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Abstract: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neu-
rodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating
sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic
basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-
based quantitative proteomics and whole-genome analysis proposed in the present study allowed
identifying the affected disease-specific pathways, upstream regulators, and biological functions
related to ARSACS, which exemplify a rationale for the development of improved early diagnostic
strategies and alternative treatment options in this rare condition that currently lacks a cure. Our
integrated results strengthen the evidence for disease-specific defects related to bioenergetics and
protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the
pathogenesis of ARSACS.

Keywords: ARSACS; SACS; KO models; omics; biomarkers; mitochondria; lysosomes

1. Introduction

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS, OMIM 270550)
is a rare inherited neurodegenerative disease caused by mutations in SACS [1], which en-
codes sacsin (also called DnaJ homolog subfamily C member 29, DNAJC29), a 520 kDa multi-
domain chaperone [2,3] mainly involved in mitochondrial dynamics [4,5], autophagy [6],
cytoskeletal intermediate filament assembly and dynamics [7,8], and axonal growth [9].
ARSACS, for which there is no available cure, is characterized by early-onset spasticity
in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cere-
bellar ataxia [10–12]. Although early onset (2–5 years) is typical, cases with onset in late
adolescence or adulthood were also identified [13].

Mitochondrial dysfunction is a crucial feature of ARSACS. Indeed, sacsin is also
localized in mitochondria and was demonstrated to be involved in different mitochondrial
functions [14]. Mitochondrial dysfunction has been linked, with varying levels of evidence,
to Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and Huntington’s disease. Mitochondria are the main energy powerhouses of cells; through
oxidative phosphorylation, they supply most of the ATP needed to fuel essential neuronal
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functions. Accordingly, their efficient removal when damaged, through a process of
mitophagy, is essential for mitochondrial maintenance and neuronal health [15].

Lysosome dysfunction has been linked to the pathogenesis of several conditions, such
as lysosomal storage diseases, AD, frontotemporal dementia, and PD [16–20]. Disrupted
lysosome function, trafficking, and maturation are observed in several neurodegenera-
tive diseases [21]. Neurons, given the exceptionally long distance between the cell body
and distal ends of neurites, require an efficient transport system to ensure rapid collec-
tion and degradation of lysosomal substrates throughout their cytoplasm. Early studies
demonstrated that the maturation of endolysosomes is coupled to their retrograde axonal
transport [22,23].

We recently showed that a reduced degree of autophagosome aggregation and its
fusion with lysosomes in a cellular model of ARSACS due to loss of sacsin resulted in
reduced clearance of damaged cellular organelles [6]. Therefore, the crosstalk of mitochon-
dria and lysosomes seems crucial for ARSACS pathogenesis: mitochondrial dysfunction
leads to lysosomal impairment due to the accumulation of autophagy products, whereas
defective lysosomal function, in turn, triggers mitochondrial defects. For these reasons,
expanding the current knowledge of mitochondrial and lysosomal functions in ARSACS
may facilitate and accelerate biomarker discovery and thus allow the identification of novel
targets related to the disease and therapeutic-related strategies.

In the previous work [6], we generated a whole-genome molecular signature profile of
SACS knocked-out (KO) cells and identified decreased mitochondrial function associated
with increased oxidative stress and impaired autophagic flux as pathways related to an
“executioner role” in neuronal cell death.

In the current work, we performed organelle-specific, label-free, quantitative func-
tional proteomics on isolated mitochondrial and lysosomal fractions. We identified ATP
biosynthesis, oxidative stress, protein processing together with filaments organization,
synaptic depression, and neuronal cell death as the foremost affected biological processes
in SACS KO cells compared with control ones. Our findings corroborate the results of
a previous study utilizing the RNA-seq approach [6] but also highlight mitochondrial
(mtDEP) and lysosomal differentially expressed proteins (lysDEP) as potential candidate
biomarkers for ARSACS.

