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Abstract: The task of node classification concerns a network where nodes are associated with labels,
but labels are known only for some of the nodes. The task consists of inferring the unknown labels
given the known node labels, the structure of the network, and other known node attributes. Common
node classification approaches are based on the assumption that adjacent nodes have similar attributes
and, therefore, that a node’s label can be predicted from the labels of its neighbors. While such an
assumption is often valid (e.g., for political affiliation in social networks), it may not hold in some
cases. In fact, nodes that share the same label may be adjacent but differ in their attributes, or may
not be adjacent but have similar attributes. In this work, we present JANE (Jointly using Attributes
and Node Embeddings), a novel and principled approach to node classification that flexibly adapts
to a range of settings wherein unknown labels may be predicted from known labels of adjacent
nodes in the network, other node attributes, or both. Our experiments on synthetic data highlight the
limitations of benchmark algorithms and the versatility of JANE. Further, our experiments on seven
real datasets of sizes ranging from 2.5K to 1.5M nodes and edge homophily ranging from 0.86 to 0.29
show that JANE scales well to large networks while also demonstrating an up to 20% improvement
in accuracy compared to strong baseline algorithms.

Keywords: node classification; graph embedding; representation learning

1. Introduction

Node classification involves an attributed network with a known graph structure,
where each node is associated with a label (or class, a categorical variable), as well as other
attributes. Moreover, labels are known only for some of the nodes and are considered
unknown for others. Given the graph structure, the labels that are known for some of
the nodes, and other attributes that are known for all nodes, the task is to predict the
labels that are unknown. This task finds application in a wide range of domains, such as
information networks [1], complex systems [2], protein function identification [3], medical
term semantic classification [4] and disease prediction [5].

1.1. Previous Work

A common assumption in the literature is that adjacent nodes tend to have similar
labels, often represented in theories of homophily [6] and social influence [7]. For instance,
in a social network, the assumption stipulates that friends, i.e., close social connections,
are likely to vote for the same political party as seen in Figure 1(left). Approaches that
rely on this assumption typically consider node proximity and assign the same label to
nearby nodes. For example, in label propagation, labels diffuse in an iterative fashion from
labeled nodes to their unlabeled neighbors until convergence [8]. Other approaches induce
label uniformity within cuts or clusters of the graph [9–11], or consider node proximity
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in a latent space that preserves graph distances, as in DeepWalk [12] and similar matrix
factorization approaches [13].

Labels: Features:

Figure 1. Nodes with the same labels may be adjacent and have similar features (left), or may be
adjacent but have different features (center), or may not be adjacent but have similar features (right).
Features are depicted by colors and labels are depicted by shapes. GCN and GraphSAGE can perform
well in the first two cases but not the third because they predict node labels by aggregating the
features of adjacent nodes.

However, the aforementioned methods ignore other node attributes, which can be
detrimental. For example, Hamilton et al. [3] show that, for certain predictive tasks on
citation and social graphs, a linear classifier that is built only on node attributes outperforms
approaches, such as DeepWalk, which are based on node proximity but ignore node
attributes. Moreover, although homophily is often observed in some classification tasks, it
is not uncommon to find that adjacent nodes do not share a particular label and that, in such
cases, other node attributes can serve as better label predictors than graph structure [14,15].
For example, two individuals may be friends (i.e., be connected on a social network) but
vote for different political parties (‘label’)—something that could be better predicted by
rich, node-level attribute data (e.g., geographic location, income, or profession). Therefore,
for node classification, it is important to appropriately leverage both the proximity of nodes
on the graph structure and other attributes.

Partially addressing this limitation, AANE [16] and DANE [17] combine low-dimensional
encodings of node attributes with graph-distance-preserving node embeddings, and use
them as input features for label prediction. However, they do not account for known labels
during training, and thus potentially ignore information that would be useful in predicting
the unknown labels. LANE [18] overcomes this limitation by learning the joint latent
representations of node attributes, proximity, and labels. However, LANE does not directly
address the node classification task, i.e., it does not optimize the conditional probability
distribution of node labels given the node attributes and graph structure, but rather targets
their joint distribution of all quantities.

In a different line of work, graph convolutional networks use graph topology for
low-pass filtering on node features [19]. GAT [20] introduces an attention mechanism to
learn weights and aggregate features. GraphSAGE [3] uses mean/max pooling to sample
and aggregate features from nodes’ local neighbourhoods. However, these convolutions
are equivalent to a repeated smoothing over the node attributes, and performance quickly
degrades [21]. Subsequent approaches such as DiffPool [22] have sought to address this
limitation, but these too aggressively enforce homophily and require that nodes with the
same labels have similar graph and attribute representations. Recent work by AM-GCN [23]
attempts to weaken this assumption by analyzing the fusing abilities of convolutional
models. They define two modules, one each for the topology space and feature space, and
adaptively combine them using an attention mechanism. We direct the reader to the survey
paper of Xiao et al. [24]’s for a comparison of recent works on graph convolutions for the
task of node classification.
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1.2. Our Contribution

In this work, we develop an approach to node classification that can flexibly adapt
and perform consistently well in a range of settings, from cases where node labels exhibit
strong homophily (i.e., a node’s label can be determined by the labels of its neighbors) to
cases where labels are independent of graph structure and solely determined by other node
attributes, or vice versa, as well as cases that lie between these extremes. We propose a
novel and principled approach to node classification based on a generative probabilistic
model that jointly captures the role of graph structure and node similarity in predicting
labels. Our analysis leads to JANE, a training algorithm that learns two unknown model
parameters, namely, a latent node embedding U and weight matrices W of a neural network
for the task of node classification. JANE combines node attributes with the embedding
and iteratively updates both model parameters U and W with label information during
training. We show that this flexibly adapts to the prediction task in a variety of cases,
depending on the correlation between attributes and graph structure on node labels. Unlike
the aforementioned approaches, which are heavily based on label homophily (e.g., label
propagation), we account not only for the graph structure but also for node attributes, and
flexibly and appropriately weigh each of them depending on the case. Moreover, unlike
AANE [16] and DANE [17], our approach learns a low-dimensional node representation
that is informed by labels, which is then used for prediction. Unlike LANE [18], we directly
optimize the conditional probability of labels given the graph structure and node attributes,
without necessarily enforcing homophily.

