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Abstract: Background: Autistic traits are commonly viewed as dimensional in nature, and as contin-
uously distributed in the general population. In this respect, the identification of predictive values of
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markers such as subtle autism-related alterations in brain morphology for parameter values of autistic
traits could increase our understanding of this dimensional occasion. However, currently, very little is
known about how these traits correspond to alterations in brain morphology in typically developing
individuals, particularly during a time period where changes due to brain development processes
do not provide a bias. Therefore, in the present study, we analyzed brain volume, cortical thickness
(CT) and surface area (SA) in a cohort of 14–15-year-old adolescents (N = 285, female: N = 162) and
tested their predictive value for autistic traits, assessed with the social responsiveness scale (SRS)
two years later at the age of 16–17 years, using a regression-based approach. We found that autistic
traits were significantly predicted by volumetric changes in the amygdala (r = 0.181), cerebellum
(r = 0.128) and hippocampus (r = −0.181, r = −0.203), both in boys and girls. Moreover, the CT of
the superior frontal region was negatively correlated (r = −0.144) with SRS scores. Furthermore,
we observed a significant association between the SRS total score and smaller left putamen volume,
specifically in boys (r = −0.217), but not in girls. Our findings suggest that neural correlates of autistic
traits also seem to lie on a continuum in the general population, are determined by limbic–striatal
neuroanatomical brain areas, and are partly dependent on sex. As we imaged adolescents from a large
population-based cohort within a small age range, these data may help to increase the understanding
of autistic-like occasions in otherwise typically developing individuals.

Keywords: adolescents; autism spectrum disorder; autistic traits; social responsiveness; structural
imaging

1. Introduction

Autistic traits are defined as mild, subclinical deficits in social interaction and com-
munication, as well as restricted behaviors, interests and activities that are continuously
distributed in the general population. There is convincing evidence that these traits lie on a
continuum, with autism spectrum disorder (ASD) as the extreme end of a normal distribu-
tion of quantitative characteristics [1]. Like ASD itself, such autistic traits suggest a high
heritability, ranging from 36–87% (e.g., [2]). At the same time, findings from neurobiological
research strongly suggest structural changes in the brain, including changes in the cere-
bellum, hippocampus, amygdala or caudate, underlie the characteristic symptomatology
in ASD (e.g., [3,4]). However, results are controversial. The largest study on ASD-specific
brain changes in individuals with ASD vs. typically developed (TD) controls (n = 1571),
Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) ASD [3], showed
ASD-related increased thickness in the frontal cortex and smaller subcortical volumes, e.g.,
of the amygdala and the putamen, with a clear developmental peak round adolescence [3].
Moreover, one also needs to consider whether findings provide association patterns for
one time point or prediction analyses from brain structure to symptoms and/or vice versa.
Longitudinal studies on brain development in ASD suggest that brain morphological dif-
ferences between individuals with ASD and TD controls show a high variability across
different developmental periods, with early brain overgrowth in childhood being followed
by attenuated or slowed growth in later childhood and significant volume decrease during
adolescence and adulthood [5].

