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Abstract: The sustainable use and conservation of forest resources must be carried out with a detailed
study of the main forest-forming plant species. Coniferous forests form the basis of boreal forest
ecosystems and are of great economic importance. Representatives of forest-forming boreal coniferous
species are species of the genus Pinus, including Siberian pine (Pinus sibirica Du Tour) and Scots pine
(Pinus sylvestris L.), which are valuable and widely used woody plant species. The purpose of this
research was to conduct an extended study of genetic diversity, genetic structure, and differentiation
of P. sibirica and P. sylvestris populations under the conditions of their habitat in the Middle and
Northern Urals. We studied twelve populations of two Pinus species using the inter-simple sequence
repeat (ISSR)-based DNA polymorphism detection PCR method. Populations are characterized by
relatively high levels of genetic diversity (P. sylvestris: He = 0.163; ne = 1.270; I = 0.249; P. sibirica:
He = 0.148; ne = 1.248; I = 0.225). Analysis of the intrapopulation genetic structure reveals that the
studied populations are highly differentiated (P. sylvestris: GST = 0.362; P. sibirica: GST = 0.460). The
interpopulation component comprised 36% and 46% of the total genetic diversity for P. sylvestris and
P. sibirica, respectively. Using various algorithms to determine the spatial genetic structure, it was
determined that P. sylvestris populations form two groups according to their location at a certain
altitude above sea level. P. sibirica populations form two clusters, with an additional subdivision of
the two populations into subclusters identified. The data obtained during the study may be useful
for further research as well as for conservation management planning and related forestry practices
aimed at preserving the genetic resources of valuable forest plant species.

Keywords: inter-simple sequence repeats (ISSRs); genetic diversity; genetic structure; Pinus sylvestris L.;
Pinus sibirica Du Tour

1. Introduction

The sustainable use and conservation of forest resources need to be focused on the
genetic component, as the genetic resources of a population can be considered the entire
pool of genetic variability that allows a species to evolve successfully under natural con-
ditions [1]. Reduced sizes of natural populations, due more to adverse anthropogenic
influences, lead to the overall impoverishment of the genetic diversity of species [2,3].

Coniferous forests form the basis of boreal ecosystems and are of enormous economic
importance. As an important mechanism for regulating water flow and soil conservation,
as an essential element in the carbon cycle, and as a means of cleaning the air from
pollution, they have an enormous local and global impact on ecosystems [4–6]. In addition,
coniferous plant components contain biologically active compounds such as terpenoids,
steroids, alkaloids, flavonoids, polysaccharide complexes (holocellulose), and others, which
are promising raw materials for the pharmaceutical industry [7,8].
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One of the forest-forming boreal coniferous genus is the Pinus genus that includes
the Siberian pine (Pinus sibirica Du Tour) and Scots pine (Pinus sylvestris L.), which are
valuable and widely used tree species. In the territory of Russia, up to 80% of the total
resources of economically important coniferous wood are available. Although the forest
is a renewable resource, the number of forest logging operations exceeds the number of
new forest plantations. At the same time, there is the problem of controlling the legality
of logging of economically valuable species. To solve this problem, measures must be
developed to detect and control illegal logging, and to identify woody plant species at a
population level. Determining the origin of a specimen from natural sources for coniferous
tree species requires measures to map these natural populations and characterize their
genetic structure and intraspecific and interspecific differentiation [9,10].

Siberian pine is of great ecological, environment-forming, and resource-regulating
importance and performs the most important water-protecting, soil-protecting, and climate-
regulating functions. In addition, pine forests are of great recreational, sanitary, and
health-improving value. The wood, needles, and nuts of Pinus sibirica are widely used in
the pharmaceutical, chemical, food, and perfumery industries [11]. The study of genetic
diversity in populations is most interesting at the boundary of the distribution range [12].
The Permian region is located at the boundary of the distribution of P. sibirica. In addition,
one of the refugia from which P. sibirica originated is located in the Urals [13]. The popula-
tions located in the territories of the Ural and Altai-Sayan Mountains are of great interest
because it was in these territories that the species range began to form in the post-glacial
period [13]. With this connection, the study of genetic diversity and genetic structure of
populations located at the northwestern border of the Siberian pine distribution range is
very important.

Scots pine (Pinus sylvestris L.) is one of the most common economically important
forest-forming plant species, which plays an extremely important role in the structure and
functions of forest ecosystems [14]. Scots pine is one of the most valuable forest-forming
species in Russia and Western Europe. Pine forests are classified as protective forests
that are developed to preserve the habitat-forming, water-protective, protective, sanitary-
hygienic, health-improving, and other beneficial functions of forests, as the Scots pine has
good protective and soil-strengthening properties. Pinus sylvestris is also widely used in
the production of medicines and in the chemical industry [11].

Most population genetic studies of Pinus species have been carried out using isoen-
zyme analysis [13,15–18]. These studies show a high level of intraspecific genetic diversity
and a low degree of differentiation of Pinus sibirica and Pinus sylvestris populations across
the entire distribution range, which is characteristic of most conifer species with extensive
continuous ranges and high population sizes [17,19]. Numerous molecular genetic studies
of the Pinus genus species show that the genetic structure and intrapopulation diversity of
Pinus sp. are dependent on environmental factors and geographic location [17,20]. In this
regard, peripheral populations are important sources in phylogeographic and population
genetic studies [21,22].