We summarize our main contributions below:

• We define a generative model that formally captures a diverse set of relationships
between graph structure, node attributes, and node labels.

• We describe a general algorithm to compute a good initial estimate of U and a train-
ing algorithm called JANE for node classification. We also design batching and
minibatching variants of JANE that scale well to large graphs.

• From our experimental results, we present three findings. First, we demonstrate the
shortcomings of existing approaches and versatility of JANE on synthetic datasets.
Second, we empirically validate the performance of four variants of JANE on seven
real-world datasets and compare to five standard baselines. Thirdly, we conduct
an extensive empirical analysis characterizing the usefulness of a good initial node
embedding, the importance of updates to the embedding during training, and the
trade-off between preserving adjacency and label information on classification accu-
racy.

2. Problem Setting

Let us consider an undirected and connected graph G = (V , E) of node size |V| = n.
Let its structure be represented by the adjacency matrix A =

[
aij
]
∈ Rn×n. Denote

D = diag(d1, d2, . . . , dn) to be the degree matrix where di = ∑j aij; and L = D − A as
its unnormalized Laplacian matrix. Let λi be the i-th smallest eigenvalue of L and ei its
corresponding eigenvector.

Each node in the graph is associated with the following: d observed attributes x ∈ Rd,
k latent/unobserved node embeddings u ∈ Rk, and possibly an unobserved categorical
variable y ∈ {0, 1}M (one-hot encoding) as the label from label-set M = {1, 2, . . . , M}. For
example, in citation graphs, with nodes corresponding to articles and edges to citations
between articles, x capture observed quantities such as the bag-of-words representation of
the article text, and label y denotes the research area of the article (e.g., ‘data mining’ or
‘machine learning’). The latent embedding u corresponds to the properties of the articles
that are not directly captured by attributes x or label y, but that could play a role in
determining which articles are connected with a citation (as captured by adjacency matrix
A) and to which research area y an article is deemed to belong. In terms of notation, to
refer to the attributes of all nodes, we write X =

{
xi ∈ Rd, i ∈ {1, . . . , n}

}
to denote the
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observed node attributes, U =
{

ui ∈ Rk, i ∈ {1, . . . , n}
}

for the latent node embedding,

and Y =
{

yi ∈ {0, 1}M, i ∈ {1, . . . , n}
}

for the node labels. This naturally extends to the
multi-label classification setting.

Having defined all elements in our setting, we now define the task that we address as
Problem 1.

Problem 1 (Node-Classification). Given adjacency matrix A, node features X, and labels YL for
a subset L ⊆ V of nodes, predict labels YV\L for the remaining nodes V \ L in the graph.

3. Our Approach

Our approach for Problem 1 is based on a probabilistic generative model (described in
Section 3.1) and its analysis (Section 3.2).

3.1. Model

Figure 2 pictorially illustrates our generative model. First, the adjacency matrix A
of the graph is generated from the latent embedding U. Specifically, the probability that
there is an edge between two nodes i and j is given by the inverse exponent of the squares
l2-distance between their latent attributes u scaled by a factor s2.

Pr
[
(i, j) ∈ E | ui, uj; s

]
= pij = e

−‖ui−uj‖2

s2 (1)

X

UA

Y

Figure 2. Visual illustration of the generative framework. Observed node attributes X (represented
by circular box) and unobserved (latent) embeddings U (represented by square box) jointly generate
node labels Y. The (observed) adjacency matrix A is generated from U and indirectly correlates
with Y (via U). Reprinted with permission from Springer Nature Customer Service Centre GmbH:
Springer, International Conference on Complex Networks and Their Applications, Joint Use of Node
Attributes and Proximity for Node Classification, Merchant and Mathioudakis [25], 2021.

This equips our model with the desirable property, common in many types of graph
embeddings, that the closer the two nodes are in the Euclidean space of U, the higher the
likelihood that they are connected in the graph and vice versa. Therefore, U represents
a low-dimensional Euclidean embedding of the graph that preserves connectivity in the
form of Equation (1). Moreover, since the existence of an edge is independent across pairs
of nodes in this model, we have

Pr[A|U; s] = ∏
(i,j)∈E

pij × ∏
(i,j)/∈E

(
1− pij

)
. (2)

Notice that, with regard to Equations (1) and (2), the scaling factor s can be absorbed into
the embedding parameter U, i.e., any pair (U, s) of parameters is equivalent to the pair of
parameters (U/s, 1). For this reason, we will omit s from the probability expressions that
follow.

There are several other graph-generation models, such as the ε-neighbourhoods
model, wherein nodes i, j are connected by an edge if

∥∥ui − uj
∥∥2 ≤ ε [26]. However,
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the ε-neighbourhoods model often leads to several connected components. Moreover,
Equation (2) is in line with typical assumptions in spectral graph theory [27].

