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Abstract: Machine unlearning is the task of updating machine learning (ML) models after a subset
of the training data they were trained on is deleted. Methods for the task are desired to combine
effectiveness and efficiency (i.e., they should effectively “unlearn” deleted data, but in a way that does
not require excessive computational effort (e.g., a full retraining) for a small amount of deletions). Such
a combination is typically achieved by tolerating some amount of approximation in the unlearning.
In addition, laws and regulations in the spirit of “the right to be forgotten” have given rise to
requirements for certifiability (i.e., the ability to demonstrate that the deleted data has indeed been
unlearned by the ML model). In this paper, we present an experimental study of the three state-
of-the-art approximate unlearning methods for logistic regression and demonstrate the trade-offs
between efficiency, effectiveness and certifiability offered by each method. In implementing this study,
we extend some of the existing works and describe a common unlearning pipeline to compare and
evaluate the unlearning methods on six real-world datasets and a variety of settings. We provide
insights into the effect of the quantity and distribution of the deleted data on ML models and the
performance of each unlearning method in different settings. We also propose a practical online
strategy to determine when the accumulated error from approximate unlearning is large enough to
warrant a full retraining of the ML model.

Keywords: machine unlearning; pipelines; logistic regression

1. Introduction

Machine unlearning is the task of updating a machine learning (ML) model after the
partial deletion of data on which the model had been trained so that the model reflects the
remaining data. The task arises in the context of many database applications that involve
training and using an ML model while allowing data deletions to occur. For example,
consider an online store that maintains a database of ratings for its products and uses the
database to train a model that predicts customer preferences (e.g., a logistic regression
model that predicts what rating a customer would assign to a given product). If part of
the database is deleted (e.g., if some users request their accounts to be removed), then a
problem arises: how to update the ML model to “unlearn” the deleted data. It is crucial to
address this problem appropriately so that the computational effort for unlearning is in
proportion to the effect of the deletion. A tiny amount of deletion should not trigger a full
retraining of the ML model, leading to potentially huge data-processing costs, but at the
same time, data deletions should not be ignored to such extent that the ML model does not
reflect the remaining data anymore.

In this work, we perform a comparative analysis of the existing methods for machine
unlearning. In doing so, we are motivated both by the practical importance of the task and
the lack of a comprehensive comparison in the literature. Our goal is to compare the perfor-
mance of existing methods in a variety of settings in terms of certain desirable qualities.

What are those qualities? First, machine unlearning should be efficient (i.e., achieving
small running time) and effective (i.e., achieving good accuracy). Moreover, machine
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unlearning is sometimes required to be certifiable (i.e., guarantee that after data deletion
the ML model operates as if the deleted data had never been observed). Such a requirement
may be stipulated by laws (e.g., in the spirit of the right to be forgotten [1] or the right of
erasure [2] in EU laws) or even offered voluntarily by the application in order to address
privacy concerns. In the example of the online store, consider the case where some users
request their data to be removed from its database. The online store should not only delete
the data in the hosting database but also ensure that the data are unlearned by any ML
model that was built from them. Essentially, if an audit was performed, the employed
ML models should be found to have unlearned the deleted data as well as a model that is
obtained with a brute-force full retraining of the remaining data, even if full retraining was
not actually performed to unlearn the deleted data.

The aforementioned qualities exhibit pairwise trade-offs. There is a trade-off between
efficiency on one hand and effectiveness or certifiability on the other because it takes time to
optimize a model so as to reflect the underlying data or unlearn the deleted data. Moreover,
there is a trade-off between certifiability and effectiveness. That’s because unlearning the
deleted data, thus ensuring certifiability, corresponds to learning from fewer data, thus
decreasing accuracy. In this study, we observe the three trade-offs experimentally and
find that because the compared methods involve different processing costs for different
operations, they offer better or worse trade-offs in different settings.

For the experimental evaluation, we implement a common unlearning pipeline (Figure 1)
for the compared methods. The first stage trains an initial ML model from the data. To
limit the variable parts of our experimentation, we will be focusing on logistic regression,
which represents a large class of models that are commonly used in a wide range of
settings. In addition, we will be assuming that the initial model is trained with stochastic
gradient descent (SGD), since SGD and its variants are the standard algorithms for training
general ML models. The second stage employs the initial ML model for inference (i.e., for
classification). During this stage, if data deletion occurs, then the pipeline proceeds to
the third stage to unlearn the deleted data and produce an updated model. After every
such model update, the updated model is evaluated for certifiability. If it fails, then the
pipeline restarts and trains a new model from scratch on the remaining data; otherwise, it is
employed in the inference stage, and the pipeline resumes. When an audit is requested by
an external auditor (not shown in Figure 1), a full retraining of the ML model is executed
on the remaining data, and the fully retrained model is compared to the currently employed
model. If the employed model is found to have unlearned the deleted data as well as the
fully retrained model (within a threshold of disparity), then the audit is successful, meaning
the pipeline has certifiably unlearned the deleted data thus far and is allowed to resume.

Training
data
D:= Dinit

Training
Stage

1
Inference

Stage

2

Deletion?
Unlearning

Stage

3

Employ
Model?

w:=w∗

No

Yes

Dm

wu D:=D \Dm

Yes
w:=wu

NoRetrain using D

Figure 1. The common unlearning pipeline with the three stages of training, inference and unlearning.
First, an initial model w∗ is trained on all data and used for inference. Subsequently, whenever a part
Dm of the data is deleted, an updated model wu is obtained via machine unlearning. The pipeline
restarts if the updated model is deemed inadequate.