Over the past decades, using various types of molecular genetic markers [23], ex-
tensive information has been accumulated on the structure, genetic diversity, and intra-
and interspecific population differentiation of a large number of different pine species
and hybrids [24–28]. Studies of the non-coding part of the genome, which consists of
multiple interspersed genomic repeats, can serve as a particular sign of hidden genetic
diversity and, more broadly, as an indicator of the genetic potential and evolutionary
changes happening in a specific species. PCR methods for the identification of this hid-
den genetic variation, such as a system of genome profiling molecular markers, were
created based on these sequences of interspersed genomic repeats. The genetic polymor-
phism of conifers, particularly P. sibirica and P. sylvestris, has been studied using various
PCR-based molecular marker systems, such as microsatellites or single sequence repeats
(SSRs) [29], inter-simple sequence repeats (ISSRs) [30], and AFLP [31] PCR-based DNA
profiling techniques. Such DNA genetic markers, including all PCR variants of the RAPD
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method [32] such as ISSRs [33,34] and others, are quite efficient enough and inexpensive
when determining genetic diversity but have technical problems such as reproducibility.
Using high-throughput sequencing technologies would be promising if such markers were
developed for Pinus species [16,35]. However, these markers are expensive to develop and
need whole-genome sequencing of studied genotypes for each species. Although a lot
of studies in the Urals have been carried out using different types of molecular genetic
markers, the results obtained are fragmentary and generally insufficient to characterize
genetic resources and identify general patterns of the gene pool structure within the Ural
part of P. sylvestris and P. sibirica habitats. Therefore, to characterize the genetic diversity
of two species of the genus Pinus in the territory of the Urals, additional comprehensive
studies involving more unique genotypes are needed. It should be noted that most previous
studies were conducted using isoenzyme analysis as well as SSR assays, but studies of
Pinus populations using ISSR markers were not sufficient. The study of genetic diversity
and the genetic structure of coniferous plant populations based on DNA marker analysis
is promising for the development and optimization of methods for assessing the status
of gene pools of coniferous plant species, which is an urgent task for the conservation of
populations of forest tree species that are productive and resistant to various environmental
factors. This work aimed to study in detail the genetic diversity and genetic structure of
natural populations of P. sibirica and P. sylvestris under conditions of their natural growth
in the Middle and Northern Urals.

2. Materials and Methods

Six natural populations of Scots pine (Pinus sylvestris L.; Pinaceae) located within the
territory of the Urals were studied. The explored populations (Supplemental Materials, Fig-
ures S7–S12) of P. sylvestris in Perm Krai are located in Gainy’s (PS_GN), Karagay’s (PS_KG),
Perm’s (PS_UK), and Bolshesosnovsky’s (PS_BS) forests, the population from Sverdlovsk
Oblast in Verkhoturye’s (PS_KN) forest, and the population from Chelyabinsk province
in Vishnyovogorsk’s (PS_AR) forest (Table S1 and Figure 1). In addition, 6 populations
of Siberian pine (Pinus sibirica Du Tour, Pinaceae) were studied (Supplemental Materials,
Figures S13–S18). The studied populations are located in Perm Krai in Krasnovishersk’s
(PSB_KV), Kochyovo’s (PSB_KH), Gornozavodsk’s (PSB_BG), Kishert’s (PSB_PR) and
Chusovoy’s (PSB_KG) forests and in Sverdlovsk province, Verkhoturye’s (PSB_KN) forest.

The pine populations for the study were selected based on data from Forest Plans.
First of all, we focused on the intensity of logging in the collection area for the further
identification of populations to prevent illegal logging. The studied populations were
natural and the sampling area for each population was about 0.7 km2. In the study region,
on the western macroslope of the Urals, Scots pine does not dominate the forest structure
and does not form large metapopulation complexes.

The surveyed populations of P. sibirica are located on the western macroslope of the
Ural Mountains, and populations of this species on the eastern macroslope have been
previously studied [36]. These populations are attractive due to their proximity to the
range boundary of P. sibirica in the Urals and also because they are natural populations,
except PSB_KG, which appears to be a man-made plantation. The high interest in these
populations is also due to the fact that one of the refugia from which the distribution of
Siberian pine originated from was located in the Southern Urals. The populations studied
are located within the taiga forest zone of the taiga region. The predominant forest type
in the study region is spruce-fir; Siberian pine is not the dominant species. Samples were
taken from an area of approximately 0.9 km2.
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Figure 1. Schematic map of the location of the studied populations of P. sylvestris (cyan marker):
PS_AR—Vishnyovogorsk; PS_KN—Verkhoturye; PS_GN—Gainy; PS_KG—Karagay; PS_UK—Perm;
PS_BS—Bolshesosnovsky. P. sibirica (blue marker): PSB_KV—Krasnovishersk; PSB_KH—Kochyovo;
PSB_KG—Chusovoy; PSB_BG—Gornozavodsk; PSB_KN—Verkhoturye; PSB_PR—Kishert.

Plant material was collected from trees located at least 100–150 m apart. Geographic
distances between populations ranged from a minimum of 54 km (populations PSB_BG and
PSB_KN located in Gornozavodsk’s and Verkhoturye’s forests) to a maximum of 633 km
between the populations of PS_GN and PS_AR located in the northern part of Perm Krai
and Chelyabinsk provinces. The pairwise geographical distances between all studied
populations are presented in Tables S2 and S3.