Second, for fixed scale s, node labels Y are generated from X and U. This assumption
provides two benefits: (i) it allows for labels to be determined by node attributes X (directly)
as well as graph structure A (indirectly, via U); (ii) it allows for us to directly express and
train the function of the conditional distribution Pr[Y|X, U], which we then employ for node
classification, i.e., to predict unobserved node labels.

In this work, we assume that this conditional probability is given by a simple two-layer
neural network,

Pr[Y|X, U, W] = σ
(

ReLU
(
CONCAT[X, U]W(0)

)
W(1)

)
(3)

where σ denotes the softmax function and weight matrices W = {W(0), W(1)} are parame-
ters that control the effect of X and U on labels Y.

The reason for this choice is that we found this model to be sufficiently expressive for
our empirical evaluation. We note that this conditional probability (RHS in Equation (3))
can be replaced with other complex models (e.g., neural networks with more hidden layers).

3.2. Algorithms

Given data D = (X, A, YL) as input, Problem 1 asks for predictions for YV\L. Here, the
latent embedding U and the weights of the neural network W, are considered as unknown
parameters ⊆ = (U, W) of the model. Our approach, JANE, proceeds in two stages: first,
a training stage, from which we learn the maximum likelihood estimates θ̂ =

(
Û, Ŵ

)
of

the model (cf. Equation (3)); second, a prediction stage, in which we use θ̂ to predict the
missing labels.

3.2.1. Training

Training Objective. From the product rule of probability, the likelihood of the data D
given parameters ⊆ is as follows:

Pr[D|⊆] = Pr[X, A, YL|U, W] (4)

∝ Pr[YL|X; U, W]× Pr[A|U]

Taking the negative logarithm on both sides, we define the total loss as the sum of
the loss with respect to node labels (Llabel) and the loss with respect to the graph structure
(Lgraph).

Ltotal = − log Pr[D|⊆]
= − log Pr[YL|X; U, W]︸ ︷︷ ︸

Llabel

− log Pr[A|U]︸ ︷︷ ︸
Lgraph

(5)

The goal is to identify parameter estimates θ̂ that minimize the objective function
Ltotal. We begin by describing a general routine to construct a good initial estimate of
U (Algorithm 1). Then, we describe a training procedure to update Û and Ŵ to their
maximum-likelihood estimates of the model using stochastic gradient descent, starting
from Ûinitial (Algorithm 2).
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Algorithm 1: INITIALIZE.

1 Input: Adjacency Matrix A; Embedding method EMBEDDING ∈ {LAPLACIAN,
GOSH}, embedding dimensionality k;

2 Output: Latent attributes Ûinitial, Scale s;

3 s← 1

4 U← EMBEDDING
((

1
s ·A

)
, k
)

5 s← MINIMIZE
(

objective = Ledge + Lnonedge, constants = A, U
)

// (cf.

Equation (7))

6 Ûinitial ← 1
s ·U, sinitial ← 1 // Rescale

return Ûinitial, sinitial

Algorithm 2: JANE-U (Batching).

1 Input: Adjacency matrix A; Node attributes X; Training labels YL; Embedding
method EMBEDDING ∈ {LAPLACIAN, GOSH}; embedding dimensionality k;
number of training epochs T;

learning rates ηlabel, ηgraph, ηweight; number of batches K;
2 Output: Vector representations hv for all v ∈ V ;
// Initialization

3 Û, s← INITIALIZE(A, Emd, k) // (cf. Algorithm 1)
4 Create K batches of nodes B1 ∪ . . . ∪BK ← V

for t← 1 to T do
for b← 1 to K do

// Forward propagation (cf. Equation (3))

5 ∀i ∈ Bb, h(t)
i ← σ

(
ReLU

(
CONCAT

[
XBb

, Û(t−1)
Bb

]
W(0)

)
W(1)

)
// Update Û (cf. Equation (9), Equation (10))

6 Û(t)
Bb
← Û(t−1)

Bb
− ηlabel · ∂Llabel

∂Û(t−1)
Bb

− ηgraph ·
∂Lgraph

∂Û(t−1)
Bb

end
// Update Ŵ

7 Ŵ(t) ← Ŵ(t−1) − ηweight · ∂Llabel
∂Ŵ(t−1)

end
return ∀v ∈ V , hT

u

Choosing Uinitial. We construct an initial estimate of Û and s in an unsupervised
manner using only the adjacency information and (temporarily) ignore node labels. That is,

Ûinitial, sinitial = arg min
U,s

Lgraph (6)

Plugging in Equation (2), we get

Ûinitial, sinitial = arg min
U,s

∑
(i,j)∈E

∥∥ui − uj
∥∥2

s2 − log

 ∏
(i,j)/∈E

1− e
−‖ui−uj‖2

s2


≤ arg min

U,s
∑

(i,j)∈E

∥∥ui − uj
∥∥2

s2︸ ︷︷ ︸
Ledge

+ ∑
(i,j)/∈E

e
−‖ui−uj‖2

s2

︸ ︷︷ ︸
Lnonedge

(7)

where the last inequality holds because −(log (1− x)) ≤ x, x ∈ [0, 1). The first term, Ledge,
captures the likelihood of observing all edges in the graph, while the second term, Lnonedge,
captures the likelihood of all non-edges (i.e., node pairs without an edge between them).
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We obtain the initial estimates for U and s by iteratively minimizing the upper bound of
Equation (7). In each iteration, we first fix the scale s and minimize over U to obtain U; then,
we fix U and minimize over s to obtain Ûinitial. We have explored two approaches to obtain
U, namely via Laplacian eigenvectors and GOSH embeddings, and we describe them below in
this section. Moreover, we use Scipy’s implementation of the standard Brent bounded scalar
optimization algorithm (https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.minimize_scalar.html (25 May 2022)) to obtain s within each iteration. Note that,
in practice, we observed that a single iteration is sufficient to obtain good initial estimates
for U and s in both aforementioned approaches, and we thus use a single iteration for
the initialization in all that follows. The initialization procedure is shown in Algorithm 1.
Note that, for conventional simplicity, we always absorb the scale factor s into the initial
embedding U at the end of the initialization procedure (Algorithm 1, Step 6).