Given this pipeline, we evaluate three methods, namely FISHER [3], INFLUENCE [4],
and DELTAGRAD [5], that follow largely different approaches for machine unlearning and
represent the state of the art for our setting (linear classification models trained with SGD).
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FISHER, proposed by Golatkar et al. [3], updates the initial ML model using the remaining
data to perform a corrective Newton step. INFLUENCE, proposed by Guo et al. [4], updates
the initial ML model using the deleted data to perform a corrective Newton step. Finally,
DELTAGRAD, proposed by Wu et al. [5], updates the initial ML model by correcting the
SGD steps that led to the initial model. Note that, in this work, we extend the original
algorithms of [3,5] to ensure that all the evaluated methods are equipped with mechanisms
to control the trade-offs between efficiency, effectiveness and certifiability.

For the experimental evaluation, we implement the three methods and compare
them in a large range of settings that adhere to the pipeline described above. The aim
of the experiments is to demonstrate the trade-offs that the three methods offer in terms
of efficiency, effectiveness and certifiability. First, we demonstrate that the trade-offs are
much more pronounced for certain worst-case deletion distributions than for random
deletions. Subsequently, we observe that FISHER offers the overall best certifiability, along
with good effectiveness at a lower efficiency than INFLUENCE, especially for larger datasets.
In addition, INFLUENCE offers the overall best efficiency, along with good effectiveness at
lower levels of certifiability, and DELTAGRAD offers stable albeit lower performance across
all qualities. Moreover, we observe that the efficiency of FISHER and INFLUENCE is much
higher for datasets of lower dimensionality. The patterns we observe in these experiments
have a beneficial by-product: they allow us to define a practical approach to determine in
online fashion (i.e., as the pipeline unfolds) when the accumulated error from approximate
unlearning is large enough to require restarting the pipeline to perform a full retraining of
the ML model.

To summarize, we make the following contributions:

• We define a novel framework to compare machine unlearning methods in terms of
effectiveness, efficiency, and certifiability.

• We extend the methods of [3,5] with mechanisms to control performance trade-offs.
• We offer the first experimental comparison of the competing methods in a large variety

of settings. As an outcome, we obtain novel empirical insights about (1) the effect of
the deletion distribution on the performance trade-offs and (2) the strengths of each
method in terms of performance trade-offs.

• We propose a practical online strategy to determine an optimal time for when to restart
the training pipeline.

As for future work, a similar experimental study would address model updates for
data addition rather than deletion. For this work, we opted to focus on deletion to keep
the paper well-contained, because certifiability is typically required in the case of deletion
(e.g., when users request their data to be deleted from an application), and the methods we
evaluate are tailored to certifiable deletion.

2. Related Work

Unlearning methods are classified as exact or approximate.
Exact unlearning methods produce ML models that perform as fully retrained models.
By definition, these methods offer the highest certifiability, as the produced models are
effectively the same as ones obtained with retraining. There exist several exact unlearning
methods, typically for training algorithms that are model-specific and deterministic in
nature. For instance, ML models such as support vector machines [6–8], collaborative
filtering, naive Bayes [9,10], k-nearest neighbors and ridge regression [9] possess exact
unlearning methods. The efficiency for such exact methods varies.

For stochastic training algorithms such as SGD, an exact unlearning approach, under
the assumption that learning is performed in federated fashion, was proposed in [11]. In
federated learning, separate ML models are trained on separate data partitions, and their
predictions are aggregated during inference. This partitioning of data allows for efficient
retraining of ML models on smaller fragments of data, leading to efficient unlearning
when data are deleted. However, for general ML models trained with SGD, the setting of
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federated learning comes with a potential cost of effectiveness that is difficult to quantify
and control because model optimization is not performed jointly on the full dataset.
Approximate unlearning methods produce ML models that are an approximation of the
fully retrained model. These methods typically aim to offer much larger efficiency through
relaxation of the effectiveness and certifiability requirements. Most of them can be catego-
rized into one of three groups.

The first group [3,12,13] uses the remaining data of the training dataset to update the
ML model and control certifiability. These methods use Fisher information [14] to retain
the information of the remaining data and inject optimal noise in order to unlearn the
deleted data. The second group [4,15,16] uses the deleted data to update ML models during
unlearning. They perform a Newton step [17] to approximate the influence of the deleted
data on the ML model and remove it. To trade off effectiveness for certifiability, they inject
random noise into the training objective function [16]. The third group [5,18–20] stores data
and information during training and then utilizes this when deletion occurs to update
the model. Specifically, these methods focus on approximating the SGD steps that would
have occurred if full retraining was performed. To aid in this approximation, they store the
intermediate quantities (e.g., gradients and model updates) produced by each SGD step
during training. The amount of stored information and the approximation process raise an
effectiveness vs. efficiency trade-off.

Methods from the above three groups can be used to perform unlearning for classi-
fication models with SGD, as long as the relevant quantities (e.g., the model gradients)
are easy to compute for the model at hand. Apart from the above three groups, there are
other approximate unlearning methods that do not fit the same template (e.g., methods for
specific ML models, such as [21] for random forest models, or for Bayesian modeling, such
as [22] for Bayesian learning), and so we consider them outside the scope of this paper.

In this paper, we focus on approximate unlearning methods, because they are appli-
cable to general ML models, when training is performed with general and widely used
optimization algorithms such as SGD. We implement three methods—FISHER, INFLUENCE

and DELTAGRAD—which correspond to state-of-the-art unlearning methods from each of
the aforementioned groups ([3–5], respectively).

3. Machine Unlearning

Section 3.1 below will present the stages of the unlearning pipeline and how each
method implements them. Each unlearning method we consider is equipped with mecha-
nisms to navigate trade-offs between efficiency, effectiveness and certifiability. Therefore,
to facilitate presentation, let us first provide a high-level description of those mechanisms
along with some related terms and notation.