2. Materials and Methods
2.1. Cell Culture and Treatments

Neuronal-like SH-SY5Y cells, a well-known cellular model for the experimental studies
in neurodegenerative diseases [24,25], also used as a model to study ARSACS [4], were
kindly donated by Prof. Ciro Isidoro, University of Piemonte Orientale, Novara, Italy.
The cells were grown in Eagle’s minimum essential medium mixed in a 1:1 ratio with
Ham’s F12 medium (Sigma-Aldrich, St. Louis, MO, USA), supplemented with 10% heat-
inactivated FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 U/mL streptomycin (all
from Euroclone S.p.A., Milan, Italy). Cells were kept at 37 ◦C in a chamber humidified with
5% CO2. An exhaustive characterization of the SACS KO transfected SH-SY5Y cell line
used in this study was previously reported [6]. In order to assess the overall efficacy of the
gene editing approach used, we verified the DNA sequence in the KO cell line by Sanger
sequencing, highlighting a premature stop codon in exon 4. Loss of sacsin expression was
found in cellular lysates by Western blot analysis by comparing the protein abundance in
the parental SH-SY5Y line and empty vector-transfected cells.

The mitochondrial uncoupler carbonyl cyanide 4-trifluoromethoxyphenylhydrazone
(FCCP, Sigma-Aldrich, St. Louis, MO, USA) was used at 20 µM concentration for 2 h.

2.2. Subcellular Fractionation of Cells for Mitochondrial and Lysosome Enrichment

Isolation of mitochondrial and lysosomal fractions from SH-SY5Y WT and SACS
KO cell lysates was performed using the Qproteome Mitochondrial Isolation Kit (Qiagen,
Hilden, Germany) and the Lysosome Enrichment Kit (Thermo Scientific™, Waltham, MA,
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USA), respectively, according to the manufacturers’ instructions. About 50 mg of cells
obtained from four confluent F75 flasks (harvested without trypsin) were processed for or-
ganelle enrichment. The pellets containing mitochondria or lysosomes were solubilized in a
lysis buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, and protease inhibitors. The pro-
tein concentration was determined using the Bio-Rad protein assay (Bio-Rad Laboratories,
Inc., Hercules, CA, USA).

2.3. Proteomic Analysis

Ten micrograms of mitochondrial or lysosomal fractions obtained from SH-SY5Y cell
lysates were digested using a modified filter-aided sample preparation (FASP) protocol, as
described elsewhere [26]. Protein content from three independent preparations for each
condition (WT and KO mito/lyso fractions) was measured, and three hundred nanograms
of protein digest was utilized for DIA nano-liquid chromatography HDMSE (nine nor-
malized abundance values for each quantified protein identifier, including 3 biological
replicates and 3 technical repetitions) [27]. Database searches were carried out against
human (release 2019_20429 entries) UniProtKB/SwissProt reviewed database, with an ion
accounting algorithm that used parameters described elsewhere [20]. Protein quantitation
was performed entirely on non-conflicting protein identifications, using precursor ion
intensity data and standardized expression profiles. The proteomics data were submitted
to MassIVE, https://massive.ucsd.edu (submitted on 20 December 2021, accession number
MSV000088592).

2.4. Bioinformatic Analysis and Categorization of Proteomic Data

Differentially expressed proteins (DEPs) were identified on the basis of the number of
unique peptides used for label-free quantitation (≥2) at FDR <0.01 and the fold change (FC)
from averaged, normalized protein intensities |≥1.5|, utilizing p ≤ 0.05 by ANOVA in all
comparisons. Protein identifiers (IDs) obtained in HDMSE analysis were further filtered
for mitochondrial and lysosomal localization adopting a mitochondrial ranking [20] and
Gene Ontology terms (cellular component) with the lysosomal association. Bioinformatic
categorization of lysDEP was carried out with Ingenuity Pathway Analysis (IPA™) (Qiagen,
Hilden, Germany; IPA Winter Release—December 2020 and Spring Release—April 2022;
version 73620684). A Core Analysis workflow in IPA was used to interpret the dataset,
thus identifying the pathways, upstream regulators, disease, and biological functions
that are seen to be the most significantly affected based on differential expression of
selected proteins. A “z-score” estimated the predicted activation or inhibition of a given
biological function. Only annotations with p-values < 0.05 and activation z-scores > 1.5
were considered in the bioinformatic analysis.