We now proceed to describe the two approaches we have explored to obtain U.
1. Laplacian Eigenvectors [25]: Observe that for an appropriate choice of scale, i.e., for

smaller values of s, Lnonedge tends to 0 and the value of Ledge dominates Equation (7).
Moreover, given that L is symmetric and di = ∑j aij, ∀i ∈ [n], based on the results of
Belkin et al. [26],

min
U:∀l∈[k],
‖ul‖=1,

∑p ulp=0

∑
(i,j)∈E

∥∥ui − uj
∥∥2

= tr
(

UTLU
)
=

k

∑
l=1

λl .

The condition U : ∀l ∈ [k], ‖ul‖ = 1, ∑p ulp = 0 normalizes the columns of U, removes
translational invariance, and centers the solution around 0. This result implies that the
minimum value of Ledge in Equation (7) is the sum of the k smallest eigenvalues of the
graph Laplacian. Moreover, this minimum value is achieved when columns of U are the
corresponding eigenvectors. That is:

U = [e1, e2, . . . , ek]. (8)

where ei is the i-th smallest spectral eigenvector. We make use of the above to obtain a
heuristic value for U. Specifically, in Step 4 of Algorithm 1, we set U to the Laplacian
eigenvectors, effectively choosing to minimize only Ledge and ignore Lnonedge. Note that
when selecting the scale factor s at Step 5 we make use of the sum Ledge +Lnonedge, i.e., the
full Equation (7).

2. GOSH embeddings [28]: GOSH is an efficient and state-of-the-art method to obtain
embeddings that preserve vertex-to-vertex similarity measures. For our purposes, we use
the normalized adjacency matrix of the graph as the similarity measure. While the objective
function that is optimized by GOSH out-of-the-box is not identical to that of Equation (7),
the resulting optimization performed by GOSH leads to embeddings that preserve both
edge and non-edge information, in line with our objective in Equation (7). To further ensure
that GOSH provides an embedding with a good objective value, we perform a grid-search
over its hyperparameters and maintain the GOSH embedding with maximum objective
value as per Equation (7). We have found this approach to work extremely well in practice.

GOSH vs. Laplacian Embeddings: We found experimentally that performing the initial-
ization of U with GOSH rather than Laplacian embeddings consistently leads to a better
performance. Therefore, for ease of presentation in what follows, we will use GOSH for
the initialization procedure (Algorithm 1), unless explicitly mentioned otherwise. Beyond
Laplacian and GOSH embeddings, this framework is flexible enough to support other
unsupervised node embeddings, such as VERSE [29], Force2vec [30], which aim to preserve
edge and non-edge information.

Updating Model Parameters. Next, we describe the training procedure for JANE to
minimize the overall loss Ltotal. Training begins with the values U = Uinitial and s = 1
provided by Algorithm 1, with the scale s remaining fixed during training. During each
training epoch, JANE starts by fixing Ŵ and updating its estimate Û using gradient

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html
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descent on Ltotal (cf. Equation (5)). This involves computing two gradients. First, the
gradient of Llabel w.r.t. the i-th row of the current latent embedding, ûi, is obtained using
backpropagation as follows,

∂Llabel
∂ûi

= ∑
l∈|YL |

(
M

∑
r=1

(
a(1)lr − Ylr

)
W(1)

ri

)
×
 a(0)li

1 + exp
(
−z(0)li

)
×(d+k

∑
p=1

[
W(0)

il

])
(9)

where a(0), a(1) are activations from the hidden and output layers, and z(0) is the weighted
sum from the input layer. The index i ranges over all nodes with known labels, and r
indexes over the M different classes available for prediction. Second, the gradient of (upper-
bounded) Lgraph in Equation (7) w.r.t. the i-th row of the current latent embedding, ûi, is
as follows.

∂Lgraph

∂ûi
=

 ∑
j:(i,j)∈E

2× ûi − ûj

s2

+

 ∑
j:(i,j)/∈E

−2× ûi − ûj

s2 × e−
‖ûi−ûj‖2

s2

 (10)

where indices i and j range over all nodes in V . The learning rates corresponding to the
gradients above are denoted with ηlabel, ηgraph.

Once Û is updated, JANE treats it as fixed and updates the weights Ŵ of the neural
network using stochastic gradient descent for Ltotal (cf. Equation (5)). Since Lgraph is
independent of W, the optimization problem reduces to the following:

Ŵ = arg min
W

Llabel = arg min
W

− log
(

Pr
[
YL|X; Û, W

])
(11)

The gradient of Llabel w.r.t Ŵ is computed using standard backpropagation (as in Step 7)
with learning rate ηweight.

Batching. To reduce memory overhead and improve scalability to larger graphs, we
adapt our training algorithm to allow the forward and backward propagations described
above to take place in K smaller batches of nodes, where V = B1 ∪ . . . ∪BK. Algorithm 2
gives the pseudocode for JANE using this batched approach. This takes advantage of
the observation that, during any current iteration of gradient descent update, ÛBb

for
a particular batch of nodes b ∈ [K] does not depend on other nodes in the graph. An
analogous minibatching variant called JANE-MU differs in only one aspect from JANE,
namely that it updates Ŵ for every batch during each iteration. For completeness, we
provide the pseudocode for the minibatching variant in Algorithm 3.