In what follows, effectiveness is measured as the model’s accuracy on the test dataset
Acctest (i.e., the fraction of the test data that it classifies correctly). Certifiability is measured
as the disparity AccDis in accuracy of the deleted data between the updated model (i.e., the
model that results from the (possibly approximate) unlearning of the deleted data) and the
fully retrained ML model. This metric is a normalized version of the “error on the cohort to
be forgotten” metric seen in Golatkar et al. [3]. Intuitively, AccDis quantifies how well the
updated model “remembers” the deleted data. If it is small, then the updated model has
“unlearned” the deleted data almost as well as if fully retrained.

The first mechanism trades efficiency for effectiveness on one hand and certifiability
on the other via an efficiency parameter τ, which is specified separately for each unlearning
method. Lower values of τ indicate lower efficiency, thus allowing longer running times to
improve the effectiveness and certifiability of the updated model.

The second mechanism trades effectiveness (high accuracy Acctest) for certifiability
(low disparity AccDis) via noise injection. Simply expressed, noise injection deliberately
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adds randomness to an ML model both during training and unlearning. A noise parameter
σ controls the amount of injected noise, defined for a model of d features as

σb, where b ∼ N (0, 1)d. (1)

On one end of this trade-off, large amounts of noise ensure that the fully retrained
and unlearned model are both essentially random, thus leading to high certifiability (low
disparity AccDis) at the cost of low effectiveness (low accuracy). On the other end, when no
noise is injected, the unlearning method strives to readapt the model to the remaining data,
thus possibly sacrificing in favor of effectiveness some of the certifiability it would achieve
on the first end of this trade-off. We note that this trade-off, along with noise injection as
a control mechanism, has already been introduced as concepts in the differential privacy
literature [4,16,23].

3.1. Unlearning Pipeline and Methods

The unlearning pipeline represents the lifecycle of the ML models in our study
(Figure 1). Below, we describe how each unlearning method we consider executes each
stage of the pipeline, with a summary shown in Table 1.

Table 1. Overview of the chosen unlearning methods.

Method Training Algorithm Unlearning Algorithm Efficiency Parameter τ

FISHER (Appendix A.1)
w∗ := wopt + σF−1/4b

wopt=arg,minw L(w,D),
F=∇2 L(wopt ,D).

wu := w− F−1∆ + σF−1/4b

∆=∇L(w,D\Dm),

F=∇2 L(w,D\Dm).

Unlearning

mini-batch size m′

INFLUENCE (Appendix A.2)
w∗ := arg, minw Lσ(w,D)
Lσ(w,D)=L(w,D)+(σb>w)/|D|

wu := w + F−1∆(m)

∆(m)=∇L(w,Dm),

F=∇2 L(w,D\Dm).

Unlearning

mini-batch size m′

DELTAGRAD (Appendix A.3)
w∗ := wopt + σb

Store wt and ∇L(wt ,D)

wu := DGAPPROX({wt}) + σb

Approx ∇L(wt ,D\Dm)

Periodicity T0

3.2. Training Stage

This stage produces an ML model from the training dataset D. In what follows, we
assume that the ML model is a logistic regression, a simple and widely used model for
classification. Each data point x ∈ Rd is accompanied by a categorical label y, and there
are ninit data points initially. At any time, D will denote the currently available training
dataset, which is a subset of the initial training dataset Dinit due to possible deletions (i.e.,
D ⊆ Dinit). The fitness of an ML model’s parameters w on a dataset D is measured via an
objective function, such as

L = L(w,D) = 1
|D| ∑

i∈D
`(wTxi, yi) +

λ

2
‖w‖2

2, (2)

with binary cross entropy ` in the first term and ridge regularization in the second term for
a fixed value λ.

Moreover, we use SGD for training [24]. SGD iteratively minimizes the objective
function over the training data. First, it initializes the model parameters to a random value
w := w0, and it improves them iteratively:

wt+1 := wt − ηt∇L(wt,D) (3)

where ηt is the learning rate at iteration t and the iterations repeat until convergence.
Following common practice, we execute SGD in mini-batch fashion (i.e., only a subset of D
is used in each execution of Equation (3)).
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The training algorithms for each unlearning method are presented in the second
column of Table 1. The FISHER and DELTAGRAD methods obtain the model wopt that
optimizes L and subsequently adds to it random noise proportionally to the noise parameter
σ. Here, the random noise is directly added to wopt by the DELTAGRAD method, while
the FISHER method adds noise in the direction of the fisher matrix F, which for logistic
regression is the Hessian of the objective L. On the other hand, the INFLUENCE method
optimizes a modified objective function Lσ, which adds random noise to the standard
objective L rather than directly adding noise to the model parameters. Furthermore, in
the DELTAGRAD method, after every iteration of the SGD algorithm (Equation (3)), the
parameters wt and the objective function gradients ∇L(wt,D) are stored to the disk.

A model obtained from the training stage of the pipeline is denoted by w∗. When it is
obtained using the initial dataset Dinit, then w∗ is referred to as the initial trained model,
and when it is obtained using a subset D ⊆ Dinit of the training dataset, it is referred to as
the fully retrained model. This model w := w∗ is sent to the second stage to be employed
for inference.

For further details on the training algorithm, see from Appendices A.1–A.3.

3.3. Inference Stage

This stage uses the available model w to predict the class y of arbitrary data points x
specified as queries. As soon as a subset of the data is deleted, the pipeline moves to the
third stage.

3.4. Unlearning Stage

This stage executes the unlearning algorithm so as to “unlearn” the deleted data Dm
and produce an updated model wu (third column of Table 1).

