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Abstract: Understanding the relationship between plant water status and productivity and between
plant water status and plant mortality is required to effectively quantify and predict the effects of
drought on plants. Plant water status is closely linked to leaf water content that may be estimated us-
ing remote sensing technologies. Here, we used an inexpensive miniature hyperspectral spectrometer
in the 1550–1950 nm wavelength domain to measure changes in silver birch (Betula pendula Roth)
leaf water content combined with leaf gas exchange measurements at a sub-minute time resolution,
under increasing vapor pressure deficit, CO2 concentrations, and light intensity within the measure-
ment cuvette; we also developed a novel methodology for calibrating reflectance measurements to
predict leaf water content for individual leaves. Based on reflectance at 1550 nm, linear regression
modeling explained 98–99% of the variation in leaf water content, with a root mean square error
of 0.31–0.43 g cm−2. The prediction accuracy of the model represents a c. ten-fold improvement
compared to previous studies that have used destructive sampling measurements of several leaves.
This novel methodology allows the study of interlinkages between leaf water content, transpiration,
and assimilation at a high time resolution that will increase understanding of the movement of water
within plants and between plants and the atmosphere.

Keywords: hyperspectral imaging; spectroscopy; plant water relations; leaf water status; remote
sensing; equivalent water thickness; transpiration

1. Introduction

Water is an essential element for all living organisms; for example, water content
of plants tends to be >50%, facilitating key physiological processes such as the transport
of nutrients and chemicals [1,2]. Understanding the mechanisms of tree–water relations
requires careful measurements and quantification of leaf water content in different en-
vironmental conditions [3]. Water is drawn from the soil by tree roots under continual
negative water potential, driven by atmospheric evaporative demand [4], where differences
in water potential between the atmosphere and soil cause root water uptake and subse-
quent evaporation through stomata; adjustments in stomatal opening control the amount
of evaporation and prevent hydraulic failure [5]. As leaf water potential decreases, water is
drawn from neighboring tissues, causing water potentials of the branch, stem, roots, and
soil to decrease sequentially and triggering water movement from the soil towards the
upper canopy. Given the highly dynamic nature of water movement in trees, accurate and
precise measurement of the process is required to allow the prediction, through modeling,
of effects of altered water availability [6].
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Plant and tree water status has traditionally been measured using destructive mea-
surements, such as the use of a pressure chamber to record water potential [7], and non-
destructive techniques, such as dendrometers that allow the measurement of diurnal stem
diameter dynamics, which are closely linked to stem water potential [8,9], and psychrome-
ters that can be used to measure stem and leaf water potential [10,11]. These traditional
methods, however, are labor-intensive and spatially and temporally restricted, challenges
that could be resolved using remote sensing. Given the electromagnetic spectrum is sensi-
tive to water content, recent technological advancements have led to the development of
leaf water content estimation applications using remote sensing [12,13], including optical
imaging, laser, radar and microwave scanning, and Raman spectroscopy [14–18]. However,
the accuracy of these applications at high time resolutions required for understanding leaf
water dynamics is suboptimal [18].

The miniaturization of hyperspectral sensors presents novel opportunities for the
use of remote sensing applications in improving estimations of leaf water content based
on spectral signatures [19]. However, variation in leaf structure and density may be con-
founded with variation in leaf water content when leaf reflectance is sensed at similar
wavelengths [12]. Thus, the elimination of effects of variation in leaf structure and den-
sity from measurements of reflectance allows for a more precise estimation of leaf water
content [12,20].

Here, we test the use of a miniature hyperspectral sensor in the 1550–1950 nm wave-
length domain to measure changes in leaf reflectance combined with leaf gas exchange
measurements as a novel methodology for investigating leaf water dynamics in the study-
ing of plant water relations. The tested sensor has shown high potential for measuring
variations in leaf water content [20]. We hypothesize that we can use leaf transpiration
measurements to calibrate leaf reflectance-based leaf water content measurements and
improve the estimation accuracy of leaf water content. We demonstrate this novel approach
using silver birch leaves measured under varying CO2 concentration, light intensity, and
vapor pressure deficit (VPD) within the measurement cuvette.