3.2.2. Prediction

Given maximum-likelihood estimates Û(T) and Ŵ(T) at the end of T epochs, we
predict labels ŶV\L for all nodes in V \ L using the softmax function applied row-wise

ŶV\L = arg max
r∈M

σ
(

ReLU
(
CONCAT

[
XV\L, Û(T)

V\L

]
Ŵ(0)

(T)

)
Ŵ(1)

(T)

)
r
, (12)

where XV\L and Û(T)
V\L are the corresponding node features and latent embeddings.

3.2.3. Complexity Analysis

Computing Ûinitial using the GOSH embedding has a time complexity ofO(|V|+ |E |) [28].
We assume that the dimensionality of the hidden neural layers are of the same order asO(d + k).
A forward pass of JANE requires O

(
(d + k)2L|V|+ (d + k)|E |

)
where L is the number of

layers,O((d + k)|E |) is the cost of the first layer’s linear mapping andO
(
(d + k)2|V|

)
is the

cost of each subsequent hidden layers.
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Algorithm 3: JANE-U-M (Mini-Batching).

1 Input: Adjacency matrix A; Node attributes X; Training labels YL; Embedding
method EMBEDDING ∈ {LAPLACIAN, GOSH}

2 Parameters: dimensionality of Û, Ûinitial k; number of training epochs T;
learning rates ηlabel, ηgraph, ηweight; number of batches K;

3 Output: Vector representations hv for all v ∈ V ;

// Initialize

4 Û, s← INITIALIZE(A, Emd, k) // (cf. Algorithm 1)

5 Create K batches of nodes B1 ∪ . . . ∪BK ← V
for t← 1 to T do

for b← 1 to K do
// Forward propagation

6 ∀i ∈ Bb, h(t)
i ← σ

(
ReLU

(
CONCAT

[
XBb

, Û(t−1)
Bb

]
W(0)

)
W(1)

)
// (Equation (3))

// Update Û

7 Û(t)
Bb
← Û(t−1)

Bb
− ηlabel · ∂Llabel

∂Û(t−1)
Bb

− ηgraph ·
∂Lgraph

∂Û(t−1)
Bb

// (cf. Equations (9)–(10) )

// Update Ŵ

8 Ŵ(t)
Bb
← Ŵ(t−1)

Bb
− ηweight · ∂Llabel

∂Ŵ(t−1)
Bb

end
end
return ∀v ∈ V , hT

u

4. Experiments

In this section, we empirically evaluate the performance of JANE on synthetic and
real-world datasets.

4.1. Algorithms

Variants of JANE. We conducted experiments for four variants of JANE, depending
on the choice Ûinitial and the training procedure.

• JANE-R: This chooses a random matrix of appropriate dimensions (n× k) as Ûinitial
and trains according to Algorithm 2 in a batched manner.

• JANE-U: This computes a GOSH embedding [28] based on a hyperparameter search
that minimizes Equation (7) as Ûinitial and trains according to Algorithm 2 in a batched
manner.

• JANE-NU: This computes a GOSH embedding [28] based on a hyperparameter search
that minimizes Equation (7) as Ûinitial. However, Ûinitial does not update during
training (i.e. ignores Step 7). In effect, this becomes a simple feed-forward multi-layer
perceptron.

• JANE-U-M: This is similar to JANE-U, except that it trains in a minibatched fashion
(cf. Algorithm 3).

Baselines. We compare the performance of JANE with five baselines divided into
three broad groups.

• Graph-structure agnostic algorithms: Random Forest (RF) [18] trains a random forest on
the attribute matrix X and does not incorporate adjacency information.

• Node-attribute agnostic algorithms: Label Propagation (LP) [8] chooses labels for nodes
based on the community label of its r-hop neighbors. DeepWalk (DW) [12] encodes
neighbourhood information via truncated random walks and uses a Random Forest
Classifier for label prediction. These do not incorporate node attributes.

• Graph-convolution based algorithms: GCN [31] and GraphSAGE (mean aggregator) [3]
convolve over node attributes using the adjacency matrix. We acknowledge that this
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is extremely active area of research today and there exist several advancements that
demonstrate improved performance in terms of training efficiency [32,33] and low
homophily datasets [34,35]. However, GCN and GraphSAGE continue to prove to be
strong benchmarks, and so we empirically compare with them to demonstrate our
central point: JANE is a simple algorithm that efficiently scales and is competitive
with the state-of-the-art on a variety of datasets.

Implementation. We implemented Random Forest using Scikit-Learn [36]. All other
baselines and all variants of JANE were implemented using Pytorch Geometric [37]. In all
our experiments, as is standard, all approaches only received the adjacency matrix of the
graph A and the node attributes X as input. We grid searched over the hyperparameter
space to find the best setting for all our baselines.

Hardware. We performed all experiments on a Linux machine with 32 cores, 32GB
RAM and a NVIDIA A100 GPU.

4.2. Node Classification on Synthetic Data

The goal of these experiments was two-fold—(1) demonstrate the fundamental differ-
ences between and limitations of existing classification approaches using synthetic datasets
wherein labels derive from only X, only U, or partly from both; and (2) show the strengths
and general-purpose nature of JANE vis-à-vis the source of node labels.