The FISHER and INFLUENCE methods use corrective Newton steps in their unlearning
algorithms (terms −F−1∆ and F−1∆(m), respectively). These Newton steps compute the
inverse Hessian of the objective L on the remaining data D \ Dm. However, while the
FISHER method also computes the gradient ∆ on the remaining data, the INFLUENCE

method computes the gradient ∆(m) on the deleted data. Furthermore, the FISHER method
adds random noise in the direction of the Fisher matrix, similar to the training algorithm.
Both the FISHER and INFLUENCE unlearning algorithms can be performed in mini-batches
of size m′ ≤ m, which leads to multiple smaller corrective Newton steps. Smaller unlearning
mini-batch sizes lead to a more effective ML model at the cost of efficiency, and therefore,
m′ serves as the efficiency parameter τ for the FISHER and INFLUENCE methods. Refer to
Algorithms A1 and A2 for the mini-batch versions of the unlearning algorithms.

The DELTAGRAD unlearning algorithm proceeds in two steps. The first step of the
algorithm aims to obtain the approximate ML model that would have resulted from SGD
if the subset Dm had never been used for training. This is achieved by approximating the
objective function gradient on the remaining data points∇L(wt,D \Dm) using the L-BFGS
algorithm [25–27] and the stored terms wt and∇L(wt,D) from the training stage. However,
to reduce the error from consecutive L-BFGS approximations, the gradient∇L(wt,D \Dm)
is computed explicitly after every T0 SGD iterations. Larger values of T0 lead to more
consecutive approximations steps, resulting in higher efficiency, though at the cost of a
less effective model. Therefore, the periodicity T0 serves as the efficiency parameter τ. The
second step adds random noise similar to the training algorithm. Please see Appendix A.3
and Algorithm A3 for further details.

3.5. Evaluation

During evaluation the updated model wu is assessed for certifiability as soon as it is
produced using the test dataset Dtest. If the disparity AccDis is below some threshold (e.g.,
determined by the administrator of this pipeline), then the pipeline returns to the second
stage and employs the updated model w:=wu for inference; otherwise, it returns to the
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first stage for a full retraining over the remaining data. In Section 7, we discuss a practical
online strategy for evaluation.

A properly conducted evaluation ensures that the pipeline will successfully pass
a certifiability audit at any point. In other words, if an auditor were to perform a full
retraining on the available data and compare the resulting model to the currently employed
model, then the two models should be found to be within the threshold of disparity.

4. Experimental Setup

In this section, we describe the datasets, the implementation of the pipeline and the
metrics used for evaluation.

4.1. Datasets

We performed experiments over six datasets retrieved from the public LIBSVM reposi-
tory [28]. The datasets cover a large range of size and dimensionality, as summarily shown
in Table 2. In addition, we focused on the task of binary classification, and therefore, most
datasets were chosen to include two target classes (or, if the original dataset contained more
classes, the experiments focused on two of them, as reported in Table 2). Nevertheless, we
also included one multi-class dataset (MNIST, with 10 classes).

Table 2. Datasets.

Dataset
Dimensionality

Classes
Train Test

d Level ninit ntest

MNISTb 784 medium 2 11,982 1984
CIFAR2 3072 high 2 20,000 2000
MNIST 784 medium 10 60,000 10,000
COVTYPE 54 low 2 522,910 58,102
EPSILON 2000 high 2 400,000 100,000
HIGGS 28 low 2 9,900,000 1,100,000

In more detail, MNIST [29] consists of 28× 28 black and white images of handwritten
digits (0–9), each digit corresponding to one class. MNISTb is the binary class subset of the
MNIST dataset, consisting only of digits “3” and “8” for both the training and test data.
CIFAR2 consists of 32× 32 RGB color images, belonging to the “cat” or “ship” categories
from the original 10-category CIFAR-10 [30] dataset. COVTYPE [31] consists of 54 features
used to categorize forest cover into 2 types. The HIGGS [32] dataset consists of kinematic
features from the Monte Carlo simulation of particle detectors for binary classification.
EPSILON [33] was obtained from the PASCAL Large Scale Learning Challenge 2008.

4.2. Unlearning Pipeline

We now provide implementation details for the pipeline (Figure 1). The pipeline
is designed so that it is suitable for all the three chosen unlearning methods discussed
in Section 3. The pipeline was implemented in Python 3.6 using PyTorch 1.8 [34]. All
experiments were run on a machine with 24 CPU cores and 180 GB RAM. Our full code
base is publicly available (https://version.helsinki.fi/mahadeva/unlearning-experiments
(accessed on 26 May 2022)).

4.2.1. Preprocessing

The INFLUENCE unlearning method requires all data points xi of a dataset to have
a Euclidean norm of at most one (i.e., ‖xi‖2 ≤ 1) (see Guo et al. [4]). To satisfy this
requirement, we performed a max-L2 normalization for all datasets as a preprocessing step,
where we divided each data point xi by the largest L2 norm of any data point in the dataset.
This normalization does not affect the performance of other unlearning methods.

https://version.helsinki.fi/mahadeva/unlearning-experiments
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4.2.2. Training

As mentioned in Section 3, we used the mini-batch SGD algorithm for training. In
all cases, we use a fixed learning rate η = 1 and ridge regularization parameter λ = 10−4.
Moreover, we used standard SGD since DELTAGRAD does not support momentum-based
SGD algorithms such as Adam [35]. Note that both the FISHER and INFLUENCE unlearning
algorithms require a positive definite Hessian matrix to compute its inverse (see Table 1).
This is ensured by a sufficiently large number of SGD iterations during training to achieve
convergence. Toward this end, we used a small subset of the training data as a validation
dataset to identify an optimal mini-batch size and the total number of SGD iterations.
Moreover, we controlled the data points selected in each mini-batch by fixing the random
seed used to produce mini-batches in the SGD algorithm. This ensured reproducibility of
the experiments across various unlearning methods. Finally, for multi-class classification
with k > 2 classes on the MNIST dataset, we trained k independent binary logistic regression
classifiers in a One vs. Rest (OVR) fashion.

