrove 
carbon stocks. Part one also details the amounts of CH4 and N2O emitted during aqua-
culture farming. Part two quantifies the GHG emissions from mangrove LULUC caused 
by shrimp farming. It addresses the specifics of establishment LUC from mangrove forest 
areas to shrimp farms, and how this impacts the underlying assumptions of the general 
method described in part one. 

4.2.1	 ESTIMATING GHG EMISSIONS FROM LULUC OF MANGROVE FORESTS
LULUC emissions resulting from mangrove deforestation were calculated based on chang-
es in the carbon stocks of mangrove forests where before and after states were compared. 
The method assumes that a default 1m soil depth is affected and that 96% of soil carbon 
is oxidized as a result of mangrove deforestation. This is in line with the guidelines of the 
IPCC (IPCC, 2006a). The effects of mangrove deforestation on carbon stocks are visualized 
in Figure 1 where t = 0 represents the moment of LUC and t > 0 refers to the period of LU. 
LUC emissions result from the loss of carbon stocks and are represented by β and δ, where 
β refers to the sum of the above-ground, below-ground, litter, and soil carbon stocks. The 
continuation of soil carbon oxidation at t > 0 is represented by δ. Although LUC emissions 
may in practice occur over several years, they are attributed to the event of mangrove de-
forestation at t = 0. The difference in carbon stocks (∆C LUCi) caused by LUC of mangrove 
forests was calculated using equation 2 found in article I.

LU emissions were calculated based on the average soil carbon sequestration rate of 
mangrove forests and are represented by θ in Figure 1. These emissions are referred to as 
the missed potential carbon sequestration of the mangrove forest caused by LULUC. Addi-
tional potential emissions resulting from LU are in the form of anoxic CH4 formation, and 
nitrogen volatilization originating from aquaculture practices (Astudillo et al., 2015; Hu et 
al., 2012). The differences in carbon stocks caused by the missed carbon sequestration (∆C 
LUi )  were calculated using equation 3 found in article I.

Total CO2 emissions resulting from LULUC were calculated by summing the differ-
ence in carbon stocks from LULUC of mangrove forests and applying a conversion factor 
(44/12). This conversion factor is based on the molecular weight of the carbon in relation 
to CO2. LULUC emissions are attributed annually to the activity leading to mangrove defor-
estation over a 20-year period, as recommended by the IPCC (IPCC, 2006a).
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Figure 1: Graphical representation of the changes in carbon stocks resulting from mangrove deforesta-
tion. Carbon losses occur during land-use change (LUC) at point t=0 (β), and the continuous emissions 
during oxidation of soil carbon in the following years (δ). The LUC carbon losses are categorized into 
above-ground (AG), below-ground (BG), soil (S), and litter (L) carbon losses and are accounted for re-
gardless of when in time they occur (i.e. the oxidization of carbon in the soil over time, δ) (Cederberg et 
al., 2011; IPCC, 2006a). The missed potential to store carbon in mangrove soils is referred to as ‘missed 
potential carbon sequestration’ (θ) and is the result of the land use (LU) of the former mangrove area. 
These LU carbon losses are potential sequestration rates based on historic data on carbon sequestra-
tion while the LUC carbon losses are factual losses than can be measured at the point of occurrence. 
Adapted from article I.

Estimates on average carbon stocks of mangrove forests and potential CH4 and N2O emis-
sions were gathered through a literature review. Articles included in the review were found 
through Google Scholar by using a combination of the following keywords: “primary 
production”, “mangrove forests”, “carbon stocks”, “methane”, “dinitrogen oxide”, “CH4”, 
“N2O”, “fluxes”, “mangrove”, “carbon”, “emissions”, “storage”, “sequestration”, “soil”, and 
“land-use change”. Estimates on CH4 and N2O emissions resulting from LU by aquaculture 
in mangrove forests are scarce (Astudillo et al., 2015; Hu et al., 2012). It was therefore nec-
essary to rely on more general estimates reported for CH4 and N2O emissions from stand-
ing mangrove forests and aquaculture in general. 

A MC analysis was performed to account for uncertainties of the calculated emissions 
from mangrove deforestation. It was based on the approximate distribution of carbon stock 
values found in the reviewed literature. The analysis was performed with the CMLCA v5.2 
software, using 10,000 iterations.
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4.2.2	 CASE STUDY ARTICLE I: SHRIMP FARMING IN THE MEKONG DELTA, 	
	 VIETNAM
There are five different types of shrimp farming practices found in the Mekong Delta area: 
intensive, semi-intensive, improved extensive, improved extensive alternate, and mixed 
mangrove concurrent farming. (Henriksson et al., 2015; F. J. Murray et al., 2013). The 
mixed mangrove concurrent practice was established as a means to protect mangrove ar-
eas by allowing farmer families to use up to 30% of the total surface area to generate an in-
come with the intention of preventing complete deforestation (McNally et al., 2010). Mixed 
mangrove concurrent farms practice extensive shrimp farming and therefore require little 
external input (Phan et al., 2011). The shrimp yield of these farms’ averages at 0.13 t shrimp 
ha-1 water area year-1. To put this into perspective, semi-intensive shrimp farms produce 6.6 
t shrimp ha-1 water area year-1 and intense shrimp farms 7.6 t shrimp ha-1 water area year-1 

on average. (FAO, 2005; F. J. Murray et al., 2013; Phan et al., 2011).
To estimate LULUC emissions resulting from mangrove deforestation due to the es-

tablishment of shrimp farms, it was first necessary to identify which types of shrimp farm-
ing practices within the Mekong Delta have led to mangrove losses. This was achieved 
using the GPS coordinates of 200 randomly selected shrimp farms located in the area. Col-
lected GPS coordinates were used to perform an evaluation of present and historic satellite 
images found from Google Earth (Google, 2013), the Global Land Cover by the National 
Mapping Organizations (ISCGM, 2003) and the Google Earth overlay map of the global 
distribution of mangrove forests of the world (Giri et al., 2011). The historic satellite images 
found, showed the land use of the affected areas before the establishment of the selected 
shrimp farms.

Shrimp farms located in mangrove areas are established by deforesting (part of) the 
mangrove forest by the removal of trees, including the roots. Forest litter is removed from 
the area and a pond hole is dug into the soil. The average pond depth is about 1.5m. (F. J. 
Murray et al., 2013; Phan et al., 2011). The amount of carbon in the soil that will eventually 
be exposed to oxygen is difficult to predict due to the use of part of the soil material during 
the construction of the pond walls, variation in pond depth, and the fate of sediments after 
abandonment of the shrimp farm (Jonell & Henriksson, 2015). A study by Eong (1993) 
conservatively estimated that about 50% of the carbon ends up being oxidized and this 
estimate was adopted into the method used in article I. 

Resulting emissions were annualized over 50 years, based on the expected life time 
of a shrimp farm by Jonell and Henriksson (2015). As the predicted expected life time of a 
shrimp farm will have a considerable influence on the results, a sensitivity analysis was per-
formed where a 20-year annualization was applied, as recommended by the IPCC (IPCC, 
2006a). A FU of 1 t of live weight shrimp at the farm gate was applied. 
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4.3	 ARTICLE II: METHOD, DATA AND SYSTEM DESCRIPTION

4.3.1	 MODEL AND RELATED ASSUMPTIONS
The environmental impacts of MP production were estimated using an LCA. Sillman et al. 
(2020) conducted a similar study based on theoretical values found in existing literature, 
as empirical data was not available at the time. Because of the potential of MP to be used 
either as a protein-rich food or feed ingredient with lower environmental impacts than ex-
isting protein sources (Matassa et al., 2016; Pikaar, de Vrieze, et al., 2018; Pikaar, Matassa, 
et al., 2018; Sillman et al., 2020), there is scientific interest in the quantification of these 
impacts through the use of empirical data. The goal of the research was therefore to quan-
tify the environmental impacts of MP production using empirical data collected from a 
pilot-scale production facility.

The final product is a single-cell protein powder suitable for both human consump-
tion or as a feed ingredient for livestock. The environmental impacts were calculated using 
a FU of 1 kg of product with a 5% moisture content. The product contains 65% protein, 11% 
fiber, 6% fat and 2.2% carbohydrates. The system does not produce by-products to which 
allocation should be applied.

Aggregated inputs and outputs were linked to the impact categories GWP (kg CO2 
eq), LU (m2 crop eq), freshwater eutrophication potential (kg P eq), marine eutrophica-
tion potential (kg N eq), terrestrial acidification (kg SO2 eq), and human carcinogenic and 
non-carcinogenic toxicity (both in kg 1.4-DCB) using the ReCiPe 2016 v1.1 Midpoint (H) 
method (Huijbregts et al., 2017). Additionally, water scarcity and CEDs were calculated for 
the system. The LCA was performed using the Simapro 9.1.0.11 PhD software package (PRé 
Consultants, 2020).

As no commercial-scale production facility was yet operational at the time of writ-
ing article II, several production design choices existed, including the choice of electricity 
source used to produce MP and the production location. MP was developed by a Finn-
ish start-up company within the Helsinki metropolitan area. Therefore, the baseline LCA 
model was created assuming this production location. This choice of location was relevant 
for both the assumed average electricity mix, and the AWARE factors used to measure 
water scarcity.  

Two production scenarios were created and analyzed for MP. The first scenario was 
based on more conservative assumptions using the average Finnish electricity mix, while 
the second scenario was based on renewable energy sources. The latter is also more in line 
with general future expectations on the switch from fossil to renewable energy sources for 
electricity production (Ministry of Economic affairs and employment in Finland, 2018). 
Details on both scenarios can be found in Table 2.
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Table 2: Two different scenarios for MP production (adapted from article II).

Variables Scenarios

Finnish average energy mix (FAEM) Finnish hydropower energy (FHE)

Location Helsinki, Finland Helsinki, Finland 

Electricity Finland average electricity mixa 100% hydropower

Steam Supplied On-site using electricityb

CO2 Supplied On-site using electricityb

Wastewater Sent to central municipality wastewater 
treatment plant

Recycling of 80% of the supernatant on-site 
using reverse osmosis and combined with 
ultrafiltration.

a  SI1 of article I, section 5 lists the mix of energy sources for the Finnish electricity mix as modeled in this 
article.

b  SI1 of article I, section 2 provides details on calculations for water and electricity requirements for on-site 
production.

The effects of choosing different production locations, with differing renewable energy 
sources available, were tested in the sensitivity analyses applied to the model. Other sen-
sitivity analyses included variations in the utilization of nutrients, transport distances and 
electrolyzer efficiency, the on-site production of CO2 and steam, and the possibility to recy-
cle water on-site. Table 3 gives a list of the various sensitivity analyses that were performed. 
Further details on these analyses can be found in article II. 

To account for uncertainties in the system, an MC analysis was applied using 100 
iterations and a 95% confidence interval. Uncertainties were estimated with the pedigree 
matrix available in Simapro. The bootstrap method was applied to deal with the naturally 
large uncertainty ranges the AWARE method produces in an MC (Lee et al., 2018). Boot-
strapping is a statistical technique based on resampling the original sample with replace-
ments. The bootstrapping method is recommended to reduce the large uncertainty ranges 
in water scarcity results that are a result of the use of discrete distributions with greater 
extremes (Lee et al., 2018). Bootstrapping was performed with Python 3.0. The bootstrap 
was implemented with 1000 simulations using a sample size of 300 while allowing for 
replacements. 
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Table 3: Changed parameters for the sensitivity analyses of MP production (adapted from article II).

Sensitivity analysis 1: Finnish average energy mix (FAEM)

Name of analysis Changed parameter

FAEM – steam Steam production on site using electricity, rather than it being 
supplied

FAEM – CO2 on-site CO2 production on-site using electricity, rather than it being 
supplied

FAEM – electrolyzer Reduction in assumed efficiency of the electrolyzer

FAEM – nutrients 85% utilization Reduction in the uptake of nutrients supplied to the process

FAEM – transport Increase in air-based transport due to a change in the origin of 
the exporting country from Europe to China.

FAEM – 80% water recycling 80% of wastewater recycled on-site

FAEM – 50% water recycling 50% of wastewater recycled on-site

Sensitivity analysis 2: Finnish hydropower energy (FHE)

Name of analysis Changed parameter

FHE – wind 100% wind energy 

FHE – nuclear 100% nuclear energy 

FHE – solar (MR) Production location changed to Morocco using PV cells to 
produce the required electricity

FHE – geothermal (IS) Production location changed to Iceland using geothermal to 
produce the required electricity

4.3.2	 DATA COLLECTION
The primary data for the LCA was received from the company Solar Foods Oy. Solar Foods 
developed the bacterial strain used in the production of MP and made data available on the 
inputs and outputs of a pilot scale production process (see SI of article II). The production 
of MP in this facility required the supply of oxygen and hydrogen through electrolysis, and 
CO2 gases captured from the air to start the fermentation process. In addition, the cultiva-
tion is supplied continuously with water-based liquid minerals through filter sterilization. 
This mineral liquid contains a mixture of ammonium (for nitrogen) and inorganic salts 
made-up of sulfur, phosphorus, magnesium, sodium, potassium, iron, and calcium. The 
mineral liquid also contains traces of manganese, zinc, vanadium, boron, molybdenum, 
cobalt, nickel, and copper. The pH of the system is controlled by adding phosphoric acid 
(H3PO4) and sodium hydroxide (NaOH). Cleaning-in-place (CIP) of the bioreactors took 
place four times per year. The given inputs and outputs were measured and/or calculated 
through mass and energy balances.

Other data used in the LCA was collected from experts and through literature review. 
The ecoinvent 3 database was used to model background data. Data on the inputs and out-
puts of wastewater treatment in the centralized WWTP was taken from the Helsinki Region 
Environmental Services (HSY, 2019).
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4.4	 ARTICLE III: METHOD, DATA AND SYSTEM DESCRIPTION

4.4.1	 MODEL AND RELATED ASSUMPTIONS
The goal of the study performed in article III was to quantify the expected environmental 
burden of Tr-OVA production on an industrial scale using data from a pilot study. An an-
ticipatory LCA was conducted to consider uncertainties related to the model. The benefit of 
an anticipatory LCA is that it allows for the inclusion of an extensive amount of sensitivity 
analyses, as well as the use of large uncertainty ranges as data originating from a commer-
cial scale production system was not yet available. The techno-economic assessment (TEA) 
of Tr-OVA produced by VTT was consulted in order to identify steps in the production 
process that could have a substantial effect on the environmental burdens resulting from 
its production. These steps were used as parameters for the sensitivity analyses. Details of 
the anticipatory LCA model and the sensitivity analyses can be found in article III.

The production and fermentation process of Tr-OVA was conducted in a pilot-scale 
project at the VTT during 2018-2019. The engineered T. reesei fungus was nourished in a 
bioreactor with glucose, water, and a salt mix containing magnesium sulfate, calcium chlo-
ride, monopotassium phosphate (MKP), ammonia sulfate, iron sulfate, manganese sulfate, 
zinc sulfate, and cobalt chloride. An antifoaming agent was added, and ammonia water for 
pH control. Bioreactors required up to 50 rounds of CIP per year. The resulting product is 
a protein powder containing 8% moisture and 92% protein. The protein powder contains 
the same functional properties as protein from egg white powder (Voutilainen et al., 2021).

Like MP production, the production of Tr-OVA requires a relatively high amount of 
industrial energy in comparison to protein sources coming from an agricultural field. The 
choice of electricity source was therefore also in this study of importance when considering 
the environmental impact of its production. Four different scenarios were made using the 
average electricity mix of Germany (DE), Poland (PL), and Finland (FI) and a low-carbon 
Finnish electricity mix (FI – LC). These country mixes were chosen based on their step-
wise levels of carbon-intensity per kWh produced, where Poland has a carbon intensity of 
911 g CO2 eq kWh-1, Germany of 588 g CO2 eq kWh-1, Finland of 204 g CO2 eq kWh-1, and 
the Finnish low-carbon mix of 50 g CO2 eq kWh-1 (Moro & Lonza, 2018). 

LCA of Tr-OVA was performed using the Simapro 9.1.0.11 PhD software package (PRé 
Consultants, 2020). Uncertainty ranges were based on a uniform distribution of inputs 
with a ± 20% margin. The environmental impacts included in the study were GWP (kg CO2 
eq), land use (m2a crop eq), water scarcity (m3), freshwater and marine eutrophication po-
tential (kg P-eq; kg N-eq), terrestrial acidification (kg SO2  eq), ionizing radiation (kBq Co60 
eq), human carcinogenic and non-carcinogenic toxicity (kg 1,4-DCB; kg 1,4-DCB), strato-
spheric ozone depletion (kg CFC11  eq) and the CED (MJ) using the ReCiPe 2016 Midpoint 
(H) method, the AWARE method, and the CED V1.1 method by ecoinvent (Althaus et al., 
2007; Boulay et al., 2018; Huijbregts et al., 2017). 
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4.4.2	 COMPARISON WITH CHICKEN-BASED EGG WHITE PROTEIN 		
	 POWDER
To understand how environmental impacts related to the production of ovalbumin would 
change when using fungi rather than chickens, a model for chicken-based egg white pro-
tein powder was created. The model was based on the model described in an article by Tsai 
et al. (2020) on the production of egg yolk powder. Uncertainties in the chicken-based egg 
white protein powder model were generated using the pedigree method as no original un-
certainty ranges were given by the authors. Protein powder produced from chicken eggs is 
part of a multifunction product system with multiple outputs. A 55% allocation factor was 
applied to egg whites based on the model of Tsai et al. (2020).

The two products were compared on a protein basis as the functionality of egg white 
powder is often defined in terms of protein quality. One example is the use of egg white 
powder for the whisking ability adding structure to cakes. The protein content of chicken-
based egg white protein powder is 79.8% (USDA, 2019b).

The significance of the differences between the environmental impacts of Tr-OVA and 
chicken-based egg white protein powder was tested using dependent modified null hypoth-
esis significance testing (NHST) (Heijungs, 2021). The uncertainty ranges from the MC 
analyses were used for this purpose. A seed value of zero was applied to all MC analyses 
to simulate artificial dependency between the two models, which is necessary to perform 
statistical tests and to account for common uncertainties between the Tr-OVA and chicken-
based egg white powder model (Mendoza Beltran et al., 2018).

The tested null hypothesis was that H0: Si,j,k ≤ δ0, where S refers to the standardized dif-
ference of means, i and j refer to Tr-OVA and chicken-based egg white protein powder, and 
k refers to the impact. We used a difference threshold δ0 of 0.2 and a significance level α of 
0.05. A one-sided (right) cumulative distribution function was used to calculate the P value 
(Heijungs, 2021; Mendoza Beltran et al., 2018). A discernibility test was also conducted to 
explore the extent of the differences in environmental impacts resulting from the MC runs 
of the two product alternatives (Mendoza Beltran et al., 2018).

4.4.3	 DATA COLLECTION
Data for the Tr-OVA model was adopted from a pilot study and the TEA of Tr-OVA pro-
duced by VTT (Voutilainen et al., 2021) and was used to estimate the environmental 
burden of of an assumed 100,000 kg annual industrial production scale. The industrial 
requirements of the processes were validated using an energy and material balance. Back-
ground data was taken from the ecoinvent database 3.6, cut-off system. Proxies were used 
for those minerals that could not be found from this database, using expert opinions on 
similarities of properties of functions. Inputs were adjusted to reflect the respective country 
location of each scenario as much as possible. These included water use, electricity mix, 
and the natural gas production mix. Emissions from the combustion of natural gas during 
the drying phase were calculated using the emissions factors published by the IPCC (IPCC, 
2006b; Simmons, 2000). Inputs and outputs required for the CIP process were calculated 
based on the article by Eide et al. (2003). 

The World Food LCA Database (WFLDB) was used to model chicken-based egg white 
protein powder as it included data on egg production in Germany and Poland. However, 
Finland is not listed in the database and the FI and FI – LC scenarios were consequently 
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not considered in the comparison. As the WFLDB relies on the ecoinvent v.3.5 cut-off sys-
tem in its background model, system boundaries should be similar between the chicken-
based egg white protein powder model and the Tr-OVA model that was also build using 
ecoinvent for background processes. However, one major difference between the WFLDB 
and ecoinvent databases was that the former includes emissions from LULUC, while the 
latter does not. This is especially important for aquacultural and agricultural products as 
they generally require large amounts of land per output (Poore & Nemecek, 2018b). In light 
of this, the WFLDB was used to model glucose into the Tr-OVA model, in order to align the 
system boundaries of the background data.

4.5	 COMPARISON BETWEEN PROTEIN-RICH FOOD  
	 AND FEED INGREDIENTS

4.5.1	 COMPARISON ON A PROTEIN CONTENT BASIS
As all the products studied in articles I, II, and III have a relatively high protein content, 
the results of the environmental impact of MP production (both the FAEM and the FHE 
scenario), Tr-OVA (PL and FI – LC) and shrimp (mixed mangrove concurrent and intense 
farming) were compared to that of alternative food and feed protein sources. The produc-
tion models selected for each of the three products were chosen because they represented 
the highest and lowest scores in terms of GWP. The environmental impacts of the other 
food and feed protein sources were taken from existing literature. These were protein-rich 
food products, taken from the article by Poore and Nemecek (2018b) and feed ingredients 
taken from the article by Smetana et al. (2019). In addition, the results on mycoprotein 
presented by Smetana et al. (2015) and the GWP results of MP taken from Sillman et al. 
(2020) were included in the comparison. The system boundaries used in all alternative 
products taken from literature were adapted to match the cradle-to-factory/farm gate ap-
proach used in the studies presented in the three articles of this dissertation. As article 
III only presents GHG emissions for shrimp farming, the comparison of shrimp to other 
protein sources was limited to GWP.

The environmental impacts for each product were calculated using a FU of 100 g pro-
tein. The reason for this is that protein intake plays an essential role in a healthy diet with 
a minimum requirement per day (Phillips, 2017). Additionally, protein content is a com-
monly used FU applied in LCA studies and allows for a comparison between products that 
otherwise have a distinctively different nutritional profile (Poore & Nemecek, 2018b). Be-
cause of the different nutritional profiles of the different protein-rich food and feed ingre-
dients, there is still debate among LCA practitioners regarding the optimal FU to employ 
when comparing different products (Saarinen et al., 2017). Consequently, an additional 
comparison was made within this dissertation, based on an imaginary patty prepared with 
protein originating from shrimp, MP, or Tr-OVA.

To compare the environmental impacts of shrimp, MP, and Tr-OVA with the pro-
tein-rich products from the aforementioned studies, the impacts of shrimp, MP, and Tr-
OVA were recalculated using the same LCIA method that was used by Poore and Nemecek 
(2018b) and Smetana et al. (2019). This was done to avoid differences in results caused by 
the application of the different impact factors used in the different life cycle impact assess-
ment (LCIA) methods. Poore and Nemecek (2018b) applied the IPCC 2013 method that 
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includes CC feedbacks, to estimate GWP, land use was calculated based on the sum of all 
land required in m2 per FU, acidifying and eutrophying emissions were calculated using 
the CML2 baseline method, and the impact of water use was estimated using the AWARE 
method. The results for different feed options and mycoprotein by Smetana (2015, 2019) 
were calculated using the IMPACT 2002+ method. 

4.5.2	 COMPARISON ON A PATTY BASIS
The three products studied within this dissertation have a relatively high protein content 
and are considered protein-rich ingredients that can be used to constitute a meal. For this 
reason the FU in this analysis was a patty, in line with the idea that each ingredient is 
seldom eaten in isolation, but rather as part of a meal (Saarinen et al., 2012). Three types 
of patties with different protein sources were considered in the comparison: a patty made 
with shrimp, a patty made with MP, and a patty made with Tr-OVA. The average Finnish 
electricity mix was used in both the MP (FAEM scenario) and Tr-OVA (FI scenario) patty.

The patty recipe was adapted from two different recipes for patties that can be pre-
pared at home by the consumer, using one of the three protein sources (Evans, 2021; 
Thomas, 2018). The ingredients list of the patties is reported in Table 4. The amount of the 
ingredients was altered for each patty in order to match the macronutrient content. Data 
from the USDA FoodData Central database was used to identify the nutritional content of 
the ingredients (e.g. USDA, 2019a). The nutritional content of microbial protein and oval-
bumin was taken from the organizations that developed the products, Solar Foods Oy and 
VTT respectively. Spices were not included in the analysis for two reasons: they are a minor 
part of the patty in weight, and it was assumed that they would be similar in each patty. 

Both MP and Tr-OVA can be added as is to the patty recipe. Harvested shrimp need 
to be processed. It was assumed that the shrimp were shelled and cleaned by hand by the 
consumer when preparing the ingredients. It was further assumed that edible shrimp lose 
34% of their weight compared to live shrimp at the farm, as both the head and shell are re-
moved (Louisiana Direct Seafood, 2011; Zirlotts Gulf Products, 2013). The protein content 
of the remaining product was assumed to be 20.1% (USDA, 2019a), while MP powder had 
a protein content of 65% and Tr-OVA powder 92%. The impacts of packaging or cooking 
were not considered.

The patties were modelled with Simapro 9.2.0.2 using data from ecoinvent 3.7.1 and 
the WFLDB 3.5 that uses the ecoinvent 3.5 database in background processes (i.e., the pro-
cess for electricity production). The ReCiPe 2016 v1.05 impact factors were used to calcu-
late the environmental impacts of each patty. Since only GHG emissions were considered 
for the case study on shrimp farming in mangrove forests, the comparison was restricted 
to GWP.
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Table 4: Ingredient list for the different patty options and macronutrients of each patty based on data 
from the USDA (e.g. USDA, 2019a).

Ingredients (grams) Shrimp patty Microbial protein patty Ovalbumin patty

Shrimp 140 - -

Microbial protein - 44 -

Ovalbumin using T. reesei - - 32

Bread, white 12.7 12.7 12.7

Onion 5.8 5.8 5.8

Breadcrumbs 13.2 13.2 13.2

Vegetable oil 14.3 12.5 14.3

Cooked kidney beans1 20 20 20

Sweet potato2 50 35 50

Water - 25 25

Total weight 241 168 173

Nutritional content

Energy (Kcal) 390.7 402.9 397.8

Protein (grams) 33.6 35.2 34.1

Fat (grams) 16.3 15.6 16.5

Carbohydrates (grams) 28.1 31.2 29.1

Fiber (grams) 3.6 4.1 3.6
1    Modelled as fava beans due to a lack of data availability in the databases. Fava beans were chosen as 

the Agribalyse database also modelled kidney beans using fava beans as a proxy.
2  Modelled using potato as a proxy.
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5.	 RESULTS

5.1	 RESULTS OF ARTICLE I

5.1.1	 ESTIMATES OF MANGROVE CARBON STOCKS AND GHG EMISSIONS 	
	 FROM MANGROVE DEFORESTATION
The results of the literature review on global average carbon stocks in mangrove forests 
are displayed in Table 5. Based on these values and a 20-year annualization period, as 
recommended by IPCC guidelines, deforestation of mangrove forests would lead to 129 
t of CO₂ emissions per hectare per year (CV = 0.441, ln). Using a 50-year annualization 
period, based on the expected lifetime of a shrimp farm, lowers these emissions to 54 t CO2 
per hectare per year (CV = 0.424, ln). CH4 emissions from aquaculture in mangrove areas 
were estimated as 533 kg CH4 per hectare per year (CV = 0.4, ln), following the assump-
tion of Astudillo et al. (2015). Despite the knowledge that most mangrove shrimp farming 
systems generally remove N from the atmosphere (Jonell & Henriksson, 2015), estimates 
of N emissions were conservatively set to 1.67 kg N2O per hectare per year (CV = 0.575, ln), 
in line with the estimates from Allen et al. (2012).

Table 5: Literature review results of global average mangrove carbon stocks (adapted from article I)

Reference Parameter Unit Median CV (distribution) Range N 

AG Above-ground C stocka t C ha-1 131 0.462 (ln) 49.5–261 9 

BG Below-ground C stockb t C ha-1 80 1.525 (ln) 9.61–410 8 

S Soil C stock per 1.5 m of 
depthc 

t C ha-1 724 0.595 (ln) 186.15–1575 8 

L Litter C stocksd t C ha-1 4.03 0.477 (n) 0.15–7 12 

CS Missed potential C 
sequestratione 

t C ha-1 yr-1 1.25 0.936 (ln) 0.012–3.53 8 

Distributions: ln = lognormal distribution, n = normal distribution
a  Twilley et al. (1992); Eong (1993); Matsui (1998); Kauffman et al. (2011); Donato et al. (2011); Ray et al. 