Synthetic Datasets. Figure 3 describes representative synthetic datasets generated accord-
ing to the model described in Section 3.1. We set the number of individual node features
|X| = d = 2 and number of latent features |U| = k = 2. We generated these X and U
from gaussian distributions for n = 200 points, each of which belonged to one of M = 4
classes and set the scale s2 = 1. The adjacency matrix was probabilistically created from
U according to Equation (1). An influence parameter, α ∈ [0, 1], controlled the degree to
which node labels derive from X or U: α = 0.0 signifies that they derive only from U and
are independent of X; α = 1.0 that they derive only from X and are independent of U;
and α = 0.5 that they derive equally from X and U (specifically, without loss of generality,
only the first feature from X and U contributes to label assignment). Figure 3a depicts an
instance of X and U each for α = {0.0, 0.5, 1.0}, respectively. The colors of points represent
classes. We constructed the adjacency matrix from U as per Equation (2). Figure 3b depicts
an instance of the corresponding graphs.

Implementation Details. We used Scikit–Learn’s MAKE_CLASSIFICATION to generate
these datasets. The approaches did not have access to α or U. JANE was trained as a
two-layer neural network for a maximum of T = 200 epochs with dropout of 0.2 for each
layer, weight decay of 0.05, and learning rate of 0.005 using Adam. We set the number of
eigenvectors as k = 2 and chose a scaling factor of s2 = 0.01.

Performance. Figure 3c shows performance as a function of increasing training set
sizes.

• α = 0.0: LP and DW infer that labels derive from A (indirectly). GCN converges
attribute values of nodes in the same cluster but is not perfectly accurate because X
does not correlate with Y. LANE forces the proximity representation to be similar
to the attribute representation, and then smoothens it using the labels. It does not
perform well ,since there is no correlation between them.

• α = 0.5: LP, DW are able to correctly classify nodes belonging to 2 out of 4 classes, i.e.
precisely those nodes whose labels are influenced by U. Conversely, LANE is able
to classify those nodes belonging to two classes of nodes that correlate with X. GCN
smoothens the attribute values of adjacent nodes, and thus can correctly infer labels
correlated with X.

• α = 1.0 LP and DW reduce to random classifiers since adjacent nodes do not have
similar labels. GCN reduces to a nearly random classifier because, by forcing adjacent
nodes with different attribute values to become similar, it destroys the correlation
between X and the labels.
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In each of the three cases, JANE-NU and JANE achieve perfect accuracy because
they flexibly learn during training whether labels correlate or partially correlate with X,
A (indirectly). While these datasets are simplistic in nature and represent hard cases of
homophily and heterophily, it is interesting to find that a simple MLP such as JANE
performs well where GCN and GraphSAGE do not. This demonstrates how the homophily
assumption—requiring nodes with a similar proximity and attributes to have the same
labels—limits the performance of other approaches.
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Figure 3. (a) depicts three synthetically generated datasets X and U with class labels Y influenced
only by U (α = 0.0, left), partly by U and partly by X (α = 0.5, center), and only by X (α = 1.0, right).
(b) shows an instance of the corresponding graph generated from U according to Equation (2). (c) com-
pares the node classification accuracy of JANE and JANE-NU, with the baselines averaged over five
random train-test splits. Reprinted with permission from Springer Nature Customer Service Centre
GmbH: Springer, International Conference on Complex Networks and Their Applications, Joint Use
of Node Attributes and Proximity for Node Classification, Merchant and Mathioudakis [25], 2021.

4.3. Node Classification on Real-World Data

We seek to understand: (1) to what extent JANE can capture real graph structures and
their correlations with node labels, and (2) how well JANE compares with our baselines on
these datasets.

4.3.1. Datasets

We evaluated seven real datasets of sizes ranging from 2.5 thousand to 1.5 million
nodes. If the original graph was disconnected, we extracted its largest connected component
along with the corresponding node attributes and labels (This resulted in different datasets
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and performances compared to the results reported in prior works [31,34,38]). Table 1
summarizes the dataset statistics.

• Citation Networks: Cora, Citeseer, PubMed [1] represent academic papers as nodes,
edges denote a citation between two nodes, node features are 0/1-valued sparse
bag-of-words vectors and class labels denote the subfield of research to which the
papers belong.

• Social Networks: Flickr denotes users of the social media site that post images as nodes,
edges represent follower relationships, and features are specified by a list of tags
reflecting the interests of the users [39]. The labels used to predict are pre-defined
categories of images.

• Squirrel: This is a Wikipedia dataset [40] where nodes are web pages, edges are mutual
links between pages, features correspond to informative nouns in the pages, and labels
are categories based on the average number of monthly views of the page.

• Yelp [41] and Amazon [38]: The multi-label classification task in these datasets is to
predict the types of business or product categories given customer or buyer reviews
and friendship or interaction relationships, respectively.

Table 1. Dataset statistics: number of nodes |V|, number of edges |E |, number of classes, number of
features, and edge homophily of the graph, respectively. Edge homophily is defined as the fraction of
edges in a graph where both nodes have the same class label. We do not report homophily scores for
the multi-label datasets Yelp and Amazon.