2. Materials and Methods
2.1. Experiment Design

We used a NIRONE S2.0 hyperspectral sensor (Spectral Engines Oy, Espoo, Finland),
at 1550–1950 nm wavelength, fitted with a tungsten lamp as an illumination source; full
width at half maximum of the sensor was 10 nm. Light entered the detector through a 1 mm
diameter pin hole with a sensor opening angle of approximately 8◦. The sensor parameters
were a point average of 180 and a scan average of 10, where measurements were acquired
every 10 s and at 5 nm intervals along the spectrum. Prior to recording the measurements,
we allowed the sensor to warm up for at least 15 min, and a white reference target was
used to calibrate the spectral measurements before the start of each measurement.

Given that shortwave infrared reflectance (SWIR) is affected at some wavelengths
by the water vapor content of air, we investigated the spectral domain sensitivity of
the sensor to changes in absolute water concentration of air using a leaf gas exchange
analyzer (GFS-3000, Walz GmbH, Heinz, Germany) by recording content of an empty
cuvette through a glass panel, as air water vapor concentration varied within the cuvette
from 10,660 to 28,750 ppm at 30 ◦C; the flow was set to 650 µmol/s during this test. We set
the NIRONE S2.0 sensor to measure at 2 nm intervals using a scan average of 7 and a point
average of 195; a “magic arm” with a clamp (Articulating rosette arm, SmallRig, Kowloon,
Hongkong) was used to attach the sensor to the measurement cuvette.

We randomly selected four healthy-looking leaves from the lower branches of a silver
birch (Betula pendula Roth) tree (9 m high × 11 cm diameter at breast height) in an urban
forest in Helsinki, Finland, for conducting the measurements. A single leaf (while attached
to the tree) was placed in a cuvette on the leaf gas exchange analyzer, and the hyperspectral
sensor was at the lower side of the cuvette, on top of the glass panel (Figure 1); each
leaf was allowed to adjust to the cuvette conditions for 20 min. Then, three treatments



Remote Sens. 2022, 14, 3693 3 of 11

were applied, comprising manipulation of vapor pressure deficit (VPD), carbon dioxide
content, and light intensity within the cuvette while maintaining the other two variables
constant. VPD was incrementally increased from 5 Pa kPa−1 for 30 min to 45 Pa kPa−1 by
increasing temperature from 20 ◦C to 35 ◦C and decreasing relative humidity from 88% to
35% (Table 1), while CO2 concentration was maintained at 400 ppm and the light was held
constant at a level of high intensity (1200 µmol m−2); CO2 concentrations ranged from 50
ppm to 500 ppm as light and VPD were held constant at 800 µmol/m2 and 22 Pa kPa−1;
light intensity ranged from 0 to 1400 µmol m−2 s−1, while VPD and CO2 concentration
were maintained at 20 Pa kPa−1 and 400 ppm, respectively. Temperature was set to 26 ◦C
and relative humidity to 42% when CO2 concentration and light were varied. Airflow in
the cuvette was set to 650 µmol/s in all experiments.

Table 1. Changing steps in vapor pressure deficit (VPD), CO2 concentration, and light intensity, while
the remaining two environmental parameters were kept constant.

VPD Manipulation

Increment VPD (Pa kPa−1) CO2 (ppm) Light (µmol m−2 s−1)

1 5 400 1200
2 10 400 1200
3 15 400 1200
4 22 400 1200
5 32 400 1200
6 45 400 1200

CO2 Manipulation

Increment VPD (Pa kPa−1) CO2 (ppm) Light (µmol m−2 s−1)

1 22 500 1200
2 22 350 1200
3 22 250 1200
4 22 150 1200
5 22 50 1200

Light Manipulation

Increment VPD (Pa kPa−1) CO2 (ppm) Light (µmol m−2 s−1)

1 22 400 0
2 22 400 200
3 22 400 400
4 22 400 600
5 22 400 800
6 22 400 1000
7 22 400 1200
8 22 400 1400

To cut the water supply to the leaf blade and facilitate the calculation of the amount
of water lost from the leaf from transpiration, we removed the petiole from the leaf blade
following the final incremental increase in variables (VPD, CO2, light), and continued the
measurement of transpiration and assimilation. At the end of the measurement, leaf mass
was recorded using a precision balance, and leaf area was measured using a flatbed scanner
(Epson V370 Photo, Epson America, Inc., San Jose, CA, USA) at 800 dpi resolution. Leaf
samples were then dried in an oven at 65 ◦C for 72 h before dry weight was measured for
the calculation of equivalent water thickness (EWT, g m−2) as mass of water/leaf area.
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Figure 1. (a) Analysis of silver birch leaf water content using a leaf gas analyzer, fitted with a light
module above and a miniature hyperspectral sensor (NIRONE 2.0) beneath; (b) schematic of miniature
hyperspectral sensor analysis of silver birch leaf water content; open circle is the approximate sensor
measurement area.