For the studies, plant tissue samples were collected individually from 25–30 trees
in each of the studied populations. The weighed amount of the needles was 20 mg.
DNA was isolated according to the procedure for complex biological samples [37]. The
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was
used to determine the concentration and quality of DNA.

The ISSR method was used to assess the genetic diversity and genetic structure of
populations [38]. PCR reactions were performed in a 25 µL reaction mixture. Each reaction
mixture contained 50 ng of template DNA, 1 × PCR buffer with 2.5 mM of MgCl2, 1 µM of
ISSR primer, 0.25 mM of each dNTP, and 2 U of Taq DNA polymerase (Sileks M, Moscow,
Russia). PCR amplification was carried out in a GeneAmp PCR System 9700 Thermal
Cycler (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA) under
the following conditions: the initial denaturation step at 94 ◦C for 2 min, followed by
32 amplifications at 94 ◦C for 20 s, at 52–64 ◦C (depending on primer) for 30 s, and 72 ◦C
for 60 s, followed by a final extension of 72 ◦C for 3 min. The annealing temperature varied
between 56 ◦C and 64 ◦C depending on the Tm of the primer composition (Table 1) [39].
As a negative control, 5 µL of Milli-Q water instead of DNA was added to the reaction
mixture to check the purity of the reagents. Previously selected effective ISSR primers



Forests 2022, 13, 1278 5 of 16

for P. sylvestris [40] (Table 1) and P. sibirica were used [38,41,42]. Data were generated and
compared in three replicates.

Table 1. The information of ISSR primers used to assess the genetic diversity of Pinus sp.

Primer ID Sequence (5′–3′) Tm (◦C) Ta (◦C) * Total Bands PIC *

ISSR-1(AC)8T ACACACACACACACACT 59.0 56 15 0.315
CR-212(CT)8TG CTCTCTCTCTCTCTCTTG 55.1 56 14 0.316
CR-215(CA)6GT CACACACACACAGT 52.0 56 24 0.331
M27(GA)8C GAGAGAGAGAGAGAGAC 54.3 52 17 0.251
X10(AGC)6C AGCAGCAGCAGCAGCAGCC 72.5 64 19 0.300
X11(AGC)6G AGCAGCAGCAGCAGCAGCG 72.5 64 30 0.309
CR-217(GT)6GG GTGTGTGTGTGTGG 53.8 52 21 0.331
ISSR-9(ACG)7G ACGACGACGACGACGACGACGG 73.7 64 29 0.305
M1(AC)8CG ACACACACACACACACCG 63.6 60 22 0.369

* Ta—optimal annealing temperature; PIC—Polymorphism information content.

Agarose gels were then checked to identify ISSR profiles in one or both replicates
(original gel photo collected and shown in Supplemental Materials, Figures S19–S28). All
ISSR primers were tested to assess the genetic diversity of Pinus sp. using PCR amplification
for DNA profiling. PCR products were separated by electrophoresis at 70 V for 5 h in
1.5% agarose gel with 1x TBE buffer, stained with ethidium bromide, and photographed in
transmitted ultraviolet light using the GelDoc XR (Bio-Rad Laboratories, Inc., Hercules, CA,
USA) gel documentation system. To determine the length of DNA fragments, a molecular
weight marker (100 bp DNA Ladder (Cat. 07-11-00050); Solis BioDyne, Tartu, Estonia) and
the Quantity One program (Bio-Rad Laboratories, Inc.) were used. In total, polymorphism
was analyzed for ISSR profiles with 5 primers in 175 trees of P. sylvestris and for 146
P. sibirica, with a total of 1605 individual samples of P. sylvestris.

To quantify the genetic polymorphism and determine the genetic structure of the
twelve populations studied, the data were presented in the form of a matrix of binary
characters, in which the presence or absence of fragments of the same size in the spectra
was considered as a 1 or 0 state, respectively.

Computer processing of the data was performed using the specialized macro GenAlEx
for MS Excel to determine the number of alleles (na), effective (ne) number of alleles [43],
expected (He) heterozygosity, and Shannon’s information index (I). The following parame-
ters calculated in the POPGENE 1.31 software were used to describe the genetic structure
of populations [44]: the expected proportion of heterozygous genotypes in the entire popu-
lation as a measure of total genetic diversity (HT); the expected proportion of heterozygous
genotypes in a subpopulation as a measure of intrapopulation diversity (HS); the share of
interpopulation genetic diversity in total diversity or the coefficient of gene differentiation
(GST); and AMOVA (analysis of molecular variance) with the calculation of the PhiPT index
(population subdivision index) using 1000 rounds of permutations [45]. Genetic distances
between populations (DN) were determined using the method of M. Nei [46]. To deter-
mine the correlation between pairwise genetic distances (DN and PhiPT) and geographic
distances in the general population group, the commonly used Mantel test was used.