In order to identify the most relevant” biomarker” candidates, we performed a
biomarker analysis. For this purpose, we filtered the experimental data for species (human),
node types, disease categories (neurological, metabolic, inflammatory, or skeletal muscle
diseases), and set a detectability threshold in at least blood or plasma, thereby prioritizing
the potential candidates based on connection to the disease, detection in body fluids and
presence in both the proteomic and transcriptomic datasets.

2.5. Oxygen Consumption Rate (OCR) Measurement

Measurements of OCR were performed using a Seahorse XFe24 Extracellular Flux
Analyzer (Agilent Technologies, Santa Clara, CA, USA), as reported [6]. According to
the manufacturer’s instruction and published data [28], the assay was performed under
basal conditions and following the addition of inhibitors to derive several parameters of
mitochondrial respiration. Basal respiration was derived by subtracting baseline cellular
OCR and non-mitochondrial respiration; the OCR value after oligomycin injection was
used to derive ATP-linked respiration (by subtracting the oligomycin rate from baseline cel-
lular OCR) and proton leak respiration (by subtracting non-mitochondrial respiration from
the oligomycin rate). Moreover, carbonyl cyanide-p-trifluoromethoxy phenylhydrazone

https://massive.ucsd.edu
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(FCCP) injection served to collapse the inner membrane gradient, allowing to record the
maximal rate, and maximal respiratory capacity (derived by subtracting non-mitochondrial
respiration from the FCCP rate). Lastly, antimycin A and rotenone were added as inhibitors
to shut down mitochondrial function, thus revealing the non-mitochondrial respiration.
Mitochondrial reserve capacity was calculated by subtracting basal respiration from maxi-
mal respiratory capacity. OCR/ECAR ratio allows for measuring a metabolic phenotype
and tracing the metabolic changes [29].

2.6. Mitochondrial Oxidative Stress Measurement

Mitochondrial-derived ROS (mtROS) production was detected by staining the cells
with MitoSOX™ Red reagent (Invitrogen, Waltham, MA, USA). About 5 × 104 fibroblasts
or 1 × 105 SH-SY5Ycells were plated in duplicates in a 24-well plate, and after 24 h of
seeding, incubated in the dark at 37 ◦C for 20 min with 10 µM and 5 µM of the probe,
respectively. Negative controls were also included. After staining, the cells were washed,
and fluorescence was detected in each sample using a flow cytometry-based method. Cells
were analyzed within 10–20 min after completion of MitoSOX staining, avoiding possible
nuclear accumulation. In parallel, the cell lines were incubated with antimycin A (20 µM)
during the last 15 min of the MitoSOX staining to increase mtROS production. A minimum
of 5000 gated events was collected on a BD Biosciences Accuri™ C6 flow cytometer (Becton
Dickinson, San Jose, CA, USA). All data were analyzed with BD Accuri™ C6 Plus Analysis
software (Becton Dickinson). Measurements were normalized by subtracting the blanks.

2.7. Immunofluorescence Analysis

Cells were plated on sterile glass coverslips and processed as in [6]. The following
primary antibodies were used: mouse monoclonal anti-p62 (Becton Dickinson; dilution
1:200) and rabbit polyclonal anti-LC3 (Sigma-Aldrich; dilution 1:1000), mouse monoclonal
anti-Vimentin (Abcam, dilution 1:100), and rabbit-polyclonal anti-Calreticulin (Thermo-
Fisher, dilution 1:50). As secondary antibodies (dilution 1:1000), goat anti-mouse or anti-
rabbit antibodies conjugated with AlexaFluor 488 or AlexaFluor 555 dye (Cell Signaling
Technology Inc., Danvers, MA, USA) were used. Nuclear chromatin was stained with a
fluorescent dye, 4,6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma-Aldrich), at
5 µg/mL. Images were acquired using a Nikon Ti2-E inverted microscope equipped with a
DS-Qi2Mc camera and collected with a Nikon ×60 Plan Apocr λ (NA = 1.40) oil immersion
objective, using FITC, TRITC, and DAPI detection filter sets.