4.2.3. Unlearning

We modified and extended the code of Guo et al. [4] to implement the INFLUENCE and
FISHER mini-batch unlearning algorithms as described in Algorithms A1 and A2. For the
DELTAGRAD method, we used the code of Wu et al. [5] and modified it to add the noise
injection mechanism seen in Table 1 to trade off effectiveness for certifiability.

4.3. Evaluation Metrics

In this section, we define the metrics we used to report the performance of different
unlearning methods in terms of effectiveness, certifiability and efficiency. For uniformity
of presentation, we reported the performance achieved by a given model as relative to
the performance of a baseline model. Toward this end, we used the Symmetric Absolute
Percentage Error (SAPE), defined as

SAPE(a, b) :=
|b− a|
|b|+ |a| · 100%, (4)

where a is the baseline value and b is the value compared against the baseline. Furthermore,
we defined SAPE(0, 0) = 0.

4.3.1. Effectiveness

It is measured in terms of the predictive accuracy of a given ML model on a particular
dataset. Let Acctest denote the accuracy on the test dataset Dtest. Specifically, let Accu

test be
the accuracy of the updated model wu on the test dataset and Acc∗test be the optimal test
data accuracy of a fully trained model, with σ = 0 obtained via logistic regression on the
available data. We reported AccErr as the error in the test accuracy of the updated model
wu compared with the optimal one, where

AccErr := SAPE(Acc∗test, Acc
u
test). (5)

A low value for AccErr implies that the updated model wu is more effective (i.e., the
predictive accuracy of the updated model is close to optimal for the available data).

4.3.2. Certifiability

It is measured in terms of how well the updated model has unlearned the deleted data
relative to a fully retrained model with the same method. Let Accdel be the accuracy of the
deleted data Dm. Specifically, let Accu

del and Acc∗del be the accuracy of the deleted data for
the updated model and the fully retrained model, respectively, for the same noise value σ.
We reported AccDis as the disparity in accuracy of the two models, where

AccDis := SAPE(Acc∗del, Acc
u
del). (6)
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The deleted data are the union of all the subsets of the initial dataset Dinit that were deleted
since the initialization of the pipeline. A lower value of AccDis implies that the updated
model wu has higher certifiability (i.e., the updated model is more similar to the fully
retrained model, which never saw the deleted data). Note that the symmetry of SAPE is
essential here, because both under- and over-performance of the updated model contributes
toward a disparity with respect to the fully retrained model.

4.3.3. Efficiency

It is measured as the speed-up in running time to obtain the updated model wu relative
to the running time to obtain the fully retrained model w∗. A speed-up of 2× indicates that
the unlearning stage is able to produce an updated model twice as fast as it takes for the
training stage to produce a fully retrained model.

5. Effect of Deletion Distribution

Before we compare the unlearning methods, let us explore how the volume and
distribution of the deleted data affect the accuracy of fully trained models. This will allow
us to separate the effects of data deletion from the effects of a specific unlearning method.

We implemented a two-step process to generate different deletion distributions. The
process was invoked once for each deleted data point for a predetermined number of
deletions. In the first step, one class is selected. For example, for binary class datasets (see
Table 2), the first step selects one of the two classes. The selection may be either uniform,
where one of the k classes is selected at random, each with a probability 1/k, or targeted,
where one class is randomly predetermined and subsequently always selected.

The second step selects a data point from the class chosen in the previous step. The
selection may be either random, where one data point is selected uniformly at random, or
informed, where the point that decreases the model’s accuracy the most is selected. Ideally,
for the informed selection and for each data point, we would compute the exact drop in
the accuracy of a fully trained model on the remaining data after the single-point removal,
and we would repeat this computation after every single selection. In practice, however,
such an approach is extremely heavy computationally, even for experimental purposes.
Instead, for the informed selection, we opted to heuristically select the outliers in the dataset,
as quantified by the L2 norm of each data point. This heuristic is inspired by [15], who
stated that deleting data points with a large L2 norm negatively affects the approximation
of Hessian-based unlearning methods. We note that the informed selections are highly
adversarial and are not practically feasible. We included it in our experiments to study the
worst-case effects of data deletion on unlearning methods.

The two-step process described above yields four distinct deletion distributions,
namely uniform-random, uniform-informed, targeted-random and targeted-informed.
In the experiments that follow, we vary the distribution and volume of deletions performed.
For each set of deleted data, we report the accuracy of the fully trained model after deletion
(i.e., the accuracy achieved by the model that optimizes Equation (2) using SGD).

The results are shown in Figure 2. Each plot in the figure corresponds to one dataset.
The first row of plots reports the accuracy on the test dataset, and the second row shows the
accuracy on the deleted data. Accuracy values correspond to the y-axis, while the volume
of deletion (as a fraction of the original dataset size) corresponds to the x-axis. Different
deletion distributions are indicated with different markers and colors. The variance seen in
Figure 2 is a consequence of the randomness in the selection of deleted points (two random
runs were performed). There are three main takeaways from these results.
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Figure 2. Effect of different deletion distributions on the test accuracy (Acctest) and deleted data
accuracy (Accdel), as the fraction of deleted data was varied for different datasets.

1. Uniform deletion distributions are unimpactful
uniform-random and uniform-informed do not adversely affect the test accuracy of a
fully retrained ML model even at deletion fractions close to 0.5. This is due to the clear
separation of classes encountered in many real-world datasets. Therefore, evaluating
unlearning methods on deletions from uniform distributions will not offer significant
insights into the effectiveness and efficiency trade-offs.