Based on the binary trait matrix, a genetic distance matrix was calculated, based on
which dendrograms reflecting the degree of similarity between the studied populations
and trees were generated by the spectrum using the MEGA X program [47]. In addition, a
principal coordinates analysis (PCA), implemented in the GenAlEx 6 [43], was performed
to verify the obtained data. In the PAST 4.10 program [48], a detailed dendrogram was
constructed for all trees using the neighbor-joining method, and analysis and visualiza-
tion were performed using the UMAP (uniform manifold approximation and projection)
method [49]. The geoclimatic indicators of the studied populations were extracted from the
WorldClim bio_30 database [43] (https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/
wc2.1_30s_bio.zip, accessed on 31 May 2022) using the raster package [44]. Based on the
vectors containing 19 common indicators, a geoclimatic distance matrix was constructed
by calculating the Canberra distance using the spatial.distance module of the SciPy pack-

https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip
https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_bio.zip
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age [50]. Correlation analysis between genetic and geoclimatic distance matrices (Mantel
test) was performed in GenAlEx 6 [43].

The climate of the Urals is continental. The extension of the mountain ranges in the
meridional direction is important in increasing solar radiation from north to south and
in raising air temperatures. Winter temperatures on the eastern slope are 1–2 ◦C lower
than on the western slope at the same latitude; this is due to the decreasing influence of
relatively warm air masses of Atlantic origin from the east and the increasing influence of
the colder masses of Siberia. The continentality of the climate increases from west to east
and from north to south. On the western slope, the average January temperature rises from
−20, −21 ◦C in the Polar Urals to −15, −16 ◦C in the Southern Urals. On the eastern slope,
it rises from −22, −23 to −16, −17, respectively. In July in the northernmost parts of the
Urals, the temperature is 9–10 ◦C, whereas in the southernmost parts it is 19–20 ◦C. The
distribution of precipitation is greatly influenced by the relief; there is 150–300 mm more
precipitation per year on the western slope than on the eastern slope at the same latitude.
The maximum amount of precipitation (up to 1000 mm) is registered in the watershed area
of the Subpolar and Northern Urals (the snow cover is highest there, up to 90 cm). The
annual amount of precipitation is 650–750 mm along the range and on the western slope
of the Southern Urals; on the eastern slope, it decreases from 500–600 mm in the northern
areas to 300–400 mm in the southern areas. Precipitation falls mainly in summer.

3. Results
3.1. Genetic Diversity of P. sylvestris

Molecular genetic analysis of six populations of P. sylvestris revealed 85 ISSR polymor-
phic amplicons (Figure 2). The ISSR primers used detected from 14 to 20 PCR amplicons,
and the maximum number of amplicons was amplified with primer CR-215. On average,
a single primer showed about 17 PCR bands. PCR amplicon lengths ranged from 200 to
1600 base pairs. Out of 85 polymorphic bands of the used ISSR primers, 9 unique PCR
bands (11%) were identified which are unique for a specific population. In the populations
of Vishnyovogorsk’s (PS_AR) and Bolshesosnovsky’s (PS_BS) forests, one unique ISSR
marker was identified, and four ISSR amplicons were identified for the population of
Karagay’s (PS_KG) forest, whereas for the population of Verkhoturye’s (PS_KN) forest,
three unique ISSR amplicons were identified. The highest genetic diversity was shown
in populations from Gainy’s (PS_GN) forest (I = 0.280; He = 0.185; ne = 1.312) and Vish-
nyovogorsk’s (PS_AR) forest (I = 0.272; He = 0.180; ne = 1.305). The least diverse among
the studied populations is the population from Verkhoturye’s (PS_KN) forest (I = 0.229;
He = 0.149; ne = 1.244) (Table 2).
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Table 2. Genetic diversity of the studied populations of P. sylvestris.

Populations He ne I R

PS_GN
0.185 1.312 0.280

0(0.021) (0.040) (0.030)

PS_KN
0.149 1.244 0.229

3(0.020) (0.036) (0.029)

PS_KG
0.163 1.269 0.248

4(0.020) (0.037) (0.030)

PS_BS
0.152 1.244 0.235

1(0.019) (0.034) (0.028)

PS_UK
0.150 1.246 0.231

0(0.020) (0.035) (0.029)

PS_AR
0.180 1.305 0.272

1(0.021) (0.039) (0.031)

Total
0.163 1.270 0.249

9(0.008) (0.015) (0.012)
He—expected heterozygosity; ne—effective number of alleles per locus; I—Shannon’s information index. All of
the above parameters have standard deviations given in brackets. R—number of unique fragments.

3.2. Genetic Diversity of P. sibirica

Molecular genetic analysis of six populations of P. sibirica revealed 126 ISSR amplicons
(Figure 3). The ISSR primers used detected from 21 to 30 PCR amplicons, and the maximum
number of amplicons was amplified with ISSR primer X11. On average, a single primer
showed about 25 PCR amplicons, and PCR amplicon lengths ranged from 200 to 1600 base
pairs. Out of 126 polymorphic amplicons of the used ISSR primers, 15 unique PCR bands
(12%) were identified which are unique for a specific population.
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polymorphism of ISSR profiles by neighbor-joining method (I, II—cluster numbers).

The populations of Krasnovishersk’s (PSB_KV), Gornozavodsk’s (PSB_BG), and Chusovoy’s
(PSB_KG) forests were identified by one unique marker, in Kochyovo’s (PSB_KH) forest
population, four unique markers were identified, and eight ISSR markers were identified
for the population of Verkhoturye’s (PSB_KN) forest.