(2011); Donato et al. (2012) 
b  Komiyama et al. (1987); Twilley et al. (1992); Matsui (1998); Kauffman et al. (2011); Ray et al. (2011); 

Donato et al. (2012)
c  Eong (1993); Matsui (1998); Kauffman et al. (2011); Ray et al. (2011); Donato et al. (2012); Lundstrum 

and Chen (2014) "awareness of the high carbon (C" 
d  Twilley et al. (1992); Amarasinghe and Balasubramaniam (1992); Eong (1993); Day et al. (1996); 

Middleton and McKee (2001); Jennerjahn and Ittekkot (2004); Guzman et al. (2005); Ray et al. (2011)
e  Twilley et al. (1992); Eong (1993); Duarte and Cabrián (1996); Chmura et al. (2003); Alongi (2008); 

Sanders et al. (2010); Ray et al. (2011); Mcleod et al. (2011) 

Note: CV - coefficient of variation; N - number of observations.
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5.1.2 	 ESTIMATED GHG EMISSIONS FROM LULUC OF SHRIMP FARMING
Analysis of historical data on land use identified only mixed mangrove concurrent shrimp 
farms as being located in areas previously occupied by pristine mangrove forests. The re-
sulting LULUC emissions are shown in Table 6.

Table 6: GHG emissions from LULUC in mangrove areas due to mixed mangrove concurrent shrimp 
farming, annualized over 50 years, in t CO2 equivalent ha-1 yr-1 (adapted from article I).

Reference ∆β AG ∆β BG ∆β L ∆βδ S ∆θ MP 

Total t 
CO2 

CH4 
emissions 

N2O 
emissions 

Total GHG 
emissions 

Average 
(t CO2-eq 
ha-1 yr-1)

9.6 5.9 0.3 26.5 4.6 46.9 14.9 0.4 62.2 

CV 
(t CO2-eq 
ha-1 yr-1)

0.467 1.503 0.268 0.601 0.903 0.409 0.400 0.575  -

The average mixed mangrove concurrent farm produced about 6.5 t of live shrimp ha-1 over 
a period of 50 years. Other shrimp species and mud crabs were also produced in the same 
farm (Jonell & Henriksson, 2015; Vu et al., 2013) making up 60.8% of the total harvest by 
weight and 40.3% by value. Using mass allocation, the estimated GHG emissions from LU-
LUC for the Penaeus monodon harvest resulted in an estimated 184 t CO2-eq t−1 live shrimp 
at farm gate and 282 t CO2-eq t−1 live shrimp based on economic allocation. Although these 
are high emissions per t of shrimp, mixed mangrove concurrent farms are the only shrimp 
farming practice associated with this particular source of emissions and make up less than 
5% of all shrimp production in Vietnam. Globally, only 1.2% of shrimps originate from 
these type of farms (FAO - Fisheries division, 2021; Jonell & Henriksson, 2015). An ad-
ditional analysis on the mangrove cover remaining within the property area of 25 mixed 
mangrove concurrent farms showed that 39% (CV = 0.322, range 16–69%) of the original 
mangrove forest remains standing. 

To compare the results of the LULUC emission per t of live shrimp coming from the 
mixed mangrove concurrent system, a comparison was made with emissions coming from 
the intense shrimp farming systems analyzed in an article by Henriksson et al. (2015). This 
study analyzed the semi-intense and intense systems of the Mekong Delta. Given that nei-
ther of the other shrimp farming practices are in previous mangrove areas, the LULUC 
emissions of these systems are relatively small. The results of this study are presented in 
Table 7. The results show the clear impact of LULUC-related GHG emissions from man-
grove forests on the overall GWP of shrimp production.
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Table 7: Comparison of GHG emissions, annualized over 50 years, from three shrimp farming systems found in the Mekong 
delta of Vietnam (adapted from article I.)

System Allocation 
factor 

Prior land  
use 

t shrimp ha−1 
water surface 

area year−1 

LULUC t 
CO2 t

−1 
shrimp 

LU CH4  
emissions, 
t CO2-eq t−1 

shrimp 

LU N2O  
emissions, kg  

CO2-eq t−1  
shrimp 

Lifecycle  
emissions, 
t CO2-eq t−1 

shrimpa 

Total,  
CO2-eq t−1 

shrimp 

Mixed 
mangrove 

Mass 
(38.5%) Mangrove 0.13 139 44.2 1.31  minimal 184 

Semi-
intensive 

Mass 
(100%) 

Aquaculture 
pond 6.6   2.3 Included in 

LCA 13.2 15.5 

Semi-
intensive 

Mass 
(100%) Rice paddy 6.6 2.4 2.3 Included in 

LCA 13.2 21.5 

Intensive Mass 
(100%) 

Aquaculture 
pond 7.6   2.0 Included in 

LCA 13.2 15.2 

Intensive Mass 
(100%) Rice paddy 7.6 2.1 2.0 Included in 

LCA 13.2 20.4 

Mixed 
mangrove 

Eco 
(58.8%) Mangrove 0.13 212 67.5 2  minimal 282 

Semi-
intensive 

Eco 
(100%) 

Aquaculture 
pond 6.6   2.3 Included in 

LCA 4.7 7.0 

Semi-
intensive 

Eco 
(100%) Rice paddy 6.6 2.4 2.3 Included in 

LCA 4.7 13.0 

Intensive Eco 
(100%) 

Aquaculture 
pond 7.6   2.0 Included in 

LCA 5.1 7.1 

Intensive Eco 
(100%) Rice paddy 7.6 2.1 2.0 Included in 

LCA 5.1 12.3 

a Values taken from Henriksson et al. (2015)

5.2	 RESULTS OF ARTICLE II – ENVIRONMENTAL IMPACTS  
	 OF MP PRODUCTION

5.2.1	 MAIN RESULTS FOR MP PRODUCTION
Article II focused on quantifying the environmental impacts of MP production using LCA. 
Figure 2 shows the results per kg of MP for both the FAEM and FHE scenario. Negative 
MC results for this production process were ignored as they would intuitively be illogical 
and can be explained by the computational manner of the MC leading to a potential flip of 
positive to negative values and vice versa, as explained by Henriksson et al. (2015).
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Figure 2: Results of the environmental impacts of 1 kg of microbial protein (MP) for the Finnish average electricity mix (FAEM) and the 
Finnish hydropower energy (FHE) scenarios, with black error bars representing standard deviations from the Monte Carlo (MC) analysis. 
Note: FI – Finland, CIP – cleaning-in-place, WWT – wastewater treatment. (Adapted from article II)
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The results in Figure 2 show a substantial reduction in environmental impacts when using 
the FHE scenario for MP production compared to the FAEM scenario. For example, land 
use was 25 times higher for MP production in the FAEM scenario, and marine eutrophi-
cation for MP produced in the FHE scenario was just 4% of that produced in the FAEM 
scenario. The smallest difference between the environmental impacts of the two scenarios 
was in water scarcity impacts. Water scarcity for MP production in the FAEM scenario was 
2.5 times higher than in the FHE. However, the results of the uncertainty analyses on water 
scarcity showed high uncertainty ranges. Even after the bootstrapping method, standard 
deviations were 4 m3 for the FAEM and 16.9 m3 for the FHE scenario. This indicates that 
the impacts of water use in the FHE scenario could potentially be higher than in the FAEM 
scenario.

As shown from the contributions in the figure, a switch in electricity source from the 
average Finnish electricity mix to hydropower explains most of the differences in environ-
mental impacts between the two scenarios. The environmental impact of hydropower is 
much smaller than that of the average Finnish electricity mix. Although hydropower makes 
up about 16% of the Finnish average mix (Treyer, 2014), other sources in the Finnish mix, 
such as coal (5.0%) and imported Russian electricity (7.5%) that is mainly produced using 
natural gas, increase the average environmental impacts of this mix. Most of the electricity 
consumed in the production process was used during fermentation and for the operation 
of the electrolyzer used to split water into hydrogen and oxygen. 

Electricity consumption contributed the most to the environmental impacts caused 
by the production of MP, except for terrestrial acidification in the FHE scenario that was 
mainly caused by the input of nutrients. In the FAEM scenario, electricity consumption 
was responsible for 52.3-93.7% of all environmental impacts while this fell to 13.9-61.5% in 
the FHE scenario. Nutrient inputs were the second largest contributor with ranges between 
1.3-16.6% in the FAEM scenario and 14-59.5% in the FHE scenario.

5.2.2	 RESULTS OF THE SENSITIVITY ANALYSES
Sensitivity analyses were performed to analyze the differences observed in the environ-
mental impacts of MP production when different production choices were made. A distinc-
tion was made between: 1) changing the assumptions of the FAEM scenario related to the 
input requirements, and; 2) the choice of renewable energy sources in the FHE scenario. 
The production location of MP was changed from Finland to Morocco and Iceland for the 
use of solar and geothermal energy, respectively, as these are not optimal renewable energy 
options for Finland. The results of the sensitivity analyses of MP production are shown in 
Figure 3. 
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Figure 3: Results of sensitivity analyses per 1 kg of MP, in boxplot and whiskers, for both the Finnish average energy mix (FAEM) and 
Finnish hydropower energy (FHE) scenarios. Deterministic results are indicated by circles in the corresponding color and outliers with 
dots. Note: GWP – global warming potential, FI – Finland, MR – Morocco, IS – Iceland. (Adapted from article II)
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Results for the FAEM scenario show that producing steam and CO2 on-site reduced the 
GWP of MP production. This means that even when steam is produced using the average 
Finnish electricity mix, the GWP for steam production on-site is still smaller than when 
supplied externally. Using renewable energy sources further reduced the GWP for the 
steam and CO2 requirements of the production process. This aligns with the results of the 
comparison between the FAEM and FHE scenarios presented in Figure 2. However, the 
production of steam on-site does require more land due to the high land use per kWh of 
the Finnish electricity mix in comparison to the land required for the external production 
of steam. The production of one kg of MP requires 5.65 kWh, which equates to 0.129 m2a 
crop-eq versus 0.019 m2a crop-eq for the supply of steam from an external source. Also, 
eutrophication potential and human toxicity levels were higher when steam was produced 
on-site. Switching to renewable energy could potentially lower these impacts. For CO2, the 
production on-site resulted in a lower environmental impact for all categories, even when 
produced using the Finnish average electricity mix.

The sensitivity results furthermore showed that a decrease in the assumed efficiency 
of the electrolyzer resulted in a substantially higher environmental impact. This can be 
explained by the high contribution of electricity to the overall environmental impact of MP 
production. Approximately 74% of the electricity requirements of MP production in the 
FAEM scenario originate from the electrolyzer. This highlights the environmental potential 
of MP production when technological advancements increase the overall efficiency of the 
electrolyzer.

Results of the other sensitivity analyses also highlighted the importance of nutrient 
uptake efficiency in reducing marine eutrophication potential. This is because of the high 
level of nitrogen input required by the system. In cases of lower nutrient uptake, these 
nutrients leave the system in higher concentrations. Increased transportation distances, 
due to differences in the supply chain, mostly increased the GWP and terrestrial acidifica-
tion. In fact, increased distances had the largest effect on both these impact categories of 
all the sensitivity analyses performed in this study. This can be explained by the reliance of 
MP production on industrial inputs in terms of mass that would then have to travel over a 
greater distance. The sensitivity results also showed that the potential recycling of waste-
water on-site would have limited influence on the environmental impact of MP production.

The sensitivity results based on the FHE scenario show a potential to reduce the en-
vironmental impacts of MP production by changing the renewable electricity source when 
that source is appropriate to the location. The use of hydropower in Finland generally re-
sulted in the smallest environmental impact in comparison to the other energy sources 
included in the analyses. However, all renewable energy options tested in the sensitivity 
analysis generally resulted in smaller environmental impacts than the FAEM scenario. This 
was mostly related to the use of the Finnish average electricity mix in the FAEM scenario. 
Land use requirements for MP production varied least between the different renewable 
energy sources. However, for other impact categories such as human toxicity and marine 
eutrophication, the choice of renewable energy source mattered more. This shows that the 
environmental impacts of MP production can be further reduced by optimizing production 
choices. However, trade-offs are visible between different sources of renewable energy.
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5.3	 RESULTS OF ARTICLE III – ENVIRONMENTAL IMPACTS OF 	
	 TR-OVA PRODUCTION

5.3.1	 MAIN RESULTS FOR TR-OVA
The environmental impacts of Tr-OVA production for the FI, DE, PL, FI – LC scenarios 
are presented in Figure 4. The results showed that the FI - LC scenario caused the least 
amount of environmental impact, except for water scarcity and ionizing radiation from the 
increased use of nuclear energy within the electricity mix. This suggests that using low-car-
bon energy sources would lower the overall environmental impact of Tr-OVA production. 
The extent of the potential reduction varied per impact category and some minor trade-offs 
were detected, such as for ionizing radiation. However, uncertainty ranges for the results 
on ionizing radiation were large thereby reducing the certainty of conclusions that could be 
drawn based on the deterministic results. This was also the case for several other impact 
categories as shown in Figure 4. 

Based on the comparison of the scenarios, the production of Tr-OVA in Poland would 
generally lead to the highest environmental burden, explained by the relatively high reli-
ance on fossil fuels such as coal (43.5%) within the country’s average electricity mix (Trey-
er, 2021). Due to the relatively high input of electricity to the production of Tr-OVA, the 
difference in carbon intensity of the different electricity source is well reflected in the dif-
ference in the contribution to GWP: the FI – LC scenario’s GWP is only 56.4% of that of 
the PL scenario. 

The contribution analysis showed that glucose appears to contribute the most to 
many of the environmental impact categories considered. In the FI scenario, 86% of the 
land requirements were due to glucose production; 81.2% of all required land was used to 
grow corn outside of Finland. In addition, 62.5% of the impact from water use and 52.8% of 
marine eutrophication were attributed to corn production. However, electricity consump-
tion was the largest contributor to freshwater eutrophication in the PL and DE scenarios 
(48% and 44% respectively) followed by CIP (34% and 32% respectively). The antifoaming 
agent was mainly responsible for stratospheric ozone depletion.
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Figure 4: Deterministic results of 1 kg of ovalbumin produced using the fungi T. reesei (Tr-OVA) in the Finland (FI), Germany (DE), Poland (PL) 
and low carbon energy sources in Finland (FI-LC) scenarios. Standard deviations are displayed with black vertical lines based on the MC runs 
(n=100). Note: Tr-OVA production refers to direct emissions and land use taking place at the production site of Tr-OVA; CFP – cultivation, filtra-
tion and purification. (adapted from article III)
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5.3.2	 RESULTS COMPARISON BETWEEN TR-OVA AND CHICKEN-BASED 	
	 EGG WHITE PROTEIN
The results presented in Figure 5 show that most of the environmental impacts of Tr-OVA 
were smaller than those of the chicken-based alternative. Despite relatively high uncer-
tainty ranges for some impact categories, the dependent NHST led to the rejection of the 
null hypothesis for all alternatives and impact categories. This meant that the differences 
between the environmental impacts of Tr-OVA and chicken-based egg white protein pow-
der were significant for each impact category. Those categories where Tr-OVA resulted in 
a larger environmental impact were mostly explained by the relatively high reliance on 
electricity to produce Tr-OVA compared to chicken-based egg white protein powder.

The difference in environmental impacts between the production of ovalbumin us-
ing fungi or chicken reflects the differences between the two production processes. The 
production process of chicken-based egg white protein powder is almost completely de-
pendent on agricultural inputs, which results in high scores in the environmental impact 
categories typically associated with agricultural production, such as GWP, land use, and 
water use. The industrial production of Tr-OVA results in higher impacts in categories that 
are associated with the electricity consumption of Tr-OVA production, such as ionizing 
radiation and human toxicity.

Like the production of chicken-based egg white protein powder, Tr-OVA production 
depends on agricultural inputs. However, its production process seems to be more effi-
cient in the use of agricultural products than egg white protein from chickens: 1 kg of Tr-
OVA protein production only required 2.5 kg of glucose while agricultural inputs in the 
form of feed for chicken-based egg white protein powder were 27.5 kg. This is only partly 
compensated by the input of minerals in the salt mix and nitrogen in the production of 
Tr-OVA, with a combined total of 2.04 kg of salt mix per kg of protein produced. Most of 
the environmental impact from the minerals came from production of MKP. The salt mix 
contains 41% MKP by weight but, due to data limitations, this was modelled using sodium 
phosphate as a proxy. 

The results of the model for chicken-based egg white protein powder show that the 
contribution of the processing of eggs to powder was generally minimal. Its impacts ranged 
from 0.1-22%, depending on the country and impact category. This means that the as-
sumptions related to the production of chicken eggs, and especially feed production, are 
most essential in understanding the environmental impacts of chicken-based egg white 
protein powder production and building a reliable model for comparison with Tr-OVA pro-
duction.
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Figure 5: Deterministic results per kg of protein in the comparison of Tr-OVA produced in Germany (DE) and Poland (PL) with chicken-based 
egg white protein powder produced in Germany and Poland. Standard deviations are given with black vertical lines and are based on the MC 
analysis (n = 100). (Adapted from article III)
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5.3.3	 RESULTS OF THE SENSITIVITY RESULTS FOR TR-OVA PRODUCED  
	 IN FINLAND
Sensitivity analyses were performed using the FI scenario as a baseline, which included the 
use of the average Finnish electricity mix. They are displayed in Figure 6. The results show 
that the environmental impacts of Tr-OVA production decrease most when using the fun-
gal biomass as a by-product and applying a protein-based allocation factor. The minimum 
product sales price (MPSP)-based allocation factor did not seem to substantially reduce the 
environmental impact for Tr-OVA production. This was because the allocation factor for 
MPSP was just over 5% for the fungal biomass and 33.8% when applying the protein-based 
allocation method. 

The other methodological choice that led to a noticeable difference in environmental 
impact results was the choice of the background data source for glucose production. The 
original model used the WFLDB for the modelling of glucose because it included emissions 
from land-use change while the ecoinvent database did not. Because the WFLDB was also 
used in the model of chicken-based egg white protein powder, the system boundaries of the 
two product systems remained aligned. Additionally, the results of article I highlighted the 
potential role of GHG emissions from LULUC in comparison to other life cycle emissions. 
Nonetheless, excluding LULUC-related emissions associated with glucose production by 
using the ecoinvent database did not lead to a substantial difference in the GWP of Tr-OVA 
production. However, using the ecoinvent database rather than the WFLDB did lead to a 
substantially smaller land use impact and larger terrestrial acidification. This difference 
highlights the importance in aligning system boundaries when comparing two different 
product systems. 
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Figure 6: Sensitivity results for 1kg of Tr-OVA produced in the Finnish (FI) scenario. Uncertainty ranges of each sensitivity test are 
displayed with box and whiskers (0th, 25th, 50th, 75th and 100th percentile) based on the MC method (n = 100) while deterministic results 
are indicated with a circle in the corresponding color. (Adapted from article III)
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5.4	 RESULTS OF THE COMPARISON BETWEEN  
	 THE THREE PRODUCT OPTIONS

5.4.1	 COMPARISON ON THE BASIS OF THE PRODUCTS’ PROTEIN CONTENT
Figure 7 shows a comparison of the environmental impacts of different protein sources for 
livestock feed. It shows that the GWP of MP and Tr-OVA are relatively similar to the other 
protein-rich feed ingredients. However, only rapeseed cake and soybean meal have a lower 
GWP than MP and Tr-OVA. The land use requirement of MP was the smallest. Protein 
from microalgae resulted in the highest GWP and protein from egg protein concentrate 
resulted in the greatest land use requirements, as calculated by Smetana et al. (2019). 

Tr-OVA production generally has a higher environmental impact than that of MP, 
suggesting that MP would be preferred over Tr-OVA when it comes to delivering protein to 
animal feed mix. For example, Tr-OVA production results in the highest ozone depletion 
potential of all the feed protein options compared due to the use of the anti-foaming agent 
polydimethylsiloxane. In addition, the impact of water use is relatively large for Tr-OVA 
production with only whey concentrate resulting in a higher score. However, (marine) eu-
trophication of Tr-OVA is relatively low.

Switching electricity sources from a Polish mix to a low-carbon Finnish mix for Tr-
OVA production did not seem to make a large difference in the overall comparison of 
Tr-OVA with other protein-rich feed options. This was different for the scenarios used in 
MP production in which more than just the electricity sources were changed, such as the 
electrification of the process inputs and recycling of water. The reduction in the GWP of 
MP when changing assumptions about the production process made the product a more 
environmentally competitive protein-rich feed ingredient than other protein alternatives. 
A large decrease in the impact of water use could also be seen. However, the impact of 
water use, and especially overall energy demand, was relatively high due to the industrial 
nature of the product in comparison to other products that all to some extend depend on 
agricultural inputs.
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Figure 7: Environmental impacts of the different protein sources that can be used as feed for livestock cal-
culated for a functional unit of 100g of protein. Data on alternative protein sources was based on Table 2A 
from Smetana et al. (2019) associated with upstream increase in feed (increase in commercial feed produc-
tion and the article by Sillman et al.(2020). Figure A displays all product alternatives, while MP (Base), MP 
(FImix) and mycoprotein were excluded from Figure B due to a lack of data on the respective impact of this 
sub-figure. Note: PL – Poland; FI-LC – Finland low carbon scenario; GWP – global warming potential; HM - H. 
illucens meal (defatted protein concentrate); MP – microbial protein; FAEM – Finnish average electricity mix; 
FHE – Finnish hydrogen energy; MP (Base) – baseline scenario used in the article by Sillman et al.(2020); 
MP (FImix) – Finnish average electricity mix used in the article by Sillman et al. (2020). Water scarcity was 
calculated using the AWARE method, Energy demand using the CED method and all others using the IM-
PACT2002+ method, with the exception of eutrophication which was expressed in kg N in Table 2A and 
were calculated using the ReCiPe results presented in articles II and III.
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Figure 8 shows a comparison of the environmental impacts of different protein sources for 
human consumption. Figure 8A includes all protein sources that were analyzed in articles 
I, II and III. Protein from shrimp farmed in mangrove forests led to the highest GWP. This 
far exceeded the emissions caused by protein sourced from beef herds, which is gener-
ally considered to have the highest carbon footprint among protein alternatives (Poore & 
Nemecek, 2018b). However, the GWP dropped substantially when shrimps were grown in 
an intensive farming practice and was then lower than that of both beef farming practices. 
Nonetheless, the impacts were still higher than all the other protein sources considered 
here.

The difference in GWP between the two shrimp production systems was solely ex-
plained by the LULUC emissions originating from mangrove forests and were astonish-
ingly high in comparison to any other life cycle steps. The GWP of shrimp grown in a man-
grove concurrent system was high despite the avoided emissions associated with intensive 
shrimp farming practices, highlighting the importance of avoidance of (mangrove) defor-
estation.
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Figure 8: Impact scores of different protein sources that can be used as food for humans, based on the 
European sub-data set used in the article by Poore and Nemecek (2018a) and results from article I, II and 
III. Impacts were calculated using a functional unit of 100g of protein. Impacts from shrimp farming in 
mangrove concurrent systems (MC) and intense farming systems (IF) are included in Figure A but not 
in Figure B due to lack of data. Note: FAEM – Finnish average electricity mix; FHE – Finnish hydropower 
energy; PL – Poland; FI-LC – Finland low carbon scenario; GWP – global warming potential calculated 
using the IPCC 2013 including CC feedbacks method, land use was calculated in total m2 per FU, eutro-
phication and acidifying emissions were estimated using the CML2 baseline method and water scarcity 
using the AWARE method.

Figure 8B displays the results in other impact categories for the different protein sources 
meant for human consumption, except for shrimp, which were not included due to a lack 
of data. MP production generally resulted in lower environmental impacts than the other 
protein-rich food alternatives. Although Tr-OVA generally had a higher impact compared 
to other feed protein sources, in comparison to other food protein sources its impact was 
relatively minor. Only peas and MP had a lower environmental impact than Tr-OVA (PL) 
for each impact category except land use. MP production had the least environmental im-
pact, except for peas in the comparison of acidifying emissions.
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5.4.2	 COMPARISON OF SHRIMP, MP, AND TR-OVA AS PATTY INGREDIENTS
The patty prepared with shrimp grown in mixed mangrove concurrent systems resulted in 
the highest GWP. The GWP was 11 times higher than the patty produced with (semi-)inten-
sively farmed shrimp and 90 times higher than MP-based patties. This was mostly due to 
the large GWP of these shrimps and, to a lesser extent, because of the lower concentration 
of protein in comparison to the other protein sources. This meant that more shrimps were 
required to obtain a similar protein content in the patty.

Using shrimp from the AGRIBALYSE shrimp systems not located in mangrove for-
ests resulted in a similar GWP as for patties with MP and Tr-OVA. Another difference was 
that AGRIBALYSE shrimp model was based on data obtained from indoor shrimp farms in 
the U.S. (Asselin-Balençon et al., 2020). It was the only shrimp dataset available in the AG-
RIBALYSE database which raises concerns regarding the global representation of shrimp 
production and over the validity of the results presented in Figure 9

Approximately 75% of globally produced shrimp originate from Asia where shrimps 
are farmed outdoors and only a fraction originate from the U.S. (FAO - Fisheries division, 
2021). Also, shrimp farmed in mixed mangrove concurrent shrimp farms would not be a 
good global representation as only about 5% of all shrimp originate from these systems. 
Most shrimps in Vietnam are farmed in (semi-)intensive farming systems. These systems 
therefore give the best representation of possible emissions from shrimp farming systems 
of the three shrimp farming systems compared here. Based on the GWP results for (semi-)
intensive farming systems, the shrimp patty has about 8%-9% higher emissions than that 
of MP and Tr-OVA, respectively.

Unlike the results for GWP calculated on a protein content basis, the MP-based patty 
resulted in a higher GWP than a patty based on Tr-OVA. The difference is mainly due to the 
higher protein content of Tr-OVA, which required 1.4 times less of the product compared to 
MP. The contribution to GWP of all other non-protein ingredients were minimal.
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Figure 9: Results for GWP of the patties with Tr-OVA (FI), MP (FAEM) or shrimp (mass-allocation), 
where the above picture includes shrimp farmed in a mixed mangrove concurrent farm, (semi-)intensive 
shrimp farm or in shrimp farm in China from the AGRIBALYSE database.
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6.	 DISCUSSION

6.1	 DECOUPLING PROTEIN PRODUCTION  
	 FROM AGRICULTURAL LAND
6.1.1	 HOW CELLULAR AGRICULTURAL PRODUCTS CAN REDUCE LAND 	
	 USE REQUIREMENTS
The comparison of different protein sources showed that the environmental burden of pro-
tein production could potentially be lowered by a shift from protein-rich food and feed in-
gredients from agriculture and aquaculture to cellular agriculture, depending on the prod-
uct. The largest difference was explained by the decoupling of cellular agricultural products 
from agricultural land use, achieved by decreased utilization of agricultural inputs during 
production. MP production requires no agricultural land and even the production of Tr-
OVA required only 2.54 kg of glucose per kg of protein. By comparison, 27.5 kg of feed 
was required to produce 1 kg of chicken-based egg white protein powder. However, the 
required feed contains embedded energy collected naturally from the sun in the agricul-
tural field. Although the same applies to glucose production, the main energy requirements 
for the growth of fungi biomass were supplied by industrial electricity. Replacing chicken 
on agricultural fields with fungi in bioreactors means a switch from energy obtained from 
the sun to energy supplied by industrial electricity in ovalbumin production. Nonetheless, 
the land use requirements for MP and Tr-OVA were smaller than most other protein-rich 
foods and feed ingredients.

Utilization of environmentally optimal energy sources could further reduce the land 
requirements of protein-rich cellular agricultural products. Land use requirements can 
vary substantially between different energy sources as was shown by the difference in land 
use between the FAEM and FHE scenarios to produce MP. This was partly explained by 
the difference in land use between renewable and non-renewable energy sources in Fin-
land. For example, hydropower and nuclear power — responsible for 16% and 29% of the 
Finnish average electricity mix respectively — require relatively little land in comparison 
to electricity produced from hard coal and peat. However, the land requirements for heat 
and power co-generation fueled by wood chips (approximately 5% of the Finnish country 
mix) were the highest with 0.39 m2a crop eq; almost 43 times larger than electricity from 
hard coal. (Treyer, 2014).