Graph
Size Properties

|V| |E| Number of Classes Number of Features Edge Homophily

Cora 2485 5069 7 1428 0.86
Citeseer 2110 3668 6 3669 0.80
PubMed 19,717 44324 3 500 0.86
Squirrel 5201 401,907 5 2089 0.29
Flickr 89,250 989,006 7 500 0.41
Yelp 703,655 13,927,667 100 300 NA
Amazon 1,066,627 263,793,649 107 200 NA

4.3.2. Experimental Setup

For the citation datasets, we used the same train–validation–test splits as in Yang, et al. [42],
minus the nodes, which do not belong to the largest connected component. These comprise
of 20 samples for each class and represent 5% of the entire dataset. We use 500 additional
samples as a validation set for hyperparameter optimization as per Kipf, et al. [31] to enable
fair comparison. For all other datasets, we use the training and validation splits reported
in their original works. We evaluate the performance of all approaches on the remaining
nodes of the graph. For each dataset, we set k = 128 dimensions for Û. We perform a
grid search over the hyperparameter space defined by hidden dimension in {128, 256, 512},
dropout in {0.0, 0.1, 0.2, 0.3}, and learning rates {0.00001, 0.0001, 0.001, 0.01} with weight
decay set to 0.0005.

4.3.3. Performance Analysis

Table 2 reports the average test micro-F1 accuracy scores for each variant of JANE and
the baselines. Values in bold denote the algorithm that performed best for each dataset. We
make the following observations: (1) Choosing a good Ûinitial is important for classification
accuracy. Starting from a random matrix and updating it during training results in poorer
performance compared to using the GOSH embedding with or without updates. For
instance, JANE-R achieves 58.50% on Cora compared to JANE-U and JANE-NU, which
achieve 77.78% and 77.75%, respectively. This trend was observed across datasets. (2) The
unsupervised GOSH embedding, by design, preserves adjacency information. Thus, even
without further updates to Ûinitial, it performed well in the classification task across datasets.
In particular, we observe that it beats the other algorithms in the case of Citeseer with
66.58%. (3) However, updates to Ûinitial during training can improve test accuracy for some
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datasets (that is, compared to not updating). This is particularly evident in PubMed where
JANE-U obtains 77.56% compared to JANE-NU’s 76.70%. This is not just influenced by the
properties of the dataset, but also the choice of Ûinitial because when using eigenvectors,
the performance gains for JANE-U are consistently and significantly higher than those
for JANE-NU. (4) JANE-U-M significantly outperforms all other baselines on the larger
datasets Yelp and Amazon, with 60.70% and 77.23% accuracy scores, respectively. This
represents upto 18.05% and 7.66% improvement over the second best baseline. This is
because JANE-U-M updates more frequently, i.e., for each batch in every epoch, and thus
learns better. (5) We find that GCN beats other algorithms in the case of the low-homophily
dataset Squirrel. JANE-U-M (42.65%) outperforms GraphSAGE (41.44%) on Squirrel, but
is unable to correlate similarity of attributes of nodes 1-hop away with labels, which GCN,
by way of convolutions, has an increased capture ability.

Table 2. Comparison of test micro-F1 scores with baseline algorithms. Accuracy numbers in blue
represent the best model for each dataset. Results are averaged over 10 runs.

Algorithm Cora Citeseer Squirrel PubMed Flickr Yelp Amazon

RandomForest 56.19± 0.2 49.20± 0.6 33.31± 0.5 73.70± 0.8 45.80± 0.0 42.55± 0.1 59.12± 0.1
LabelPropagation 70.53± 0.0 64.30± 0.0 32.37± 0.0 70.50± 0.0 46.96± 0.0 0.90± 0.0 0.02± 0.0
DeepWalk 36.74± 1.6 33.73± 2.2 33.78± 1.1 69.34± 1.3 51.13± 0.1 NA NA
GCN 77.34± 0.3 63.90± 0.6 47.44± 2.4 76.48± 0.2 42.67± 0.4 39.58± 1.6 12.22± 0.1
GraphSAGE 74.97± 1.5 58.90± 1.2 41.44± 0.8 73.72± 0.7 51.00± 0.6 39.07± 3.2 68.23± 0.4
JANE-R 58.40± 0.8 49.58± 0.4 31.39± 1.4 51.42± 1.9 45.39± 0.4 39.03± 2.2 63.39± 0.6
JANE-NU 77.75± 0.3 66.58± 0.2 42.32± 0.5 76.70± 0.7 51.44± 0.2 40.98± 3.4 69.57± 0.2
JANE-U 77.78± 0.3 66.40± 0.1 41.81± 0.2 77.56± 0.3 51.49± 0.2 38.76± 1.2 69.53± 0.2
JANE-U-M 78.10± 0.1 66.30± 0.2 42.65± 1.2 77.14± 0.6 50.67± 0.2 60.70± 0.6 77.23± 0.1

4.3.4. Ablation Study on Choosing Ûinitial

As described in Section 3.2, in all results reported to date, our method of choice to
obtain Ûinitial was to invoke Algorithm 1 with GOSH, and after a grid-search of GOSH
hyperparameters, chose the GOSH embedding that leads to the highest Lgraph (Equa-
tion (7)). In this passage, we address the question of whether the entire Lgraph expression
is necessary to obtain a good initial embedding Ûinitial, or if it would suffice to use only
the edge (Ledge) or non-edge (Lnonedge) information for the same purpose. In Figure 4, we
report the test accuracy of JANE-U for three different Ûinitial, which aim to minimize Ledge,
Lnonedge and Lgraph, respectively (cf. Equation (7)). We computed this using a grid search
over GOSH’s hyperparameters for each loss function. Then, we trained JANE-U as per
Algorithm 2 over a grid of training hyperparameters and report best results. We find that,
in the case of graphs with high homophily, such as Cora, Citeseer, and PubMed, preserving
the overall adjacency information results in better accuracy compared to preserving only
edge or non-edge information. On the other hand, for low-homophily graphs such as
Squirrel, JANE-U performs similarly when using a Ûinitial that minimizes any of the three
loss functions with similar observations for Flickr.