For the LC3-p62 colocalization, images were processed using the freely available
software ImageJ (version 1.53j), and a threshold-based analysis was performed to reveal
the degree of overlap between channels. Colocalization was quantified as the fold change
in autophagosomes loaded with cargo (yellow areas) normalized to the green channel area
(total cargo signal).

2.8. Statistics

All experiments were conducted independently three times, if not specified otherwise.
Data are given as average values ± SD. Statistical difference between groups were set
at: * p < 0.05; ** p < 0.01; and *** p < 0.001 and evaluated by Mann–Whitney test, if not
specified otherwise.

All statistic values were automatically calculated using the software GraphPad soft-
ware (version 9.0.0, GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Mitochondrial-Specific Proteome Profile

Mass spectrometry analysis on mitochondrial fractions resulted in identifying 1443 IDs,
of which 618 (42.6% of the total) surpassed the mitochondrial confidence threshold devel-
oped by us [20] and reported in Supplementary Table S1. Differentially expressed proteins
(DEP) were selected based on the fold change (FC) from averaged, normalized protein inten-
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sities |≥1.5|, utilizing p≤ 0.05 by ANOVA in all comparisons. Upon filtering, 55 mtDEP in
KO cells were reported (23 up-regulated and 32 down-regulated, Supplementary Table S2).
In the bioinformatic categorization, canonical pathways related to oxidative phosphorylation
(p-value 1.26 × 10−16; activation z-score = −3.051), whereas among the affected diseases
and functions annotations, synthesis of reactive oxygen species (p-value 3.11 × 10−3; activation
z-score = 0.943), expression of proteins (p-value 7.54 × 10−5; activation z-score = −1.732),
neuronal cell death (p-value 9.81× 10−3; activation z-score = 1.432), and movement disorder
(p-value 1.84 × 10−5; activation z-score = −0.503) were pinpointed as the most significantly
dysregulated pathways. The connectivity between mtDEP and their associated diseases
and functions is portrayed in Figure 1A,B.
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Figure 1. Bioinformatic examination of mitochondria-specific proteome profiles. (A) Mitochondria-
focused connectivity network displaying differentially abundant proteins (mtDEP) and their major
associated diseases and functions. Red-bordered nodes were shared between proteomic and transcrip-
tomic datasets. (B) Functional annotations and corresponding activation z-scores in the mitochondrial
dataset. Red—up-regulated, blue—downregulated protein abundance. (C) Heatmap representation
of shared annotations in the mitochondria-focused transcriptome (DEGs, differentially expressed
genes) and proteome analyses (DEPs, differentially expressed proteins), sorted according to their
z-scores. n = 3 in each experimental condition.

3.2. Lysosome-Specific Proteomic Profile

Protein identifiers obtained in HDMSE analysis were filtered for lysosomal localization
and ranked based on combined annotations from various lysosomal databases [30–33] [https://
compartments.jensenlab.org/; https://www.proteinatlas.org/] (accessed on 26 April 2022)
according to the method reported elsewhere [34], with slight modifications. Mass spectrom-
etry analysis of enriched lysosome fractions identified 1242 IDs, of which 367 (29.5% of the
total) were described in at least two lysosomal databases (total score ≥ 3) and thus were
assigned with passing confidence for lysosomal localization (see Supplementary Table S1).
LysDEP were then selected based on their FC from averaged, normalized protein intensities
|≥1.5|, utilizing p ≤ 0.05 by ANOVA in all comparisons. By utilizing these filtering
criteria, 98 lysDEP in KO cells were accredited (52 up-regulated and 46 down-regulated,
Supplementary Table S3). Bioinformatic categorization was performed with the same
measures used for mitochondrial counterpart, identifying canonical pathways related to
dysregulated synaptogenesis signaling pathway (p-value 4.17 × 10−11), phagosome maturation
(p-value 2.21 × 10−12), and decreased unfolded protein response (p-value 5.02 × 10−4, ac-
tivation z-score = −2.0). Most relevant diseases and function annotations highlighted an
increased neuronal cell death (p-value 1.13 × 10−6, activation z-score = 2.44) and movement
disorder (p-value 7.38 × 10−5, activation z-score = 1.513), together with a decreased quantity
of filaments (p-value 6.71 × 10−5, activation z-score = −2.254) and transport of amino acids