Land use requirements for the different Tr-OVA production scenarios were relatively 
similar despite the use of different energy mixes. Although there were substantial differ-
ences in GWP, the land use requirements of each country mix did not fluctuate much. 
Results for land use requirements when using different renewable energy sources for MP 
production were similar, as was shown from the sensitivity analyses. However, a compari-
son between different wind turbines showed that land use requirements can be reduced by 
three to four times when offshore wind turbines are used in comparison to those placed on 
land.
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6.1.2	 ADVANTAGES AND DISADVANTAGES OF DECOUPLING PROTEIN 	
	 PRODUCTION FROM AGRICULTURAL FIELDS
Decreased reliance on agricultural land brings advantages. The increase of climate change-
intensified weather events and issues such as soil degradation potentially leading to de-
sertification of land, negatively affect agricultural yields. MP manufacturing could replace 
other protein production in regions with unfavorable growing conditions and thereby help 
to meet the United Nations (UN) sustainable development goals such as ‘zero hunger’ and 
‘responsible consumption and production’. 

However, cellular agriculture also has disadvantages. Increased electricity demand 
from all sectors means that there will be an increased need for rare earth metals in order to 
supply electricity demands in the future (Smith Stegen, 2015). The question is whether all 
the required resources can be delivered in the upcoming decades to facilitate the produc-
tion of required cellular proteins, such as MP and Tr-OVA, while also providing enough 
electricity for all other sectors.

The direct electricity demand to produce 1 kg of MP (FAEM) or 1 kg Tr-OVA protein 
was estimated to be 27.8 kWh and 10.5 kWh, respectively. Daily protein consumption in 
Finland in 2019 was 118.2 grams per person per day (FAOSTAT, 2022). With a popula-
tion of 5.5 million people, this means a roughly estimated daily consumption of 650 100 
kg protein. Producing just 10% of this daily protein demand with protein from both MP 
and Tr-OVA on a 50-50 basis would require 1.27 GWh of electricity. For an entire year, the 
electricity demand would be 462.7 GWh. The total electricity consumption of Finland’s ag-
ricultural and horticultural sector was 1 883 GWh in 2020 (LUKE, 2021). This would mean 
that electricity demand from the food sector would significantly increase. 

6.2	 THE INTERACTION OF LAND USE, GLOBAL WARMING 		
	 POTENTIAL, AND LOSSES IN ECOSYSTEM SERVICES
The comparison of cellular agricultural products with protein-rich food and feed ingredi-
ents showed that the largest reduction in environmental impacts could be achieved when 
protein production is decoupled from livestock. This was observed, for example, in the 
comparison of cellular agricultural products to shrimp (grown in mangrove areas) and 
beef. A large part of the GHG emissions associated with beef production originate from 
enteric fermentation in ruminants and to a lesser extent from manure (see section 3.1.1). 
Both result in the emission of CH4. CH4 is also emitted during the production of aquacul-
tural products, such as shrimp (see article I). In addition, the production of protein using 
livestock requires more land both directly through the occupation of land by the livestock 
itself and the land required to produce its feed. When comparing the agricultural feed re-
quirements of T. reesei to that of chickens for the production of albumin, microbes seemed 
to be more efficient in the conversion of agricultural feed to protein. 

Land requirements are coupled with GWP as LULUC results in fluxes of GHG emis-
sions. This connection was observed in the comparison of the five different patties, which 
emphasized the substantial contribution of LULUC emissions from mangrove deforesta-
tion to the GWP of the shrimp-based patty. Even though other sources of emissions were 
excluded from the analysis on shrimp farming due to a lack of information, the emissions 
caused solely by LULUC of mangroves exceeded those of any other protein source, includ-
ing those of other shrimp farming practices. LULUC emissions are not only an issue in 
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shrimp farming. Other agricultural products, such as the production of tofu and poultry 
meat, are known to result in LULUC-related GWP, which, in both cases, could be explained 
by the input of soybeans (Poore & Nemecek, 2018b). As LULUC is the largest source of 
emissions related to food production, it partly explains the difference in GWP between cel-
lular agricultural production and protein production using livestock.

Emissions from LULUC are often excluded in LCA of food products, as discussed in 
articles I and III. However, the results presented in this dissertation showed that carbon 
fluxes from above-ground, below-ground, litter, and soil carbon stocks can be profound. 
Deforestation of mangrove areas for food production not only results in loss of carbon al-
ready stored in these ecosystems, but also the loss of the mangroves’ potential to sequester 
carbon into their soil. Soil carbon sequestration is an important climate mitigation poten-
tial (Goglio et al., 2015). The LULUC of mangrove therefore means the release of carbon 
already stored in the soil and the loss of the potential of further carbon sequestering in the 
future. The results of article I emphasize the findings of previous studies on the importance 
of including LULUC emissions into LCA studies (Goglio et al., 2015)

Shrimp farming requires brackish water, which means that suitable locations, espe-
cially extensive farming practices like the mixed mangrove concurrent system, are limited 
to coastal areas potentially leading to land use conflicts with coastal ecosystems such as 
mangrove forests. The original intent of the mixed mangrove concurrent shrimp farming 
practice was that families were allowed to cut down only a limited amount (up to 30%) of 
the mangrove area in the Mekong Delta to generate an income. This would help preserve 
the fast-disappearing mangrove forest while meeting the needs of the people living in these 
rural areas (McNally et al., 2010). Based on the results of the analysis using satellite im-
ages, it seems that this aim only partly succeeded as most of the forests were cut down. The 
analysis of the mangrove cover remaining within the mixed mangrove concurrent shrimp 
farming showed that about 39% of the original mangrove cover was still intact, which un-
dermined the effectiveness of these shrimp farming systems to protect the already vulner-
able ecosystem. It is not only a biodiversity conservation problem, but also results in the 
loss of valuable ecosystem services provided by the mangrove forests (Friess et al., 2012).

The balance between economic aspirations and conservation of mangrove ecosystems 
is therefore difficult to achieve in Vietnam (Orchard et al., 2016). This problem extends to 
other aquaculture systems that have led to the demise of mangrove areas within Vietnam 
and deprived low-income households of their livelihood (Orchard et al., 2016). Addition-
ally, mangrove losses make the coastline of these areas vulnerable to the forces of the sea 
(Tri et al., 1998). Increased protection and rehabilitation of the mangrove areas will both 
secure the livelihoods of low-income families and provide coastal protection — additionally 
allowing mangroves to contribute in the fight against climate change (Orchard et al., 2016; 
Tri et al., 1998).

The analysis of mangrove cover in Vietnam was based on satellite images of just 25 
farms. The quality and nature of these satellite images only allowed for rough estimates. 
Additionally, the images only covered a period starting from 2000, while deforestation of 
mangroves in Vietnam mostly took place during the 1980s and 1990s (Richards & Friess, 
2015; WWF, 2013). However, as mangrove deforestation has continued after this period, 
the results put into question support for these systems when the goal is to protect man-
grove ecosystems.
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6.3	 WATER RESOURCE DEPLETION 
The results of this dissertation suggest that the production of protein using cell-culturing 
technologies can substantially reduce water requirements by comparison to plant-based 
and especially animal-based alternatives. This was despite the fact that cell-cultured prod-
ucts relied more on the local electricity mixes.  In comparison to other protein-rich foods, 
MP production resulted in the smallest impact of water use. This was especially true when 
hydropower was used rather than the average Finnish electricity mix. This suggests that a 
transition from fossil fuels to renewable energy sources could solve a range of problems, 
by lowering both the GWP and the water requirements of protein production. However, 
compared to other feed protein sources, MP did not result in a lower water scarcity im-
pact. A similar situation was observed when comparing Tr-OVA with chicken-based egg 
white protein powder in the Polish scenario. These observations show that the switch from 
agriculturally produced protein to cell-cultured protein does not necessarily intensify the 
competition for water between food and energy production.

The water scarcity score of the chicken-based egg white protein powder was mostly 
influenced by the assumed composition and origin of chicken feed. The environmental im-
pacts of chicken feed used in Germany and Poland, that were modelled with the WFLDB, 
differed substantially from each other even though both models relied on data from FAO. 
While the Polish feed basket was made specifically for Poland, a German feed basket was 
not available in the WFLDB meaning that an average European feed basket for laying hens 
was composed for the German laying hens in the WFLDB. Both the composition of the feed 
and the origin of the ingredients were therefore different for the German and Polish laying 
hens. The input of grain was higher in the European model (90% versus 81%) and was the 
major contributor of chicken feed to water scarcity. Most of this was due to the input of 
irrigated maize grain originating from Spain, with a total contribution of 93.6% of water 
impacts per 1 kg of chicken eggs.

In the Polish chicken feed model, maize was produced without irrigation in Poland. 
Instead, most of the water scarcity impact was related to seed production of wheat grain at 
a global level. The inputs of wheat grains for both the Polish and German systems were very 
similar, meaning that the difference in water scarcity could only be explained by the use of 
Spanish maize in the European feed mix for German egg production. This was confirmed 
by the fact that the AWARE factor for water use for irrigation in Spain is 80.76, which is 
high compared to an average global factor of 45.74.

As water use for irrigation is often a main contributor to the overall impact of water 
use, MP production has a clear advantage over Tr-OVA production by being independent 
from agricultural inputs. Irrigated maize-based glucose production was indeed the main 
contributor to water scarcity in the production of Tr-OVA. In fact, the irrigation of maize 
was responsible for 62.6% of water scarcity impacts of Tr-OVA production. 

Because MP production is independent from agricultural inputs, its production site 
could also be selected more flexibly in order to optimize energy availability and minimize 
impacts of land use, such as using a solar energy-rich desert area that would otherwise be 
unsuitable for agricultural production. However, the energy source used to produce MP 
needs to have an overall small water requirement, in order to keep the impacts of water use 
low and to be competitive with alternative protein sources for feed production.
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6.4	 EUTROPHICATION POTENTIAL
Agriculture is responsible for an estimated 65% of global NH3 emissions (Erisman et al., 
2007). Both MP and Tr-OVA production require NH3 as an input. However, MP and Tr-
OVA have the benefit of being produced in a closed and controlled production system. The 
uptake of nutrients such as N is as high as 99% in the production of MP. This avoids the 
potential direct leakage of N inputs into local water bodies and coastal areas as well as 
emissions to air as a result of the application of fertilizers, as commonly occurs in agricul-
tural and aquacultural systems. This explains the low eutrophication potential for MP and 
Tr-OVA compared to the protein-rich foods produced on agricultural fields. Even when the 
uptake of NH3 was reduced to 85%, the increase in marine eutrophication was limited since 
wastewater from the process — containing the excess nutrients — was treated in the WWTP 
before being released into the environment. 

Additionally, the production of ammonia is an energy-intensive process causing envi-
ronmental burden, while the amount of N reaching humans through agricultural produc-
tion is low (Erisman et al., 2007). This means that because of the high uptake of N in the 
production processes of MP and Tr-OVA, the overall demand for ammonia and its related 
environmental impacts could be decreased when producing proteins through cellular agri-
culture rather than agriculture.

6.5	 POSSIBLE REDUCTION IN ENVIRONMENTAL IMPACTS 		
	 THROUGH ALTERATIONS IN THE PRODUCT DESIGN
The environmental impacts of Tr-OVA and MP could further be reduced by changes in 
the production processes and the choice of inputs. Results on the environmental impacts 
of MP and Tr-OVA showed that switching from the average country energy mixes to low 
carbon energy mixes reduced the environmental burdens of their production processes 
(Figure 2 and Figure 4). However, these reductions only slightly improved, depending on 
the impact category, the environmental competitiveness of MP and Tr-OVA compared to 
alternative protein-rich food and feed ingredients (Figure 7 and Figure 8). For example, the 
relative difference in land use between different MP and Tr-OVA production scenarios or 
electricity sources was small compared to the difference with alternative protein sources. 
This means that, although the environmental impact of MP and Tr-OVA can be lowered 
using low-carbon electricity options, the choice of which protein source to use makes a 
greater difference to overall environmental impacts than the energy choices of an individ-
ual product. The importance of the choice in protein source was also observed during the 
comparison of patties with different protein ingredients. The contribution of the protein 
sources to GWP outweighed the contribution of all other ingredients combined, underlin-
ing the importance of the protein choice in reducing the GWP of patty production.

Another way to reduce the environmental impacts of cellular agricultural products is 
through the use of co-products. The potential utilization of by-products, such as the fun-
gal biomass in Tr-OVA production, would result in co-production and could reduce the 
environmental impacts of Tr-OVA substantially. The extent of the reduction depends on 
the method chosen to share the environmental impacts between the co-products (Figure 
6). The use of fungal biomass would be problematic within the EU due to legislation con-
cerning GMO products (European Commission, 2019). However, the legislation is more 
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flexible towards GMO food products in the United States (US), which would allow for the 
use of fungal biomass for feed (FDA, 2022), meaning that fungal biomass would share the 
environmental burden of Tr-OVA production.

In comparison to other protein-rich feed ingredients, results showed that Tr-Ova pro-
duction resulted in a larger ionizing radiation potential due to the use of polydimethylsilox-
ane (see Figure 7). Although polydimethylsiloxane is a common anti-foaming agent, other 
agents such as insoluble oils or other silicones can deliver the same function (Gochev et al., 
2016). Their use could potentially decrease the ionizing radiation caused by the production 
of Tr-OVA.

The various sensitivity analyses applied to the case studies of MP and Tr-OVA showed 
that reductions in process efficiencies increased the environmental impacts of the prod-
ucts slightly, ranging from an increase of 0-17% for Tr-OVA, for example. The largest de-
viation was observed when efficiency in the utilization of glucose was reduced during the 
production of Tr-OVA, emphasizing the potential environmental benefits of decoupling 
cellular agriculture protein production from agricultural inputs. The sensitivity analyses 
of MP again mostly emphasized the potential reduction in environmental impacts of cel-
lular agricultural products through the choice of energy source. The analyses also showed 
that the choice of electrifying CO2 production could decrease the environmental impacts of 
MP production, while producing steam with electricity generally increased these impacts. 
However, for both the production of steam and CO2, the Finnish average electricity mix 
was utilized in the respective sensitivity analyses. Using renewable energy sources could 
potentially also reduce the environmental impacts of steam. This should be explored in 
future research.

6.6	 METHODOLOGICAL DISCUSSION
6.6.1	 TIMEFRAME TO ALLOCATE LULUC EMISSIONS
The results presented in article I illustrated the effect of using different annualization pe-
riods, the period over which emissions are allocated, in calculating annual LULUC emis-
sions. The Mekong Delta case study used a 50-year annualization method, which is in line 
with other studies on the expected lifetime of shrimp farms (Jonell & Henriksson, 2015). 
However, when using the 20-year period recommended in the default guidelines of the 
IPCC, emissions are allocated over a much shorter period, thereby increasing the already 
high emissions of shrimp farming in mangrove areas. Arguments against both of these 
choices could be made: the 20-year time frame can be called random and 50-year optimis-
tic. 

The impact of the choice of timeframe is rather large, which is illustrated by the annu-
alization of LULUC GHG emissions resulting from shrimp farming in previous mangrove 
areas: using a 50-year period GHG were estimated at 184 and 282 t CO2 -eq per t of live 
shrimp at the farm gate using mass and economic allocation, respectively. When applying 
the default timeframe of 20 years, emissions are allocated over a smaller harvest of shrimp 
and the emissions for one t of live shrimp are 372.2 and 568.5 t CO2 -eq using mass and 
economic allocation, respectively. This is roughly a doubling of emissions using the same 
FU. This difference emphasizes the need to carefully choose a timeframe based on the best 
data available, which would support argumentation on the choice made.
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6.6.2	 THE EFFECT OF ALLOCATION CHOICES
Another methodological choice that led to variation in the GWP of shrimp farming was 
the decision to allocate based on either a physical or economic relationship. In article I, 
emissions were allocated based on either mass or income, and a 50% increase in GWP was 
observed when applying the latter. This large difference was explained by the relatively 
large income obtained from the P. monodon shrimp species in relation to its weight, in 
comparison to the wild shrimp that grow in the same area (Jonell & Henriksson, 2015). 

Both allocation methods were applied in article I to explore the differences in the re-
sults between physical and economic allocation. No explicit choice was made when pre-
senting the results, leaving room for future research to take either approach, depending on 
the allocation method applied in the analysis of an alternative protein source. ISO stand-
ards favor allocation based on a physical relationship over those that reflect another, such 
as economic values (ISO, 2006). However, it can be argued that the income regenerated 
from wild shrimp is relatively low by comparison to its weight. The main income for shrimp 
farmers comes from the sales of the P. monodon shrimps and mud crab, together account-
ing for 85% of the overall income (Jonell & Henriksson, 2015). It is this prospective income 
that eventually led families living in mangrove areas to establish aquacultural ponds in the 
mangrove area. This means that the economic allocation factor perhaps more accurately 
reflects the impact of this decision. 

A similar discussion applies to the allocation of the potential by-products of Tr-OVA 
production. The results of the sensitivity analyses (article III) illustrated the difference that 
methodological choices could make to the results. The application of the MPSP-based allo-
cation factor — reflecting an economic relationship between the co-products — led to a mi-
nor reduction in environmental impacts of Tr-OVA compared to when the protein-based 
allocation method was applied. However, current legislation within the EU (EC, 2019) pre-
vents the use of fungal mass, as discussed previously. In addition, the potential revenue 
from the sale of the fungal biomass would be marginal (Voutilainen et al., 2021) and it 
could again be argued that that revenue from the biomass — that was considered waste in 
the main scenarios — would likely not lead to the production of Tr-OVA. Therefore, choos-
ing protein-based allocation could make the product appear to have lower environmental 
impacts than in the case of applying the MPSP-based allocation factor. 

6.6.3	 SENSITIVITY ANALYSIS AND MONTE CARLO
Visual representations of the results of the MC analyses were based on the uncertainty data 
of both the background systems of the LCA databases and the foreground data gathered for 
the models. The uncertainty ranges in article II were estimated using the pedigree method 
implemented in Simapro (Ciroth, 2012). A uniform uncertainty range of +- 20% for the 
foreground data was used in article III as the model was based on data collected from a 
pilot-level production scale. The same uncertainty ranges were applied in the sensitivity 
analyses. This meant that a combination of uncertainty analyses with sensitivity analyses 
was applied, resulting in both deterministic results and uncertainty ranges for the results. 
The rationale for including the potential uncertainties of the system when presenting the 
sensitivity results was to simplify judgement on whether the difference between the sensi-
tivity analyses and those of the main scenario were substantial, considering the uncertain-
ties of the model.
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To illustrate this the following example can be used: comparing the deterministic results of 
the “FHE – nuclear” sensitivity test and the deterministic results of the “FHE – solar” test 
shows that using nuclear energy results in a higher impact from water scarcity (see Figure 
3). However, the opposite interpretation emerges when considering the uncertainty of the 
system, as the medium water scarcity of MP produced with solar energy was higher than 
the medium water scarcity score when using nuclear energy. In addition, the uncertainty 
range for the “FHE – solar” test is much larger than that of the “FHE – nuclear” test. 

When a sensitivity analysis is applied, assuming, for example, that the system uses a 
different electricity source, it does not mean that the uncertainties regarding the amount 
of electricity are not there anymore or are not relevant anymore. Neither does the change 
in electricity source alter anything about the other uncertainties that are already in the 
foreground or the background model. Ignoring these uncertainties could therefore lead to 
a potential misinterpretation of the results as illustrated by the example above. Considera-
tion of uncertainty ranges in sensitivity analyses could therefore lead to better interpreta-
tion of the results.

Interpretation of uncertainty ranges is challenging. Heijungs (2020) argued in his 
article on the number of MC runs that, partly due to the increased computing power of 
laptops, the number of runs used is typically getting larger. This consequently leads to over-
confidence in the results: precision increases but accuracy does not (Heijungs, 2020). In 
theory, the number of MC runs should not exceed the number of sample points upon which 
the model is built but this is often impractical or impossible due to time and resource limi-
tations (Heijungs, 2020).

So, the question remains: how many runs should be implemented for the cases pre-
sented in articles II and III? Or is MC an appropriate uncertainty analysis method at all in 
these case studies? However, alternative methods are currently not available in the LCA 
software, which is why estimates on the uncertainty ranges were used. This MC method 
still provides useful insights into the possible ranges within which results could fall. With-
out any uncertainty ranges there is a risk that deterministic results are interpreted as an 
ultimate truth. However, the amount of MC runs should be kept to a minimum to avoid 
this false sense of accuracy.

6.6.4	 USE OF PROXIES
Due to limitations in the availability of background data, proxies were sometimes used. In 
the production of Tr-OVA sodium phosphate was used as a proxy to model the environ-
mental impacts of MKP. MKP made up most of the salt mix by weight. The use of the proxy 
increased the uncertainty of the results. However, the environmental impacts of the salt 
mix were generally relatively small in comparison to those of the other required inputs. An 
exception to this was the impact on water scarcity, where the salt mix was the second high-
est contributor. An increase in data availability would, therefore, increase the certainty of 
the results presented in article III.

The model for fava beans from the ecoinvent database was used as a proxy for red kid-
ney beans in the patty recipe, due to a lack of background models for red kidney beans. This 
decision was justified as the same proxy was used in the AGRIBALYSE database for kidney 
bean production. However, the model for fava beans from ecoinvent does not include po-
tential LULUC emissions, although it did include changes in land use. In accordance with 
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the analyses of shrimp production, this means that the GHG emissions from fava bean 
production could potentially have been underestimated in the GWP results of the patties. 
However, all patty models have the same underestimation of LULUC emissions as all reci-
pes used the same amount of kidney beans. The same applied to the input of breadcrumbs 
that were also modelled using ecoinvent. 

6.6.5	 MIDPOINT VERSUS ENDPOINT
The environmental impacts of MP and Tr-OVA production were quantified using the ReC-
iPe 2016 v1.1 Midpoint (H) impact method. Environmental impacts could have been as-
sessed using an endpoint level instead. However, the aim of this dissertation was to provide 
more insight into how the environmental impacts of cellular agricultural products differed 
from those of existing protein sources from agriculture and aquaculture. Midpoint level 
assessment allows for the comparison of single environmental flows and identify trade-offs 
between different environmental impact categories (Huijbregts et al., 2017). Additionally, 
midpoint assessments are commonly applied within LCA and therefore allows for a com-
parison with other protein-rich food and feed ingredients. Using an endpoint level assess-
ment means that all environmental impacts are assessed through so-called impact path-
ways into an endpoint area of protection, such as damage to ecosystems. This means that 
endpoint levels are more aggregated, although the endpoint results can be broken-down 
into the contributions of individual environmental impacts. (Huijbregts et al., 2017)

One concern with the assessment on an endpoint level, is the increased uncertainties 
that result from data gaps and assumptions that are introduced throughout the case-effect 
chain. In addition, the aggregation of environmental impacts into endpoint levels requires 
a certain level of value choices. (Bare et al., 2000) However, the benefit of applying end-
point levels is that results are more easily interpreted by decision-makers. Additionally, 
although value choices are applied to the endpoint levels, they are based, at least to some 
extent, on informed weighting in contrast to letting decision makers make their own sub-
jective choices. Midpoint and endpoint levels therefore both have their merits and limita-
tions. Applying both could be one way to present all useful information. However, it is 
important to keep in mind the target audience and the goal of the LCA study when making 
the choice between midpoint and endpoint categories. (Bare et al., 2000; Kägi et al., 2015)

6.7	 LIMITATIONS OF THE RESEARCH
The studies included in this dissertation have several limitations. The first is the exclusion 
of biodiversity impacts caused by the production of shrimp, MP, and Tr-OVA. Many envi-
ronmental pressures that contribute to biodiversity loss, such as GWP, land use, water use, 
acidification and eutrophication are already included in the LCA method. However, many 
other pressures are not currently included in LCIA that are relevant when assessing biodi-
versity impacts, such as noise, overexploitation of resources, and invasive species. (Winter 
et al., 2017). 

Two of the most important contributors to biodiversity losses are land use (approxi-
mately 30% for terrestrial ecosystems) and climate change (approximately 15% for ter-
restrial ecosystems) (IPBES, 2019). The results of article II showed that particularly MP 
production required only limited land use — most of it was related to the production of 
electricity. Similarly, Tr-OVA production required limited land use, scoring second best in 
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comparison to other protein-rich food alternatives. Using renewable energy or low carbon 
energy sources reduced the GWP of both Tr-OVA and MP production, making them more 
environmentally competitive with the other protein sources examined. This especially ap-
plied in comparison to feed products as protein-rich feed ingredients generally had a lower 
GWP than food protein sources. Both Tr-OVA and especially MP production would poten-
tially put less pressure on biodiversity than the alternatives through reductions in land use 
and GWP, which are two of the main drivers of biodiversity loss (IPBES, 2019).

The global food system is a major driver of biodiversity losses, and these losses are 
accelerating (Benton et al., 2021). The biodiversity impacts of cellular agricultural proteins 
should be assessed in order to advance understanding of their potential environmental 
benefits and drawbacks when replacing protein-rich products from agriculture and aq-
uaculture systems. Although biodiversity impacts are best understood when all potential 
pressures are included in the LCA assessment, the current lack of a consensus-based LCA 
method measuring biodiversity impacts prohibits this. Therefore, biodiversity was not con-
sidered in articles I, II and III. However, because of the urgency of biodiversity losses (IP-
BES, 2019), future studies should use available methods that provide a better understand-
ing of the biodiversity impacts of cellular agricultural products. In addition, future research 
would need to investigate what the transition from conventional agricultural foods to more 
industrial food products would mean for the fragmentation of the landscape, which has 
been shown to be positively correlated to biodiversity losses (Krauss et al., 2010).

A second limitation that was not considered in article I regarding LULUC emissions, 
is the potential impact of indirect land use changes. Article I showed that many semi-inten-
sive and intensive shrimp farms were found in areas previously occupied by rice farming, 
meaning that there was no direct deforestation event associated with their establishment. 
However, the establishment of rice-paddies has been linked to mangrove deforestation. An 
area of up to 55.4 ha in total was lost between 2000 and 2012 due to rice-paddy farming 
(Richards & Friess, 2015). As the rice-paddy area increased by 1.2%, so too did the produc-
tion of shrimps by 265%, both contributing to the LUCs. It can therefore be speculated that 
land-use change from rice-paddies to shrimp farms resulted in deforestation elsewhere, as 
the demand for rice did not decrease and former rice-paddy farms probably just relocated. 
These complex interactions were not considered in the analysis performed in article I and 
could potentially have led to an underestimation of total LULUC emissions by the exclu-
sion of these indirect LULUC emissions.

A third limitation is the exclusion of an assessment of food losses and waste in the 
comparison of protein-rich products from cellular agriculture with agriculture and aqua-
culture. Current agriculture already produces enough food to meet expected demand from 
the growing human population in the coming decades. However, a substantial share of 
this food (~30%) is lost or wasted at the moment (Lal, 2020). This means that the means 
of achieving a more sustainable food system will not only be found by focusing on the pro-
duction of less polluting food products but also in reducing loss and waste in the current 
system. One benefit of the novel food products discussed in this dissertation is that they are 
not fresh and can therefore be stored more easily and for a longer time. Tr-OVA also has the 
benefit of being less fragile compared to chicken eggs. Approximately 7% of eggs are disre-
garded during the production process of chicken egg yolk powder (Tsai et al., 2020). These 
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losses, considered in the model of chicken-based egg white protein powder, could explain 
part of the difference in environmental impacts between Tr-OVA and egg white powder. 
Although the production inputs of Tr-OVA are not dependent on fragile eggs, food losses 
that may occur as a consequence of large-scale production are as yet unknown. 

The food waste caused by shrimp consumption is relatively large as both the head and 
shell are removed and discarded before consumption. This constitutes a loss of approxi-
mately 34% of the weight of the produced shrimp. In addition, aquaculture products have 
a limited lifetime in comparison to powders that can be stored over a longer period of time. 
(Louisiana Direct Seafood, 2011; Zirlotts Gulf Products, 2013). 