Findings also differ depending on the different magnetic resonance imaging (MRI)
techniques for brain morphology. Sussman and co-workers [4] comprehensively inves-
tigated these neuroanatomical parameters in a cohort of children and adolescents with
ASD (n = 72) aged between 4–18 years. They found widespread changes in the cortical,
subcortical and cerebellar regions in participants with ASD as compared to TD controls,
which is in accordance with the literature on brain growth trajectories in ASD (e.g., [6]).
Additionally, they observed a lack of age appropriate cortical thinning, specifically in the
orbitofrontal cortex and the left posterior cingulate, together with an age-independent
decreased volume of the left hippocampus in the ASD groups [4].
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Interestingly, attenuated abnormalities in brain structure have not only been observed
in clinical populations of ASD, but also in non-affected siblings of individuals with ASD
(e.g., [7]). In support of this observation, brain morphological correlates of ASD should also
be present to a lesser degree in the general population. The investigation of neurobiological
characteristics in relation to autistic traits in populations of TD individuals therefore
represents a valid and promising approach for our understanding of endophenotypes
of the condition. In this respect, prediction analyses on the effects of brain structure on
the parameter values of autistic traits, and during a time period where changes due to
brain development processes do not provide a bias, might be most informative. However,
to date, only a few studies have investigated the association of brain morphology and
autistic traits in population-based samples, and mainly in a cross-sectional fashion. In
typically developed adults, smaller volumes in the inferior parietal lobule [8] and insula [9]
in relation to ASD-symptomatology have been reported. Wallace et al. [10] found increased
cortical thickness (CT) in the bilateral middle and superior temporal region to correlate
with autistic traits in children and young adults, and Tu et al. [11] reported reduced CT in
the insula and the right superior temporal gyrus in a sample of healthy male adolescents.
Blanken and co-workers [12] examined a large sample of typically developing children
between 6–10 years, and found associations between autistic traits and a widespread
decrease of cortical gyrification. When children with the highest scores of autistic traits
were excluded from the analysis, a strong linear relationship remained between autistic
symptoms and the left temporal and precuneus area of the left hemisphere. Thus, although
there is evidence on associations between autistic traits and brain structure in healthy
populations, observed relationships are also somewhat inconsistent; some studies did not
find any significant associations between autistic traits and brain morphometry (e.g., [13]),
or do not converge with reports from studies in ASD (e.g., [14]). These inconsistencies
could have several reasons: (a) the assessment of autistic traits, which range from means
of the Social Responsiveness Scale (SRS, [15]) to the Autism Quotient (AQ, [16]); (b) the
study design, which was, so far, of a cross-sectional nature, and thus, did not provide any
direct evidence on how brain morphology confers risk to ASD-related traits during specific
developmental periods; and (c) the age range, which was rather wide in previous studies,
between 6–16 years, and where general morphological differences during development
could have co-affected the results [14].

Main Aim of the Study

Together, autistic traits are commonly viewed as dimensional in nature, and as contin-
uously distributed in the general population. However, currently, very little is known about
how these traits correspond to alterations in brain morphology in typically developing
individuals, particularly during a time period where changes due to brain development
processes do not provide a bias in terms of predictive effects. Therefore, in the present
study, we aimed to analyze data from a longitudinal study with a very well characterized,
large, age-homogenous sample of typically developed adolescents. We hypothesized that
distributions in brain structure are significant predictors of the distribution of autistic traits
in TD. For brain morphology, we used measures of cortical volume (CV) and CT at the
age of 14–15 years, and used SRS as the outcome measure two years later at the age of
16–17 years. While CV does not reflect cortical organization [17], CT, as a parameter of CV,
provides rather sufficient information on the organizational processes of cortical neurons.
Since previous studies found substantial sex differences regarding brain morphology in a
sample of individuals with ASD (e.g., [4]), we also tested for possible differences between
boys and girls in our TD sample.
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2. Materials and Methods
2.1. Participants

We used data from healthy adolescents (N = 285; see Table 1 for sample) of the longi-
tudinal Imaging Genetics (IMAGEN) study who were assessed at the age of 14–15 years,
and followed-up two years later at the age of 16–17 years.

Table 1. Overview on demographic, intelligence and autistic trait measures.

Total (N = 285)
M (SD), Range

Male (N = 123)
M (SD), Range

Female (N = 162)
M (SD), Range

Significance
Male vs. Female

WISC Verbal
Comprehension 110.21 (13.56) 110.18 (14.93) 110.22 (14.98) n.s.

WISC Reasoning 107.33 (14.19) 108.64 (14.22) 106.83 (15.13) n.s.

SRS social
communication 17.25 (4.15), 5–39 16.97 (4.31), 10–36 17.46 (4.03), 5–39 n.s.

SRS social awareness 9.33 (2.40), 1–15 9.01 (2.04), 4–15 9.57 (2.38), 1–15 0.049

SRS social cognition 7.67 (2.54), 0–17 7.46 (2.36), 3–17 7.83 (2.67), 0–17

SRS social motivation 7.15 (2.62), 0–19 7.37 (2.73), 2–19 6.99 (2.53), 0–17 n.s.

SRS subscale
mannerisms 2.87 (3.5), 0–20 2.96 (2.74), 0–19 2.83 (3.36), 0–20 n.s.

SRS total score 44.21 (11.10), 7–103 43.76 (11.04), 24–98 44.55 (11.16), 7–103 n.s.

WISC = Wechsler Intelligence Scale, SRS = Social Responsiveness Scale; n.s. = not significant.