2.2. Data Analysis

Changes in EWT during the drying period, following removal of the petiole, were
calculated by a mass balance approach. As the leaf was completely cut from the water
supply, the rate of decrease in leaf water content was calculated to be the same as the
transpiration rate of the leaf by transformation of the mmol m−2 s−1 unit of transpiration
rate to the cumulative amount of transpired water (g m−2). If peak transpiration occurred
immediately after petiole removal, indicating the emptying of leaf veins to the mesophyll,
2 min of transpiration data were excluded from the analysis. Sometimes it was noticed
that transpiration transiently increased immediately after cutting off the leaf vein. The
reason for this could be, e.g., the sudden introduction of air to the cut xylem veins, which
increases the pressure in the xylem veins and push water to the mesophyll, i.e., the transient
capacitive effect of embolism [21].

We adopted the common assumptions of leaf water distribution in remote sensing
studies that the water layer within the leaf is approximately uniform and that EWT describes
the amount of water per leaf area. Thus, the relative change in EWT is equivalent to the
change in relative water content (RWC) that describes the amount of leaf water in relation
to full saturation; RWC is closely linked to leaf water potential that is both commonly
used to describe plant water status [22,23]. EWT affects leaf reflectance in the SWIR
domain (1300–1700 nm) due to the absorbance of energy by water, so changes in EWT
using reflectance measurements is a proxy measurement for plant water status [12].

We calculated normalized ratio indices (NRIs) to understand the drivers of changes
in EWT (Equation (1)) and to test their performance in estimating EWT. We used linear
regression modeling to test the relationship between leaf reflectance at each wavelength,
NRIs and EWT. Based on the regression models for each leaf, we used the coefficient
of determination (R2) and root mean square error (RMSE) to estimate model accuracy.
Then, the developed regression models were used to estimate changes in EWT during the
incremental changes in environmental conditions. NRIs were calculated as follows:

NRI =
γ1 − γ2

γ1 + γ2
(1)

where γ1 and γ2 are the reflectance of each wavelength.
We also tested the sensitivity of the measured reflectance to air water vapor concentra-

tion using an empty cuvette and varying water vapor concentrations within the cuvette.
Pearson’s correlation analysis was used to test the significance of the correlation between
the reflectance of each wavelength and air water vapor concentration.
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3. Results

We found strong linear relationships between reflectance in the 1550–1950 nm domain
and EWT, where reflectance explained up to 99% of the variation in EWT (RMSE = 0.36 g m−2;
Figure 2). There was a variation in wavelength that provided the lowest RMSE among the
treatments, where the difference in EWT estimation accuracy tended to be small (0.2–0.5 g m−2,
see Appendix A). The lowest RMSE for the prediction of EWT was for single wavelengths
(1550–1590 nm and 1820–1860 nm), but the 1820–1860 nm region also showed sensitivity
to water vapor concentration (Figure 2). On average, reflectance at 1550 nm provided the
lowest RMSE for predicting EWT. Performance of NRIs for the prediction of EWT was
poor, as indicated by the 2–4-fold lower RMSEs than for single wavelength reflectance, and
wavelengths used for the calculation of the best performing NRIs for EWT prediction were
located at 1550–1720 nm and 1810–1860 nm wavelength regions (Figure 3). The performance
of the top 10 regression models for EWT prediction for each treatment is shown in Appendix A
Table A2.
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Figure 2. The mean coefficient of determination (R2) and root mean square error (RMSE) for linear
regression models developed between leaf reflectance of each wavelength (x-axis) and equivalent
water thickness (EWT) for all four measured leaves after petiole removal. The shaded areas show
wavelengths that were not sensitive to water vapor concentration (p > 0.05).
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Figure 3. Accuracy metrics for the estimation of equivalent water thickness using normalized ratio
indices: (a) the mean of coefficient of determination (R2) and (b) the mean of root mean square error
(RMSE) for each NRI for all four measured leaves after petiole removal. The wavelengths used for
calculating each NRI are on x- and y-axis.
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We used reflectance at 1550 nm in the regression models for the prediction of EWT
(Figure 4) due to high levels of insensitivity to water vapor content and sensitivity to
EWT (Figure 2). We found that variation in EWT was greatest under increasing levels
of VPD, where transpiration rate increased and EWT declined at VPD > 22 Pa kPa−1