Fresh fruit and vegetables are more susceptible to being lost during the production 
phase than processed fruits and vegetables (Cui et al., 2018). Also, loss of animal-based 
products, such as beef, contribute to a higher GWP mostly at the stage of distribution and 
retail. Food waste at consumer are often not included in LCA studies (Poore & Nemecek, 
2018b). As MP and Tr-OVA are both processed foods in a powder form, food losses and 
waste throughout their life cycle could potentially be low. Including food losses would give 
a better understanding of the potential of MP and Tr-OVA to replace other protein-rich 
food and feed ingredients. This reduction in food losses would also contribute to the Target 
12.3 of the Sustainable Development Goal by the UN to reduce food losses and waste by 
half by 2030 (United Nations Department of Economic and Social Affairs, 2015). Future 
research should therefore include food loss and waste reductions in sustainability assess-
ments of MP and Tr-OVA. 

A fourth limitation was the choice of LCA method applied in articles II and III. Al-
though the environmental impacts of both MP and Tr-OVA were analyzed using a variety 
of scenarios in articles II and III, the parameters included within the scenarios were lim-
ited. Sensitivity analyses were used to further explore the effects of changing assumptions 
related to the production processes. Both the use of scenarios and the application of sen-
sitivity analyses were performed because the exact inputs and outputs of the production 
processes are uncertain and based on pilot-scale data. However, given the early develop-
mental stage of cellular products, the application of a prospective LCA could have resulted 
in a more systematic impact analysis. A prospective approach is therefore recommended 
for future research on similar products. Additionally, the use of a consequential approach 
could potentially lead to different conclusions than those made on the basis of the attribu-
tional approach. The consequential approach utilizes marginal supplies rather than the av-
erage supplier. This would mean, for example, that instead of a country’s average electric-
ity sources, the providers that are able to respond to the increased demand for electricity 
will be taken into account in the model of cell-cultured products. As both MP and Tr-OVA 
require high levels of electricity, the electricity mix has a large role on the environmental 
impacts of their production processes.

A fifth limitation was the accuracy of modelled inputs. Several ingredients could not be 
accurately modelled in both the LCA of Tr-OVA and the patty models due to limitations in 
currently available databases. This problem also occurred in modelling the environmental 
impacts of MP production. Expert opinions and estimations were used in selecting proxies 
that represented similar production processes. Although the impact of individual minerals 
was generally limited in the overall impact of the products studied, it is recommended that 
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these research gaps should be closed in future studies. Improvements in data availability 
would increase the accuracy of estimates of the environmental impacts of protein-rich food 
products and feed ingredients.

Lastly, Although the production of MP and Tr-OVA might reduce environmental im-
pacts, this dissertation did not include any social, cultural or economic aspects that might 
have an impact on the overall judgement of whether a product is sustainable (Guinée, 
2016). There are a number of articles available on the economic and social implications 
of the introduction of cellular agriculture, and the social acceptability of these products 
(Bryant & Barnett, 2020; Matassa et al., 2016; Newton & Blaustein-Rejto, 2021; Siegrist 
& Hartmann, 2020; Voutilainen et al., 2021). In addition, the production of Tr-OVA may 
not face the same issues with regard to ethical considerations and the potential outbreak of 
zoonotic diseases as is the case with the production of chicken eggs for egg white powder 
(C. K. Johnson et al., 2020). However, both MP and Tr-OVA are relatively new products, 
not yet available on the market in 2022, and relatively little is known about the economic, 
cultural and social implications of these specific products. Future research needs to ad-
dress this in order to gain an understanding of the sustainability of replacing protein-rich 
products from agriculture and aquaculture with MP and Tr-OVA in different regions of the 
world. 

6.8	 FUTURE RESEARCH RECOMMENDATIONS
In addition to future research recommendations related to the limitations of this disserta-
tion, presented in the previous section, there are several other avenues for further research. 
Article I presented an overview of global averages for mangrove carbon stocks. The data 
sources used in this literature review were mostly in line with the estimates of the IPCC 
report as there was a generally limited amount of data available on global mangrove carbon 
stocks. This also meant that local emissions from mangrove deforestation could only be es-
timated using global estimates on mangrove stocks. However, since the publication of the 
IPCC’s (2014) supplemental report and article I, more research on carbon stocks in man-
grove forests has been conducted. In addition, events that possibly contribute to mangrove 
carbon storage have been further explored. (Alimbon & Manseguiao, 2021; Belliard et al., 
2022; M. T. Costa et al., 2019; J. L. Johnson et al., 2020) Future development of guidelines 
for estimating GHG emissions related to aquaculture practices in mangrove areas should 
include regionally specific estimates and pathways that lead to changes in carbon stocks, 
be it the presence of crabs, natural changes (such as age or natural spread of mangrove for-
ests) or human interference (Andreetta et al., 2014; e.g. Charles et al., 2020; Walcker et al., 
2018; Xiong et al., 2018). In addition, more knowledge on the exact CH4 and N2O emissions 
is needed to make more accurate estimates.

There is only a limited amount of literature available on the environmental impacts 
of cellular agricultural products. The comparison of protein-rich products from cellular 
agriculture with those from agricultural and aquacultural systems was limited to the MP 
and Tr-OVA production in this dissertation. Additionally, the studies presented in this dis-
sertation are based on empirical data originating from just one organization per product. 
Sensitivity analyses were performed for each product to capture the potential operational 
differences that could occur between companies (Groen et al., 2017), but these assump-
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tions were of a speculative nature. When these products reach the market, more research 
can and should be performed as replication is important for the scientific buildup of evi-
dence (Makel & Plucker, 2014). Additionally, more research is needed on the environmen-
tal impacts of other protein-rich cellular agricultural products. An increase in scientific 
evidence on the environmental impacts of cellular agricultural products would also aid in 
understanding how these products can decrease the burden on the planet caused by pro-
tein production. 

One key aspect of Tr-OVA production, that generally contributed the most to its envi-
ronmental impact, was the source of glucose production. It was assumed that glucose was 
produced from cornstarch for three reasons. The first was due to data limitations as the 
databases only contained data on glucose production from cornstarch. The second was that 
cornstarch is the main source of current glucose production, although other sources can be 
used too (Voutilainen et al., 2021). The third reason is that we chose to err on the conserva-
tive side and rather overestimated the environmental impact of Tr-OVA production, as it is 
unclear what the actual source of glucose will be. Alternatively, glucose could be obtained 
from waste sources such as forestry waste or the side-streams of straw and cereal produc-
tion (Asim et al., 2021; Upcraft et al., 2021). Using these glucose sources could potentially 
lower the environmental impacts of Tr-OVA production, but these options could not be 
further analyzed due to the lack of available data. It is therefore recommended that future 
research focuses on the environmental potential of the use of agricultural side-streams for 
Tr-OVA production. Side-streams of agricultural production processes could be used as an 
input to other cellular production processes as well, thereby creating a potential symbiotic 
agricultural relationship (Asim et al., 2021; Newton & Blaustein-Rejto, 2021; Upcraft et al., 
2021).

The use of side-stream would also allow for Tr-OVA production to be part of other 
sustainable agricultural practices such as agroecological symbiosis that would potentially 
lead to additional environmental benefits. Research has shown the potential environmen-
tal gains of agroecological symbioses such as the increase in agricultural yields, substan-
tial reduction in GWP and eutrophication potential, and a net-positive energy production 
(Koppelmäki et al., 2019). Future research would need to assess potential environmen-
tal gains when including cellular agricultural products into agroecological systems.  This 
would mean that the research should be expanded from a product-based level, as was per-
formed in articles I, II and III, to a food system level that not only analyzes the environmen-
tal benefits of a single protein source but explores the benefits of integrating production 
into a wider sustainable agricultural practice.

Despite the relatively high GWP and land requirements of many agricultural protein 
sources, the nature of production processes does allow for the possibility of improvement 
in terms of land management and its effect on carbon stocks (Goglio et al., 2015). For ex-
ample, regenerative agricultural practices have shown the potential to reduce environmen-
tal impacts and even restore degraded sites with very little input, while maintaining high 
yields (Lal, 2020). Regenerative agricultural practices have even been shown to be a poten-
tial pathway to storing more carbon in the soil, thereby activating a potential carbon pool in 
the fight against climate change (Lal, 2020). These examples suggest that agricultural pro-
duction does not have to have a large environmental impact by definition. However, LCA 
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research has rarely been conducted on these regenerative production systems, let alone on 
the impact of these systems on biodiversity. To understand how the environmental impacts 
of the food system can be reduced and the extent of the role cellular agricultural products 
can play in achieving this goal, it is necessary to increase scientific knowledge on all avail-
able types of production system. This includes more studies on aquaculture production, as 
well as agricultural practices such as regenerative agriculture and agroecological farming 
and the potential role of integrating aquaculture, agriculture and cellular agriculture. 
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7.	 CONCLUSIONS
The aim of this dissertation was to understand the environmental impacts of protein-rich 
cellular agricultural products in comparison with those of protein-rich food and feed in-
gredients originating from agriculture and aquaculture. The results of article I showed an 
example of how current food production systems contribute to the degradation of the envi-
ronment. The potential flow of GHG emissions released into the atmosphere, when natu-
ral ecosystems such as mangrove forests are replaced with food production, was analyzed. 
These emissions contribute significantly to GWP and will potentially increase climate-in-
tensified extreme weather events such as drought and floods — events that are already 
challenging food production. Additionally, the production of shrimp in mangrove forests 
contributes to the further degradation of the valuable mangrove ecosystems and thus the 
loss of its many useful and critical ecosystem services. Emissions from shrimp farming in 
mangrove forest areas emphasize the need for the transition of our food system from one 
that harms nature to one that works with it.

The cell-cultured products that were analyzed in this dissertation have shown poten-
tial to reduce the environmental impacts of the food systems. Land use, GWP, and water 
use could be significantly reduced when a part of human protein demand is met by these 
cellular agricultural products. This was mostly true in comparison to animal-based protein 
sources for human consumption, such as shrimp and beef, but a similar conclusion was 
drawn by comparison to many protein-rich feed ingredients and the few plant-based pro-
tein options included in this study.

Despite the environmental benefits that the replacement of protein-rich foods with 
cellular agricultural products such as MP and Tr-OVA could offer, several minor trade-offs 
were identified. These trade-offs were mostly related to an increase in impact categories 
related to industrial production systems, such as ionizing radiation. These were related 
to the relatively high inputs of industrial electricity within cellular agricultural production 
processes compared to those from agricultural and aquacultural systems. This also meant 
that environmental impacts could be further reduced using renewable energy and improv-
ing efficiencies in the production process, such as producing inputs on-site using electric-
ity, or the utilization of waste products.

MP production was shown to have greater potential in reducing environmental im-
pacts when replacing protein-rich foods and feed ingredients, compared to Tr-OVA pro-
duction. This was related to the independence of the system from agricultural inputs. Glu-
cose was the largest contributor to almost all impact categories in Tr-OVA production. This 
means that the environmental burden of cellular agricultural products could potentially be 
reduced further by eliminating or reducing agricultural inputs or by finding environmen-
tally friendlier options — such as the utilization of agricultural side-streams. 

An additional way to reduce the environmental impacts of cellular agricultural prod-
ucts was by using renewable or low-carbon energy sources. Electricity consumption was 
the second largest contributor to the environmental impacts of Tr-OVA, and the largest of 
MP production.  The GWP of shrimp was most reduced when avoiding the deforestation 
of mangrove forests. 

We are faced with many environmental, social, and economic challenges of which 
a large proportion are associated with the ways food is produced. Challenges such as the 



84 THE PLANET WE EAT 
NATASHA JÄRVIÖ

growing demand for rare earth metals related to renewable energy production and those 
that arose at the time of writing this dissertation — the COVID-19 crisis and the war in 
Ukraine — are increasing pressure on the current food system to transform to a more sus-
tainable one. They underline the need for self-sufficiency of food production as well as a 
need for creative solutions. The results of this dissertation have shown that cellular agricul-
ture can play a role in reducing the environmental impacts of protein production. However, 
the full extent of their potential contribution to the transition of the food system can only 
be fully understood when combining the environmental data presented here with the social 
and economic pillars of sustainability. There is no silver bullet when it comes to trans-
forming our food system to a more sustainable one. Multiple solutions that originate from 
cellular agriculture and the transformation of the current agricultural sector into more re-
generative systems are needed. Future research will need to take a holistic approach to un-
derstanding the ways in which we can combine the variety of available solutions and create 
a healthy, sustainable, and possibly thriving food system and planet. 
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9.	 APPENDICES
Appendix Table 1: Environmental impacts of protein alternatives for feed relative to the highest scores, belonging to 
Figure 7

Protein GWP Land use Water 
scarcity Eutrophication Ozone 

depletion
Aquatic 

acidification
Energy 

demand

Soybean Meal 0.5 % 13.2 % 0.5 % -10.5 % 0.8 % 0.3 % 0.8 %

Rapeseed Cake 0.6 % 9.0 % 0.3 % 14.9 % 0.1 % 0.4 % 0.3 %

Pea Protein Meal 6.8 % 24.8 % 0.8 % 19.9 % 0.4 % 1.9 % 0.6 %

Fishmeal 3.9 % 2.6 % 3.3 % -6.7 % 1.4 % 1.9 % 4.9 %

Insect Protein (HM) 4.0 % 6.8 % 0.0 % 18.4 % 1.2 % 0.8 % 3.8 %

Whey Concentrate 11.4 % 14.2 % 100.0 % 51.3 % 4.3 % 1.9 % 4.5 %

Egg Protein 
Concentrate 12.4 % 100.0 % 20.7 % 100.0 % 1.9 % 100.0 % 5.7 %

Microalgae 100.0 % 13.0 % 23.8 % 76.3 % 28.7 % 30.3 % 100.0 %

Tr-OVA (PL) 7.0 % 7.2 % 71.2 % 3.7 % 100.0 % 2.2 % 5.8 %

Tr-OVA (FI-LC) 2.9 % 7.0 % 68.2 % 3.3 % 99.8 % 0.9 % 5.0 %

MP (FAEM) 4.9 % 0.9 % 23.3 % 0.3 % 3.0 % 0.7 % 9.2 %

MP (FHE) 0.7 % 0.1 % 9.3 % 0.0 % 0.6 % 0.1 % 3.9 %

MP (Base) 0.9 % 0.4 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

MP (FImix) 2.5 % 3.2 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Mycoprotein 3.9 % 2.6 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Results for protein alternatives from Smetana et al.(2016) and Sillman et al.(2020). Note: PL – Poland; FI-LC – Finland low 
carbon scenario; GWP – global warming potential; HM - H. Illucens meal (defatted protein concentrate); MP – microbial 
protein; FAEM – Finnish average electricity mix; FHE – Finnish hydrogen-based electricity; MP (base) – baseline scenario 
used in the article by Sillman et al.(2020); MP – FImix – Finnish average electricity mix used in the article by Sillman et al. 
(2020). Water scarcity was calculated using the aware method, energy demand using the CED method and all others using 
the IMPACT2002+ method, with the exception of eutrophication which was expressed in kg N in table 2a and were calculated 
using the ReCiPe results presented in articles II and III.
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Appendix Table 2: Absolute values for the environmental impact of different protein alternatives for feed

Protein GWP, kg 
CO2-eq land use, m2a water scarcity,  

m3
eutrophication,  

g N eq.

ozone 
depletion, mg 

CFC11 eq.

acidification,  
g SO2  eq. ED, MJ

Soybean meal 0.11 0.66 0.0081 -1.82 0.050916497 1.255 3.14

Rapeseed 
cake 0.14 0.45 0.0045 2.59 0.007758621 2.05 1.02

Pea protein 
meal 1.615 1.24 0.013 3.45 0.024782609 9.48 2.28

Fishmeal 0.92 0.13 0.0527 -1.16 0.094090909 9.71 19.64

Insect protein 
(HM) 0.95 0.34 0.0005 3.2 0.076785714 3.8 15.03

Whey 
concentrate 2.7 0.71 1.6025 8.91 0.280416667 9.47 18.06

Egg protein 
concentrate 2.93 5.01 0.3313 17.38 0.12625 500 22.88

Microalgae 23.62 0.65 0.3818 13.26 1.881818182 151.64 399.85

Mycoprotein 0.91 0.13

MP (Base) 0.21 0.023

MP (FImix) 0.6 0.160

MP (FAEM) 1.155979692 0.047028615 0.372886769 0.050153846 0.200016692 3.289384615 36.95975385

MP (FHE) 0.156947077 0.004280923 0.149160769 1.93696E-06 0.042358917 0.466923077 15.56773846

Tr-OVA (PL) 1.663043478 0.360257 1.140217391 0.648486478 6.56238337 10.86892435 23.00829891

Tr-OVA (FI-LC) 0.673588565 0.351733739 1.092654457 0.572994315 6.55090413 4.602566413 19.796725

Results for protein alternatives from Smetana et al.(2016) and Sillman et al.(2020). Note: PL – Poland; FI-LC – Finland low carbon scenario; GWP 
– global warming potential; HM - H. Illucens meal (defatted protein concentrate); MP – microbial protein; FAEM – Finnish average electricity mix; 
FHE – Finnish hydrogen-based electricity; MP (base) – baseline scenario used in the article by Sillman et al.(2020); MP – FImix – Finnish average 
electricity mix used in the article by Sillman et al. (2020). Water scarcity was calculated using the aware method, energy demand using the CED 
method and all others using the IMPACT2002+ method, with the exception of eutrophication which was expressed in kg N in table 2a and were 
calculated using the ReCiPe results presented in articles II and III.
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Appendix Table 3: Impact scores of protein alternatives for food relative to the highest scores, belonging to Figure 8

Protein Land use GWP Acidifying 
emissions

Eutrophying 
emissions

Water 
scarcity

Bovine meat (beef herd) 100 % 22 % 90 % 100 % 29 %

Bovine meat (dairy herd) 45 % 19 % 100 % 98 % 100 %

Fish (farmed) 8 % 3 % 27 % 29 % 78 %

Poultry meat 18 % 6 % 32 % 29 % 63 %

Eggs 16 % 4 % 33 % 29 % 36 %

Nuts 22 % 1 % 11 % 33 % 40 %

Peas 5 % 0 % 1 % 9 % 15 %

MP 1 % 1 % 3 % 2 % 1 %

MP FHE 0 % 0 % 0 % 0 % 0 %

Tr-OVA (PL) 1 % 2 % 8 % 11 % 3 %

Tr-OVA (FI-LC) 1 % 1 % 3 % 4 % 2 %

Shrimp (MC) 0 % 100 % 0 % 0 % 0 %

Shrimp (IF) 0 % 8 % 0 % 0 % 0 %

Results for protein alternatives from the European dataset produced as part of Poore and Nemecek (2018a). Note: 
FI-LC - Finland low-carbon; PL – Poland; Tr-OVA – ovalbumin produced using Trichoderma reesei; MP – microbial 
protein; FAEM – Finnish average energy mix; FHE – Finnish hydropower energy; MC – mangrove concurrent 
system; IF – intense farming system.

Appendix Table 4: Absolute values for the environmental impact of different protein alternatives for food

Land Use (m2/
nutritional 

unit)

GHG Emissions 
(kg CO2eq/NU, 

IPCC 2013 incl CC 
feedbacks)

Acidifying 
Emissions 

(kg SO2eq/
NU, CML2 
Baseline)

Eutrophying 
Emissions 

(kg PO43-eq/
NU, CML2 
Baseline)

Water scarcity 
(L/NU)

Bovine eat
(beef herd) 35.95787362 20.4332999 0.120882648 0.064829488 13060.68205

Bovine meat 
(dairy herd) 16.31205674 17.28723404 0.134761905 0.063333333 45044.27558

Fish (farmed) 3.025652269 2.667397501 0.035957027 0.019057224 35090.76957

Poultry meat 6.466512702 5.32448037 0.042678984 0.018799076 28596.13164

Eggs 5.677721702 3.93925739 0.044286229 0.019033886 16064.07714

Nuts 7.899571341 1.293325168 0.014384568 0.021641151 17998.53031

Peas 1.755175518 0.295229523 0.001917192 0.005670567 6805.355536

MP (FAEM) 0.386426308 1.258804154 0.004004615 0.001504154 372.8867692

MP (FHE) 0.051914615 0.156923077 0.000569538 0.000189538 149.1607692

Tr-OVA (PL) 0.481024815 1.814542076 0.010154914 0.006913325 1140.149239

Tr-OVA (FI-LC) 0.450243272 0.776492391 0.003691848 0.002472754 1092.654457

Shrimp (MC) 91.54228856

Shrimp (IF) 7.562189055

Results for protein alternatives from the European dataset produced as part of Poore and Nemecek (2018a). Note: FI-
LC - Finland low-carbon; PL – Poland; Tr-OVA – ovalbumin produced using Trichoderma reesei; MP – microbial protein; 
FAEM – Finnish average energy mix; FHE – Finnish hydropower energy; MC – mangrove concurrent system; IF – intense 
farming system.
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Appendix Table 5: Results for GWP in CO2 -eq of a patty using 5 different protein sources.

Patty
Main 

protein 
source

Breadcrumbs Bread, 
white Onion Rapeseed 

oil
Kidney 
beans

Sweet 
potato

Tr-OVA 0.295903 0.014384 0.014747 0.001437 0.029015 0.01087 0.007144

MP 0.360323 0.014384 0.014747 0.001437 0.025363 0.01087 0.005001

Shrimp (mangrove concurrent) 39.22 0.014384 0.014747 0.001437 0.029015 0.01087 0.007144

Shrimp ((semi-)intense) 3.3 0.014384 0.014747 0.001437 0.029015 0.01087 0.007144

Shrimp (AGRIBALYSE, china) 0.283871 0.014384 0.014747 0.001437 0.029015 0.01087 0.007144
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ARTICLE I 
Including GHG emissions from mangrove forests LULUC in LCA: a case 
study on shrimp farming in the Mekong Delta, Vietnam

CHALLENGES AND BEST PRACTICE IN LCAS OF SEAFOOD AND OTHER AQUATIC PRODUCTS
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Abstract
Purpose Mangrove forests have been recognized as important
regulators of greenhouse gases (GHGs), yet the resulting land
use and land-use change (LULUC) emissions have rarely been
accounted for in life cycle assessment (LCA) studies. The
present study therefore presents up-to-date estimates for
GHG emissions from mangrove LULUC and applies them
to a case study of shrimp farming in Vietnam.
Methods To estimate the global warming impacts of man-
grove LULUC, a combination of the International Panel for
Climate Change (IPCC) guidelines, the Net Committed
Emissions, and the Missed Potential Carbon Sink method
were used. A literature review was then conducted to charac-
terize the most critical parameters for calculating carbon
losses, missed sequestration, methane fluxes, and dinitrogen
monoxide emissions.
Results and discussion Our estimated LUC emissions from
mangrove deforestation resulted in 124 t CO2 ha−1 year−1,
assuming IPCC’s recommendations of 1 m of soil loss, and

96% carbon oxidation. In addition to this, 1.25 t of carbon
would no longer be sequestered annually. Discounted over
20 years, this resulted in total LULUC emissions of 129 t
CO2 ha−1 year−1 (CV = 0.441, lognormal distribution (ln)).
Shrimp farms in the Mekong Delta, however, can today oper-
ate for 50 years or more, but are 1.5 m deep (50% oxidation).
In addition to this, Asian tiger shrimp farming in mixed man-
grove concurrent farms (the only type of shrimp farm that
resulted in mangrove deforestation since 2000 in our case
study) resulted in 533 kg methane and 1.67 kg dinitrogen
monoxide per hectare annually. Consequently, the LULUC
GHG emissions resulted in 184 and 282 t CO2-eq t−1 live
shrimp at farm gate, using mass and economic allocation,
respectively. These GHG emissions are about an order of
magnitude higher than from semi-intensive or intensive
shrimp farming systems. Limitations in data quality and quan-
tity also led us to quantify the uncertainties around our emis-
sion estimates, resulting in a CVof between 0.4 and 0.5.
Conclusions Our results reinforce the urgency of conserving
mangrove forests and the need to quantify uncertainties
around LULUC emissions. It also questions mixed mangrove
concurrent shrimp farming, where partial removal of man-
grove forests is endorsed based upon the benefits of partial
mangrove conservation and maintenance of certain ecosystem
services. While we recognize that these activities limit the
chances of complete removal, our estimates show that large
GHG emissions frommangrove LULUC question the sustain-
ability of this type of shrimp farming, especially since mixed
mangrove farming only provide 5% of all farmed shrimp pro-
duced in Vietnam.
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1 Introduction

Mangrove forests are among the most productive tropical
ecosystems in the world, with net annual production
exceeding that of most terrestrial forests (Twilley et al. 1992;
Eong 1993; Kauffman et al. 2011; Mcleod et al. 2011). They
have also been recognized for their importance in providing
valuable ecosystem services (Rönnbäck 1999; Hong and Dao
2004; Bouillon et al. 2008; Kristensen et al. 2008). These
include coastline protection from storms, erosion, saline
intrusion, and pollution (Rönnbäck 1999; Hong and Dao
2004), supporting and maintaining biodiversity, and provision
of energy to adjacent ecosystems (Rönnbäck 1999; Kristensen
et al. 2008). More recently, the important role of mangrove
forests in the capture and sequestration of carbon dioxide
(CO2) from the atmosphere has gained increasing recognition,
as mangrove forests, unlike terrestrial forests, do not become
saturated with carbon, and sediments accrete vertically
(Mcleod et al. 2011). The sequestration of carbon in sediments
and the depth of the soil may therefore continue to increase
over millennia (Eong 1993; Duarte et al. 2005; Mcleod et al.
2011). Their organically rich soils, typically extending
downward over several meters, make up one of the largest
organic carbon reserves in the terrestrial biosphere (Chmura
et al. 2003; Lovelock 2008). Sequestration rates were esti-
mated to be as high as 3.53 t C ha  yr−1 −1 (Sanders et al.,
2010). Hypoxic conditions and the lack of other high-energy
oxidants, in combination withh a paucity of fungi, limit the
opportunity for degradation, thereby providing good condi-
tions for long-term storage of carbon (Middleton and
McKee 2001). This, together with high biomass burial rates,
the high potential age mangrove trees, and a slow turnover
rate, results in carbon storage rates relevant at global
scales (Duarte et al. 2005; FAO 2007).

Despite the recognition of their ecological value, mangrove
forests worldwide are under threat from land-use change, with
annual deforestation rates between 0.7 and 2.1%, far exceed-
ing those of inland tropical forests (Murray et al. 2012). For
example, countries like Thailand and Vietnam, which harbor
large shares of the global mangrove forests, have been
reported to have lost 43% of their mangrove forests since
1980 and are to be at risk of losing an additional third of the
remaining forests over the next two decades unless their
governments improve the protection of mangrove areas
(WWF 2013). Expansions of aquaculture and especially
shrimp farming have been held accountable for 30% of the
mangrove loss in SE Asia (Richards and Friess 2015). This as
most shrimp species are most productive when farmed in
brackish water, which often results in the establishment of
shrimp ponds in coastal regions where they compete with
mangrove forests (Béland et al. 2006; Murray et al. 2012).
Given an annual growth rate of the shrimp farming in Asia
of 8% over the last decade, alongside continued agricultural

and urban growth, the future will surely pose additional threats
to the mangrove ecosystems in the region (FAO FishstatJ
2014; Richards and Friess 2015).

Already in 2007, Milà i Canals called for more papers on
dealing with land use-related greenhouse gas emissions
(GHG) in life cycle assessment (LCA), while growing scien-
tific concerns about mangrove deforestation have been accu-
mulating with regards to aquaculture and mangrove defores-
tation. Despite this, few aquaculture LCAs have included
mangrove land use and land-use change (LULUC) emissions
to date (Henriksson et al. 2012). The International Panel for
Climate Change (IPCC) published guidelines for the estima-
tion of carbon dioxide emissions from land-use change of
mangrove forests caused by aquaculture in 2013 (IPCC
2014). These guidelines, however, have their limitations, as
they provide no guidance on carbon or methane (CH4) or
dinitrogen monoxide (N2O) emissions regarding land use for
aquaculture purposes. This means that the continuous high
rate of carbon burial into the soil of mangrove forests is not
considered, although this is what distinguishes these forests
from other terrestrial forests (Duarte et al. 2005; FAO 2007;
Mcleod et al. 2011), and emissions of two other potent GHGs
often go unaccounted for.