IMAGEN is a large European multicenter study that aimed at investigating how
biological, psychological and environmental factors during adolescence may influence
brain development and mental health. Using brain imaging and genetics, the project will
help develop prevention strategies and improved therapies for mental health disorders in
the future. Study participation included ‘home assessments’, which comprised cognitive
and neuropsychological tests through a web-based coordinated system (Psytools, see
below), and 1–2 study centre visits, where adolescents underwent brain imaging, blood
sampling and diagnostic interviews, and parents were also interviewed and filled out some
questionnaires, with both questions that targeted themselves as well as questions about
their children.

Adolescents were recruited from the general public via school visits, flyers and reg-
istration offices in Germany, Ireland, France and the United Kingdom. Exclusion criteria
were serious medical conditions, the presence of any mental disorder as defined by the
Development and Well-Being Assessment (DAWBA; [18]), based on clinical ratings of the
interview data, the presence of ASD diagnosis, and contra indications for MRI exams
including pregnancy, metal parts in the body, and previous head trauma with unconscious-
ness. We did not obtain any information on medication status nor on whether participants
had siblings with an attention deficit hyperactivity disorder (ADHD) diagnosis. The study
was approved by the local ethics committees and adhered to the Declaration of Helsinki.
Written informed consent from both the adolescents and their parents was obtained after
complete description of the study.

2.2. Screening for Intelligence

We estimated general intelligence using Block Design, Similarities, Vocabulary and
Matrix Reasoning of the Wechsler Intelligence Scale for Children, Version IV (WISC-
IV; [19]). Two indices were calculated from the WISC subtests—on the one hand, the
index Verbal Comprehension derived from the subtests Vocabulary and Similarities, on the
other hand, the index Perceptual Reasoning derived from the subtests Block Design and
Matrix Reasoning.
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2.3. Autistic Traits: Social Responsiveness Scale

To measure autistic traits, we used the Social Responsiveness Scale (SRS; see [15]),
a well-validated parent/teacher-report to assess deficits in reciprocal social behavior as
a continuous variable in 4- to 18-years-olds. For the present study, parents filled out the
questionnaire and we used the total SRS score, representing an index of impairment in
social communication and interaction, which could be computed. The French SRS data
were excluded from the analysis, because there is no validation of the French SRS version
available. For the assessment of the SRS, we used the behavioural characterization Psytools
software (Delosis Ltd., London, UK) via its internet-based platform.

2.4. Magnetic Resonance Imaging

Brain data were obtained using a 3T whole body MRI system, equipped with a
standard 12-channel head coil, made by several manufacturers (Siemens, Philips, General
Electric, Bruker) at the eight IMAGEN assessment sites (Paris, London, Dublin, Nottingham,
Dresden, Berlin, Mannheim and Hamburg). We applied image-acquisition techniques
using a set of parameters compatible with all scanners that were implemented to ensure
a comparison of the MRI results. Structural T1-weighted images were acquired using a
3D magnetization prepared gradient echo sequence (MPRAGE) based on the Alzheimer‘s
Disease Neuroimaging Initiative (ADNI) protocol (repetition time (TR) = 6.8 ms and echo
time (TE) = 3.2 ms; flip angle = 8◦ 256 × 256 × 160 matrix; voxel size: 1.1 × 1.1 × 1.1 mm)
covering the whole brain.

Analyses were done centrally at one location, where data for the central database were
managed and processed, and in addition, segmentation was also manually controlled as
part of the central quality control procedures. We analyzed the CV and CT of designated
regions of interest (ROIs) using the FreeSurfer software. This is a set of automated tools
for reconstruction of brain cortical surface [20], which included cortical and subcortical
volumetric segmentation, cortical grey matter and white matter surface reconstruction [20]
and the estimation of total intracranial volume (ICV) [21] applying Talairach transformation,
intensity normalization and removal of non-brain tissue. We used the structural images
to segment white and gray matter and estimated the gray–white matter interface, which
served as reference for a deformable surface algorithm searching for the pial surface.
Deformable procedures included surface inflation, creation of a variety of surface-based
data (maps of curvature and sulcal depth) and registration to a spherical atlas, which is
based on individual cortical folding patterns to match cortical geometry across individuals.
To produce representations of cortical thickness, both intensity and continuity information
from the entire three dimensional MR volume in segmentation and deformation procedures
were used, and a calculation of the closest distance from the gray–white boundary to the
gray–CSF boundary at each vertex on the tessellated surface was applied [22]. This was
controlled for in a visual inspection (N = 8 individuals were excluded for the final analyses).