(Figure 5a,b). Increasing light intensity resulted in increased transpiration rate and decrease
in EWT, albeit to a lower extent than under changes in VPD (Figure 5c), and decreasing
CO2 concentrations led to increases in transpiration rate, with no impact on EWT.
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Figure 4. Observed and predicted equivalent water thickness (EWT, g m−2) of two silver birch leaves
exposed to increasing VPD under constant levels of CO2 concentrations and light intensity after detaching
the leaf from the branch. Prediction was made using reflectance at 1550 nm wavelength as a predictor.
Reflectance wavelength was selected based on the lowest RMSE in the estimation of EWT. The line
represents 1:1 relationship. The estimates were non-biased. Reflectance was transformed to EWT with
coefficients of −4310.4 and −4631.1, and constants of 700.7 and 715.3 for leaves 1 and 2, respectively.
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Figure 5. Variation in predicted equivalent water thickness (EWT, g m−2, black line) and measured
transpiration (mmol m−2 s−1, red line) under incremental increases in (a,b) vapor pressure deficit
(VPD, blue line) and constant CO2 concentrations and light intensity, (c) CO2 concentrations and
constant levels of VPD and light intensity (blue line), and (d) light intensity and constant levels of
VPD and CO2 concentrations (blue line). EWT was predicted using reflectance at 1550 nm wavelength;
decreases in EWT and transpiration indicate the timing of leaf petiole removal. A moving average of
three measurements was used to filter noise.
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4. Discussion

We simultaneously measured leaf gas exchange and water content using a leaf gas ana-
lyzer and miniature hyperspectral sensor of the SWIR domain to demonstrate the feasibility
of this novel approach for the study of plant-water status. We found that spectral reflectance
measurements were related to leaf water content (R2 > 0.98), driven by leaf transpiration, as
demonstrated by the relationship between the cumulative amount of transpired water and
spectral reflectance following removal of the petiole. This experimental approach allowed
us to transform spectral reflectance to units of leaf water content (EWT), eliminating the
need to weigh samples as has traditionally been required in the development of models
that test and predict relations between leaf reflectance and water content. This approach
allowed us to acquire tens of data points for each leaf with a high temporal resolution that
could be used for model development.

Based on our results, the use of spectral reflectance data at single wavelengths in the
1550–1950 nm spectral domain accounts for greater amounts of variation in EWT than the
use of NRIs (minimum RMSE = 0.78 g m−2, see Appendix A Table A2). Previous estimates
of EWT, using destructive sampling, have been based on NRIs that likely reduce between-
leaf variation due to differences in leaf structure; however, this reduction in between-leaf
variation leads to differences in spectral reflectance of single wavelengths [20]. In contrast,
our novel approach allowed the development of regression models for single leaves that
improved the estimation accuracy of EWT. For example, Junttila et al. [20] used similar
sensors to the one used here with a destructive sampling of silver birch leaves and achieved
an RMSE of 3.41 g m−2 for the estimation of EWT based on NRIs, compared with a low
accuracy and RMSE of 5.91 g m−2 achieved based on the spectral reflectance of single
wavelengths. Here, we achieved RMSEs of 0.27–0.41 g m−2 with the best regression models
for each leaf, representing almost a ten-fold improvement in the estimation accuracy of
EWT by employing the novel methodology where transpiration measurements (instead of
destructive sampling) are used to calibrate the prediction models of EWT.