The greatest genetic diversity was shown in the population from Kochyovo’s (PSB_KH)
forest (I = 0.298; He = 0.200; ne = 1.346). The least diverse among the studied populations
was the population from Krasnovishersk’s (PSB_KV) forest (I = 0.174; He = 0.115; ne = 1.195)
(Table 3).
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Table 3. Genetic diversity of the studied populations of P. sibirica.

Populations He ne I R

PSB_KV
0.115 1.195 0.174

1(0.016) (0.029) (0.023)

PSB_KH
0.200 1.346 0.298

4(0.018) (0.034) (0.026)

PSB_BG
0.159 1.273 0.238

1(0.018) (0.032) (0.025)

PSB_PR
0.127 1.214 0.192

0(0.016) (0.030) (0.024)

PSB_KG
0.125 1.221 0.186

1(0.017) (0.032) (0.025)

PSB_KN
0.160 1.238 0.262

8(0.014) (0.025) (0.021)

Total
0.148 1.248 0.225

15(0.007) (0.013) (0.010)
He—expected heterozygosity; ne—effective number of alleles per locus; I—Shannon’s information index. All
of the above parameters have standard deviations in standard deviations given in brackets. R—number of
unique fragments.

3.3. Population Genetic Structure of P. sylvestris

Analysis of the genetic structure of the studied P. sylvestris populations revealed
that the expected proportion of heterozygous genotypes (HT) per total sample was 0.255,
whereas the expected proportion of heterozygous genotypes in a subpopulation (HS)
was 0.163. The population subdivision coefficient (GST) shows that the interpopulation
component accounts for 0.362 of the total genetic diversity.

The values of pairwise PhiPT genetic distances detected by the AMOVA package
ranged from 0.137 (PS_GN/Ps_UK) to 0.502 (PS_KN/PS_KR). Differences in genetic distances
between populations were statistically significant (Table 4). For the total sample of P.
sylvestris, the PhiPT index was 0.406, which approximates GST = 0.362. The analysis of
molecular variability (AMOVA) showed that a significant part of the genetic diversity is
accounted for by the interpopulation component (41%) (Table 5).

Table 4. Paired PhiPT genetic distances between the studied populations of P. sylvestris by AMOVA.

PS_GN PS_KN PS_KR PS_BS PS_UK

0.402 - 0.001 0.001 0.001 PS_KN
0.405 0.502 - 0.001 0.001 PS_KR
0.137 0.433 0.425 - 0.001 PS_BS
0.233 0.449 0.477 0.242 - PS_UK
0.428 0.370 0.462 0.464 0.461 PS_AR

PhiPT index values are shown below the diagonal.

Table 5. Assessment of genetic intra- and interpopulation variability in P. sylvestris populations by
AMOVA.

Subdivision Index df SS MS Variance % p

Between populations 5 873,646 174,729 5710 41% <0.001
Within populations 169 1,410,822 8348 8348 59% <0.001

df—degrees of freedom, SS—the sum of squares, MS—standard deviation, %—the percentage of total genetic
diversity, p—significance level when using 1000 rounds of permutation.

The smallest genetic distance was observed between the populations PS_GN and
PS_BS (DN = 0.035), and the largest (DN = 0.0.205) between the populations PS_KR and
PS_AR (Table 6). Based on the matrix of pairwise genetic distances (DN), a cluster analysis
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was performed using the neighbor-joining method, and a dendrogram reflecting the degree
of similarity in the ISSR spectra of the populations studied was constructed (Figure 2). On
the dendrogram, the studied populations formed two clusters of plain (I) and high-altitude
populations (II).

Table 6. Pairwise genetic distances (DN) between the populations studied of P. sylvestris.

PS_GN PS_KN PS_KR PS_BS PS_UK

0.147 PS_KN
0.136 0.201 PS_KR
0.035 0.148 0.136 PS_BS
0.040 0.151 0.161 0.060 PS_UK
0.194 0.147 0.205 0.195 0.199 PS_AR

PS_GN, PS_KN, PS_KR, PS_BS, PS_UK, PS_AR—population designations.

The separation of populations into two clusters is supported by the results of the
principal coordinates analysis (PCA), based on the PhiPT index calculated with the AMOVA
package. The populations were distributed unevenly during the ordination (Figure S1).
Two groups were distinguished: The first included the plain populations PS_GN, PS_UK,
PS_BS, and PS_KR. The second cluster was formed by the mountain populations PS_KN
and PS_AR.

Therefore, based on the results of analyses using various algorithms for determining
the spatial genetic structure, the six studied populations of P. sylvestris were divided into
the following two groups: plain (PS_GN, PS_UK, PS_BS, PS_KR) and highland (PS_KN,
PS_AR).

During the study of P. sylvestris populations in the Urals, their spatial and genetic
structure was checked for consistency with the “isolation-by-distance” model via the Mantel
test. Thus, a pairwise comparison of all six studied populations revealed a weak positive
correlation (r2 = 0.176) between geographic and genetic distances (DN) (Figure S2).

In addition, a correlation analysis of geoclimatic and genetic distances revealed their
weak correlation (r2 = 0.1923, p = 0.05). A significant scatter of points (Figure S3) suggested
that the correlation may be strong for certain groups of populations.

3.4. Population Genetic Structure of P. sibirica

Analysis of the genetic structure of the studied P. sibirica populations revealed that the
expected proportion of heterozygous genotypes (HT) per total sample was 0.273, whereas
the expected proportion of heterozygous genotypes in a subpopulation (HS) was 0.147.
The population subdivision coefficient (GST) shows that the interpopulation component
accounts for 0.460 of the total genetic diversity.