https://compartments.jensenlab.org/
https://compartments.jensenlab.org/
https://www.proteinatlas.org/
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(p-value 7.39 × 10−5, activation z-score = −2.18). Other annotations related to dysregulated
autophagy, axonal guidance signaling, CLEAR signaling, endoplasmic reticulum stress pathway
and SNARE signaling were also highlighted. The links of lysDEP to their associated diseases
and functions are presented in the functional connectivity map (Figure 2A,B).
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connectivity network sorted according to predicted, most significantly associated pathway activa-
tion/inhibition. Red-bordered nodes represent identifiers shared between proteomic and transcrip-
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(C) Heatmap of shared annotations in lysosome-focused transcriptome (DEGs, differentially ex-
pressed genes) and proteome analyses (DEPs, differentially expressed proteins). Red—up-regulated,
blue—downregulated protein abundance. n = 3 in each experimental condition.

3.3. Transcriptome–Proteome Integrative Analysis

We attempted to compare the organelle-specific proteomic dataset with the results
obtained in the previous RNA-seq study [6] (raw data are available through Sequence
Read Archive; https://www.ncbi.nlm.nih.gov/sra/docs, accession number SRR9302756-
61, accessed on March 2021).

Twenty-six out of 55 mtDEP (48%) (Figure 3A, Supplementary Table S4 and red-edged
symbols in Figure 1A) were found in the set of DEG, and 20 of them showed the same up-
or down-regulation trends. Fifty-one out of 98 lysDEP (52%) (Figure 3B, Supplementary
Table S5 and red-edged symbols in Figure 2A) were common to DEG from the same dataset,
and 36 displayed the same regulation trend. Conversely, there was a significant number of
DEGs/DEPs in both mitochondrial and lysosomal sources that showed different trends of
gene expression/protein abundance. Low correlation between transcriptome and proteome
supports the view that post-transcriptional modifications play a key role in affecting the
amount of active protein after the loss of sacsin [35].

Both subgroups of DEP were subsequently bioinformatically scrutinized to determine
the directionality of affected functions. Shared dysregulated organelle-specific functional
annotations were revealed by analyzing DEG (from [6]) and both mtDEP and lysDEPs (cur-
rent study). Similar pathway activity patterns obtained from both types of analyses (global
transcriptome and compartmental proteomics profiling) strengthened the involvement of
specific cellular pathways as a direct consequence of loss-of sacsin function. Specifically,
impaired bioenergetics and defects in autophagy machinery resulted from the integrated
mitochondrial analysis (Figure 1C), whereas pathways related to neuronal processes, in-
cluding homeostasis, metabolism, and survival, emerged from the analysis of the lysosomal
compartment (Figure 2C).

https://www.ncbi.nlm.nih.gov/sra/docs
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In order to prioritize the most relevant biomarker candidates, we surveyed common
DEP/DEG datasets (Figure 3 and Supplementary Tables S4 and S5) for the putative links to
associated biomarkers. Biomarker analysis pinpointed calreticulin (CALR), endoplasmic
reticulum chaperone BiP (HSPA5), hypoxia up-regulated protein 1 (HYOU1), L-lactate
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dehydrogenase B chain (LDHB), and vimentin (VIM) as putative biomarkers in ARSACS
(Table 1).

Table 1. List of common biomarker candidates.