The changes in EWT observed under variation in VPD, CO2 concentrations, and
light intensity support the current understanding of plant water relations. The greatest
changes in EWT were observed under increasing VPD and led to higher transpiration
rates; these changes in EWT and transpiration rapidly occurred following adjustment
of VPD, indicating that stomatal control is slower than the change in VPD within the
measurement cuvette. This is in accordance with previous findings from the literature that
the rate of stomatal movement is typically of the order of minutes (e.g., [24]). When light
intensity was sequentially increased, while other environmental parameters were kept
constant, there was a slow increase in transpiration following a small decrease in EWT,
whereas, under decreased CO2 concentrations, transpiration rate increased, with small
increases in EWT. This is likely caused by the movement of water between the cuvette
and the rest of the leaf/plant as their environmental conditions change in a different way.
Measurement of responses to increases in CO2 concentrations and light intensity were
conducted between 18:00 and 21:00 hrs when the ambient air temperature decreased from
21.3 to 17 ◦C; therefore, it is likely that transpiration of the entire tree decreased during
this measurement period and the stem water potential increased enabling more efficient
leaf hydration [25,26]. Increasing EWT during this measurement period may be due to the
difference in environmental conditions within the cuvette (the leaf) and the whole tree.

The main limitation of this novel method for the estimation of leaf water content is the
underlying assumption of a uniform water layer within the leaf. The hyperspectral sensor
has a narrow field of view, resulting in the measurement of an area <1.5 mm in diameter,
so variation in water content across an entire leaf and with veins may contribute to a
measurement scaling error; we suggest that measurement of major leaf veins are avoided.
Our second assumption, that EWT and spectral reflectance are linearly related, including at
the higher levels of EWT that occur prior to petiole removal, may be problematic, although
it was based on previous studies using the same species [20]. Leaves with a large area
may be more difficult to measure using this proposed novel method because they may
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be too large for the measurement cuvette; however, we suggest this is not likely to be an
issue when leaves are monitored under ambient environmental conditions but may be
problematic if temperature and relative humidity are manipulated and contrast between
ambient and cuvette conditions. The contrast could cause water movement also within
one leaf between the parts of the leaf which are inside the cuvette and the parts which are
outside the cuvette, depending on the difference in environmental conditions inside and
outside the cuvette. The requirement of a leaf gas exchange measuring device limits the
easy deployment of hyperspectral sensors in natural environments. In addition, accurate
prediction of EWT for new leaves is challenging without the fitting of the regression models
for each leaf. The direction of change in EWT can be interpreted directly from the spectral
measurements without calibration based on the absorbance of water in the 1550–1950 nm
domain, but the prediction of absolute EWT values requires fitting for each leaf.

Further development of this methodology may be achieved by fine-tuning the mea-
sured wavelengths and duration of measurements because wavelengths and averaging
time of the NIRONE S2.0 miniature hyperspectral sensor may be set separately so that
greater temporal accuracy may be achieved without the loss of spectral measurement
details. We used a temporal resolution of 10 s, but this could be decreased to <1 s by
reducing the number of measured wavelengths to facilitate greater temporal domains in
the measurement of EWT. This methodology could also be used to investigate changes in
RWC by measuring saturated leaf water content before dry weight measurements.

It is possible to adjust the environmental conditions in the measurement cuvette to
achieve a slower dehydration process following the removal of the petiole. We found that
desiccation of leaves that were subject to high VPD at the end of the measurement was rapid
after petiole removal; quantification of this response requires high temporal matching of
gas exchange and reflectance measurements. Reducing the rate of this desiccation process
by increasing the humidity levels of the cuvette could result in more accurate regression
models of changes in EWT.

The novel methodology described here is highly relevant for the study of plant-water
relations and the role of leaf water content on leaf gas exchange and plant growth. Our
innovation enables studying directly how changes in leaf water content affect leaf gas
exchange and vice versa. This has not been possible so far, at least not at this accuracy and
time resolution. In other words, leaf water content describes the internal state of the leaf,
which might turn out to be a more direct driver of stomatal control, photosynthesis, and
water use efficiency than environmental conditions, at least in some cases [27]. Coupling
continuous leaf water content measurements with leaf or stem water potential measure-
ments could also help in separating the dynamics of osmotic solutes from leaf water content
measurements [28]. Simultaneous measurement of leaf carbon and water exchange, along
with leaf water content, allows us to further understand the control of leaf physiological
processes by leaf hydraulics and the associated impacts of environmental conditions on the
relationship between leaf water content and leaf gas exchange. Climate change increases
positive anomalies of VPD affecting leaf transpiration and associated carbon exchange
resulting in reductions in global vegetation growth [29,30]. Understanding the influence of
increased VPD on leaf water status and related carbon assimilation is required for modeling
the growth of vegetation—a question that can be studied using our novel method. Fu-
ture development work should include testing the developed methodology with different
species and leaf structures encompassing a wide range of different forest biomes.
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Appendix A

The top 10 regression models in terms of RMSE for estimating EWT for each leaf
separately can be found in Table A1 for individual wavelengths and in Table A2 for NRIs.