Following criticism, shrimp farming practices have been
improved in many countries: new farms are now established
outside mangrove areas, productivity has increased, and better
farm management has allowed farms to continue operations
over longer time periods without having to relocate due to
sediment build-up (Lebel et al. 2002, 2010). Despite this, con-
cerns about the conversion of mangrove forests into shrimp
farms were again raised by Prof. JB Kauffman during the
2012 meeting of the American Association for the
Advancement of Science (Stokstad 2012). During this meet-
ing, Kauffman highlighted that the carbon dioxide emissions
resulting from mangrove deforestation amounted to 198 kg
CO2 per 100 g of shrimp tails. While this definitely raises
concerns, some assumptions regarding the location of newly
established shrimp farms, pond productivity, and pond
lifespan were later called into question by the Global
Aquaculture Alliance (Global Aquaculture Alliance 2012).

Given the controversies surrounding the emissions
resulting from LULUC due to mangrove deforestation for
shrimp farming and the clear lack of its resulting emissions
in LCAs, the present study aimed to present up-to-date GHG
emission estimates for mangrove LULUC. We also demon-
strate our accounting methods using shrimp farming as a case
study. To put these emissions into context, we also used the
LCA framework (ISO 2006), allowing GHG emissions from
semi-intensive and intensive shrimp production chains to be
considered as a reference. Using the LULUC emission factors
and production data for shrimp farming in the Mekong Delta
of Vietnam, we estimated the contributions of mangrove

Int J Life Cycle Assess (2018) 23:1078–1090 1079
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shrimp farming.
In order to address our identified shortcoming in liter-

ature, each section first aims to quantify the GHG emis-
sion from generic mangrove deforestation using IPCC as-
sumptions, followed by its application to the shrimp case
study. Section 2 thus first identifies the relevant parame-
ters for calculating the GHG emissions from mangrove
deforestation, including changes in carbon stocks as visu-
alized in Fig. 1, and characteristics of CH4 and N2O-
fluxes (Section 2.3). This is followed by details about
the case study in Section 2.3. Section 3 subsequently pre-
sents the ranges of results derived from literature for each
parameter and summarizes these as easy-to-use LCA pa-
rameters including uncertainty estimates. These values
were also modified for the case study in Section 3.3 to
quantify the impact of shrimp farming in previous man-
grove areas in terms of CO2-equivalents (CO2-eq).
Finally, in the discussion and conclusion, we expand on
the implications of our findings.

2 Materials and methods

The carbon stock dynamics resulting from mangrove defores-
tation are illustrated in Fig. 1 with each, before (time < 0) and
after (time > 0) the establishment of shrimp ponds. Before
land-use change (LUC), above- and below-ground and litter
C stocks remain approximately constant over time. It is as-
sumed that, in general, primary mangrove forests are in equi-
librium and are therefore not storing more biomass over time
(IPCC 2006). However, the carbon in the mangrove soil will
increase over time due to a continuous carbon burial rate, as
seen in Fig. 1. LUC is a consequence of the establishment of
the shrimp farm during its first year by removing the above-
and below-ground vegetation and excavation of ponds,
resulting in the loss and oxidization of all carbon stored in
the above- and below-ground parts of the mangrove, in the
litter and in part of the soil. The resulting emissions are there-
fore allocated to the LUC activity (β). This also means that all
emissions that occur during later years, i.e., oxidization of the

Fig. 1 To calculate CO2 emissions resulting from mangrove LULUC,
this figure depicts the important processes behind LUC (β and δ) and LU
(θ) CO2 emissions frommangrove forests. The LUC carbon losses consist
of the above-ground (AG), below-ground (BG), soil (S), and litter (L)
CO2 emissions, regardless of when in time they occur (i.e. the oxidization
of carbon in the soil over time, δ) (IPCC 2006; Cederberg et al. 2011). LU

CO2 emissions are based on the mangrove’s potential carbon
sequestration rates. The LUC carbon losses (β and δ) are factual losses
that can be measured at the point when they occur. The emissions
resulting from LU (θ), on the other hand, are based on potential
sequestration rates

1080 Int J Life Cycle Assess (2018) 23:1078–1090
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consequence of the initial LUC and assigned to the activity and
year of the LUC (IPCC 2006; Cederberg et al. 2011). During
the time in which the farmer uses the land for shrimp farming,
the area originally comprising the mangrove forests no longer
takes up any carbon. Aquaculture ponds and other land uses
will also result in altered methane and dinitrogen oxide emis-
sions. These are the LU emissions and they are the result of the
missed carbon sequestration (θ), anoxic methane formation,
and nitrogen volatilization.

2.1 Carbon dioxide LULUC emissions from mangrove
deforestation

In the present study, CO2 emissions due to LUC of coastal
wetlands with mangrove as vegetation, to a new land use were
calculated using a combination of the Net Committed
Emissions (NCE) method by Cederberg et al. 2011 and the
IPCC guidelines (2006, 2014). The NCE method (Cederberg
et al. 2011) offered us a way to include carbon stock changes
resulting from LUC by comparing the carbon stocks before
LUC with those after LUC, while we used the reference land
use and guidelines provided by the IPCC (2006), such as a 1-m
default soil depth and 96% of carbon oxidized (IPCC 2014).
We used theMissed Potential Carbon Sinkmethod proposed by
Schmidinger and Stehfest (2012) as inspiration to evaluate the
potential carbon storage missed as a result of land use (LU) [see
Electronic Supplementary Material (ESM 1) for a full analysis
of all methods]. The Bmissed potential carbon sequestration^ is
important to take into account, asmangrove forests left standing
would continue to sequestrate substantial amounts of carbon in
the soil (Eong 1993; Duarte et al. 2005; Mcleod et al. 2011).
The missed potential carbon sequestration is therefore based on
the mangrove carbon sequestration rate.

The total emissions were annualized and not amortized, in
line with the IPCC guidelines. Many guidelines set a default
value of the particular number of years, or timeframe, over
which the LULUC CO2 emissions should be annualized, usu-
ally ranging from 20 to 30 years (ISO 2006; FAO 2007;
Cederberg et al. 2011). The IPCC (IPCC 2006) uses a default
value of 20 years, based on the argument that this is the time
required for carbon stocks to reach equilibrium. Noteworthy is
that the assumed timeframe greatly influences estimated
LULUC emissions.

The total change in the carbon balance resulting fromman-
grove LULUC can thus be summarized as follows:

ΔCTOTALi ¼ ΔCLUCi þΔCLUi ð1Þ

where
ΔCTOTALi is the total carbon loss resulting from the estab-

lishment of land use i during the timeframe (t C ha−1) (multi-
ply C with 3.667 for CO2)

ΔCLUCi is the carbon loss caused by land-use change for
land use i (regardless of when in time they occur) (t C ha−1)

ΔCLUi is the total carbon loss caused by land use i (t C ha−1)
i is the new land use (i.e., shrimp farming)
The total carbon loss caused by land-use change (ΔCLUCi)

can, in turn, be calculated using Eq. (1) (initial letters β, δ, or θ,
refer to Fig. 1):

ΔCLUCi ¼ ΔβAGi þΔβBGi þΔβLi þ ΔβδSi
* SOi

� � ð2Þ

where
ΔβAGi is the change in the above-ground carbon stock

caused by land-use change (t C ha−1)
ΔβBGi is the change in the below-ground carbon stock

caused by land-use change (t C ha−1)
ΔβLi is the change in the litter carbon stock caused by land-

use change (t C ha−1)
ΔβδSi is the change in the soil carbon stock caused by land

use change (t C ha−1) (default depth of 1 m; IPCC 2014)
SOi is the amount of carbon in soil exposed to oxidation, in

percentage (t C ha−1) (default value of 96%; IPCC 2014)
The total missed carbon sequestration caused by land use

(ΔCLUi) could, in turn, be calculated using Eq. (3):

ΔCLUi ¼ ΔθMPi
* T ð3Þ

where
θMPi is the missed potential of carbon that would have been

sequestered if the mangrove was left standing (t C ha−1 year−1)
T is the timeframe, in years (default of 20 years; IPCC

2006)
The parameters identified for calculating the CO2 emis-

sions in Eqs. (2) and (3) were identified through a litera-
ture review (see Table 1 for the definitions). Articles were
selected by searching for the keywords Bmangrove^,
Bcarbon^, Bemissions^, Bstorage^, Bsoil^, Bland-use
change^, and Bprimary production^ in Google Scholar
(search carried out on April 21, 2015). To establish un-
certainty parameters for the resulting CO2 emissions from
mangrove LULUC, ranges of results were produced over
10,000 Monte Carlo iterations. The Monte Carlo results
were generated using CMLCA v5.2.

2.2 Methane and dinitrogen monoxide emissions
from aquaculture farming

Only recently have estimates been made about methane (CH4)
and nitrous oxide (N2O) emissions resulting from aquaculture
(Hu et al. 2012; Astudillo et al. 2015). No study to our knowl-
edge has, however, measured these emissions from aquacul-
ture activities on converted mangrove forest. Instead, we
therefore collected a range of available values reported for
both standing mangrove and conventional aquaculture.
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2.3 Case study: shrimp farming in the Mekong Delta,
Vietnam.

To illustrate the potential GHG emissions from mangrove
LULUC, we applied the proposed method in combination
with data collected for 200 randomly selected shrimp
farmers in Vietnam between 2011 and 2012 as part of
the EU FP7 SEAT project (European Commission within
the Seventh Framework Programme, Sustainable Ethical
Aquaculture Trade) (www.seatglobal.eu) (Murray et al.
2013; Henriksson et al. 2015). Vietnam is one of the
world’s leading exporters of shrimp, with a significant
growth in production since the mid-1980s. Most of the
shrimp farms are in the Mekong Delta, and specifically
the province of Ca Mau. This area also harbors about one
third of the remaining mangrove forests of Vietnam
(Jonell and Henriksson 2014). These mangrove forests
also support mixed mangrove concurrent farming of
Asian tiger shrimp (Penaeus monodon), an extensive
farming practice with minimal to no external inputs that
takes place within the mangrove forest. The original intent
of this practice was to provide partial protection of man-
grove forests by allowing families to use up to 30% of the

land and surface water to generate income, thereby
preventing complete deforestation (McNally et al. 2010).
Besides the mixed mangrove farms, four other kinds of
shrimp farming practices have been identified in Mekong
delta; these and their main difference are listed in Table 2
(FAO 2005; Phan et al. 2011). For a more elaborate ex-
planation about the differences in farming practices iden-
tified during the SEAT project, we refer to Phan et al.
(2011) and Henriksson et al. (2015).

Shrimp farms are established by removing the vegetation
(or part of it) or transforming the land from alternative land
uses (commonly rice paddies), followed by digging of ponds.
Although the depth of ponds can vary slightly between farm-
ing practices, an average pond depth of 1.5 m was assumed
(Phan et al. 2011; Murray et al. 2013) meaning that 1.5 m of
soil carbon was assumed to be lost. Mangrove forests have
shallow root systems, which means that most of the roots are
found in the upper 0.7 m of the soil (National Oceanic and
Atmospheric Administration-Earth System 2010). All man-
grove roots were therefore considered lost during pond con-
struction. The exact amount of carbon that is removed as soil
is more difficult to predict, as some of the sediments normally
are used to construct pond walls, where the carbon would

Table 1 Definition of parameters
relevant to the calculation of the
carbon footprint of mangrove
LULUC

Parameter Alternative names Description

AG Above-ground carbon The above-ground carbon includes all carbon found in the live
biomass located above the ground, which includes the stems of the
trees, their branches, and their leaves.

BG Below-ground carbon Below-ground carbon includes all carbon found in live biomass
located below the ground, which not only includes the carbon in
actual below-ground root biomass but also the prop roots which
are in fact located above the ground. It does not include the carbon
found in soil.

S Soil/sediments Soil carbon is the carbon stored in the soil. Soil contains dead organic
material derived from decomposed plants and animals, and
inorganic matter that have built up over time. Per IPCC, a soil
depth of 1 m should be considered, but for the shrimp case study,
1.5 m was adopted based upon the average depth reported by
farmers.

L Litter Litter is all dead biomass including material that was previously part
of the bulk of biomass in the net primary production. Litter C
stocks include both above- and below-ground litter stocks. Litter
can include just leaves, but also slash, stumps, dead trees,
stipulates, reproductive parts, branches, and debris.

CS (Missed potential for)
carbon sequestration

Carbon burial to soil refers to the process of the carbon being buried
in the sediments. This is caused by the production of
carbon-containing litter in the ecosystem and the import of carbon
from adjacent ecosystems. Part of this carbon gets trapped into the
sediments, where it can remain in the soil for centuries. In the
literature, carbon sequestration is often used interchangeably with
carbon burial rates (Mcleod et al. 2011). Both refer to the
long-term storage of CO2 from the atmosphere and its deposition
in reservoirs, where long-term refers to centuries to millennia
(Mcleod et al. 2011). Missed potential carbon sequestration refers
to the amount of carbon sequestration not realized due to
mangrove forest being converted to, i.e., shrimp ponds.
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degrade under hypoxic conditions (Mungkung 2005). Carbon
loss due to soil removal consequently depends on many fac-
tors, including the depth of the pond, the age of the shrimp
farm and wall, the size and surface area of the wall, and the
fate of the sediments after the shrimp farm has been aban-
doned. It has been conservatively assumed in previous studies
that about half of the carbon is oxidized (Eong 1993), and this
assumption was adopted in the calculations for the present
study.

To identify which types of shrimp farms result in mangrove
LULUC, the GPS coordinates from the SEAT survey were
evaluated using satellite images, comparing land use before
and after the establishment of the farms, and categorized based
upon prior land use and farming practices. While the SEAT
dataset also includes farmer testimonies on prior land use,
these responses were sometimes biased due to shifts in farm
ownership and to Vietnamese shrimp farmers being aware of
the controversy surrounding mangrove deforestation. Satellite
images from Google Earth (Google 2013), the Global Land
Cover by National Mapping Organizations (ISCGM 2003),
and a map showing global mangrove distribution developed
by Giri et al. (2011) were therefore used to supplement the
farmers’ responses.

The combination of three sources of satellite imagery
provided information about the historic land use going
back to the year 2000, before any of the analyzed shrimp
farms had been established. Present mangrove cover was
estimated by locating the farms on Google Earth, drawing
boundary lines around the pond, and estimating the per-
centage of mangrove within this boundary. All mangrove
located within the boundary of the shrimp pond were con-
sidered to be part of the pond (for an example and
description of mixed mangrove concurrent shrimp farm,
see the s tudy by Jonel l and Henr iksson 2014) .
Consequently, the difference in mangrove cover before
and after pond establishment could be determined for
the different types of shrimp farming (for more details on
the method used, see the ESM 1 of this article). Low-
resolution images were excluded from further analyses.

After the shrimp farming systems that resulted in man-
grove deforestation had been identified, the resulting
GHG emissions from LULUC were calculated. The func-
tional unit of the shrimp production was defined as 1 t of

live weight shrimp at farm. The average lifetime of
shrimp farms was deemed as the most suitable timeframe,
as all shrimp produced contribute equally to the mangrove
forest LULUC. A timeframe of 50 years, the current life
expectancy of a shrimp farm, was therefore used to annu-
alize emissions (Jonell and Henriksson 2014) (see ESM2
for calculations).

3 Results

3.1 Carbon dioxide emissions per hectare of deforested
mangrove

Parameters for Eqs. (2) and (3) are presented in Table 3. Due to
the limited literature values, studies describing globally diverse
mangrove forests were used. Our estimated emissions can
therefore be used as proxies for mangrove LULUC emissions
worldwide, but also entail large uncertainties (see ESM 1).

Given the presented ranges, all distributions except lit-
ter C (assumed as normally distributed) were assumed to
be lognormal (ln). For default mangrove removal annual-
ized over 20 years, as recommended by the IPCC, the
resulting CO2 emissions were 129 t CO2 ha−1 year−1

(CV = 0.441, ln), while if the emissions were annualized
over 50 years, the annual emission was estimated to 54 t
CO2 ha−1 year−1 (CV = 0.424, ln). The ESM 2 gives a
more detailed report on the results of the literature study
and the calculated results.

3.2 Methane and dinitrogen monoxide emissions per
hectare of mangrove converted to aquaculture pond

Studies on intact mangrove suggest that methane fluxes in
estuarine wetlands, including mangrove forests, are re-
markably low due to the inhibition of methanogenesis
by sulfates (Kristensen et al. 2008; Howe et al. 2009).
Deforestation and fish farming undoubtedly increase
these gas fluxes, an assumption also supported by
Astudillo et al. (2015) (Table 4). We consequently
adopted Astudillo et al.’s (2015) estimate (533 kg CH4

ha−1 year−1; CV = 0.4, ln) as a worst-case scenario. As
for dinitrogen monoxide, emissions are more dependent

Table 2 Five common Asian
tiger shrimp farming practices
identified in Vietnam, with data
from Murray et al. (2013), and in
brackets from Phan et al. (2011),
and the Food and Agriculture
Organization of the United
Nations (FAO 2005)

System Crops year−1 t shrimp crop−1 ha−1

water surface area
t shrimp ha−1

water surface area year−1

Intensive 1 7.6 ± 7.0 7.6 (10–17.5)

Semi-intensive 1.15 4.4 ± 4.5 6.6 (2–4)

Improved extensive 1.25 0.25 ± 0.29 0.3 (1–1.2)

Mixed mangrove concurrent 1 0.13 ± 0.12 0.13 (0.25–0.30)
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on the inputs of nitrogen into the ponds as feed or fertil-
izer. Hu et al. (2012), for example, assumed that 1.8% of
the nitrogen input was converted to dinitrogen monoxide
(as N2O-N, or 1.15% as N2O). The IPCC (2014) also
adopted the generic estimate of 1.69 kg N2O-N t−1 fish
by Hu et al. (2012) for mangrove-integrated aquaculture.
Since we know that most mixed mangrove shrimp farm-
ing systems are net removers of nitrogen (Jonell and
Henriksson 2014), and that standing mangrove even po-
tentially could be a net inhibitor of dinitrogen monoxide
emissions (Allen et al. 2007), we here assume a precau-
tions scenario of 1.67 kg N2O ha−1 year−1 (CV = 0.575,
ln).

3.3 Greenhouse gas emissions from shrimp farming
LULUC case study

The analysis of historic land use identified only Bmixed
mangrove concurrent^ shrimp farms being established in
former mangrove areas (Table 5). It was assumed that
these shrimp farms were the primary cause for the

mangrove deforestation, as there were no indications of
other activities on this land. Considering that only Bmixed
mangrove concurrent^ shrimp farms were identified as
causing mangrove deforestation, the related GHG emis-
sions from mangrove LULUC were only calculated for
this type of farming practice. Table 6 lists the GHG emis-
sions per hectare per year for mixed mangrove concurrent
shrimp farms.

The average mixed mangrove concurrent shrimp farm pro-
duces about 6.5 t of shrimp by water area over 50 years.
However, Asian tiger shrimp are not the only commodity pro-
duced in these ponds (Vu et al. 2013; Jonell and Henriksson
2014), with only about 39.2% of the total output being Asian
tiger shrimp by volume and 59.7% by value. The rest of the
harvest consists of a mix of other shrimps, mud crabs, and
other aquaculture products (Vu et al. 2013; Jonell and
Henriksson 2014). The GHG emissions from mangrove
LULUC from shrimp farming were subsequently estimated
to be 184 t CO2-eq t−1 live shrimp at farm gate using mass
allocation and 282 t CO2-eq t−1 live shrimp using economic
allocation (see ESM 2 for details on the calculations and

Table 3 Overview of average
values of mangrove forest carbon
stocks

Reference Parameter Median CV (distribution) Range n

AG Above-ground C stock (t C ha−1)a 131 0.462 (ln) 49.5–261 9

BG Below-ground C stock (t C ha−1)b 80 1.525 (ln) 9.61–410 8

S Soil C stock per 1.5 m of depth (t C ha−1)c 724 0.595 (ln) 186.15–1575 8

L Litter loss C stocks (t C ha−1)d 4.03 0.477 (n) 0.15–7 12

CS C Missed potential (t C ha−1 year−1)e 1.25 0.936 (ln) 0.012–3.53 8

ln lognormal distribution, n normal distribution
a Twilley et al. 1992; Eong 1993; Matsui 1998; Kauffman et al. 2011; Donato et al. 2011; Ray et al. 2011; Donato
et al. 2012
bKomiyama et al. 1987; Twilley et al. 1992; Matsui 1998; Kauffman et al. 2011; Ray et al. 2011; Donato et al.
2012
c Eong 1993; Matsui 1998; Kauffman et al. 2011; Ray et al. 2011; Donato et al. 2012; Lundstrum and Chen 2014
d Twilley et al. 1992; Amarasinghe and Balasubramaniam 1992; Eong 1993; Day et al. 1996; Middleton and
McKee 2001; Jennerjahn and Ittekkot 2004; Guzman et al. 2005; Ray et al. 2011
e Twilley et al. 1992; Eong 1993; Duarte and Cabrián 1996; Chmura et al. 2003; Alongi 2008; Sanders et al. 2010;
Ray et al. 2011; Mcleod et al. 2011

Table 4 Literature values

System Emission Mean Uncertainty estimate Reference

Intact mangrove forest kg CH4 ha
−2 year−1 342 CV = 1.448 (ln) Allen et al. 2007

kg N2O ha−2 year−1 1.67 CV = 0.575 (ln) Allen et al. 2007

Open aquaculture ponds kg CH4 ha
−1 year−1 533 CV = 0.40 (ln) Astrudillo et al. 2015

N2O-N 1.8% of N input – Hu et al. 2012

Rewetted land, previously vegetated
by mangrove, salinity <18 ppm

kg CH4 ha
−1 year−1 194 CV = 2.290 (ln) IPCC 2014

Rewetted land, previously vegetated
by mangrove, salinity >18 ppm

kg CH4 ha
−1 year−1 0 Range = 0–40 (uniform) IPCC 2014
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assumptions behind them). Noteworthy is that these LULUC
emissions only apply to Bmixed mangrove concurrent^
shrimp farms, a farming practice that makes up less than 5%
of the total shrimp production of Vietnam, and only about
1.2% global production (FAO FishstatJ 2014; Jonell and
Henriksson 2014). Additionally, the analysis of 25 farms re-
garding their current land cover showed that this type of farm-
ing leaves an average of 39% (CV = 0.322, range 16–69%) of
the original mangrove forest intact within the farming pre-
mises, thus removing 61%.

To put these LULUC emissions into proportion, they
were compared with LCA emissions calculated by
Henriksson et al. (2015). In their study, semi-intensive
and intensive conventional shrimp farming both had glob-
al warming impacts of 13.2 t CO2-eq t−1 shrimp using
mass allocation, and 4.7 and 5.1 t CO2-eq t−1 shrimp,
respectively, using economic allocation (including N2O
emissions from ponds). Given that these ponds had been
aquaculture ponds for a long time, or converted from rice
paddies, we can compare the importance of LULUC emis-
sions from mixed mangrove shrimp (excluding LCA
emissions) with those of a set of different system combi-
nations (Table 7). As rice conversion of rice farms includ-
ed the removal of sediments during pond construction,
LUC emissions from ΔβδS were therefor included.
Comparing the different systems and prior land uses high-
light the magnitude of LULUC emissions from mixed
mangrove farms. Using mass allocation, a ton of Asian
tiger shrimp from mixed mangrove systems would emit

an order of magnitude more GHG emissions than from
any of the other systems, a difference that is even starker
using economic allocation.

4 Discussion and conclusions

4.1 Methods and data for quantifying carbon dioxide
emissions per hectare of mangrove deforested

Despite the importance ofmangrove forests for carbon capture
and sequestration, there are still only a few available studies
quantifying its carbon content and burial rates. This naturally
induces uncertainty when calculating GHG emissions caused
by LULUC. Part of the difference in the outcomes can be
explained by the natural variation among different types of
mangrove forests. Reported values for soil carbon content,
for example, range from 186 to 1575 t C ha−1 per 1.5 m depth.
To be able to calculate more reliable global averages, there is a
need for more data, as is emphasized by the large variances in
the sensitivity results.

Relatively large differences in GHG emissions also
arise from the assumptions on the depth and percentage
of carbon in mangrove soils that is affected, although to a
lesser degree. Following the IPCC (IPCC 2014) guide-
lines of 20-year annualization time and soil carbon loss
of 1 m depth and 96% of carbon being oxidized would
lead to estimates of 129 t CO2 ha−1 year−1 deforested
mangrove forest. However, in case of shrimp farming,

Table 5 Prior land uses affected
by LUC in the case study, in
combination with data derived
from Google Earth (Google
2013), Global Land Cover by
National Mapping Organizations
(GLCNMO) (ISCGM 2003), Giri
et al. (2011), and Murray et al.
(2013)

Intensive
monoculture

Semi-intensive
monoculture

Improved
extensive

Improved extensive
alternate

Mixed mangrove
concurrent

n of farms 17 51 20 6 11

Total number of
hectares

250 105 26.8 10.9 35.5

Mangrove 0% 0% 0% 0% 100%

Aquaculture pond 0% 0% 0% 0% 0%

Rice paddies 18.4% 41.4% 100% 76.1% 0%

Forest land 21.5% 16.9% 0% 23.8% 0%

Grassland 48.1% 24.8% 0% 0% 0%

Cropland 12.0% 0% 0% 0% 0%

Settlement 0% 17.0% 0% 0% 0%

Total 100% 100% 100% 100% 100%

Table 6 GHG emissions as tons
of CO2-equivalent including
coefficients of variance from
mangrove LULUC due to Bmixed
mangrove concurrent^ shrimp
farming per hectare and year
annualized over 50 years

Reference ΔβAG ΔβBG ΔβL ΔβδS ΔθMP Total
CO2

CH4

emissions
N2O
emissions

Total CO2-
eq
ha−1 year−1

Average 9.6 5.9 0.3 26.5 4.6 46.9 14.9 0.4 62.2

CV 0.467 1.503 0.268 0.601 0.903 0.409 0.400 0.575
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the soil is affected up to 1.5 m of depth while only 50% is
oxidized and emissions are annualized over 50 years in-
stead. This would in turn lead to 47 t CO2 ha−1 year−1

deforested mangrove forest. This shows how important it
is to understand the consequences of different land uses
on carbon stocks in mangrove soils. It also suggests that
emissions from oxidized soil materials might also be rel-
evant to consider when evaluating, i.e., the construction of
Pangasius ponds (freshwater species not located in man-
grove areas), as these normally are up to 4 m deep.

While carbon sequestration rates by mangrove forests
nowadays are better understood and documented (Eong
1993; Duarte et al. 2005; Kauffman et al. 2011; Mcleod
et al. 2011), they constituted another parameter with large
data discrepancies. However, estimates of missed poten-
tial carbon sequestration were based on carbon build-up in
the sediments that occurred over the past decades or even
centuries (Eong 1993; Duarte et al. 2005; Mcleod et al.
2011). Choosing to ignore this unique property of man-
grove forest would underestimate the global warming im-
pact of mangrove LULUC with about 8%. We therefore
encourage further research to better understand the drivers
behind carbon sequestration in mangrove forests and the
influence of sea-level rise on these. We also stress the
importance of quantifying uncertainties when considering
LULUC emissions, as it is the only way to provide a level
of confidence behind comparisons and it indicates that

emissions can differ widely among locations, manage-
ments, and species of mangroves.