Cortical thickness was estimated based on the difference between the position of
equivalent vertices in the pial surface and grey–white matter interface, while differences
between the depth of gyri and sulci were normalized and the surface of the grey–white
matter border was inflated. We morphed and reconstructed the brain of each adolescent to
an average spherical surface and smoothed the data on the level of the sphere (Gaussian
smoothing kernel with a full-width half maximum of 15 mm) to obtain difference maps
of CT.

We performed analyses for the following individual regions of interest (ROIs) accord-
ing to previous studies (e.g., [4,13]): amygdala, caudate nucleus, hippocampus, globus
pallidum, nucleus accumbens, putamen, cerebellum and thalamus for brain volume, and
frontal regions for cortical thickness.

2.5. Statistical Analyses

To explore the prediction of social responsiveness (16–17 years) by cortical volumes
(14–15 years) of our ROIs, we performed regression analysis in the whole group, as well
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as separately for boys and girls, given the lack of gender norms for the SRS and general
differences in brain volume between boys and girls. Moreover, to test whether associations
are specific for a high-risk group, we performed an add-on analysis, where individuals with
SRS scores above 50 (N = 29) were excluded from the regression analysis. This was based
on Lyall et al. [23], where clinically ‘relevant’ scores were found at a lower level, around 50,
on the SRS. We applied α = 0.05 and Bonferroni correction, using the Statistical Package
of Social Sciences (IBM SPSS Statistics for Window, Version 20.0, BM Corp, Armonk, NY,
USA). The effect of the MRI site was controlled by adding the study center as a nuisance
covariate in the analysis, and we also controlled for total intracranial volume.

3. Results
3.1. Sample Characteristics

We found significant differences between boys and girls regarding the social aware-
ness subscale, but not for social cognition, social communication, social motivation and
mannerism subscales, nor for the total SRS score (Table 1). An overview on the structural
data can be found in Table 2.

Table 2. Overview on the structural data.

Total (N = 285)
M (SD)

Male (N = 123)
M (SD)

Female (N = 162)
M (SD)

Significance
Male vs. Female

Brain volume

Amygdala Left: 1698.96 (220.34),
Right: 1775.37 (252.99)

Left: 1781.61 (208.57),
Right: 1874.36 (237.27)

Left: 1636.08 (208.50),
Right: 1700.06 (238.83)

Left: <0.001,
Right: <0.001

Caudate nucleus Left: 4100.49 (492.75),
Right: 4185.45 (513.76)

Left: 4246.48 (466.01),
Right: 4328.68 (505.21)

Left: 3989.44 (484.81),
Right: 4076.48 (494.51)

Left: <0.001,
Right: <0.001

Hippocampus Left: 4272.93 (446.6),
Right: 4336.75 (422.48)

Left: 4508.88 (392.11),
Right: 4543.96 (386.77)

Left: 4093.44 (400.44),
Right: 4179.12 (379.04)

Left: <0.001,
Right: <0.001

Global pallidum Left: 1775.37 (252.99),
Right: 1811.54 (200.94)

Left: 2043.52 (256.73),
Right: 1903.57 (178.84)

Left: 1904.02 (251.77),
Right: 1741.53 (188.64)

Left: <0.001,
Right: <0.001

Nucleus accumbens Left: 676.10 (118.08),
Right: 758.87 (113.16)

Left: 716.55 (112.38),
Right: 802.04 (104.68)

Left: 645.33 (113.24),
Right: 726.04 (108.51)

Left: <0.001,
Right: <0.001

Putamen Left: 6621.11 (687.93),
Right: 6341.24 (663.80)

Left: 7044.90 (607.55),
Right: 6732.77 (610.04)

Left: 6298.72 (559.63),
Right: 6043.39 (537.35)

Left: <0.001,
Right: <0.001

Cerebellum Left: 58,435.23 (5751.47),
Right: 59,223.91 (5691.18)

Left: 61,948.07 (4691.11),
Right: 62,572.19 (4955.44)

Left: 55,762.88 (5005.98),
Right: 56,676.75 (4840.20)

Left: <0.001,
Right: <0.001

Thalamus Left: 7353.33 (727.58),
Right: 7394.39 (723.82)

Left: 7731.56 (688.02),
Right: 7773.15 (667.40)

Left: 7065.60 (618.35),
Right: 7106.26 (627.22)

Left: <0.001,
Right: <0.001

Cortical thickness

Caudal middle frontal Left: 2.67 (0.20),
Right: 2.66 (0.18)

Left: 2.67 (0.22),
Right: 2.66 (0.19)

Left: 2.68 (0.19),
Right: 2.66 (0.16)

Left: n.s.,
Right: n.s.