4.3.5. Ablation Study on Updating Û

Figure 5 shows the change in Llabel and Lgraph before and after training for 200 epochs.
We used this to analyze how different variants of JANE learn the tradeoff between fitting to
adjacency and label information. For instance, since JANE-NU does not update Û during
training, its Lgraph remains constant, but Llabel reduces as expected. For other variants,
both Lgraph and Llabel reduce over time. JANE-R starts with a higher Lgraph (e.g., 31.16 vs.
11.78 for other variants of JANE in Cora), but all models begin with the same Llabel because
the initial W matrix of the neural network is random. We find that, for example, in the case
of Yelp, the GOSH embedding achieves a stable tradeoff between capturing adjacency and
label information, because Lgraph only marginally improves. However, it achieves the best
test accuracy (60.70%, Table 2). On the other hand, JANE-U updates Ûinitial significantly
during training in order to reach a stable tradeoff and good test accuracy. Thus, we conclude
that JANE flexibly adapts to various datasets during training.
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Ûinitial

Lnonedge Ledge Lgraph

Figure 4. Test micro-F1 scores for JANE-U where Ûinitial is that which minimizes Ledge, Lnonedge, or
Lgraph. Jointly preserving edge as well as non-edge information results in best performance.
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Figure 5. Change in Llabel (X-axis) and Lgraph (Y-axis) due to training for JANE-R, JANE-NU, JANE-
U, and JANE-U-M. The purple circle denotes the loss value before the start of training and the grey
square denotes the loss value after training for 200 epochs. JANE learns to fit to both the labels and
adjacency during training.
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4.3.6. Relationship between Lgraph and Accuracy

Figure 6 depicts how Lgraph, represented by a blue line, and validation accuracy,
represented by a red line, change during the training phase of JANE. Each row corresponds
to a specific algorithm (e.g., first row depicts JANE-R on PubMed and Amazon) and each
column corresponds to a specific dataset (e.g., first column depicts JANE-R, JANE-U, and
JANE-U-M on PubMed). We observe that JANE-R’s accuracy continues to improve while
Lgraph reduces over time, indicating that it is learning well. After 200 epochs, however,
its micro-F1 score (51.42%) remains lower than that of JANE-U (77.56%) for PubMed. For
Amazon, even though it starts with a larger Lgraph (7304 vs. 3066), the updates to Ûinitial
provide it with sufficient information, such that its performance (63.39%) is comparable
to JANE-U (69.53%), but not JANE-U-M (77.23%). JANE-U-M learns very quickly and
achieves a good accuracy score within a relatively low number of epochs. Lastly, we
observe, e.g., in PubMed, that JANE-U and JANE-U-M show diminishing returns in terms
of accuracy after reaching a peak at 30 and 87 epochs, respectively, even though Lgraph
continues to reduce. This implies that fitting to adjacency is only useful up to a certain
extent and indicates that an early stopping criterion based on this may be beneficial to
computational efficiency.
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Figure 6. Decrease in Lgraph (blue line, left Y-axis) and increase micro-F1 validation accuracy (red
line, right Y-axis) as a function of training epochs (X-axis) for JANE-R, JANE-U, and JANE-U-M on
Pubmed and Amazon datasets.

4.3.7. Runtime and Memory

Figure 7 plots the average time for a single training epoch for the various neural-
network training algorithms on all datasets. This does not include the time to generate
GOSH [28] embeddings, which range from 0.03 s for Cora to 17.6 s for Amazon over 200
epochs. JANE-NU is the fastest, since it is a vanilla feed-forward neural network and
does not update Ûinitial. In practice, this results in a 20× to 333× depending on the size of
the dataset. For the small-to-medium-sized datasets such as Cora up to Flickr, JANE-U
and JANE-U-M are up to 7× and 2× faster than GCN and GraphSAGE and comparable
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or marginally slower on the two large datasets, Yelp and Amazon. However, it should be
noted that both GCN and GraphSAGE use neighborhood sampling during the aggregation
and inference steps, whereas JANE-U and JANE-U-M compute the full gradients for
every batch in each epoch in a serial manner and do not employ a stopping criterion for
updating Û, which would significantly speed up training. JANE is faster during inference
in comparison to GCN and GraphSAGE. Thus, JANE is scalable to large graphs while
providing strong performance. Moreover, the peak GPU memory utilization ranges from
54.2 MB to 68 GB for Cora and Amazon, respectively.
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Figure 7. Average training time per epoch (in seconds) of training algorithms on different datasets.

5. Conclusions

In this paper, we developed an approach to node classification that flexibly adapts to
settings where labels are strongly correlated to graph structure, on one hand, and to graphs
where labels are strongly correlated to node attributes, on the other. We propose a generative
framework to demonstrate how graph structural information and node attributes both,
can jointly influence node labels Even simple instances of such situations, as shown in
Figure 1 and empirically evaluated in Figure 3b, severely affect the performance of standard
baselines. Our principled approach, JANE, starts with an initial unsupervised GOSH
embedding that captures adjacency information. Then, jointly with attributes, it updates
the initial embedding to also incorporate label information for the node classification task,
leading to a strong performance in a variety of datasets. Given its simplicity, scalability,
and performance, JANE can serve as a competitive algorithm for node classification and as
a useful starting point when designing models that holistically account for different sources
of node labels and go beyond requiring or enforcing homophily.

There are two main directions for future work. The first is to incorporate node
subsampling [38] or graph subsampling [43] in the computation of Equation (7) to further
reduce the computational bottleneck of JANE-U and JANE-u-M and scale to very large
graphs. The second direction is to implement a distributed version of JANE-U to enable
scaling to multi-GPU clusters.
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