4.2 Case study results

The case study revealed the importance of including
LULUC emissions when doing LCAs of systems that re-
sult in mangrove deforestation, to understand the full
global warming impacts. Within the temporal frame of
this study (2000–present), only mixed mangrove concur-
rent shrimp farming resulted in direct mangrove defores-
tation. Our calculations resulted in LULUC GHG emis-
sion estimations of 184 t CO2-eq t−1 live shrimp at farm
gate using mass allocation and 282 t CO2-eq t−1 live
shrimp at farm gate using economic allocation of a mixed
mangrove concurrent farm, with 68.0% originating from
land-use change and 32.0% from land use. Amortized
over 50 years, the emissions from mangrove LULUC
were 24 to 37 t CO2-eq ha−1 year−1, which is far greater
than other LCA emissions estimated for Vietnamese
shrimp farms. It should be added that the calculations
were based on the shrimp yield that was given per hectare
of water area. As the patches of mangrove located within
the pond area were therefore excluded from this value, we
assumed 100% mangrove deforestation. However, it was
noticed during the analysis of satellite data that many
farmers had included these patches of mangrove land

Table 7 LULUC, methane, and dinitrogen oxide emissions from mixed mangrove, semi-intensive, and intensive farms for farming Asian tiger
shrimps during 50 years compared to LCA

System Allocation
factor

Prior land
use

t shrimp ha−1

water surface
area year−1

LULUC t
CO2 t

−1

shrimp

LU CH4

emissions, t CO2-
eq t−1 shrimp

LU N2O
emissions, kg
CO2-eq t

−1 shrimp

Lifecycle
emissions, t CO2-
eq t−1 shrimpa

Total,
CO2-eq t−1

shrimp

Mixed
mangrove

Mass
(38.5%)

Mangrove 0.13 139 44.2 1.31 184

Semi-intensive Mass
(100%)

Aquaculture
pond

6.6 2.3 Including in LCA 13.2 15.5

Semi-intensive Mass
(100%)

Rice paddy 6.6 2.4 2.3 Including in LCA 13.2 21.5

Intensive Mass
(100%)

Aquaculture
pond

7.6 2.0 Including in LCA 13.2 15.2

Intensive Mass
(100%)

Rice paddy 7.6 2.1 2.0 Including in LCA 13.2 20.4

Mixed
mangrove

Eco
(58.8%)

Mangrove 0.13 212 67.5 2 282

Semi-intensive Eco
(100%)

Aquaculture
pond

6.6 2.3 Including in LCA 4.7 7.0

Semi-intensive Eco
(100%)

Rice paddy 6.6 2.4 2.3 Including in LCA 4.7 13.0

Intensive Eco
(100%)

Aquaculture
pond

7.6 2.0 Including in LCA 5.1 7.1

Intensive Eco
(100%)

Rice paddy 7.6 2.1 2.0 Including in LCA 5.1 12.3

a From Henriksson et al. (2015)
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when reporting their total water area. This would thus
mean that the emissions from mangrove deforestation
resulting from shrimp farming would in practice be lower
than those presented above. Moreover, the estimated sin-
gle annual yield among intensive shrimp farmers were
likely influenced by a disease outbreak, as shrimp farmers
normally yield two, up to three, harvests per year.

Table 8 shows the extent to which this choice of timeframe
directly influenced the results by varying the number of years
over which the emissions were annualized. The present study
based the timeframe within which the GHG emissions from
mangrove LULUC were assigned to shrimp farming on the
assumed life expectancy of the shrimp farm, which was
50 years. This resulted in 184 to 282 t CO2-eq t−1 of shrimp
for mass and economic allocation, respectively, with CO2

from LUC accounting for 68.0% of the total emissions, CO2

from LU for 7.4%, CH4 emissions for 24.0%, and N2O emis-
sions for 0.7%. Fifty years seemed like a logical choice to
consider all shrimp produced as equal contributors to the de-
forestation, based on the data on the life expectancy of farms.
However, it is common practice to set the timeframe to a pre-
fixed number of years. Following, i.e., the IPCC (2006) de-
fault recommendation of 20 years would lead to 372.2 to
568.5 t CO2-eq t−1 of shrimp for mass and economic alloca-
tion, respectively. In this case, CO2 from LUC would account
for 81.4% of the total emissions, CO2 from LU for 3.6%, CH4

for 11.9%, and N2O for 0.4%. Naturally, the shorter the
timeframe, the higher the GHG emissions per ton of shrimp
and the higher the contribution of LUC CO2 emissions, which

is why it is important to understand these implications and
choose a realistic timeframe corresponding to current knowl-
edge on shrimp farming.

Noteworthy is that the displacement of some prior land
uses, such as agricultural fields, might result in these farms
relocating elsewhere and consequently causing additional for-
est lost. Richards and Friess (2015), for example, allocated the
loss of 55.4 ha of mangrove towards new rice farms between
2000 and 2012, while aquaculture farms were responsible for
roughly the double (111.8 ha). The overall rice paddy area, in
the main time, increased by 95,000 ha, an increase of 1.2% of
the overall rice paddy area (FAO 2016), compared to a 265%
increase in the farmed shrimp production during the same
period. Thus, the interplay of marginal demands for land is
complex and could not be explored within the context of the
present research.

According to the Protection Forest Management Boards,
families practicing mixed mangrove concurrent shrimp farm-
ing are allowed to use up to 30% of the land and surface water
for their own purposes to generate income (McNally et al.
2010). According to satellite photos, however, an average of
61% of the mangrove forest was removed from pond areas. It
is therefore debatable if mixed mangrove concurrent shrimp
farming protects mangrove forests as effectively as originally
intended. On the other hand, these farms only make up a small
share of overall shrimp production in Vietnam, and only 25
farms in two provinces were evaluated. Moreover, satellite
imagery only dated back to the year 2000, and the images only
provide rough estimates of vegetation types, while most

Table 8 Results for GHG
emissions as CO2-equivalent
from mangrove LULUC due to
shrimp farming in the Bmixed
mangrove concurrent^ farming
system, per ton of live shrimp
over different time frames

t CO2-eq t
−1

shrimp
Years

10 20 50 100 200

Mass allocation

LU CO2 13.6 (2.0%) 13.6 (3.6%) 13.6 (7.4%) 13.6
(11.1%)

13.6
(15.0%)

CH4 44.2 (6.4%) 44.2 (11.9%) 44.2 (24.0%) 44.2
(36.3%)

44.2
(48.9%)

N2O 1.3 (0.2%) 1.3 (0.4%) 1.3 (0.7%) 1.3 (1.1%) 1.3 (1.4%)

LUC CO2 626.3
(91.4%)

313.2
(84.1%)

125.3
(68.0%)

62.6
(51.5%)

31.3
(34.6%)

LULUC CO2-eq 685.4 372.2 184.3 121.7 90.4

Economic allocation

LU CO2 20.7 (2.0%) 20.7 (3.6%) 20.7 (7.4%) 20.7
(11.1%)

20.7
(15.0%)

CH4 67.5 (6.4%) 67.5 (11.9%) 67.5 (24.0%) 67.5
(36.3%)

67.5
(48.9%)

N2O 2.0 (0.2%) 2.0 (0.4%) 2.0 (0.7%) 2.0 (1.1%) 2.0 (1.4%)

LUC CO2 956.6
(91.4%)

478.3
(84.1%)

191.3
(68.0%)

95.7
(51.5%)

47.8
(34.6%)

LULUC CO2-eq 1046.8 568.5 281.5 185.9 138.1
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deforestation in Vietnam happened during the 1980s and
1990s (WWF 2013; Richards and Friess 2015). Despite this,
agencies promoting these systems (i.e., Naturland) need to
reevaluate their environmental sustainability, especially in
countries where this type of shrimp farming is more common,
including Indonesia (DasGupta and Shaw 2013; Richards and
Friess 2015).

As mentioned before, research on methane emissions
resulting from land use of mangrove area is rather limited
and most research on methane fluxes focus on integrated
rice-fish ponds (Frei and Becker 2005; Datta et al. 2009) or
other human disturbances of mangroves (i.e., Konnerup et al.
2014). The pond conditions in the IAA systems, which were
used as a proxy for methane emissions in this study, came
closest to those found in the mixed mangrove concurrent sys-
tems (Astudillo et al. 2015). However, emissions are highly
influenced by farming practices (including aeration, feed use,
co-stocked species, and fertilization) and environmental con-
ditions (including salinity, oxygen levels, and temperature)
(Alongi 2005; Howe et al. 2009; Penha-Lopes et al. 2010;
Astudillo et al. 2015). For example, the presence of sulfates
in mangrove systems would limit the activity of
methanogenesis (Howe et al. 2009), thereby lowering the
methane emissions for the mixed mangrove system compared
to the IAA system. It is therefore important to remember that
our results for methane emissions are only a first proxy of the
potential magnitude of the emissions, and we therefore urge
for more research on this topic.

Despite the limitations highlighted above, our worst-case
estimates are not even close to those presented by Kauffman
(Stokstad 2012), who estimated the LULUC emissions due to
shrimp farming to be 198 kg CO2 per 100 g shrimp tail or
1307 t CO2 t−1 shrimp (assuming an edible yield of 34%;
Louisiana Direct Seafood 2011; Zirlotts Gulf Products
2013), more than four times higher than our highest estimate.
Kauffman’s calculations differ from ours mainly in different
assumptions regarding the percentage of shrimp farms con-
structed in former mangrove areas (50–60%), early abandon-
ment of farms (after 3–9 years), and an annual production of
just 50 to 500 kg ha−1 for the average shrimp farm (Stokstad
2012). Kauffman’s assumptions on early abandonment of
farms can lead to the high climate warming impact, as the
emissions are attributed to only a few years of shrimp farming
yields. In contrast, our study found that a mere fraction of
shrimp come from farms located in former mangrove areas, that
management has improved to a point where farming can be
maintained for 50 years or more (Jonell and Henriksson 2014),
that only 39.2% of the pond mass output of extensive mixed
mangrove farming is shrimp, and that even these farms produce
0.13 t shrimp ha−1 year−1 on average (Murray et al. 2013).

Important to highlight is that GHG emissions are only one
of the many environmental concerns associated with shrimp
farming. Others include loss of biodiversity, eutrophication,

freshwater ecotoxicity, overexploitation of juveniles, acidifi-
cation, and photochemical oxidation (Jonell and Henriksson
2014). LCAs including LULUC therefore also consider such
environmental impacts. In the process of doing so, the struc-
ture of the mangrove removal should be taken into consider-
ation, as it could be argued that partial removal, as is done in
mixedmangrove farms, may leave enoughmangrove to buffer
eutrophying emissions (Jonell and Henriksson 2014).
Moreover, ecosystem services maintained by preserving part
of the forest should not be neglected, as phenomena like tsu-
namis and typhoons are commonplace in SE Asia. Securing a
livelihood in return for partial protection of the mangrove may
therefore help to conserve the remaining mangrove forests, if
properly managed. Such socio-ecological trade-offs surely
need to be considered before making any policy decisions
since long-term protection of the remaining mangroves in
Asia is of the utmost importance.

Nonetheless, the results of our case study of shrimp farm-
ing in mangrove areas show how huge mangrove LULUC
emissions can be compared with similar emissions from other
activities in the shrimp farming value chain (i.e., feed provi-
sion and electricity generation). Despite uncertainties and lim-
itations in the underlying data, the sheer magnitude of the
emissions shows that excluding mangrove LULUC emissions
from LCA studies most certainly leads to a severe underesti-
mation of the actual GHG emissions.
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• MP had 53–100% lower environmental
impacts than animal-based food protein
sources.

• Compared to peas and nuts, impacts
were 47–99% lower when using hydro-
power.

• Compared to feed protein sources, MP
had a low to average impact.

• However, energy demand for MP is
0.03–25 times that of other feed protein.

• Using renewable energy increased the
decoupling of MP from planetary
resources.
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Novel food production technologies are being developed to address the challenges of securing sustainable and
healthy nutrition for the growing global population. This study assessed the environmental impacts of microbial
protein (MP) produced by autotrophic hydrogen-oxidizing bacteria (HOB). Data was collected from a company
currently producingMPusingHOB (hereafter simply referred to asMP) on a small-scale. Earlier studies have per-
formed an environmental assessment of MP on a theoretical basis but no study yet has used empirical data. An
attributional life cycle assessment (LCA)with a cradle-to-gate approachwas used to quantify globalwarming po-
tential (GWP), land use, freshwater and marine eutrophication potential, water scarcity, human (non-)carcino-
genic toxicity, and the cumulative energy demand (CED) of MP production in Finland. A Monte Carlo analysis
was performed to assess uncertainties while a sensitivity analysis was used to explore the impacts of alternative
production options and locations. The results were compared with animal- and plant-based protein sources for
human consumption as well as protein sources for feed. Electricity consumption had the highest contribution
to environmental impacts. Therefore, the source of energy had a substantial impact on the results. MP production
using hydropower as an energy source yielded 87.5% lower GWP compared to using the average Finnish electric-
ity mix. In comparison with animal-based protein sources for food production, MP had 53–100% lower environ-
mental impacts depending on the reference product and the source of energy assumed forMP production.When
comparedwith plant-based protein sources for food production,MPhad lower land andwater use requirements,
and eutrophication potential but GWPwas reduced only if low-emission energy sourceswere used. Compared to
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protein sources for feedproduction,MPproduction often resulted in lower environmental impact for GWP (FHE),
land use, and eutrophication and acidification potential, but generally caused high water scarcity and required
more energy.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Food production is the main contributor to environmental change,
such as climate change, land degradation, water scarcity and biodiver-
sity losses (Campbell et al., 2017). Studies have shown that reduction
in consumption of animal-based foods is required for improving the
sustainability of food systems (Roe et al., 2019; Willett et al., 2019).
Novel food production technologies are one way to support this shift
(Parodi et al., 2018). The emerging field of cellular agriculture, which
uses cell-culturing technologies for food production, has potential to
contribute to the supply of sustainable alternatives to animal-based
foods (Tuomisto, 2019; Rischer et al., 2020).

Cellular agriculture includes technologies for cultivating animal, mi-
crobial, or plant cells in closed conditions, usually utilizing bioreactors
with the objective to reduce resource use and environmental impacts,
as closed production systems allow efficient recycling and control of
emissions. In addition, cellular agriculture may improve the resilience
of food production towards environmental changes, as the production
systems are not directly impacted by weather conditions and contami-
nation by chemicals and microbes (Rischer et al., 2020). However, the
application of cellular agriculture is not completely independent of
crop production, as heterotrophic organisms require glucose that is gen-
erally sourced from grain or sugar crops (Tuomisto, 2019). The use of
autotrophicmicrobes that are able to obtain carbon from carbon dioxide
(CO2) ormethane (CH4) gas provides advantages as the production pro-
cess is completely independent of outdoor agriculture. Methanotrophic
bacteria obtain energy and carbon from methane, whereas hydrogen-
oxidizing bacteria (HOB) utilize hydrogen and carbon dioxide; there-
fore, crops are not needed as a source of carbon. Technologies for pro-
ducing methanotrophic bacteria for protein feed are already at
commercial-level production, while the development of feed and food
ingredients from HOB is currently under development (Ritala et al.,
2017; Pikaar et al., 2018a). One promising example of a HOB for the pur-
pose of feed and food production includes the Cupriavidus necator (for-
merly Ralstonia eutropha) (Yu, 2014; Liu et al., 2016).

The interest in producing microbial protein (MP) from autotrophic
bacteria as a protein replacement for human consumption has grown
in recent years (Pikaar et al., 2018b). The inputs for HOB production
consist of CO2 gas, hydrogen, oxygen, nitrogen, and other nutrients. Hy-
drogen is extracted from water molecules through electrolysis and nu-
trients are added as a form of fertilizers. Earlier studies have indicated
the potential of MP through HOB (hereafter simply referred to as MP
unless otherwise specified) to contribute to a sustainable supply of
food, particularly through saving of land and water resources as well
as by reducing the global warming potential (GWP) and eutrophication
potential (Pikaar et al., 2018a, 2018b; Sillman et al., 2019).

However, the performed comparisons in the previous studies were
mostly focused on feed replacement and were limited to crops,
mycoprotein and microbial protein produced using methanotrophic
bacteria (Pikaar et al., 2018b; Sillman et al., 2020). More importantly,
the results of both studies were based on theoretical assumption using
currently available but limited literature values. Because of that, the sys-
tem boundaries were limited with many nutrient inputs, the cleaning
processes, and wastewater treatment excluded from the studies. Also
direct land use for facilities was not taken into account. In addition,
the previous studies are limited to a small number of impact categories,
which are mostly relevant for conventional crop- or animal-based pro-
tein sources, such as GWP, eutrophication, and water use. Due to the

high energy requirements, the environmental analysis of the produc-
tion of MP requires the impact categories to include also those relevant
for products that are produced in an industrial setting rather than agri-
culturally. Additionally, although the former mentioned studies had in-
cluded water use in the analysis of MP, none of the studies looked at
water scarcity using AWARE — the latest consensus characterization
model to assess the impacts of water use (Boulay et al., 2018). Due to
these limitations, there is a need to estimate the environmental impact
of MP production using empirical data and to expand both the environ-
mental impact categories as well as the comparison to other protein
sources for food and feed.

This study aimed to assess the environmental impacts ofMP produc-
tion for the first time on an empirical basis while expanding the system
boundary and impact categories compared to the previous studies. This
was necessary to increase the knowledge on the environmental impact
of MP production and fill up the existing knowledge gaps described ear-
lier. The required inputs were calculated based on data from a currently
existing test-scale production process. As MP can potentially be con-
sumed by humans in addition to being used as a novel feed ingredient,
this study, additionally, aimed to compare the impacts ofMP production
with protein sources used for both feed and food; these include animal-
and plant-based protein sources, as well as protein produced with in-
sects and algae. An attributional life cycle assessment (LCA) was used
for the assessment. Performing a LCA quantifies the environmental im-
pacts throughout the entire life cycle of the product along the selected
system boundaries and allows for a trade-off comparison of multiple
impact categories (Henriksson et al., 2011; Dijkman et al., 2017). Uncer-
tainties were calculated using a Monte Carlo analysis. As large-scale MP
production has a high reliance on electricity, this study also included an
assessment of the impacts of using alternative energy sources in various
production locations using a sensitivity analysis.

2. Materials and methods

2.1. Scope of the study

The goal of the study was to assess the cradle-to-gate environ-
mental impacts of MP production and compare the impacts with
other protein sources. In the base scenarios, it was assumed that
MP production takes place in the Helsinki metropolitan area, as pro-
duction of MP is currently being developed in Finland. In the sensi-
tivity analysis, different production options were considered,
including a change of the production location with Morocco and
Iceland as alternatives. These locations were chosen as a possible
best representative to optimize the corresponding renewable elec-
tricity sources —geothermal energy and solar energy— as these are
not sensible options within Finland.

The assessmentwas performed using SimaPro 9.1.0.11 PhDLCA soft-
ware package (PRé Consultants, 2020). The ReCiPe 2016 v1.1 Midpoint
(H)methodwas selected to calculate the GWP100, land use, freshwater
and marine eutrophication potential, terrestrial acidification, and
human carcinogenic and non-carcinogenic toxicity (Huijbregts et al.,
2017). The impact of water usewas assessed in terms of thewater scar-
city using the AWARE method that is part of the LCAwater assessment
(Boulay et al., 2018). The AWARE yearly aggregated non-agriculture
characterization factor (CF) (WULCA, 2015) was selected to calculate
the water scarcity based on the water use of the product. Both direct
and indirect water usage were considered but specific local AWARE
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factors could only be applied for direct water usage owing to the uncer-
tainty of the origin of water usage in the background activities. The life
cycle industrial energy use was calculated with the CED V1.11 method
by ecoinvent (Althaus et al., 2007).

The high electricity consumption differentiates cellular agricultural
products, including MP, from typical agricultural food and feed items.
Electricity production can results in environmental impacts that are
otherwise less relevant for agricultural products. This article therefore
aims to extent the environmental impact analysis from previous studies
(Pikaar et al., 2018b; Sillman et al., 2019, 2020) by including the impact
categories that belong to the LCAwater degradation category (Boulay
et al., 2018) and the CED.

The functional unit (FU) of the systemwas 1 kg of MP product prior
to packing with a 5% moisture content at factory gate. The nutritional
content was 65% protein, 6% fat, 2.2% carbohydrates, and 11% fiber, al-
though higher protein concentrations are also possible by increasing
the nitrogen inputs (Sillman et al., 2020). It was assumed that there
are no byproducts, although the wastewater of the separation and dry-
ing phase could potentially be used as a fertilizer due to the amount of
nutrients present. However, this was outside of the scope of our
research.

With the exception of the impact on land use, facilities were ex-
cluded from the scope of this study. This was due to theminor contribu-
tion to the total environmental impacts of MP and to be consistent with
themethodology used in the quantification of the impacts for the other
protein sources that MP was compared with (Poore and Nemecek,
2018a). More details regarding the environmental impacts of facilities
are shown in SI1, Section 8.

2.2. System description

2.2.1. System boundaries of microbial protein production
The production of single-cell protein starts by propagation of the

HOB for fermentation by increasing the cultivation volume in 10-fold
increments until a production volume of 200 m3 is reached. The pro-
duction occurs in a continuous stirred-tank bioreactor where the
bacteria grow continuously in steady-state conditions. Hydrogen,
oxygen, and CO2 gases are the main inputs into the fermentation.
Hydrogen and oxygen are produced from water and electricity in
water electrolysis.

Water-based liquid mineral medium is supplied continuously to the
cultivation through filter sterilization. Themedium contains ammonium
as a nitrogen source and inorganic salts containing sulfur, phosphorus,
magnesium, sodium, potassium, iron, and calcium. Manganese, zinc, va-
nadium, boron, molybdenum, cobalt, nickel, and copper are present in
minor amounts. Phosphoric acid (H3PO4) and sodium hydroxide
(NaOH) are used to control pH. In addition towater electrolysis, electric-
ity is also needed for reactor mixing and pumping of themedium feeds.
The CO2 fed to themicrobes as a carbon source is assumed to be released
back to the atmosphere during the consumption of MP and therefore
will have no net effect on the GWP. It is common practice in LCA not
to account for carbon assimilated into the body. This is mostly because
there would be many assumptions to be made on whether or not the
carbon is assimilated in the body and for how long. Liquid CO2 was sup-
plied to the factory and stored outside. CO2 was modeled as a waste gas
of chemical production processes in the ecoinvent database (Hischier,
2019). The SI1 section 1 provides a full list of details on assumptions
per ingredient and possible transportation distances for the base model.

After fermentation, the broth is pasteurized by heating with low-
pressure (LP) steam to 120 °C, after which the broth proceeds to the
separation stage. In the separation unit, the supernatant is separated
from the biomass through continuous centrifugal separation. While
the supernatant is sent to the municipal wastewater treatment plant
(WWTP), the concentrated cell slurry proceeds to the drying unit,
where a drum dryer is used to remove the remaining excess water
from the product. The drum dryer cylinders are heated with low-

pressure steam to 120 °C. The final single-cell protein product then
comes out as a flour-like powder. The final packaging of the product is
beyond the scope of this article. A flowchart of the process is shown in
Fig. 1.

The bioreactor, inoculum reactors, media preparation line, and
downstream processing equipment all require regular cleaning. All
cleaning occurs 4 times a year through the cleaning in place (CIP)
method. CIP involves washing the equipment and connecting pipes
with NaOH and nitric acid solutions and flushing with water (Eide
et al., 2003). Exact details on the inventory of CIP are given in SI1, sec-
tion 3 and 8.

2.2.2. Scenarios
Two scenarios, named Finnish average energymix (FAEM) and Finn-

ish hydropower energy (FHE),were compared to explore the impacts of
different conditions under which MP could be produced. The scenarios
had differences in energy sources, production of steam and CO2 inputs,
and recycling of wastewater (Table 1).

2.2.3. Life cycle inventory data
Data for the MP production processes were gathered from current

pilot-scale production settings performed by the company Solar Foods
Oy located in Finland, expert interviews, and the literature. The
ecoinvent 3 database was used for data for background processes
(Wernet et al., 2016). The total plant area was 1580 m2. Emissions for
direct land-use change (LUC) were assumed to be zero as it was as-
sumed that the facilities are occupying land that was previously land
for farm facilities. This was based on the assumption that MP could re-
place protein sources that require a substantial amount of land, such
as beef production (Poore and Nemecek, 2018a). Inventory data for
the production of MP provided by Solar Foods is provided in SI1, section
8 per FU.

Regarding wastewater recycling, the freshwater balance (in the
form of tapwater) was calculated for each process step as the difference
between the water inputs and the water outputs (Pfister et al., 2016).
For the centralized WWTP, operational energy and chemical consump-
tions were estimated based on a report published by a local authority
(HSY, 2017). For the on-site wastewater treatment system, reverse os-
mosis (RO) with ultrafiltration as pretreatment was considered. It was
assumed that reject water from the treatment system was sent to the
centralized WWTP.

Inventory data for these wastewater treatment processes were
taken from published literature (Muñoz and Fernández-Alba, 2008;
Vince et al., 2008; Greenlee et al., 2009). In the Helsinki metropolitan
area, almost all tap water is extracted from a nearby lake and treated
wastewater is released to the sea and thus considered as no longer avail-
able for use at the source of extraction (HSY, 2019). Wastewater pollut-
ants are listed in SI1, section 8, where phosphorus emissions are based
on 80% uptake of phosphorus in the production process. Further infor-
mation about wastewater treatment is provided in SI2.

The production of MP also requires cooling water. However, as a
closed circulation system is utilized, it was assumed that water was ex-
tracted once during the construction of the plant. The amount of cooling
water is therefore considered negligible in the LCAwater analysis.

2.3. Uncertainty analysis and sensitivity analysis

A Monte Carlo analysis (MC) with 1000 iterations was performed
with a 95% confidence interval. The pedigree matrix was used to calcu-
late uncertainty ranges in SimaPro (Wernet et al., 2016) (SI2 provides
uncertainty ranges). Ranges were conservatively overestimated rather
than underestimated. In addition to the MC analysis, the bootstrap
method was used to handle extremely large uncertainty ranges that
normally result from MC analysis of water scarcity results. These are
due to the incorrect estimation of probability distribution of the
AWARE characterization factors (Lee et al., 2018). The bootstrap
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analysiswasperformedwith Python 3.0, running1000 simulationswith
a sample size of 300 allowing for replacements.

A sensitivity analysis was used to assess the impacts of different as-
sumptions on the results. The following two separate sensitivity tests
were performed: i) to test the sensitivity of the production inputs
using the FAEM scenario, and ii) to test the sensitivity of the environ-
mental impacts of MP production resulting from the choice in low car-
bon energy sources. The FHE scenario was used for this purpose. As
not all low carbon energy sources are suitable for Finland, the produc-
tion location was changed accordingly. Morocco and Iceland were se-
lected for the alternative production locations due to their special
characteristics enabling feasible renewable energy production

(photovoltaic cells (PV) in Morocco and geothermal energy in
Iceland). Nuclear power was selected as an alternative for Finland due
to the country's current high reliability on nuclear power and its role
in the Finnish Climate and Energy Strategy (Ministry of Economic
affairs and employment in Finland, 2020). Table 2 shows the tests
used in the sensitivity analysis.

2.4. Comparison to existing and novel protein sources

The environmental impacts of MP according to the two baseline sce-
narios were compared with other protein sources traditionally used for
human consumption based on data from Poore and Nemecek (2018a).
In the comparison, 100 g of protein was used as a FU with a 65% as-
sumed protein content of MP. Europe-specific results from the study
by Poore and Nemecek (2018a) were used and adjusted to match the
cradle-to-gate system boundary of this study (SI2, ‘comparison’) (Per-
sonal communication with Poore and Nemecek, 2018b). To allow for
comparison, LCA results for MP production have been recalculated
using the methods applied by Poore and Nemecek (2018a).

In addition, there are alternative protein sources that are either
novel and/or used as a feed ingredient (some of which can also be
used for human consumption). The environmental impact results
from MP production were therefore also compared to those listed in
Table 2A from the study by Smetana et al. (2019). The results for
mycoprotein from the study by Smetana et al. (2015) aswell as GWP re-
sults from MP calculated by Sillman et al. (2020) were added to the
comparison in the SI2, 'comparison'. Other impacts calculated by
Sillman et al. (2020) were not included as units were different from
the results published by Smetana et al. (2019). Most of the results in

Fig. 1. Flow chart and system boundaries of MP production as studies here.

Table 1
Scenarios for MP production.