Lateral orbital frontal Left: 2.83 (0.19),
Right: 2.82 (0.20)

Left: 2.82 (0.19),
Right: 2.81 (0.21)

Left: 2.83 (0.19),
Right: 2.82 (0.20)

Left: n.s.,
Right: n.s.

Medial orbital frontal Left: 2.66 (0.18),
Right: 2.62 (0.21)

Left: 2.66 (0.18),
Right: 2.63 (0.21)

Left: 2.66 (0.19),
Right: 2.62 (0.22)

Left: n.s.,
Right: n.s.

Rostral middle frontal Left: 2.46 (0.15),
Right: 2.45 (0.17)

Left: 2.46 (0.16),
Right: 2.45 (0.18)

Left: 2.46 (0.14),
Right: 2.45 (0.16)

Left: n.s.,
Right: n.s.

Superior frontal Left: 2.93 (0.19),
Right: 2.90 (0.18)

Left: 2.91 (0.20),
Right: 2.89 (0.19)

Left: 2.95 (0.18),
Right: 2.91 (0.17)

Left: n.s.,
Right: n.s.

n.s. = not significant.



Brain Sci. 2022, 12, 1187 7 of 14

3.2. Subcortical Brain Volume and the Prediction of Social Responsiveness

We found significant associations between the SRS total score and larger right amyg-
dala (r = 0.181, p = 0.002, explained variance (EV) = 3.7%; Figure 1a), larger right cerebellum
(r = 0.128, p = 0.029, EV = 2.0%; Figure 1b) and smaller left and right hippocampus volumes
(left: r = −0.181, p = 0.002, EV = 1.4%; right: r = −0.203, p = 0.001, EV = 2.5%; Figure 1c). In
total, 11.7% of the variance was explained by the volume of these brain regions (p < 0.001;
right amygdala: t = 4.273, p < 0.001; right cerebellum: t = 2.654, p = 0.008; left hippocampus:
t = −1.949, p = 0.052; right hippocampus: t = −2.479, p = 0.014). Except for the hippocam-
pus, these associations did not persist when excluding adolescents with an SRS total score
higher than 50 (remaining sample: N = 259).
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Moreover, we observed a significant association between the SRS total score and
smaller left putamen volume in boys (r = −0.217, p = 0.016, EV = 4.4%; Figure 2), but not
in girls. This finding persists also when excluding the group with high SRS scores, and
expands to the right putamen (r = −0.242, p = 0.013, EV = 6.3%; Figure 2).

3.3. Cortical Thickness and the Prediction of Social Responsiveness

For CT, we found a significant negative correlation between the SRS total scale and the
left superior frontal region (r = −0.141, p = 0.017, EV = 2.1%), which persists after exclusion
of the sample with higher SRS scores.
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4. Discussion

In the present study, we examined whether brain morphology correlates of autistic
traits are present along a continuum in a population of typically developing adolescents,
testing the predictive impact of CV and CT on autistic traits. Volumes of the cerebellum,
amygdala and hippocampus at age 14–15 years were associated with autistic symptoms, as
measured with the SRS 2 years later. Cerebellum and amygdala volumes were positively
associated, and hippocampal volumes negatively associated, with SRS scores. CT of the
superior frontal region was negatively associated with autistic traits 2 years later, while no
predictive association was found between SA with SRS scores.

Since our aim was to specifically investigate a large TD, non-ASD sample, from the
general population, we need to consider the SRS mean and distribution in our sample. The
mean SRS total score was below a critical cut-off in terms of autism-related symptomatology.
However, there is also a good range of values within the sample. We still need to note that
speaking about autistic traits, therefore, does not refer to highly noticeable clinical problems.

4.1. Volumetric Findings

In our population of typically developing adolescents, sub threshold deficits in interac-
tion and communication were preceded by brain morphological characteristics in some of
those brain areas, which are discussed as functionally related to abilities that are impaired
in ASD. This applies to limbic brain regions such as the amygdala–hippocampal complex
and the cerebellum, as well as the putamen.