2. Targeted deletion distributions are the worst case
targeted-random and targeted-informed deletions lead to large drops in test accu-
racy. This is because deleting data points from one targeted class eventually leads to
class imbalance, causing ML models to be less effective in classifying data points from
that class. Therefore, to validate the performance of unlearning methods, one should
test them on targeted distributions, where data deletions reduce the accuracy of the
learned model.
In addition, we observed that the variance resulting from the selection of the deleted
class was low in all datasets apart from HIGGS. We postulate that this is because of the
particular way that missing values were treated for this dataset: data points that had
missing feature values disproportionately belonged to class 1. Therefore, this tended
to cause a steeper drop in accuracy when data from class 1 was targeted. Moreover,
between the two targeted distributions, we observed that targeted-informed led to
quicker accuracy drops.

3. Metrics Acctest and Accdel are correlated
We see across deletion fractions that the values of the accuracy on the test and deleted
dataset were highly correlated. Hence, the test accuracy Acctest, which can always be
computed for a model on the test data, can be used as a good proxy for the Accdel of
an ML model, which may be impossible to compute after data deletion but is required
in order to assess certifiability. This observation will be useful in deciding when to
trigger a model retrained in the pipeline (Section 7).
Additionally, we note that the drop rate in Acctest and Accdel with respect to the
deletion fraction varied with the dataset.

6. Experimental Evaluation

In this section, we demonstrate the trade-offs exhibited by the unlearning methods
in terms of the qualities of interest (effectiveness, efficiency and certifiability) for different
values of their parameters τ and σ. For each dataset, we experimented with three volumes
of deleted data points—small, medium and large—measured as a fraction of the initial
training data. The deletion volumes corresponded to a 1%, 5% and 10% drop in Acctest
for a fully retrained model when using a targeted-informed deletion distribution, with
class 0 as the deleted class (see Figure 2). Here, we present the results for the large volumes
of deletion, which were 4493, 2000, 4500, 78,436, 100,000 and 990,000 deletions for the
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datasets in Table 2, respectively. Furthermore, we grouped the datasets presented in Table 2
into three categories (low, moderate and high) based on their dimensionality. Please see
Appendix D for the results corresponding to the small and medium deletion volumes.

6.1. Efficiency vs. Certifiability

In this experiment, we studied how varying the efficiency parameter τ trades off
certifiability and efficiency for a fixed noise parameter σ. The efficiency parameter τ
for FISHER and INFLUENCE was the size of the unlearning mini-batch, and we varied
m′ ∈ {m, bm/2c, bm/4c, bm/8c}, where m is the volume of deleted data. For DELTAGRAD,
the efficiency parameter is the periodicity T0 of the unlearning algorithm, and we varied
T0 ∈ {2, 5, 50, 100}. The noise parameter was set at σ = 1 for all methods, and we obtained
the updated model wu and the fully retrained model w∗ for each unlearning method as
described in Table 1.

The results are shown in Figure 3a. For each plot in the figure, the y-axis reports
certifiability (AccDis), and the x-axis reports efficiency (speed-up). Different unlearning
methods and values of τ are indicated with different colors and markers, respectively, in
the legend.

We observed two main trends. First, for the general trade-off between efficiency
and certifiability, higher efficiency (i.e., a higher speed-up) was typically associated with
lower certifiability (i.e., a higher AccDis) in the plots. Some discontinuity in the plotlines,
especially for DELTAGRAD, was largely due to the convergence criteria, particularly since
DELTAGRAD employs SGD not only for training but also for unlearning.

Second, the efficiency of INFLUENCE and FISHER had a roughly similar trend for each
dataset. For the low-dimensional datasets, INFLUENCE and FISHER provided large speed-
ups of nearly 200× and 50× for each dataset, respectively, when m′ = m, while DELTAGRAD

provided a speed-up of less than 1× (i.e., requiring more time than the fully retrained model).
This was because when the dimensionality was low, the cost of computing the inverse
Hessian matrix for INFLUENCE and FISHER (see Section 3) was much lower compared with
the cost of approximating a large number of SGD iterations for the DELTAGRAD method.
Conversely, for the high-dimensional datasets, INFLUENCE and FISHER provided a smaller
speed-up. When τ was decreased to m′ = bm/8c, the efficiency reduced to 2.2× and 1×
for CIFAR2 and 0.3× and 1.2× for EPSILON, respectively, whereas DELTAGRAD at T0 = 50
provided better speed-ups of 1.3× and 1.1× , respectively, along with comparable values of
AccDis.

6.2. Efficiency vs. Effectiveness

In this experiment, we studied how varying the efficiency parameter τ trades off
efficiency and effectiveness for a fixed σ and volume of deleted data. The range of τ for
each unlearning method was the same as the previous experiment and σ = 1. In Figure 3b,
each plot reports effectiveness as the test accuracy error AccErr and efficiency as the speed-
up in running time. We observed the following trends. First, there was the general trade-off:
higher efficiency (i.e., a higher speed-up) was associated with slightly higher accuracy
error (i.e., AccErr) for each method. Furthermore, for INFLUENCE, decreasing τ in the
unlearning algorithm led to lower test accuracy error because the noise was injected only
in the training algorithm (see Table 1).
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Figure 3. Trade-offs between efficiency and (a) certifiability and (b) effectiveness for σ = 1 at
the largest volume of deletion as τ is varied. The y-axis reports (a) certifiability (AccDis) and
(b) effectiveness (AccErr), while the x-axis reports the efficiency (speed-up).

Second, INFLUENCE offered the best efficiency and effectiveness trade-off among all the
methods. Especially for the high-dimensional datasets, the highest efficiency offered was
20× and 2.5× compared with 0.4× and 1.3× for FISHER, respectively, at a slightly larger test
accuracy error. For the low-dimensional datasets, INFLUENCE and FISHER offered similar
efficiency while the former had a lower AccErr. Lastly, for the moderate dimensional
datasets, the largest efficiency INFLUENCE offered was 168× and 29× compared with 9×
and 8.5× for FISHER, respectively, at a lower test accuracy error.