Variables Scenarios

Finnish average energy
mix (FAEM)

Finnish hydropower energy (FHE)

Location Helsinki, Finland Helsinki, Finland
Electricity Finland average electricity mixa 100% hydropower
Steam Supplied On-site using electricityb

CO2 Supplied On-site using electricityb

Wastewater Sent to central municipality
wastewater treatment plant

Recycling of 80% of the supernatant
on-site using reverse osmosis and
combined with ultrafiltration.

a SI1, section 5 lists themix of energy sources for the Finnish electricity mix asmodeled
in this article.

b SI1, section 2 provides details on calculations for water and electricity requirements
for on-site production.
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the article by Smetana et al. (2019, 2015) were calculated using the
IMPACT 2002+ impact method (Jolliet et al., 2003). The environmental
impact of MP production was therefore additionally calculated for the
corresponding methods when necessary. As the system boundary in
the study by Smetana et al. (2015) included also transport and cooking
after processing, final results of the study were reduced to match the
system boundary used in this study; this was done by using the results
of the contribution analysis.

3. Results

3.1. Results and contribution analysis

Fig. 2 shows the results and contributions per scenario for each im-
pact category with standard deviations (SD) from theMC test indicated
with a black line. The results show that the FAEM scenario had a higher
environmental impact than the FHE scenario on all evaluated categories.

Table 2
Variables for the sensitivity analyses.

Sensitivity analysis 1: Finnish average energy mix (FAEM)

Test name Changed parameter Baseline Alternative Explanation

Ingredients
FAEM - steam Steam Supplied On-site production All ingredients are supplied in the baseline model. However, steam and CO2 could

be produced on-site. The impact of producing steam and CO2 on-site by using the
Finnish average electricity mix was tested.

FAEM - CO2 on-site CO2 Supplied On-site production

FAEM - electrolyzer Electricity (kWh) 14.13
(79%)

18.6
(60%)

The efficiency of electrolysis is in the range of 60%–80% (Hydrogen Europe, 2021)

FAEM - nutrients 85%
utilization

Utilization of CO2, H2,
O2, and NH3

99% 85% In an earlier set-up performed by the company producing MP, the utilization of
these nutrients in the bioreactor was tested at 85–90%.

Transportation
FAEM - transportc Lorry (tkm): 0.0571 0.0171 Transportation distances for the baseline scenarios were calculated based on the

location of the potential European supplies in relation to the Helsinki metropoli-
tan area. However, these were approximations as it is unknown where supplies
come from. In the alternative scenario, we assumed that suppliers are located in
China.

Ammonia water (km) 400 150
Iron sulfate (km) 100 100
Sodium sulfate (km) 400 150
Plane (tkm): 0.0488 0.8723
Ammonia water (km) – 7365
Iron sulfate (km) 2250 7365
Sodium sulfate (km) 1500 7365

Wastewater
FAEM – 80% water recycling Recycling of

supernatant
No
recycling

80% recycling The impact of recycling of wastewater versus no recycling concerning
eutrophication and water consumption. This was expected to decrease water
scarcity results.FAEM – 50% water recycling Recycling of

supernatant
No
recycling

50% recycling

Sensitivity analysis 2: Finnish hydropower energy (FHE)

Test name Changed parameters Baseline Alternative Explanation

Energy source within Finland
FHE – wind (FI) Winda 100% hydropower 100% wind
FHE – nuclear (FI) Nuclearb 100% hydropower 100% nuclear

Location and energy source
FHE - solar (MR) Location Helsinki, Finland Morocco Morocco could be a potential candidate for MP production based on

solar energy.
Energy source 100% hydropower 100% solar powerd Most sensible renewable energy source will vary per location.
PV yield (kWh/kWp) – 1826 (World bank group,

2020)
Approximation. The land requirements vary depending on the
location of the PV cells.

Land requirements
(m2a kwh−1)

– 0.0065 (Martín-Chivelet,
2016)

Approximation. The land requirements vary depending on the
location of the PV cells.

Land occupation (type) Grassland Sparsely vegetated The land occupation for Morocco was set to sparsely vegetated.
Transportation, lorry (tkm) 0.0571 0.0336 See SI2 for further details on assumptions.
Transportation, plane (tkm) 0.0488 0.2967 See SI2 for further details on assumptions.
AWARE factor 2.2 54.031 (WULCA, 2015) AWARE scarcity factor is location dependent.
Water source Lake River (SEMIDE, 2005) Most drinking water comes from rivers.
Water recycling Yes Yes Recycling water in water-scarce areas is preferred.

FHE – geothermal
(IS)

Location Helsinki, Finland Iceland Iceland could be a potential candidate for MP production based on
geothermal energy.

Energy source 100% hydropower 100% geo-thermale Most sensible renewable energy source will vary per location.
Transportation, lorry (tkm) 0.0571 0.0336 See SI2 for further details on assumptions.
Transportation, plane (tkm) 0.0488 0.2862 See SI2 for further details on assumptions.
AWARE factor 2.2 1.083 (WULCA, 2015)
Water source Lake Ground (Gunnarsdottir

et al., 2016)
In Iceland, 95% of drinking water comes from groundwater and does
not require treatment.

Water recycling Yes Yes

a Adjusted ecoinvent 3.6 database ‘Market for electricity, medium voltage | Cut-off {FI}’ to include only the wind energy in the ratio that was already there (Wernet et al., 2016).
b Adjusted ecoinvent 3.6 database ‘Market for electricity, medium voltage | Cut-off {FI}’ to include only the nuclear energy in the ratio that was already there (Wernet et al., 2016).
c See SI, section 1 for details on travel distance assumptions.
d Ecoinvent only contains rooftop-installed PV cells. Tomodel for ground-installed PV cells, itwas therefore decided to use the rooftop-installed PV cells from the ecoinvent database and

add the required 0.0065 m2 a−1 kwh−1 land use in the Simapro model as ‘land occupation, industrial area’. The ecoinvent equation was used to recalculate the total amount of installed
units required to produce 1 kWh for the Moroccan conditions (Treyer, 2019; Jungbluth et al., 2009)

e Adjusted ecoinvent 3.6 database ‘Market for electricity, medium voltage | Cut-off {IS}’ to include only geothermal energy in the ratio that was already there (Wernet et al., 2016).
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The results show a high contribution of electricity production for both
scenarios and across all impact categories. Most of this electricity was
consumed during fermentation in the electrolyzer block (SI1, section
8). A detailed description of the results and the relative contributions
are shown in SI1 section 6.

Total land use for the FAEM scenario is over 25 times higher than
that of the FHE scenario, despite the higher direct electricity consump-
tion in the latter (see SI2, contribution analysis). This can be explained
by the small reliance of hydropower on land use (0.003 m2a crop eq/
kWh) in comparison to that of the Finnish average electricity mix
(0.046 m2a crop eq/kWh). This means that producing CO2 on-site
using hydropower would further reduce the land requirements for MP
production, because the land use requirements of hydropower are low
in comparison to the land requirements of the supplied CO2 (0.047 m-
2a crop eq/kg MP).

The FHE scenario had eight times lower GWP per FU than the FAEM
scenario. This large difference can be explained by the high contribution
of electricity production. The total emissions caused by direct electricity
consumption were 4.38 kg CO2 eq/FU in the FAEM scenario and
0.52 CO2 eq/FU in the FHE scenario. GWP caused by the supply of CO2

and steam resulted in additional emissions of 1.43 kg CO2 eq/FU and
2.02 kg CO2 eq/FU, respectively, in the FAEM scenario. However, in the
FHE scenario these were both produced on-site using renewable
energy.

The FAEM scenario had the highest CED score, with 240.2 MJ (SD
21.65) of energy consumed. The share of renewables was 18%, which
was explained by the relatively high reliance on renewable energy
within the Finnish electricity mix (Statistics Finland, 2018). The CED
for the FHE scenario was 101.2 MJ (SD 0.52), with the majority coming

from renewables (90%). Most of the CED is related to electricity con-
sumption, with 182 MJ (76% of the total contributions) and 92 MJ
(91%) for the FAEM and FHE scenario, respectively. This was despite
the fact that the direct electricity consumption was higher for the FHE
scenario as both steam and CO2 are produced on-site. This is explained
by the lower impact factor resulting from energy use through hydro-
power than that of the average electricity mix in Finland. The on-site
production of CO2 and steam also ensures that these inputs were pro-
duced with renewables, thereby further reducing the reliance on fossil
energy sources.

Results for water scarcity shows high uncertainty ranges for water
use, with a SD of 3.9 and 18.0 m3 for the FAEM and FHE, respectively,
even after the bootstrapping analysis. The larger uncertainty range of
the FHE scenario could potentially be explained by the large water
requirements for electricity generation (using hydropower at
0.0167 m3/kWh) (Wernet et al., 2016). Although most water only
passes through the system and thereby remains available for the eco-
system, somewater is lost.When a large amount of electricity is needed,
as for the production of MP, the uncertainty related to total water lost in
the throughput of water during electricity production could therefore
contribute to a high uncertainty in the water scarcity results. The direct
water usage and wastewater treatment had a minor contribution to
water scarcity. Although the water demand for recycling water in-
creased due to a high increase in electricity used for a RO unit, the com-
bined water scarcity for direct water usage and water used for
wastewater treatment options was smaller when the supernatant was
recycled.

Fig. 2 shows that the FHE scenario also had a substantially lower im-
pact for eutrophication, acidification, and human toxicity than the FAEM

Fig. 2. Results and contributions for different impact categories for all scenarios per kg of MP product with Monte Carlo standard deviation results indicated with a black line, and where
FAEM refers to the ‘Finnish average electricity mix’ scenario and FHE refers to the ‘Finnish hydropower energy’ scenario.
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scenario. This ismostly explained by the different electricity sources and
the use of renewable electricity for the production of steam and CO2 on-
site. The freshwater eutrophication of the FHE scenario was approxi-
mately a tenth of the FAEM scenario. In addition, recycling and treating
the supernatant on-site before sending it to theWWTP reduced the con-
tribution of wastewater treatment to marine eutrophication potential
by 99.7%. This reduction in thewater degradation scoreswasmostly ex-
plained by the switch in electricity from the average Finnish electricity
mix in the FAEM scenario to hydropower in the FHE scenario.

3.2. Sensitivity analysis

3.2.1. Sensitivity analysis of the FAEM scenario
Fig. 3 shows the effects of various assumptions related to theproduc-

tion of MP on the results and the trade-off between these assumptions.
For example, the choice to produce steam on-site rather than having it
supplied reduced the GWP and terrestrial acidification but increased
the impact on all other categories. An assumed increase in supply dis-
tances increased the GWPwith 17.8% despite the relatively small contri-
bution of transport in the initial results of the FAEM scenario. Another
increase in the results that could be found from the sensitivity analysis
was the increase in the environmental burden when the assumed effi-
ciency of the electrolyzer was lowered. The assumption that CO2

would be produced on-site rather than supplied reduced the overall im-
pact of MP production. The biggest change was visible when the utiliza-
tion of the main nutrients in the bioreactor changed from 99% to 85%.
This was especially true for marine eutrophication due to the 13 fold in-
crease in the amount of ammonia in thewastewater. Water scarcity de-
creased when wastewater was recycled. However, the results show
high uncertainty ranges, even after bootstrapping. Uncertainty ranges
for water scarcity between tests also overlapped. This limits the possi-
bility to make conclusions about the effect of different assumptions on
water scarcity.

3.2.2. Sensitivity analysis for the FHE scenario
The results for producing MP with various sources of energy and for

different production sites are shown in Fig. 3. Producing MP with 100%
hydropower generally resulted in the lowest environmental impact. For
water scarcity, however, the advantage of using hydropower was less
clear and uncertainties were high. MP production with Finnish nuclear
power had the lowest GWP but had the highest contribution to water
scarcity. This was the case even though Finland had a relatively low
water scarcity impact factor compared to i.e. Morocco, where the
water scarcity impact factor is high (WULCA, 2015). This can be ex-
plained by the fact that most water for MP production if produced in
Morocco was used indirectly during electricity generation, meaning
that the Moroccan local impact factor had a minor relevance. Only
20.3% of the contribution to water scarcity in the FHE-solar (Morocco)
test was caused by direct water use. However, uncertainty ranges for
water scarcity were generally large and the relative difference between
the various tests were relatively small in comparison. Therefore, conclu-
sions related to the impact of electricity source and production site on
the water scarcity need to be drawn with care.

The environmental impact of MP produced with solar energy was
mostly related to silicon production, which contributed approximately
23.2% to the total GWP of solar panel production. MP produced with
solar energy in Morocco had the highest impacts in many impact cate-
gories. However, in comparison to the FAEM scenario, all different vari-
eties of the FHE scenario generally resulted in lower environmental
impacts.

3.3. Comparison with alternative protein sources

Fig. 4 shows the results for the comparison between the production
of MP and the alternative protein sources for human consumption. The
results show that MP production had lower environmental impacts

compared to animal-based protein sources. The GWP from MP in the
FAEM scenario was 6.2% and 7.3% of that when producing the same
amount of protein from bovinemeat from beef herd and dairy herd, re-
spectively. For the plant-based proteins that were included, peas had a
lower GWP compared to MP produced in the FAEM scenario. The
mean acidification potential for peas was also lower.

Fig. 4 also presents the environmental impacts of protein sources for
feed including MP results for both the FAEM and FHE scenario (SI2 pro-
vides a more detailed overview including original data sources, includ-
ing the comparison to mycoprotein from a study by Smetana et al.
(2015)). The comparison shows that the production of MP in the
FAEM scenario results in a similar GWP as most other protein sources
for feed. However, only soybean meal and rapeseed cake had a lower
GWP when MP is produced with conditions in the FHE scenario. For
acidification, eutrophication, ozone depletion and land use, MP produc-
tion in both scenarios resulted in mostly lower scores compared to the
other protein sources whereas its production caused mostly more
water scarcity and required a higher energy demand.

4. Discussion

The environmental analysis performed in this studywas based on an
attributional LCA. However, an alternative option would have been to
perform a consequential LCA, which would be in accordance with the
ISO 14049 (Weidema, 2014). One argument for this would be that the
attributional system is often described as modeling a system that has
contributed to an environmental impact, whereas a consequential sys-
temwould examinewhat is expected to changewhen the product is pro-
duced (Weidema, 2014). As MP is not yet on the market, it would be
recommended for future research to analyze the environmental impacts
based on the consequential approach. The biggest expected difference
in results would relate to electricity consumption, as consequential
LCA would model the marginal electricity source rather than choosing
a preferred supplier, as in this study (Consequential-LCA, 2015).

As electricity consumption contributed most to the environmental
impact of MP production, the choice and availability of the electricity
sources will influence results. The electricity mix used in the FAEM sce-
nario consists of 17.9% renewable energy and 29.1% nuclear power
(Treyer, 2014). When producing MP in a country with an electricity
mix that relies more heavily on fossil fuels, the environmental impact
would likely be higher and vice versa. In addition, the high reliance on
industrial energy might also result in other sustainability conflicts. For
example, as different sectors rely increasingly on renewable energy
sources, issues such as a shortage of rare earth metals required for pro-
duction of solar panels or wind turbines may limit the scale of these
technologies (Smith Stegen, 2015).

However, MP production is more flexible than the most protein
sources as it does not require agricultural land. The low reliance on
land for MP production enables possibilities to use land for other pur-
poses, something that can also be referred to as land opportunity costs.
A potential future shift towards protein consumption from MP
(FAEM) instead of from dairy herd or bovine meat produced in Europe
will save about 15.9 (7.7–26.8) m2 and 35.6 (23.9–44.69) m2 land per
100 g of protein, respectively. This is a relevant difference, as land use
pressure increases with a growing world population and a potential in-
crease in biofuel production. This could also open up the possibility to
restore land to forest areas. The current most effective way of storing
carbon is through (re)plantation of forests across the earth (Bastin
et al., 2019).

Although this study has increased the number of impact categories
included in the LCA study ofMP production in comparison to previously
published articles, there are still impact categories that were excluded
from the assessment. One example is biodiversity. This is especially rel-
evant when comparing the impact of MP production to other protein
sources. For example, Torres-Miralles et al. (2019) have looked at the
HighNature Value (HNV) farming systemsusing semi-natural grassland
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Fig. 3.Results of the sensitivity analysis per 1 kgof product in boxplots andoutliers for the Finnish average energymix (FAEM) scenario and the Finnish hydropower energy (FHE) scenario,
with baseline results shown in circles for Finland (FI), Morocco (MR), and Iceland (IS).
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in Finland producing animal products. Although animal products from
the NHV generally have a higher GWP than that of MP products, the
HNV system does contribute to the maintenance of biodiversity within
Finland (Torres-Miralles et al., 2019). Since MP is an industrial product,
it would not have positive impact on biodiversity. On the other hand,
the production of MP requires a small amount of land, and land use
and land-use change have been shown to have severe effects on both
biodiversity as well as ecosystem services that land provides (Koellner
and Geyer, 2013). As biodiversity loss plays an important aspect when
looking at food production systems, further research is needed to com-
pare different cellular protein sources with agricultural protein sources
(Crenna et al., 2019).

A limitation to our results is the functional unit (100 g of protein)
that was used for comparing the results of MP with other protein
sources. Although comparing results in units of protein is a common
practice (Poore and Nemecek, 2018a; Smetana et al., 2019; Sillman
et al., 2020), there are limitations to this as the nutritional content of

different protein sources vary. Some studies have suggested the use of
functional units based on nutritional indexes that consider multiple nu-
trients (Saarinen et al., 2017; Sonesson et al., 2019). Another way to
compare food products would be to use a balancedmeals delivering ap-
proximately the same nutrition to the consumer (Virtanen et al., 2011).
We recommend for future research to take this into account.

About one third of the MC results of the AWAREmethod gave nega-
tive values, and in some cases, human carcinogenic toxicity results were
also negative. These values were ignored, as it is not logical for the pro-
duction process of MP to have negative results in these impact catego-
ries. Negative results for any impact category with MC can be
explained by the fact that the computational matrix of LCIs can result
in inverted operators where numbers flip from positive to negative or
vice versa due to random sampling (Henriksson et al., 2015). Addition-
ally, for water scarcity, the negative values were a result of how MC it-
erations are performed. Both water input and output are first
calculated independently and then subtracted from each other. This

Fig. 4. Comparison of the environmental impact results of MP production with other protein sources for food and feed production.
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sometimes leads to a situation where the sampled output is larger than
the sampled inputs. This is a known problem with water use
(Communication Within the Pré Sustainability LCA Discussion List With
the Topic “AWARE Water Scarcity, Negative Outcomes for Monte Carlo”,
2020).

In addition, Heijungs (2020) demonstrated that the application of
MC leads to overly precise estimated parameters. This is typical for
cases with a limited amount of samples, which is often the case in LCA
studies. This is also a limitation of this study as the results are based
on a single case study. Heijungs (2020) further states that when using
the popular pedigree approach, large-scale MC should not be used.
However, the paper also states that there are currently nomeans to ad-
dress these types of uncertainty in LCA. Despite our acknowledgement
and agreement with this limitation, it was decided to perform a MC
while not reporting central values due to the lack of an alternative
way to report uncertainties. Instead, ranges (with box-and-whisker
plots) of the MC iterations were reported to show the uncertainties of
the results. This was recommended by Henriksson et al. (2015) to ad-
dress the aforementioned inaccurate MC results. As Fig. 3 shows, with
the exception of human carcinogenic toxicity, all reported MC ranges
fell around the baseline results. To decrease the uncertainty and in-
crease the accuracy of the results, more LCA studies should be per-
formed in the future when more case studies of MP production are
available.

Our study has increased the current understanding of the impacts of
MP production gained from previous studies (Pikaar et al., 2018b;
Sillman et al., 2019, 2020). It has done so by accessing the environmen-
tal impacts on an empirical basis and by expanding the system bound-
aries previously used (Pikaar et al., 2018b; Sillman et al., 2019, 2020)
to include all nutrients required for the process and related transporta-
tion, CIP, and the impacts of wastewater treatment. This study also ex-
panded the environmental impact categories as MP production relies
heavily on electricity, arguably making the product more industrial
than agricultural. Additionally the impact of water use for MP produc-
tion was, for the first time, measured in terms of contribution to water
scarcity, as currently recommended (Boulay et al., 2018).

The biggest difference between the current study and the only pre-
viously published LCA study of MP available (Sillman et al., 2020) is
the electricity requirement. Whereas this study assumed an electricity
requirement of 18 kWh per 1 kg product produced, Sillman et al.
(2020) estimated 10.96 kWh per 1 kg product produced. This difference
could mostly be explained by the fact that the estimate of Sillman et al.
(2020) was based on literature values whereas this study was based on
empirical data. This could also partly explainwhy theGWP results of the
FAEM scenario in this study were two times larger per 100 g protein
than for the somewhat corresponding FImix scenario in the study by
Sillman et al. (2020). GWP results of the Base scenario in the study
from Sillman et al. (2020)were also smaller than the somewhat compa-
rable results of the FHE – solar (MR) sensitivity test of this study, but
larger than the GWP of the FHE scenario. This was despite the larger en-
ergy requirements and extended system boundaries of this study. This
could be explained by the fact that Sillman et al. (2020) assumed the
use of solar energy in the base scenario in Finland versus the use of hy-
dropower in the FHE scenario.We argue, thatwhenproducingMPusing
renewable energy, solar energy is not an optimal or logical choice due to
the high latitude of Finland (World bank group, 2020). In this study re-
newable energy sources were chosen on the basis of their potential at
the particular location, which is why solar energy was used only in
Morocco.

In addition, the results by Sillman et al. (2020) were based on the
impact methods by Gabi 6.0 which is different from the impact catego-
ries used in this studywhich also could explain partly someof the differ-
ences found between the studies. On the other hand, three different
impact categories were used in this study to calculate GWP for MP pro-
duction. Variances in results were within a limited range of
1.16–1.3 kg CO2-eq per 100 protein for the FAEM scenario. Another

difference between the studies was the assumed protein content.
Sillman et al. (2020) assumed a theoretical 60% protein content while
in this study a 65% protein content was used based on nutritional mea-
surements of the product. The comparison also shows a relatively large
contribution of nutrients to the total greenhouse gas (GHG) in the study
by Sillman et al. (2020), compared to the results here. Even though elec-
tricity consumption constitutes the largest contributor any impact cate-
gory in this study (between 26% and 90% depending on the scenario and
impact category, excluding CED), the contribution analysis has shown
that for some impact categories the above-mentioned inputs previously
excluded by Sillman et al. (2020) can be of relevance. For example, in
the FHE scenario wastewater treatment accounts for 8% of all impacts
on freshwater eutrophication whereas CIP is responsible for 17% of ma-
rine eutrophication.

As the production of MP is still in their infancy and the number of
studies in limited, more research on the topic is needed. The technology
ofMPproduction can vary per producer andhigher number of LCA stud-
ies of different system designs would improve the understanding of the
environmental impacts of the technology.

The results of this study showed that MP production has substan-
tially lower environmental impacts per unit of protein when compared
to other protein sources for human consumption. The study showed
that the environmental impact of MP production would be even lower
when renewable energy sources are used. On the other hand, when
compared to protein sources for feed production, trade-offs can be
found between the different protein options. MP production generally
causes lower environmental impact in terms of GWP (in the FHE sce-
nario), land use, and eutrophication and acidification potential, but
caused high water scarcity and a higher energy demand in comparison.
However, despite having a higher energy demand, MP production had a
low to average GWP. This could partly be explained by the use of renew-
able energy in the FHE scenario and the overall lower carbon emissions
per kWh for the Finnish electricity mix due to the relatively high reli-
ance on nuclear power and renewable energy (Statistics Finland,
2018). Another reason is that for agricultural products the industrial en-
ergy demand is not the main source of GHG emissions (Poore and
Nemecek, 2018a). With MP production agricultural emissions are
avoided, such as N2O emissions from soils and CH4 emissions from ru-
minant enteric fermentation. Caution has to be taken as impact catego-
ries differed between studies used in the comparison as in the original
table by Smetana et al. (2019), although units were harmonized. This
is unfortunately a common problem when comparing LCA studies. Fur-
ther research is needed to understand thewider environmental impacts
that may be caused as a consequence of replacing animal- or
plant-based protein sources with MP, such as changes in land use, en-
ergy generation, and diets. The total environmental impacts of MP pro-
duction also depend on how MP powder will be processed to food
products. Therefore, future research should also consider also post-
factory gate processes. Ultimately, the environmental benefits gained
through MP will be determined by how much and what type of prod-
ucts consumers choose to replace with MP.
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The global growing demand for chicken egg white protein pro-
duction results in many environmental impacts, such as land 
use, climate change, water scarcity, resource depletion and 

eutrophication1–4. Ovalbumin (OVA) is the most abundant protein 
in egg whites, consisting of over 50% of egg white proteins. It has 
been expressed in several host organisms, including Escherichia 
coli and Pichia pastoris, mainly in the lab5,6. Advances in cellular 
agriculture concepts have made it possible to produce recombi-
nant or cell-cultured OVA on a large enough scale to consider it 
an economically feasible option to chicken-based egg white pow-
der7. Using the filamentous ascomycete fungus Trichoderma reesei, 
a well-established and efficient production organism, cell-cultured 
OVA is now produced in a bioreactor at a pilot scale. The process 
is a form of acellular production where microorganisms are grown 
to produce an extracellular recombinant protein, in this case OVA 
(length: 386 amino acids)6,8. The coding gene in chickens (Gallus 
gallus domesticus) is SERPINB14 (https://www.uniprot.org/uniprot/
P01012). The final product of cell-based production is a protein 
powder that typically shows comparable functional properties to 
chicken egg white protein powder and can be used as a replacement 
in food formulations.

The purpose of this study was to assess the environmental impacts 
of cell-cultured OVA production in comparison to chicken-based 
egg white protein powder (hereafter referred to as egg white pow-
der, unless otherwise specified) production using an anticipatory 
life cycle assessment (LCA) method9,10. Using an LCA quantifies the 
environmental impact of T. reesei-produced OVA throughout all 

production steps and allows for the trade-off comparison between 
different impact categories11,12. The impacts of the production pro-
cess were estimated for that of an industrial level of 100,000 kg, using 
data from a production-scale pilot and a techno-economic assess-
ment (TEA) produced by VTT7. Uncertainties were calculated using 
Monte Carlo (MC) analysis, while the sensitivities of the results were 
estimated with various sensitivity analyses. Since production of T. 
reesei OVA (Tr-OVA) mainly relies on the provision of electricity 
and the carbon intensity of countries varies13, we also assess the pro-
duction of Tr-OVA in various countries. The flow chart in Fig. 1 
shows the assumed process steps, including the most notable inputs 
and outputs, and indicates the main focus of this study.

Results
Impact of Tr-OVA for different scenarios. Figure 2 shows the 
environmental impact of Tr-OVA production per kg of product 
and contribution per process for four scenarios—Finland (FI), 
Germany (DE), Poland (PL) and Finland using a low-carbon elec-
tricity mix (FI-LC) that includes both renewable energy sources 
and nuclear power (the Supplementary Data shows the full inputs 
of this model), which were chosen to reflect different carbon inten-
sity levels of country electricity mixes within the European Union13. 
The largest contributor for most impact categories comes from the 
input of glucose with a share of 2–94%, depending on the impact 
category and country. For land use, the contribution of glucose 
most clearly dominates (86–92%), illustrating the reliance of land 
use of agricultural products. In addition, for water scarcity —also 

Ovalbumin production using Trichoderma reesei 
culture and low-carbon energy could mitigate the 
environmental impacts of chicken-egg-derived 
ovalbumin
Natasha Järviö   1,2 ✉, Tuure Parviainen   3,4, Netta-Leena Maljanen   1,2, Yumi Kobayashi   2,4,  
Lauri Kujanpää   3, Dilek Ercili-Cura5, Christopher P. Landowski3, Toni Ryynänen   1,2, 
Emilia Nordlund   3 and Hanna L. Tuomisto   2,4,6

Ovalbumin (OVA) produced using the fungus Trichoderma reesei (Tr-OVA) could become a sustainable replacement for chicken 
egg white protein powder—a widely used ingredient in the food industry. Although the approach can generate OVA at pilot 
scale, the environmental impacts of industrial-scale production have not been explored. Here, we conducted an anticipatory 
life cycle assessment using data from a pilot study to compare the impacts of Tr-OVA production with an equivalent func-
tional unit of dried chicken egg white protein produced in Finland, Germany and Poland. Tr-OVA production reduced most 
agriculture-associated impacts, such as global warming and land use. Increased impacts were mostly related to industrial 
inputs, such as electricity production, but were also associated with glucose consumption. Switching to low-carbon energy 
sources could further reduce environmental impact, demonstrating the potential benefits of cellular agriculture over livestock 
agriculture for OVA production.
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considered a relevant impact category for agricultural products4— 
glucose had a contribution of 58–65%. The second largest contribu-
tor to water scarcity is the industrially produced salt mix (22–25%). 
However, the overall weight of the salt mix (0.85 kg kg−1 of product) 
was also 63% lower than the glucose inputs (2.34 kg kg−1 of product) 
per kg of Tr-OVA. Overall, the antifoaming agent had a minor con-
tribution. An exception to this was the contribution of the agent to 
stratospheric ozone depletion with a range of 81–84%, depending 
on the scenario.