In order to explore whether these associations in our study were mainly driven by
participants with higher than average levels of autistic traits, we excluded adolescents with
social responsiveness scores >50. The correlation between brain volume and autistic traits



Brain Sci. 2022, 12, 1187 9 of 14

did not hold for the right amygdala and the cerebellum, but remained significant in the
left and right hippocampus. This reveals a robust correspondence of autistic traits with
reduced brain volume in an area related to social processing, contextual embedding and
memory, and spatial learning. Anderson et al. [24] delineated in an extensive review on
electrophysiological animal experiments the essential role of the hippocampus for behaviors
associated with contextual novelty; one might speculate that individuals with low novelty
seeking behavior, as is observed in ASD (e.g., [25]), will possibly show a decrease of volume
through less functional demand on that structure. This might be due to a decline in the
number of synaptic receptors [26], an observation that stems from findings for the stratum
radiatum of a mouse model of ASD [26]. Our results are in line with the findings from
Sussmann and co-workers [4] in a large group of adolescents between 12–18 years with
ASD (n = 72), who had decreased hippocampal volumes in comparison to age-matched
controls (n = 138).

However, as with other brain areas, previous volumetric findings regarding the hip-
pocampus in ASD showed an inconsistent pattern—both larger (e.g., [27]) and lower
(e.g., [4]) volumes have been reported in individuals with ASD compared to typically de-
veloping controls, and some studies also found no volumetric difference [28]. A hypothesis
explaining the enlargement of the hippocampus–amygdala complex in ASD (e.g., [27])
suggests an increase of hippocampal volume in response to heightened amygdala activity
due to chronic stress in ASD, as the hippocampus exerts a regulatory effect on the amygdala
via multiple reciprocal connections.

Both these theories seem logical, while reflecting characteristic behavioral variations in
ASD, and need further verification. The so far inconsistent findings may possibly be related
to the heterogeneity of the investigated samples, including the developmental effects. As
our analysis was performed in typically developing adolescents within a very small age
range are, the results significantly contribute to the existing literature by reducing the
effects of age and developmental stage.

At the same time, we observed positive associations between autistic traits and cere-
bellar volume. The cerebellum is a crucial structure for the initial stages of learning and an
important node in the cortico-cerebello-thalamo-cortical circuit. The latter is considered
to play a key role in the pathophysiology of autism; early disruptions in these circuits
may impact the development of language, social cognition, attention and literacy acquisi-
tion [29]. This might first inspire assumptions regarding a reduction of cerebellar volumes
in ASD. However, very recent findings by Pote et al. [30] point towards significantly larger
cerebellar volumes in high-risk infants (later-born siblings of children with ASD) at 4–6
months. The enlargement was related to more repetitive behaviors, also a core domain in
ASD at age 36 months, which is in line with our findings on increased cerebellar volumes
and higher autistic traits. As both studies were done in non-clinical samples and at critical
developmental stages, findings suggest that volumetric changes can function as predictive
biomarkers for autistic traits in childhood and adolescence. The fact that the association
between cerebellar volumes and autistic traits did not remain significant after exclusion
of the adolescents who scored at the high and clinically relevant trait levels corroborates
these assumptions.

After excluding those with the highest levels of autistic traits, we also found that
smaller volumes of the putamen, as part of the striatum, significantly predicted more
problems in social responsiveness, but only in boys. The role of the putamen includes
the representation of action-specific values that are important for the mediation between
reward and adaptive behavior [31]. The putamen is involved in the linking of reward to
action and in planning actions (e.g., [32]), including a propensity to engage in goal-directed
over habitual behaviors. These behaviors might be reduced in boys compared to girls.
On the other hand, we observed significantly higher SRS scores in boys for the subscales
of social communication and social awareness, indicating higher impairment in these
domains compared to girls. Furthermore, diffusion tensor imaging studies by Langen and
colleagues [33] have shown decreased white matter connectivity between the striatum
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and the prefrontal cortex in ASD compared with typically developed individuals. These
findings suggest that the putamen abnormality observed in ASD might be related not only
to the domain of motor/repetitive behaviors per se, but also to broader ASD phenotypes,
such as impairments in higher cognitive functioning, including emotional facial recognition
and reciprocal social interaction, as measured with the SRS.