The values of pairwise PhiPT genetic distances revealed by AMOVA ranged from 0.397
(PSB_PR/PSB_KN) to 0.629 (PSB_KV/PSB_KG). Differences in genetic distances between
populations were statistically significant (Table 7). For the total sample of P. sibirica, the
PhiPT index was 0.491, which corresponds to the GST value = 0.460.

Table 7. Paired PhiPT genetic distances between the studied populations of P. sibirica by AMOVA.

PSB_KV PSB_KH PSB_BG PSB_PR PSB_KG

0.424 - 0.001 0.001 0.001 PSB_KH
0.424 0.437 - 0.001 0.001 PSB_BG
0.566 0.517 0.515 - 0.001 PSB_PR
0.629 0.565 0.542 0.424 - PSB_KG
0.493 0.486 0.477 0.397 0.446 PSB_KN

PhiPT index values are shown below the diagonal.
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In summary, the analysis of molecular variability (AMOVA) showed that genetic
diversity is distributed between the intrapopulation and interpopulation components
approximately equally at 49% and 51%, respectively (Table 8).

Table 8. Assessment of genetic intra- and interpopulation variability in P. sibirica populations by
AMOVA.

Subdivision Index df SS MS Variance % p

Between populations 5 1,389,452 277,890 11,078 49% <0.001
Within populations 140 1,598,370 11,417 11,417 51% <0.001

df—degrees of freedom, SS—the sum of squares, MS—standard deviation, %—the percentage of total genetic
diversity, p—significance level when using 1000 rounds of permutation.

The smallest genetic distance was observed between the populations PSB_KV and
PSB_BG (DN = 0.121), and the highest (DN = 0.285) was observed between the popula-
tions PSB_KH and PSB_KG (Table 9). Based on the matrix of pairwise genetic distances
(DN), cluster analysis was performed and a dendrogram reflecting the degree of similar-
ity according to ISSR profiles of the studied populations was constructed (Figure 3). On
the dendrogram, the studied populations formed two clusters. Additionally, using the
PAST 4 program, a dendrogram reflecting the degree of similarity in ISSR profiles of the
studied samples was constructed. It was found that PSB_BG and PSB_KH populations are
subdivided into two subclusters (Figure 4).

Table 9. Pairwise genetic distances (DN) between the populations studied of Pinus sibirica De Tour.

PSB_KV PSB_KH PSB_BG PSB_PR PSB_KG

0.145 PSB_KH
0.121 0.160 PSB_BG
0.214 0.220 0.198 PSB_PR
0.271 0.285 0.192 0.125 PSB_KG
0.227 0.256 0.192 0.167 0.195 PSB_KN

PSB_KV, PSB_KH, PSB_BG, PSB_PR, PSB_KG, PSB_KN—population designations.
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The separation of populations into two clusters is supported by the results of the
principal coordinates analysis (PCA), based on the PhiPT index calculated with the AMOVA
package. The populations were distributed unequally during the ordination (Figure S4).
Two groups were distinguished: The first one included the populations PSB_KV, PSB_KH,
and PSB_BG. The second cluster was formed by the populations PSB_KN, PSB_KG, and
PSB_PR. PAST 4 analysis was performed using the UMAP method, which confirmed the
separation of the PSB_BG and PSB_KH populations into two subclusters (Figure S5).

In summary, the results of analyses using different algorithms for determining the
spatial genetic structure revealed the subdivision of the six studied populations of P. sibirica
into the following two groups: I (PSB_KV, PSB_KH, PSB_BG) and II (PSB_PR, PSB_KG,
PSB_KN). Additionally, the PSB_BG and PSB_KH populations are further subdivided into
two subclusters.

During the study of P. sibirica populations in the Urals, their spatial and genetic struc-
ture was checked for compliance with the “isolation-by-distance” model. Thus, Mantel’s
test revealed no correlation (r2 = 0.075) between geographic and genetic (DN) distances
in a pairwise comparison of all six populations studied. Similarly, a correlation analysis
of climatic and genetic distances (Figure S6) was performed, which revealed their weak
inverse correlation (r2 = 0.1257, p = 0.05).

4. Discussion
4.1. Genetic Diversity of P. sylvestris

The resent results based on ISSR profiles for P. sylvestris are in agreement with previous
work [30]. As a result, we found that the level of genetic diversity in P. sylvestris populations
in the study region was high (He = 0.163; ne = 1.270), which agrees with the previously
obtained data by A.I. Vidyakin et al. in the northeast of the Russian Plain (He = 0.136;
ne = 1.505) [28]. At the same time, a higher level of heterozygosity was observed in Scots
pine populations in the Southern Urals (P95 = 0.823; He = 0.239; ne = 1.385) [51]. A lower
level of genetic diversity is reported in Verkhoturye’s (PS_KN) forest population. These
results are probably related to the high anthropogenic load due to the development of
titanomagnetite ores and iron ore deposits, conducted since 1957.

4.2. Population Genetic Structure of P. sylvestris

The populations studied were divided into two groups according to their location at
altitude. Following the analysis of molecular variability (AMOVA), the studied populations
of P. sylvestris are significantly differentiated, and about half (41%) of the observed genetic
diversity is concentrated within the populations. The obtained data also indicate the
existence of several genetically differentiated populations and their groups in P. sylvestris
in the study region.