Table A1. Coefficient of determination (R2) and root mean square error (RMSE) for the top 10
most accurate linear regression model estimates of equivalent water thickness (g m−2) using single
wavelength spectral reflectance under incremental increases in vapor pressure deficit (VPD) and
constant CO2 concentrations and light intensity (Leaf 1 and 2), light intensity and constant levels of
VPD and CO2 concentrations (Leaf 3), and D) CO2 concentrations and constant levels of VPD and
light intensity (Leaf 4).

VPD (Leaf 1) VPD (Leaf 2)

Wavelength R2 RMSE (g m−2) Wavelength R2 RMSE (g m−2)

1880 0.983 0.409 1595 0.989 0.274

1935 0.983 0.415 1615 0.988 0.285

1840 0.981 0.431 1870 0.988 0.287

1550 0.981 0.432 1610 0.988 0.289

1555 0.981 0.434 1555 0.987 0.297

1845 0.979 0.452 1580 0.987 0.300

1850 0.979 0.455 1560 0.987 0.300

1815 0.979 0.459 1585 0.987 0.300

1560 0.978 0.461 1575 0.986 0.302

1855 0.978 0.468 1625 0.986 0.307

CO2 (Leaf 3) Light (Leaf 4)

Wavelength R2 RMSE (g m−2) Wavelength R2 RMSE (g m−2)

1610 0.999 0.356 1860 0.993 0.272

1550 0.999 0.363 1855 0.993 0.275

1575 0.999 0.385 1875 0.993 0.279

1865 0.999 0.386 1760 0.993 0.291

1625 0.999 0.388 1835 0.992 0.296

1620 0.999 0.389 1805 0.992 0.297

1600 0.999 0.390 1840 0.992 0.298

1875 0.999 0.391 1845 0.992 0.304

1835 0.999 0.393 1825 0.992 0.309

1850 0.999 0.398 1865 0.991 0.311
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Table A2. Coefficient of determination (R2) and root-mean-square-error (RMSE) for the top 10 most
accurate linear regression models for estimating equivalent water thickness (g m−2) using normalized
ratio indices calculated with wavelengths γ1 and γ1 under incremental increases in vapor pressure
deficit (VPD) and constant CO2 concentrations and light intensity (Leaf 1 and 2), light intensity and
constant levels of VPD and CO2 concentrations (Leaf 3), and D) CO2 concentrations and constant
levels of VPD and light intensity (Leaf 4).

VPD (Leaf 1) VPD (Leaf 2)

γ1 γ2 R2 RMSE (g m−2) γ1 γ2 R2 RMSE (g m−2)

1935 1690 0.938 0.783 1940 1715 0.867 0.949

1935 1750 0.935 0.802 1950 1715 0.857 0.982

1935 1730 0.929 0.838 1950 1735 0.855 0.989

1935 1720 0.927 0.850 1950 1740 0.839 1.044

1935 1660 0.921 0.885 1950 1695 0.838 1.048

1935 1680 0.920 0.889 1940 1640 0.837 1.051

1935 1740 0.918 0.898 1950 1710 0.834 1.060

1935 1710 0.909 0.947 1940 1655 0.831 1.070

1935 1695 0.908 0.952 1940 1710 0.831 1.070

1935 1640 0.907 0.957 1940 1675 0.830 1.071

CO2 (Leaf 3) Light (Leaf 4)

γ1 γ2 R2 RMSE (g m−2) γ1 γ2 R2 RMSE (g m−2)

1890 1665 0.985 1.483 1950 1665 0.943 0.803
1880 1670 0.985 1.487 1950 1710 0.943 0.805
1880 1675 0.985 1.511 1950 1695 0.943 0.805
1880 1700 0.984 1.529 1950 1610 0.942 0.808
1890 1735 0.984 1.538 1950 1685 0.942 0.812
1890 1730 0.984 1.539 1950 1765 0.941 0.817
1890 1675 0.984 1.542 1950 1700 0.940 0.823
1880 1695 0.984 1.558 1945 1715 0.940 0.825
1870 1655 0.984 1.570 1945 1770 0.940 0.827
1890 1680 0.983 1.577 1915 1695 0.940 0.828
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