4.2. Cortical Thickness and SRS

We also examined two subcomponents of cortical volume, CT and SA, and found
negative associations between autistic traits and CT of the superior frontal regions, and no
differences in SA. This is not in line with studies in clinical samples. Results by Sussmann
et al. [4] and van Rooj et al. [5], in samples with participants with ASD and TD controls,
showed a cross-sectional increase of CT in the frontal brain areas. The superior frontal cortex
is related to the control of behavior and cognition, including self-awareness and decision
making (e.g., [34]). Reduced volume in the frontal cortex might, therefore, be a correlate for
a loss of controlling (adequate) behaviors, including those regarding social situations and
contact, and adolescents with higher autistic traits might have lower behavioral control.

4.3. Autistic Traits and Brain Development

As mentioned above, brain–behavior correlates during childhood and adolescence
must always be seen in the light of developmental influences and differences. One has
to bear in mind that neuroanatomical alterations in ASD are not confined to single brain
regions, but rather reflect disturbances of wider neural systems and networks (e.g., [35]).
Neuroanatomical differences between individuals with ASD and TD controls are highly
variable across different stages of development, and a significant increase of brain volume
during early development might be associated with a significant decrease of volume during
adolescence and adulthood.

Looking at growth trajectories in ASD over time, volumetric abnormalities of e.g., the
cerebellum are consistently found in morphometric studies of ASD populations, mainly in
respect to overall increase in children (e.g., [36]) and adolescents [4]. Differences are mostly
driven by white matter increase and seem to taper off in late adolescence [37], which is
possibly the reason why our results did not hold when participants with the highest SRS
scores were excluded from the analysis. However, Hardan et al. [36] reported on enlarged
cerebellar volumes in high functioning young adults with ASD. Other investigations
observed significant correlations between measures of social and repetitive behavior and
increased volume of striatal regions, and decreased volume in multiple frontal and temporal
regions and the cerebellum in children and adults with ASD (e.g., [38]). Gray matter
reductions in the cerebellum were significantly associated with deficits in integrating and
regulating cognitive and emotional functions in children with ASD [39] and with scores on
the Autism Diagnostic Interview (ADI-R), which were additionally shown to be associated
with increased thickness in the parietal and frontal regions in adults with ASD [40]. These
findings already indicate partly controversial effects, and thus, a neuroanatomical autism
“puzzle” (e.g., [4]), as also found for other disorders like for obsessive-compulsive disorder,
as a clinically heterogeneous disorder of symptom dimensions. As we analyzed data from
adolescents within a very small age range, and performed prediction but not cross-sectional
correlation analyses of autistic traits, our findings add potential correlates dedicated to a
specific life period and markers that might serve as indicators for future behaviors to the
existing literature, including processes of social functioning. The findings also underline
the importance of further unraveling interactions and clinical symptomatology, even if, or
specifically since, our findings stem from TD individuals with mean SRS scores below a
clinically relevant cut-off. As trait-related deficits and behavioral ASD symptoms change
over time, linked by neurobiological underpinnings, it is necessary to further gain insights
into the developmental stages of the disorder.
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4.4. Strengths and Limitations

Our present study possesses several strengths that may help to explain apparent
discrepancies when comparing our findings with previous longitudinal imaging studies
(e.g., [5]). We imaged adolescents from a large population-based cohort within a small
age range and with autistic traits across a broad spectrum. This provides the unique
opportunity to test whether the underlying brain morphology of autistic traits extends
into the general population. In addition, considerable information is available on potential
confounding factors. However, we also need to consider the mainly observed earlier age of
onset of ASD when interpreting the findings from the present study, along with possible
clinical implications. In this respect, we also need to take into account that we do not have
SRS data from when the adolescents were 14 years old, and thus, from the time when brain
imaging had been applied; therefore, we do not know whether the associations found for
our prediction analyses were already present when the adolescents were 14 years old.

4.5. Conclusions

In the present study, we investigated the predictive value of brain morphology in TD
for the continuous distribution of autistic traits. Brain imaging has often been applied in
ASD to describe functioning and to identify potential risk markers (e.g., [41,42]). We found
that autistic traits correspond to subtle autism-related alterations in brain morphology in
typically developing individuals, as well as lying on a continuum in the general adolescent
population, even at levels below a clinically revenant cut-off. This may increase our
understanding of the underlying neurobiological processes for maladaptive social behavior.
Future studies could link this information with further autism-related aspects of social
processing [43,44].
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