The level of population subdivision is high and significantly higher than that obtained
for coniferous plant species by isoenzyme and microsatellite analyses [52,53]. This may
be due to the peculiarity of the ISSR primers we used since, in other studies where the
same ISSR method is used, subdivision rates are similar to those obtained in this study [28].
The high differentiation of populations may be the result of the fragmentation of the range
of Scotch pine in the study region, as well as the result of intensive felling of coniferous
trees in the region. Fragmentation of the species range reduces the possibility of gene flow
between populations when their gene pools are mixed, causes genetic drift, and increases
the frequency of closely related crossbreeding [54]. Possibly, the nature of population
differentiation is also related to the distribution history of species from Pleistocene refugia,
in particular the South Ural refugium, which has made a dominant contribution to the
formation of the P. sylvestris gene pool in the Urals [55]. For example, the populations
of Kachkanarskii (PS_KN) and Arakul (PS_AR) are more than 310 km apart but are ge-
netically close (D = 0.147), probably because these populations were dispersed from the
South Ural refugium on the migration route. At the same time, there is a weak positive
correlation (r2 = 0.176; p = 0.004) between genetic and geographic distances. In addition,
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the correlation analysis of geoclimatic and genetic distances suggests a weak correlation
(r2 = 0.1923, p = 0.05). Most likely, climatic differences affecting the pollen-releasing period
of populations contribute to the differentiation.

4.3. Genetic Diversity of P. sibirica

A molecular genetic study of P. sibirica populations revealed 126 polymorphic PCR
amplicons, which exceeds the value for P. sylvestris species. Overall, a high level of genetic
diversity for P. sibirica populations was revealed, which agrees with the data obtained
earlier using various molecular markers. A high level of polymorphism in the P. sibirica
populations of the northwestern and southeastern parts of the range, as well as populations
of the Altai-Sayan Mountain region which is the focus of relic populations of Siberian pine,
was revealed using isoenzyme analysis [13,56]. In addition, high rates of genetic diversity
in P. sibirica populations were obtained by molecular genetic analysis using SSR or ISSR
approaches [57], which are generally characteristic of most conifer species with extensive
continuous ranges and high population numbers [58].

Moreover, it should be pointed out that SSR and ISSR markers for P. sibirica show a
higher level of polymorphism compared to isoenzyme-based markers, and their variability
also reflects a significant genetic differentiation of populations [13,24]. The findings of this
study confirm this trend.

The lowest values of genetic polymorphism were found for the PSB_KV population
growing in the vicinity of the Verkh-Yazva settlement. This population of P. sibirica is
susceptible to a significant anthropogenic impact caused by periodic logging and high
recreational pressure. In addition, the insignificant degree of genetic polymorphism of this
population can be explained by its territorial and reproductive isolation from the nearby
massifs of Siberian pine separated from them by forests dominated by other tree species,
which can impair the exchange of pollen between trees in these dense mixed stands [24].

4.4. Population Genetic Structure of P. sibirica

The study of the genetic structure of P. sibirica populations revealed that they are
highly differentiated, with about half of the observed genetic diversity concentrated within
populations. According to the ISSR data analysis, it was observed that the studied popu-
lations of P. sibirica in Perm Krai possess a greater degree of differentiation (Gst = 0.460)
than populations located in the Altai-Sayan Mountain country and the West Siberian
Plain (Gst = 0.330). A similar trend was also observed in the analysis of isoenzymes-based
markers in populations located in these regions of Siberia [13]. The high subdivision of
populations can be caused by the fragmentation of the Siberian pine range at the western
limit of the species distribution, which can be associated with global climatic changes and
anthropogenic influence.

P. sibirica populations were clustered into two major groups. It was noted that the
PSB_BG population was subdivided internally into two subclusters. The subdivision of the
population into subclusters correlates with the altitude above sea level. Phylogeny trees
included in subcluster 1 grow on the top of the North Baseg Mountain at an altitude of
about 900 m above sea level. The second subcluster included trees that are located on the
western slope of the mountain, where the altitude is about 520 m above sea level.

The PSB_KH population was also divided into two subclusters. Such a division may
be due to the presence of a locality (about 4–6 km), dividing the forest area into two parts.
In addition, it should be noted that part of the population, which was included in subcluster
1, grows in conditions of marshland; therefore, it can be assumed that a high contribution
to the differentiation and polymorphism of populations is made by differences in habitat
conditions, and in particular by differences in the water and mineral regime. A similar
pattern was also observed in studies of genetic structure and differentiation of the bog and
dryland populations of P. sibirica [24].

No correlation between genetic and geographic distances in P. sibirica populations was
found, as well as no relationship between differentiation and climatic differences in habitats.
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This may be due to the fragmented range of Siberian pine at the western limit of the species
distribution. Additionally, in some populations of P. sibirica there is a strong intrapopulation
differentiation, expressed by the division of the two populations into subclusters. The study
of the phylogeographic structure of populations of various species allows us to conclude
that their migration history makes an “imprint” on the genetic structure of populations [36].
The study of the genetic structure of populations using high polymorphic ISSR markers
allows us to hypothesize on the past migration history of Siberian pine.