Accession Family Drug(s)
Mitochondrial Lysosomal

Plasma/Serum
p-Value Log2FC p-Value Log2FC

CALR P27797 ER chaperone 1.4 × 10−4

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.45 1.5 × 10−5

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.70 x

HSPA5 P11021 enzyme SHetA2,
PAT-SM6 1.2 × 10−5

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.55 6.3 × 10−7

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.82 x

HYOU1 Q9Y4L1 other 5.7 × 10−5

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.66 7.7 × 10−8

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.74 x

LDHB P07195 enzyme 5.7 × 10−2

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.39 3.3 × 10−4

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 

−0.62 x

VIM P08670 other pritumumab 9.2 × 10−2

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 1.11 2.6 × 10−4

Biomolecules 2022, 12, x FOR PEER REVIEW 17 of 17 
 

 0.93 x

3.4. Experimental Validations to Corroborate In Silico Data

In order to functionally validate the involvement of identified dysregulated functions,
we focused in our cell model on bioenergetic features, unfolded protein response, and
neurofilament dynamics. As predicted in proteomic analyses, OCR measurements vali-
dated an overall impairment of energy metabolism, indicated by the reduction in both
basal/maximal respiration and ATP production. A significant reduction in OCR to ECAR
(extracellular acidification rate) ratio was also detected, suggesting that the metabolic
phenotype is more compromised at the OXPHOS level (Figure 4A).
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Figure 4. Bioenergetic phenotype in SACS KO cell model of ARSACS. (A) Oxygen consumption
rate (OCR) was measured in WT and KO cells using the Agilent Seahorse XF Cell Mito Stress
Test. The assay was performed under basal conditions and after addition of oligomycin (2 µM),
carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP) (1.5 µM), and rotenone plus antimycin
A (1 µM). KO cells showed an impaired energy metabolism compared with WT ones. Data refer
to n = 8 and n = 5 independent measures for WT and KO cells, respectively. * p < 0.05; ** p < 0.01.
(B) Oxidative stress was measured by oxidation of MitoSOX fluorescent reagent both in regular
conditions (RM = regular medium) and by using antimycin A (aA) as reactive oxygen species (ROS)
generator. The production of superoxide by mitochondria was elevated in KO cells. * p < 0.05. Each
symbol refers to an independent replicate value obtained from a technical triplicate.
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In order to investigate the consequences of an impairment of mitochondrial function
determined in the bioinformatic analyses, we further evaluated the changes in the cellular
redox state. Mitosox fluorescence showed a 1.5-fold increase in mitochondrial reactive
oxygen species (mtROS) production. When ROS production was induced by antimycin
A, a similar effect was observed, indicating a change in basal conditions rather than an
impairment of detoxification processes (Figure 4B).

When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded
protein response (UPR) works to balance the cellular stress and restore normal proteostasis.
Previously, we had demonstrated the involvement of autophagy as the major impaired
protein quality control system, excluding proteasome impairment in cells lacking sacsin [6].
Here, through immunofluorescence, we investigated the colocalization of LC3 with p62 in
basal conditions and followed mitophagy induction by using the mitochondrial uncoupler
FCCP (Figure 5). We observed a reduction in autophagosome–cargo fusion (indicated by
yellow dots) during FCCP treatment in SACS KO cells, also shown by the colocalization
mask. These data, combined with previous observations [6], confirm the impairment of
autophagic flux upon SACS knockout.
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Figure 5. Autophagic flux impairment in SACS KO cells. Representative immunofluorescence images
of autophagosomes (LC3, in red) and p62-cargos (in green). The fluorescent dye 4,6-diamidino-2-
phenylindole dihydrochloride (DAPI) (in blue) was used as a nuclear stain. WT and sacsin KO cells
were analyzed under normal conditions (regular medium—RM) and FCCP treatment (FCCP 2h),
and colocalization of LC3 with p62 (yellow areas) was measured as mean ± SD of three replicates,
* p < 0.05 by two-tailed Student’s t-test.