Third, we saw that DELTAGRAD was mostly stable in terms of both efficiency and
effectiveness. However, note that the test accuracy error for all datasets was larger com-
pared with the other methods due to the direct noise injection and hence offered lower
effectiveness even at σ = 1.

6.3. Effectiveness vs. Certifiability

In this experiment, we studied how varying the noise parameter σ traded off effective-
ness and certifiability for a fixed efficiency parameter τ.

The efficiency parameter τ was set as follows: for INFLUENCE and FISHER, we set the
size of the unlearning mini-batch to m′ = m, and for DELTAGRAD, we set the periodicity
T0 = 100. For different values of the noise parameter σ, we obtained the updated models
wu corresponding to each unlearning method as described in Section 3. For the baselines,
we first obtained the fully retrained model w∗ at the same σ to measure certifiability and a
second fully retrained model w∗ at σ = 0 to measure effectiveness, as per Section 4.3.

The results are shown in Figure 4, where for each plot the left y-axis reports the
certifiability (AccDis), and the right y-axis reports effectiveness (AccErr) as σ is varied
from 10−2 to 102 for the different unlearning methods. We observed the trade-off between
effectiveness and certifiability: higher effectiveness (lower AccErr) was typically associated
with lower certifiability (higher AccDis).
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Another clear observation is that for the INFLUENCE method, the test accuracy error
AccErr increased only at higher values of σ (≥101). Moreover, we saw that its largest AccErr
was lower than that for other methods across all datasets. For example, in the MNIST dataset,
the maximum AccErr (at σ = 100) was approximately 19%, 40% and 79% for INFLUENCE,
FISHER and DELTAGRAD, respectively. At the same time, however, improved certifiability
(i.e., decreased AccDis) was achieved for high values of σ. Therefore, to obtain a good
combination of effectiveness and certifiability, one must select higher values of σ based on
the dataset.

Moreover, for FISHER, near σ = 1, the trade-off between AccErr and AccDis was the
best among all methods, having values of at most 1.7% and 15%, respectively, across all
datasets, as seen in Figure 4. If a good effectiveness and certifiability trade-off is required,
then the FISHER method appears to be a very suitable method.

Note that because INFLUENCE and FISHER shared the same efficiency parameter τ,
their results in this section are directly comparable. However, that is not the case with
DELTAGRAD. As we saw earlier in this section, DELTAGRAD was typically quite slower
than the other methods. Therefore, for these experiments, we used it with the largest value
of T0 := 100 so that its running time was small and closer to the running time of the other
two methods (being, in fact, comparable for the high-dimensional datasets).

7. Online Strategy for Retraining

When the updated model wu is obtained after data deletion (see Figure 1), a decision
is made on whether to employ the model for inference. Specifically, if the disparity AccDis
of the updated model is below a certain predetermined threshold for certifiability, then the
model is employed for inference; otherwise, the pipeline restarts, training a new model on
the remaining data. However, measuring AccDis using Equation (6) would require the full
retrained model w∗, which was not readily available. In fact, computing w∗ after every
batch of deletions would defeat the purpose of using an approximate unlearning method
in the first place.

Therefore, in practice, AccDis needs to be estimated. To this end, we propose an online
estimation strategy based on the empirical observation (see Table A5) that, as more data are
deleted, the disparity AccDis grows proportionally to the drop AccErrinit in test accuracy
relative to the initial model w∗:

AccErrinit = SAPE(Accinit
test, Acc

u
test), (7)

where Accinit
test and Accu

test are the test accuracies for the initial and updated model, respec-
tively. In more detail, we measured the correlations between AccDis and AccErrinit for
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targeted-random deletions while varying the deletion fraction from 0.01 to 0.45 (0.095
for MNIST) while utilizing the FISHER unlearning method (m′ = m). We observed that,
apart from the HIGGS dataset, the Pearson correlation [36] for all other datasets was greater
than 87%, suggesting a strong correlation between AccDis and AccErrinit. Note that this
observation is related to the correlation of accuracy on the test and deleted data that we
mentioned in Section 5.

Building upon this observation, we estimated AccDis as

AccDis = c · AccErrinit. (8)

where c is a constant proportion learned from the data before the pipeline starts as follows.
First, we obtained the test accuracy Accinit

test for the model trained on the initial dataset.
Second, we obtained an updated model wu and a fully retrained model w∗ for a large
deletion fraction θ, such as θ = 0.45. Third, the proportion c was calculated as follows:

c = [AccDis/AccErrinit]deletion fraction=θ (9)

An example run of the pipeline using the estimation strategy for the threshold κ = 1.0 is
shown in Figure 5. At each timestep, batches of m = 100 data points from a targeted-informed
distribution were chosen for deletion. Then, the FISHER unlearning algorithm (see Table 1) was
used with the efficiency parameter set as τ = m′ := m to obtain an updated model wu. Next,
the AccErrinit of wu was measured using the stored Accinit

test, and the certifiability disparity was
estimated using Equation (8). If the estimated AccDis exceeds the threshold κ, then the pipeline
restarts; a new initial model is trained from scratch on the remaining data, and the Accinit

test is
updated, while c remains unchanged. The dotted green lines in Figure 5 correspond to the
times when the pipeline restarted. Then, the pipeline resumes receiving further batches of
deletions until the next restart is determined by the estimation strategy or the pipeline ends.

100 1100 2100 3100 4100

Num Deletions

0.00

0.25

0.50

0.75

1.00

1.25

A
c
c
D
i
s
% Estimate

Threshold

Restart

True

Figure 5. Pipeline run at κ = 1 for the MNISTb dataset. FISHER unlearning with σ = 1 and
targeted-informed deletions.