Differences in country-specific results are partly explained by 
the different electricity mixes for each country, where the Finnish 
electricity mix is dominated by nuclear power (29.1%) and has a 
high contribution from renewable energy (17.9%)14, whereas Poland 
relies mostly on coal (72%)15. For example, the total contribution 
of electricity to the global warming potential (GWP) is 34% using 
the Polish mix but just 2% in the low-carbon scenario in Finland. 
The impacts of freshwater eutrophication and human carcinogenic 
and non-carcinogenic toxicity show a similar pattern. The results 
for ionizing radiation, on the other hand, are lowest in Poland. The 
results clearly show an overall reduction in environmental impact 
when producing Tr-OVA using the FI-LC. An exception to this 
is ionizing radiation, which is explained by the heavy reliance on 
nuclear power (55.5%) in this particular mix.

Comparison of Tr-OVA with egg white powder. The calculated  
P value with the dependent modified null hypothesis significance 
testing (NHST) led to the rejection of the null hypothesis for all 
alternatives and impact categories, meaning that the impact of 
Tr-OVA and egg white powder were significantly different from each 
other. (the Supplementary Data contains more information on the  

statistical test.) However, the P value of human carcinogenic toxicity 
for the comparison of the German alternatives was 0.046, meaning 
that the result would not have been significantly different at a lower α.

Figure 3 shows the deterministic results of our comparison 
between Tr-OVA produced in Germany and Poland and egg white 
powder produced in the respective countries per kg of protein. 
The results show that for most impact categories typically used for 
agricultural products (GWP, land use, water scarcity impact, ter-
restrial acidification and eutrophication potentials), Tr-OVA gener-
ally resulted in lower environmental impacts, with the exception of 
the impacts of freshwater eutrophication and water scarcity when 
produced in Poland. For example, the discernibility results showed 
that 91% and 97% of the MC runs of Tr-OVA production for fresh-
water eutrophication were larger than those of egg white powder 
for Germany and Poland, respectively. However, there is a trade-off; 
for some impact categories more typically burdened by indus-
trial products (ionizing radiation and human carcinogenic and 
non-carcinogenic toxicity), the impact of Tr-OVA was higher than 
that of egg white powder. An exception were the results for ionizing 
radiation in Poland, where only 49% of the MC runs for Tr-OVA 
were larger. This partial shift in the environmental burden from 
the typical agricultural impacts to those impacts typically caused 
by industry could be explained by the high reliance on industrial 
processes for Tr-OVA production on the one hand and the agricul-
tural inputs for egg production on the other. One example of the 
high reliance of industrial inputs for Tr-OVA production is the salt 
mix, which has a high overall contribution ranging from 0.3% to 
50.5% depending on the impact category. Most of the impact is 
almost completely attributed to the input of monopotassium phos-
phate (MKP), which makes up 41% of the total salt mix by weight. 

3-stage process of 
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Fig. 1 | Flow chart of the processes involved in the production of Tr-OVa. Flow diagram of the input and outputs related to the production of Tr-OVA 
where the focus of this study was on the modelling of the environmental impacts of the foreground data (indicated with yellow boxes) while existing LCA 
databases were used for the background processes (in grey). Processes excluded are indicated with a dotted line.

NaTuRE FOOD | www.nature.com/natfood



132 THE PLANET WE EAT 
NATASHA JÄRVIÖ

ArticlesNATure FOOd

However, MKP was modelled using sodium phosphate as a proxy 
due to limitations in data availability, making the results for the con-
tribution of the salt mix uncertain.

The substantially lower reliance on land for Tr-OVA production 
compared to egg white powder—the discernibility results showed 
that 100% of the MC runs resulted in lower land use requirements—
can be explained by the difference in the total required agricultural 
resources per kg of protein for each product. According to the World 
Food LCA Database (WFLDB), chickens require 2.4 kg of feed per 
kg of egg16. This means that the feed requirements per kg of protein 
are 27.5 kg, considering the amount of eggs required and the protein 
content of egg white produced by eggs. The production of Tr-OVA, 
on the other hand, requires only 2.54 kg of glucose per kg of pro-
tein, supplied with 2.04 kg of minerals and nitrogen. Therefore, the 
production of Tr-OVA has a greater agricultural material efficiency 
in the transformation process of agricultural products to egg white 
powder than when using chickens.

Although overall the results of the discernibility test showed a 
similar direction for the production of both alternatives in Germany 
and Poland, the outcome for water scarcity was very different. The 
results for Germany showed that 100% of the MC runs for egg 
white powder are larger than that of Tr-OVA, while in Poland 99% 
of the MC runs were larger for Tr-OVA per kg of protein. Most of 
this seems to be caused by a difference in the impact of feed pro-
duction on water scarcity between Poland and Germany. In the 

WFLDB model, feed inputs for German eggs are modelled using a 
generic European average mix where corn produced in Spain causes 
93.1% of the water scarcity impact for egg white powder. In the 
Polish model, chickens are fed mainly with grains originating from 
Poland. The water scarcity impact factors for Poland and Spain are 
very different, namely 1.962 and 77.7, respectively. Differences in 
these water scarcity impact factors explain most of the differences 
between the Polish and German egg white powder results. This dif-
ference in results highlights the need for more specific inputs for 
German egg production to make conclusions that are more reliable 
on the impact of Tr-OVA production versus egg white powder for 
water scarcity.

Although both the production of Tr-OVA and egg white powder 
require cleaning-in-place (CIP), Fig. 3 shows that the environmen-
tal impact of CIP for the former is 0.7–106 times that of the lat-
ter, depending on the impact category and country. This is partly 
explained by the use of bioreactors for Tr-OVA production that 
require regular cleaning.

Despite limitations in our model regarding the processing of 
eggs to egg white powder, our results show that the overall contribu-
tion of the processing of eggs is minor compared to egg production, 
with a total contribution of 0.1–22% for egg processing depending 
on the impact category and country. This means that the assump-
tions related to egg production are more important, as shown 
by the large difference between the impacts resulting from egg  
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production in Germany versus Poland. Limitations of the egg white 
powder model were mostly related to a lack of land use requirements 
for the processing of eggs to powder in the original study17 and the 
replacement of chlorodifluoromethane with ammonia to cool egg 
white powder production due to compliance with EU regulations18. 
This replacement lowered the overall GWP of egg white powder.

Sensitivity analyses of the Tr-OVA model results. The sensitiv-
ity of our results was tested by varying the most relevant inputs of 
the Finnish model, for example, by increasing 1 particular input by 
20%, changing the background dataset for glucose production or 
replacing natural gas in the drying step with electricity. Doing so 
allowed us to identify which changes in inputs resulted in most sub-
stantial variations of the results and to what extent. (Further back-
ground information on the changed parameters of the model can 
be found in Supplementary Table 2.) Figure 4 shows the results of 

the sensitivity analyses in kg per product. There was relatively lim-
ited variation in the results for most of the sensitivity tests, mean-
ing that most changes in input had a minimal effect on the overall 
estimated impact of Tr-OVA production. For example, despite the 
high contribution of electricity consumption to the overall environ-
mental impact of Tr-OVA production, an assumed 20% increase in 
electricity only increased the environmental impact by 0.2–10.9%, 
depending on the impact category. However, two of the sensitivity 
tests showed a larger effect on the results. The first was caused by a 
change in the background database used to model glucose produc-
tion from the WFLDB used in the original Finnish scenario to the 
ecoinvent database used in the sensitivity test named ‘FI–ecoinvent 
glucose’. Differences in the results were most noticeable for land 
use and terrestrial acidification. Although both datasets used corn 
starch as an input for glucose production, the assumed amounts 
differed noticeably with ecoinvent assuming 0.9 kg of corn starch 
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per kg of glucose, whereas WFLDB had an input of 3.48 kg of corn 
starch per kg of glucose. Nevertheless, the GWP of both systems 
were the same (1.31 kg CO2-eq kg−1 glucose).

The other notable sensitivity of the results was due to the assump-
tions relating to the potential use of the waste product, that is, genet-
ically modified T. reesei fungal biomass containing some 40–60% 

moisture, as a feed ingredient. This was analysed using multiple 
impact allocation methods. The genetically modified T. reesei fun-
gal biomass is not yet approved in the EU for feed use; it was thus 
considered as biowaste in the main scenarios at this stage. This is 
likely to change in the future since other by-products from the food 
and beverage industry are currently used as feed. This is the case, for 
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example, for brewer’s yeast which is a widely used by-product from 
the fermentation of beer.

The valorization of fungal biomass—as opposed to treating it 
as waste—reduced the overall environmental impact of Tr-OVA 
production in two ways: the reduction of waste for biowaste treat-
ment and the sharing of the burden among products. The results 
in Fig. 4 show how the choice of allocation based on a physi-
cal or an economic relationship led to different outcomes for the 
environmental impact of Tr-OVA production. The protein-based 
allocation method resulted in a 33.8–41.2% decrease in impacts, 
depending on the impact category, for Tr-OVA production com-
pared to a 5.5–15.9% decrease using a minimum product sales price 
(MPSP)-based allocation. The large decrease in the environmental 
impact of Tr-OVA production is explained by the relatively large 
amount of fungal mass that contains 45% protein and resulted in a 
33.8% allocation factor for a product that was originally considered 
as waste in the system. Therefore, we would argue that MPSP alloca-
tion should be the preferred allocation method over protein-based 
allocation. The main argument for this is that whether or not the 
waste fungal mass is used does not affect the decision to produce 
Tr-OVA or not. Rather, its use would be an additional benefit that 
could improve the environmental impact of Tr-OVA production by 
reducing the need for waste treatment. Therefore, this relationship 
is better reflected using the MPSP-based allocation as a basis since 
it results in a higher allocation factor for Tr-OVA (94.6% compared 
to 66.2% with protein-based allocation). This is also reflected in the 
preferred use of economic allocation for other agricultural waste 
products, such as manure19,20.

Discussion
The anticipatory LCA of cell-cultured egg white protein suggested 
that production of Tr-OVA as a host organism instead of chick-
ens could reduce environmental impacts across a range of different 
impact categories, such as GWP, land use, marine eutrophica-
tion, terrestrial acidification and stratospheric ozone depletion.  
Most impacts and trade-offs between impact categories could 
potentially be further reduced using a low-carbon energy  
source. Using alternative and possible waste sources, such as for-
estry waste, straw or cereal side streams, instead of corn-based glu-
cose, could potentially further reduce the environmental impact of 
Tr-OVA production7. However, because of data availability issues 
regarding the production process and an increased level of uncer-
tainty, this could not be explored within the scope of this article. 
For example, the use of lignocellulosic side streams requires addi-
tional processing steps, such as preprocessing by steam explosion 
or diluted acid hydrolysis, processes that are yet to be used in food 
production. Since glucose from corn starch was identified as one 
of the main contributors to the environmental impact of Tr-OVA 
in the present study, we encourage future research to explore  
these possibilities.

The uncertainty of the results is high since the process is not yet 
in industrial use. For example, the purification step of Tr-OVA has 
not yet been tested on a commercial scale. Other uncertainties were 
caused by the lack of life cycle inventory data on some inputs, such 
as MKP, and the lack of more accurate information on CIP require-
ments. We tried to capture most of the uncertainties and sensitivi-
ties of the model buy using high uncertainty ranges and a sensitivity 
analysis. This increased the robustness of the results across the 
different scenarios. Therefore, the results provided a good initial 
overview of the possible ranges within which the impact of Tr-OVA 
production would likely fall and how these related to the production 
of egg white powder. Additionally—although not peer-reviewed—
similar results for non-allocated GWP were found in a recent report 
by Perfect Day on the production of animal-free whey protein con-
taining 90% protein and using the same host organism, T. reesei, for 
its production process, in the USA.

Nonetheless, more attention to practical measurements in 
industrial production is required to improve the accuracy of the 
results from an anticipatory study to a commercial process LCA 
in the future. As identified by the sensitivity test, a relevant mod-
elling choice for future research would be the potential to use its 
by-products in the future for feed production or other added value 
applications. Additionally, we identified the impact of database 
choice and quality on the results for both Tr-OVA and egg white 
powder and recommend further development and accuracy of 
product systems in the different databases.

Methods
Goal and scope of the LCA study. The goal of this study was to estimate the 
environmental impacts of industrial-scale production of Tr-OVA. We applied an 
anticipatory LCA with a cradle-to-gate system boundary, based on current data 
gathered and estimated from a functioning production-scale pilot. Additionally, 
we used a TEA of Tr-OVA production performed to assess the process engineering 
requirements and device capabilities7. The TEA results were used to identify 
substantial steps in the production chain that would influence environmental load7.

The environmental analysis of Tr-OVA production was modelled using the 
SimaPro v.9.1.0.11 software package21 using the ecoinvent v.3.6 database. We  
used the ReCiPe 2016 midpoint (H) method to calculate the GWP (kg CO2-eq), 
land use (m2a crop eq), freshwater and marine eutrophication potential (kg P-eq  
and kg N-eq), terrestrial acidification (kg SO2-eq), ionizing radiation (kBq 
Co-60-eq), human carcinogenic and non-carcinogenic toxicity (kg 1.4-DCB) and 
stratospheric ozone depletion (kg CFC11-eq) (ref. 22). Water scarcity was assessed 
using the AWARE method23. Because the production of Tr-OVA is an industrial 
food manufacturing process that relies on electricity and natural gas, we included 
impact categories that are commonly used for both agricultural and industrial food 
manufacturing LCA studies17,24–27. Because of the industrial nature of the product, 
the life cycle industrial energy use was also assessed using the cumulative energy 
demand (CED) v.1.1 method by ecoinvent28.

Two functional units were used in this study. The first functional unit (FU) 
is expressed as 1 kg of Tr-OVA product with an 8% moisture content and a 92% 
protein content and serves to reflect the environmental impact of the product. The 
second FU used is that of 1 kg of protein. Since Tr-OVA is a drop-in substitute that 
can replace protein from egg white powder7, the second FU was used to compare 
the environmental impacts of both products. The cradle-to-gate system boundaries 
of this model start at the extraction of raw materials, includes the production of 
Tr-OVA and the cleaning of the facilities and ends at the factory gate. The flow 
chart of the system is shown in Fig. 1. The inoculum preparation phase, packaging 
and the materials and construction of facilities were excluded. However, land use 
for facilities was included in the model.

System description. The production of Tr-OVA started with the cultivation of 
fungal spores of engineered fungus T. reesei at 28 °C. The process then moved 
on to the preculture of the strain. This was a three-stage process where the fungi 
were fed with a continuous supply of water mixed with chemicals and nutrients 
for growth at 28 °C. After that, the mycelium was collected with a two-stage 
process performed at 28 °C and inoculated in a bioreactor where fermentation 
took place. During fermentation, the T. reesei fungus was supplied with glucose 
as the carbon source and other nutrients needed for growth in the fermentation 
process (Supplementary Table 1). Because the fermentation process produces heat, 
the fermented suspension needed to be cooled, sparged and mixed throughout 
the process. An assumed production of 100,000 kg Tr-OVA requires the use of 5 
bioreactors for cultivation at the 0.06, 0.6, 9, 63 and 125 m3 sizes. These bioreactors 
were cleaned using the CIP method after each fermentation cycle, which amounted 
to an estimated 50 cleaning operations per year.

After fermentation, the growth medium moved on to the filter press where the 
fungal biomass (solids) was separated from the produced proteins (liquid). This 
rejected fungal biomass left the system with a 58.3% moisture level. The filtrate 
with the OVA protein moved on to an ultrafiltration step, where 35.6 kg of water 
per kg of OVA product was removed as permeate. The retentate then entered the 
spray drying phase where it was heated and dried to generate an end product 
in powder format that was ready to be packed. The fermentation process was 
piloted at VTT during 2018 and 2019. The main fermentation parameters, such as 
feedstock and fermentation temperatures, were based on these test results. Energy 
consumption and mass flows were based on modelling7. To verify the model, the 
process was compared to the most similar existing processes, such as the  
NREL T. reesei process29.

Scenarios. Industrial fermentation processes use substantial amounts of energy; 
thus, we decided to create four different production scenarios based on different 
production locations. We compared Tr-OVA production using the average 
electricity mix of Finland, Germany and Poland. The locations were selected based 
on stepwise levels of carbon intensity per kWh. In Finland, the carbon intensity 
is 204 g C kWh−1, Germany 588 g C kWh−1 and Poland 911 g C kWh−1 (ref. 13). 
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In addition, we created a scenario using a low-carbon intensity electricity mix 
within Finland, which consisted of non-combustion-based energy technologies30. 
This electricity mix was modelled conserving the ratios of the low-carbon energy 
sources listed in the original Finnish electricity mix based on data provided in the 
ecoivent database. Low-carbon electricity has a carbon intensity of less than  
50 g C kWh−1 (ref. 30).

Water use was modelled by adjusting the ecoinvent tap water process for 
Europe without Switzerland. In Finland, 65% of tap water is extracted from 
groundwater sources31. We assumed that the remaining tap water was sourced from 
lakes32. Tap water in Poland mostly comes from surface water (75%) and 25% is 
from groundwater33. Groundwater is the most important water source in Germany, 
providing more than 69% of the delivered tap water, while 15% comes from surface 
water and the remaining 16% from other resources, such as artificially recharged 
groundwater34.

Data collection. The assessment of the environmental impact of Tr-OVA 
production at an industrial scale was based on the production-scale pilot and 
TEA produced by VTT7. Our LCA model was based on the input and output 
requirements of the pilot production and scaled to an industrial production 
level with an assumed 100,000 kg annual output. For more information on the 
model behind the assumed inputs and outputs required for industrial production 
level, we refer to the article and supporting information by Voutilainen et al.7. 
Supplementary Table 1 provides an overview of all inputs and outputs of the 
system per FU. Production of Tr-OVA at an industrial scale uses standard 
industrial fermentation and some downstream processing machinery used in 
large-scale production of single-cell proteins such as Quorn35. A major difference 
in downstream processing is the separation phase since OVA needs to be purified 
from the T. reesei biomass, other coproduced proteins and growth media.

Industrial requirements, including steam, electricity, chemicals and process 
water, were based on material and energy balance calculations. Due to limitations 
in the ecoinvent database, some of the nutrient inputs of the system were modelled 
using a proxy. These proxies were selected based on expert opinion of similarities 
of properties or functions. The use of natural gas in the spray dryer was modelled 
by adjusting the market for low-pressure natural gas from the ecoinvent database to 
the country-specific natural gas mix. Emissions from the combustion of natural gas 
were modelled according to the guidelines and emission factors published by the 
International Panel on Climate Change36,37.

Direct land use requirements were roughly estimated to be 1,000 m2 for all 
facilities based on the assumed production scale and were modelled as land 
occupation7. We assumed that the factory would be in operation for about 20 years, 
meaning that the transformation of 1,000 m2 were allocated over 2,000,000 kg of 
Tr-OVA (see Supplementary Table 1 for details).

Waste coming from the system was mainly in the form of fungus mass, with a 
40–60% moisture level and waste water from CIP. Treatment of the ultra-filtered 
waste water flow from the production process itself was excluded. Fungus mass 
was treated as biowaste in a biowaste treatment facility. The Supplementary 
Information provides details on the exact assumptions behind this part of the 
model.

The CIP requirements were estimated based on the water and detergent 
requirements for the typical cleaning of bioreactors used in industrial-scale food 
production. We assumed a CIP system that uses a partial reuse system where water 
and detergent requirements are reduced38. The electricity requirements, as well as 
the emissions related to the effluent of CIP, were estimated using the system by 
Eide et al.39 on CIP methods for dairies. This was decided on the basis that both the 
production of Tr-OVA and milk result in proteinaceous deposits.

Treatment of waste water from the CIP of the five bioreactors was modelled 
using the process of average waste water treatment in Europe without Switzerland 
from the ecoinvent database. Additionally, we conservatively assumed that treated 
water did not return to the original source and ecosystem of water abstraction. This 
is, for example, the case of waste water treated in the Helsinki area in Finland40. 
Additionally, this avoids potential negative numbers for water scarcity (this has 
to do with mathematics behind the model calculations and is further addressed 
in Järviö et al.41). Therefore, we adjusted the original ecoinvent process so that 
any water outputs (that is, representing the return of water to its original source) 
were set to zero. The Supplementary Information provides details on the exact 
assumptions behind this part of the model.

Comparison to egg white production. The results of the environmental impacts 
of Tr-OVA production were compared to that of egg white powder production. We 
used the inventory data published in an article by Tsai et al.17 on the production of 
egg yolk powder including CIP using continuous flow to remodel the emissions 
for egg white powder production. However, the moisture content of egg white 
is much higher than egg yolk, with 88% versus 48%, respectively42,43. Where Tsai 
et al.17 assumed 2.18 kg of liquid egg yolk per 1 kg of egg yolk powder, we assumed 
5 kg of liquid egg white to produce 1 kg of egg white powder with an 8% moisture 
content. Combining these data with the input of eggs as 1 kg of liquid egg white 
reported by Tsai et al.17 meant that the total amount of eggs needed per 1 kg of egg 
white powder was 9.15 kg. Because of the higher moisture content in liquid egg 
white than egg yolk, we also adjusted the input requirements for the drying step. 

We assumed that the process of drying egg white would be similar to that of drying 
Tr-OVA. Because the moisture content of the unfinished wet products before the 
drying step is quite similar—12% and 13.3% for liquid egg white and Tr-OVA 
production, respectively—we used the same inputs per kg of product. This meant 
that the kWh for drying liquid egg white was less than originally listed in the article 
by Tsai et al.17. However, since drying inputs are highly dependent on the assumed 
efficiency of the system, comparing the two products would be fairer if based on 
the same assumptions.

The emissions resulting from egg production and breaking, storage and 
pasteurization were allocated based on the mass of the output products, where 
egg white makes up 55% of all outputs. This was based on the assumption that 
eggshells and residue are a by-product of the system44. We used data for egg 
production from the WFLDB since it relies on the ecoinvent v.3.5 cut-off system in 
its background model. Egg production for several countries was given, including 
Germany and Poland but not Finland. Therefore, we decided to compare egg  
white powder and Tr-OVA for only these two countries. Furthermore, we assumed 
that eggs travel about 100 km by truck from the farm to the egg white production 
plant. See Supplementary Data for the full model based on the inventory data  
of Tsai et al.17.

We validated our model on egg white powder production by constructing a 
model for egg yolk powder production using the inventory data given in the article 
by Tsai et al.17. The results of this egg yolk powder model were compared to the 
results reported by the authors. The GWP results for our model were initially much 
higher. By far, most of the GWP was caused by the use of chlorodifluoromethane, 
which Tsai et al.17 reported to be 0.079 kg per 1 kg of egg yolk powder. Because of 
the discrepancy in results and because chlorodifluoromethane cannot be used as 
a refrigerant within European Union countries due to its high ozone depletion 
potential and GWP18, we decided to replace chlorodifluoromethane with ammonia 
in our egg white powder production model. Ammonia is a natural refrigerant that 
can be used for cooling in commercial refrigeration45.

One major difference between the ecoinvent and WFLDB databases is that 
the latter includes the emissions from land use change. Since this can be a major 
source of emission contribution to the total GWP of food products1,46, we decided 
to model glucose in the Tr-OVA production model using the WFLDB. This was to 
avoid unaligned system boundaries of the two product systems and a subsequent 
underestimation of the GWP of glucose used in Tr-OVA production. However, 
glucose in the WFLDB was modelled ‘at plant’. To transform this into an ‘at market’ 
product, we included the estimated transportation distances used in the ecoinvent 
database.

Both products were compared based on the protein content using the second 
FU since the functionality of the end product is determined by the protein. For 
example, proteins are used to add texture in a cake-making application. Egg white 
powder contains 79.8% protein47.

Uncertainty analysis and statistical tests. The environmental assessment 
of Tr-OVA production was based on the estimated inputs and outputs for 
Tr-OVA production at an industrial scale, using gathered and estimated data of 
Tr-OVA production at a pilot scale. Data uncertainties were high; therefore, the 
uncertainties of the results were analysed using an MC analysis modelled using 
the SimaPro v.9.1.0.11 software. The result of an MC analysis is a probability 
distribution within which the results are likely to fall, based on calculating 
the environmental impact repetitively48. It is a commonly used tool to capture 
uncertainty within LCA studies49. To perform the MC analysis, uncertainties 
were captured using a uniform distribution of inputs with a ±20% margin for 
the production of Tr-OVA (SI2 provides more details). Since the article by Tsai 
et al.17 did not provide uncertainty ranges, we applied the pedigree method to 
add uncertainties to the egg white powder production. The MC simulation was 
performed in SimaPro using a limited number of 100 iterations49. We used a 
seed value of zero for all MC simulations to simulate dependent sampling. Doing 
so allowed us to account for common uncertainties between the Tr-OVA and 
chicken egg-based egg white powder and enabled a statistical comparison of the 
results50. In addition, we applied the parametric bootstrap method to handle the 
large uncertainty range of water scarcity that results from the incorrect estimation 
of probability distributions of the AWARE characterization factors51. We used 
Python 3.0 to run the bootstrap method, running 1,000 simulations with a sample 
size of 300 allowing for replacements. Any possible negative values that might 
naturally result from the MC analysis but were not sensible were ignored during 
the analysis (discussed in Järviö et al.41). Both a discernibility test50 and dependent 
modified NHST52 were used to explore differences in impacts between Tr-OVA and 
chicken-based egg white powder and confirm which alternative was significantly 
different. Dependent modified NHST testing was performed using a significance 
level α of 0.05 and a difference threshold δ0 of 0.2. The null hypothesis was H0: 
Si,j,k ≤ δ0, where S refers to the standardized difference of means, i and j refer to the 
different alternatives and k refers to the impact. The P value was calculated using 
a one-sided (right) cumulative distribution function50,52. Both statistical tests were 
performed on a per kg of protein basis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
To the best of our ability, we have provided the data supporting the findings in this 
paper and its Supplementary Information files. Any additional data, particularly 
related to adjustments made in the background processes of our model, are 
available on request from the corresponding author.

Code availability
The code that was used to generate results for this study is freely available on 
request from the corresponding author.
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Ecological, evolutionary & environmental sciences study design
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Study description This study performed a participatory life cycle assessment (LCA) on the production of ovalbumin using Trichoderma reesei produced 
in Finland, Germany, Poland and Finland using a low carbon electricity mix. Data on the inputs and environmental outputs of the 
production were modeled in Simapro (a LCA software). Uncertainties were calptured using a Monte Carlo analysis (100 runs) while 
sensitivity of the results were tested with various sensitivity tests. 

Research sample The research sample consisted out of a dataset on the inputs and outputs for the pilot-scale production of ovalbumin using 
Trichoderma reesei coming from VTT. This sample was chosen as it is currently the only available dataset we have on this.

Sampling strategy Not applicable. We used the data that was available. As production will increase (and perhaps more companies will produce the 
product), more research can be done on the topic thereby increasing the robustness of the findings.

Data collection Data was collected from VTT. Data was recorded and collected by Lauri Kujanpää, Christopher Landowski, Tuure Parviainen in VTT. 
Data was recorded / modeled in the Simapro software by Natasha Järviö.

Timing and spatial scale Data was collected during 2017-2021 for production on a pilot scale.

Data exclusions No data exclusions.

Reproducibility Rerunning of the calculations in Simapro were performed to confirm that the same results are given. A seed value was used in the 
Monte Carlo analysis to be able to reproduce the same value each time and create an artifical dependency necessary for preforming 
statistical analyses.

Randomization Not applicable as we did not work with organisms/participants in this particular study.

Blinding Not relevant to the study as we were not handling living organisms or participants.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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