By evaluating vimentin distribution in WT and SACS KO cells by immunofluorescence
(Figure 6, red channel and Supplementary Figure S1), we confirmed a collapsed interme-
diate filament network in cells lacking sacsin, as demonstrated earlier [6–8]. In parallel,
to evaluate the alterations in ER stress pathway, we stained the cells with the ER marker
calreticulin (Figure 6, green channel) and did not observe changes in its expression amid
WT and SACS KO cells. This suggests that knockout of sacsin leads to dysregulation of
ER function and cellular homeostasis through different mechanisms rather than altered
cellular distribution.
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4. Discussion

ARSACS remains a challenging condition with limited information on sacsin func-
tion in health and disease conditions. The integrative use of quantitative omics offers
a possibility to reveal disease mechanisms in ARSACS, candidate biomarkers, and po-
tential new targets for trial readiness, similarly suggested for other neurodegenerative
conditions [36–39].

By leveraging our previous RNA-seq analysis [6] and a more recent aptamer-based
targeted approach [25], we observed, for the first time, that loss of sacsin affects neuroinflam-
mation, synaptogenesis, and engulfment of cells, thereby demonstrating the feasibility of
multi-dimensional integration of omics data in a rare human condition, an approach famil-
iar more to cancer biology than neurodegeneration. The integrative use of omics facilitated
corroboration of a specific defect in the quality control system at the autophagosome–
lysosome fusion level reinforced the role of dysregulation in cellular metabolism and
intermediate filaments, and allowed identifying novel pathways (i.e., sirtuin signaling;
transport and uptake of amino acids) that warrant further research. Obviously, our re-
search approach was not free from limitations, aiming to target specific cellular processes.
Nevertheless, it should be considered that the overlap of transcriptomic information with
high confidence cellular compartment-specific proteins represents a further step towards
identifying disease-specific processes. Moreover, the used filtering strategy facilitated the
identification of highly categorized, putative biomarkers that may be worth testing in a
clinical setup. Neuronal cells are more sensitive to protein misfolding than non-neuronal
cells, in which cell duplications help to prevent the accumulation of unfolded proteins.
Protein misfolding has been considered among the initial events underlying neurodegener-
ation [40–43], and our new data showing involvement of protein folding quality control
via ER calcium-binding proteins bring the mechanisms of ARSACS even closer to the
principal of neurodegenerative disorders [44,45]. Identifying molecules that can target
quality control systems (UPR/autophagy signaling components) seems critical for the
discovery of new therapies for neurodegenerative diseases. CALR, a chaperone protein
located in the ER and involved in protein folding quality control and calcium homeostasis,
appears as a putative biomarker indicating loss of sacsin, as its expression level was found
to be specifically downregulated in lysosomes and mitochondria but not in the whole KO
cells (Figure 6, green channel). Further investigations are required to clarify how sacsin
dysregulation at the subcellular level could impact the whole cell physiopathology. Apart
from its canonical roles in protein folding and calcium homeostasis, CALR also performs
roles in neuronal plasticity, synaptic regulation, regulation of gene and protein expression,
apoptotic susceptibility, and phagocytosis detrimental to several neurological disorders
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such as ischemic stroke [46–49], AD [50], PD [51,52], psychiatric disorders [53–55], and
ALS [56,57]. Furthermore, ER stress and dysregulation also seem to play a critical role in
ataxia-telangiectasia and in the fly model of Friedreich’s ataxia [58]. Thus, it is tempting
to speculate that protein folding quality control and calcium homeostasis are additional
mechanisms to consider when exploring the possible treatment approaches in ARSACS.

Our data also indicate a tight link between ARSACS and the inflammatory process
through microglia activation, in a manner similar to what occurs in common forms of
neurodegeneration [59,60]. Through transcriptome–organelle–proteomic data integration
analysis, we observed a downregulation in the levels of B2M, a component of class I
major histocompatibility complex. B2M is involved in the presentation of peptide anti-
gens to the immune system [61], interferon-gamma-mediated signaling pathway [62],
immune-response regulation, negative regulation of neurogenesis, and neuron projection
development, and positive regulation of cellular senescence [63]. Of note, we found B2M
to be downregulated in a previous targeted assay, where cells were treated with FCCP [64].
Together, the combination of abnormal interferon signature (typical of early-onset neurode-
velopmental disorders) and early microglia activation proposes sacsin as a critical factor in
both neuronal maturation and neurodegeneration.