However, to suggest these hypotheses, it is required to study populations across the
entire range of P. sibirica species. In this study, only six populations located in the Urals
were studied; therefore, this survey contributes only fractionally to the overall knowledge
of the genetics of the studied species. Previously, populations of Siberian pine in the Urals
were not studied using ISSR. However, the populations located in the Ural Mountain
region are of particular interest because the formation of the range of this species originated
from these areas in the post-glacial period. The migration of P. sibirica northward and
eastward through the West Siberian Plain along the southern watershed of the Ob River
was previously suggested [36]. This study shows that, despite the location of populations
on the margin of the habitat, the populations are characterized by high genetic diversity
in comparison with populations located in the West Siberian Plain and the Southeastern
Siberian Plateau. This finding indirectly supports the view that the populations located in
the Urals are ancestral.

5. Conclusions

Analysis of the genetic diversity of the two species of the genus Pinus (P. sylvestris
and P. sibirica) showed no significant difference between the level of diversity of their
populations under the conditions of their habitat in the Middle and Northern Urals. In
the P. sylvestris population, there is a higher level of expected heterozygosity, whereas
P. sibirica has a higher number of identified DNA fragments. In both species, there is a
significant degree of interpopulation differentiation, but the Siberian pine population is
more differentiated than the Scots pine population. The data obtained over the course of
the study can be used for molecular genetic identification of populations, in the search for
biologically active substances by taking into account the differentiation of populations of
two species of the genus Pinus in the study region, and for appropriate forest management
methods aimed at conserving genetic resources.
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//www.mdpi.com/article/10.3390/f13081278/s1. Table S1. The studied natural populations of
P. sylvestris and P. sibirica used in ISSR analysis. Table S2. Pairwise geographic distances (km)
between the studied populations of P. sylvestris. Table S3. Pairwise geographic distances (km)
between the studied populations of P. sibirica. Figure S1. Ordination of the studied populations of
P. sylvestris using PCA, obtained on the basis of PhiPT matrix of genetic distances. Figure S2. Graph
of dependence of genetic (DN) and geographical distances of P. sylvestris populations. Figure S3.
Mantel test for the WorldClim data and genetic distance of P. sylvestris. Figure S4. Ordination of
the studied populations of P. sylvestris using PCA, obtained on the basis of PhiPT matrix of genetic
distances. Figure S5. Distribution of individuals in the studied Pinus sibirica Du Tour populations
using UMAP. Figure S6. Mantel test for the WorldClim data and genetics distance of P. sibirica.
Figure S7. Pinus sylvestris L., Perm Krai, Gainy’s forest population. Figure S8. Pinus sylvestris L., Perm
Krai, Karagay’s forest population. Figure S9. Pinus sylvestris L., Perm Krai, Perm’s Forest population.
Figure S10. Pinus sylvestris L., Perm Krai, Bolshesosnovsky’s forest population. Figure S11. Pinus
sylvestris L., Sverdlovsk Oblast, Verkhoturye’s forest population. Figure S12. Pinus sylvestris L.,
Chelyabinsk Oblast, Vishnyovogorsk’s forest population. Figure S13. Pinus sibirica Du Tour, Perm
Krai, Krasnovishersk’s forest population. Figure S14. Pinus sibirica Du Tour, Perm Krai, Kochyovo’s
forest population. Figure S15. Pinus sibirica Du Tour, Perm Krai, Gornozavodsk’s forest population.
Figure S16. Pinus sibirica Du Tour, Perm Krai, Kishert’s forest population. Figure S17. Pinus sibirica Du
Tour, Perm Krai, Chusovoy’s forest population. Figure S18. Pinus sibirica Du Tour, Sverdlovsk Oblast,
Verkhoturye’s forest population. Figure S19. The band profiles with ISSR primer X11 ((AGC)6G) for
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the samples of P. sibirica from the population of Gornozavodsk’s forest (PSB_BG). Figure S20. The
band profiles with ISSR primer ISSR-9 ((ACG)7G) for the samples of P. sibirica from the population
of Kochyovo’s forest (PSB_KH). Figure S21. The band profiles with ISSR primer M1 ((AC)8CG) for
the samples of P. sibirica from the population of Gornozavodsk’s forest (PSB_BG). Figure S22. The
band profiles with ISSR primer M1 ((AC)8CG) for the samples of P. sibirica from the population of
Kochyovo’s forest (PSB_KH). Figure S23. The band profiles with ISSR primer X11 ((AGC)6G) for
the samples of P. sibirica from the population of Krasnovishersk’s forest (PSB_KV). Figure S24. The
band profiles with ISSR primer ISSR-1 ((AC)8T)) for the samples of P. sylvestris from the population
of Perm’s Forest (PS_UK). Figure S25. The band profiles with ISSR primer ISSR-1 ((AC)8T) for the
samples of P. sylvestris from the population of Gainy’s forest (PS_GN). Figure S26. The band profiles
with ISSR primer X10 ((AGC)6C) for the samples of P. sylvestris from the population of Karagay’s
forest (PS_KG). Figure S27. The band profiles with ISSR primer ISSR-1 ((AC)8T) for the samples of P.
sylvestris from the population of Verkhoturye’s forest (PS_KN). Figure S28. The band profiles with
ISSR primer X10 ((AGC)6C) for the samples of P. sylvestris from the population of Vishnyovogorsk’s
forest (PS_AR).
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