Vimentin is a type III intermediate filament protein [65]. According to previous
works [6,8], where vimentin was analyzed in ARSACS patient fibroblasts and in cells where
sacsin expression was reduced, we observed its abnormal perinuclear accumulation in
KO SH-SY5Y cells, indicating a disorganized intermediate filaments pattern that could
reflect changes in the cellular distribution of proteostasis machinery. Moreover, we
found a common upregulation of the protein in both mitochondria and lysosome pro-
files. Vimentin can be secreted in extracellular vesicles, including exosomes, found in
bodily fluids [66,67]. Soluble vimentin was detected at higher levels in the sera of colon
cancer patients, suggesting that it might represent a potential disease biomarker [68]. In
combination, these findings provide solid reasons to consider vimentin as a good candidate
biomarker for ARSACS.

Although its value as a true biological fluid biomarker needs to be tested, we intend
to use the results of our integrative analyses as proof of principle for protein expression
screening studies in patients’ blood, starting from those who are already collected in
our center. Potential exploitation of a larger group of patients will be possible through
networking with international consortia. The use of a relatively large cohort of patients, also
at different time points of disease progression or treatment, will offer further applicability
to our bioinformatic results.

An additional element of interest emerging from the present work is the possibility
of querying the druggability status of candidate proteins. We observed a dozen of po-
tential targets of FDA-approved drugs, including, among others, SRC, B2M, HSP90AB1,
MAOA, LSS, ALDH5A1, HSPA5, and vimentin (Supplementary Table S6). This could be
a subject for future in vitro screening. Interestingly, SRC, a non-receptor tyrosine kinase
that is closely related to tumors, appears to act as a central mediator in multiple signaling
pathways, including neuroinflammation, and it protects dopaminergic neurons, improving
motor behavior in an MPTP-treated mice PD model [69]. A key role for MTSS1/SRC family
kinase dysregulation was also shown in Purkinje neurons survival and ataxia progression
in SCA1 and SCA2 mouse models [70]. Inhibition of SRC corrects Purkinje neurons’ basal
firing and delays ataxia progression. It is tempting to hypothesize the repurposing of SRC
inhibitors for ARSACS treatment. Drugs such as dasatinib, saracatinib, bosutinib, and
pyrazolopyrimidines (PP1 and PP2) [71,72], some already in phase II/III clinical trials for
brain tumors and AD (see https://clinicaltrials.gov, accessed on 8 June 2022), could be
tested for this purpose. Similar speculation could be applied to anthracycline 4’-iodo-4’-
deoxydoxorubicin (I-DOX), tested in the treatment of amyloid-related disorders [73,74].
I-DOX inhibits the production of amyloid A and transthyretin and could modulate the ex-
pression of B2M [75], another integrated DEPs/DEGs in ARSACS. Moreover, pritumumab
binds to the ecto-domain of vimentin on the surface of cancer cells with no off-target effects

https://clinicaltrials.gov
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or not impairing the function of normal vimentin [76,77], thus offering an opportunity for
testing in ARSACS models.

In summary, characterization of dysregulated pathways using multiple omics ap-
proaches constitutes a suitable strategy for identifying novel drivers of disease progression,
as well as targets of novel therapies. The combined use of a transcriptome–organelle–
proteomic data integration analysis pinpointing “druggable” targets in ARSACS disease
may be the first step towards “omics medicine” in other rare neurodegenerative conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12081024/s1: Supplementary Table S1: Queried databases and criteria employed for
compartmental localization of datasets. Supplementary Table S2: Proteomic dataset of mitochondrial
DEPs. Supplementary Table S3: Proteomic dataset of lysosomal DEPs. Supplementary Table S4:
Mitochondria-associated differentially regulated IDs identified in transcriptomic and proteomic
studies. Supplementary Table S5: Lysosomal-associated differentially regulated IDs identified in tran-
scriptomic and proteomic studies. Supplementary Table S6: Druggability of common proteins/genes
across the omics studies. Supplementary Figure S1: Representative images of vimentin network in
WT and SACS KO neuroblastoma cells.
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