To evaluate the strategy, we selected three thresholds κ for each dataset: 10, 20 and
50 for HIGGS and 1, 2 and 5 for the other datasets. Next, the number of deletions m was
100 for the MNISTb, MNIST and CIFAR2 datasets and 500, 1000 and 10,000 for the for the
EPSILON, COVTYPE and HIGGS datasets, respectively. In Figure 5, we observe that the initial
AccDis estimate was larger than the true AccDis, and as more data were deleted, the true
AccDis exceeded the threshold, leading to errors in the estimation. We define the relative
percentage estimation error of the true AccDis for a given threshold κ at a given time as

EstDisκ = max(AccDis− κ, 0)/κ · 100%, (10)

where the true AccDis is computed by obtaining a fully retrained model w∗ on the remain-
ing data at that time. For each individual run of the pipeline, we computed the mean
EstDis across the duration of the pipeline (e.g., in Figure 5, the mean EstDis is 1.039%).
Then, we collected multiple individual runs corresponding to different random seeds (six
for σ and two for the random deletion distributions) and computed the pooled mean (i.e.,
the mean of the mean EstDis for each threshold κ).
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In Table 3, we report the pooled mean of EstDis for different datasets and deletion
distributions at different thresholds. We observe that the pooled mean EstDis for all thresh-
olds was lower than 100%. The larger estimation errors for the HIGGS dataset were a result
of the lower Pearson correlation of 47.8% discussed earlier. However, the Spearman cor-
relation [36] was 89.2%, indicating that the estimation error may have been reduced by
using a non-linear estimation strategy. Note that the pooled mean EstDis was larger for the
targeted-informed distribution, indicating that the AccDis estimated using the proportion
c computed from targeted-random deletions tended to underestimate the true disparity
for the more adversarial targeted-informed deletions. Therefore, based on Table 3, for a
pipeline to be certifiable at threshold κ(≥ 2), the estimation strategy should be employed
with a threshold κ/2, ensuring a large buffer for possible estimation errors.

Table 3. Pooled mean of EstDisκ % for the AccDis strategy at different thresholds κ. Noise parameter
σ = 1.

Dataset κκκ
UniformUniformUniform
RandomRandomRandom

TargetedTargetedTargeted
InformedInformedInformed

MNISTb
1.0 0± 0 0.81± 1.1
2.0 0± 0 0± 0
5.0 0± 0 0± 0

MNIST
1.0 0± 0 0.60± 0.5
2.0 0± 0 0± 0
5.0 0± 0 0± 0

COVTYPE
1.0 0± 0 28.88± 3.6
2.0 0± 0 7.34± 1.5
5.0 0± 0 0.16± 0.1

HIGGS
10.0 0± 0 86.99± 3.6
20.0 0± 0 20.79± 1.1
50.0 0± 0 1.31± 0.1

CIFAR2
1.0 0.17± 0.2 43.84± 11.1
2.0 0± 0 11.31± 5.2
5.0 0± 0 0.22± 0.4

EPSILON
1.0 0.01± 0.0 19.37± 2.6
2.0 0± 0 2.09± 0.4
5.0 0± 0 0± 0

In Figure 6, we report the speed-up of the pipeline with respect to retraining at
every timestep for different datasets and deletion distributions at different thresholds κ.
The observed drops in the speed-up for the targeted-informed distribution correspond
to the restarts of the pipeline triggered by the estimation strategy. Notice how smaller
thresholds resulted in more frequent restarts and therefore larger drops in the speed-up
for targeted-informed deletions. Furthermore, the estimation strategy was adaptive; in
the less adversarial uniform-random distribution, fewer restarts were triggered, thereby
resulting in larger speed-ups.
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In summary, we found that the proposed strategy to estimate the disparity and restart
the pipeline, albeit a heuristic, provided a significant speed-up in running time. Fur-
thermore, as evidenced by our experiments, the strategy performed well for different
distributions of deletions and could effectively be used to ensure that the pipeline was
certifiable at a given disparity threshold κ. The design of more sophisticated strategies to
better estimate the disparity is left for future work.

8. Conclusions

We highlighted the impact of different deletion distributions on the performance of
retrained ML models and identified that the trade-offs offered by the unlearning methods
must be evaluated in a worst-case scenario of targeted deletions. We studied experimentally
three state-of-the-art unlearning methods for logistic regression. We found that for the
right parameterization, FISHER offered the overall best certifiability, INFLUENCE offered
the overall best efficiency along with good effectiveness at lower levels of certifiability, and
DELTAGRAD offered stable albeit lower performance across all qualities. Third, we found
that the efficiency of FISHER and INFLUENCE was much higher for the low-dimensional
datasets. Furthermore, we showcased an online strategy to determine when a full retraining
on the remaining data is required.

For future work, several possibilities are open. One direction is to extend the study
to methods for more complex models. While the proposed unlearning pipeline can be
extended to non-linear ML models such as neural networks with appropriate unlearning
methods [37–39], extending the experimental evaluation (Section 6) is non-trivial. This is
due to the stochasticity of learning [11] for non-linear ML models, which results in many
local minima (i.e., several equally valid, fully retrained models with different accuracies).
Another research direction is to develop more elaborate mechanisms to determine when a
full retraining of the updated models is needed.
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Appendix A. Unlearning Methods

Appendix A.1. FISHER Unlearning Method

The FISHER unlearning method is described in [3].

Appendix A.1.1. Training Algorithm

The training algorithm for this method proceeds in two steps. In the first step, it
invokes SGD to optimize the objective L (Equation (2)), and in the second step, it performs
noise injection. The output model w∗ is expressed as

w∗ := wopt + σF−1/4b, (A1)

where

wopt =
SGD

arg, min
w

L(w,D), (A2)

F = ∇2L(wopt,D), (A3)

b ∼ N (0, 1)d. (A4)

As shown in Equation (A2), wopt is the model that optimizes the objective function L using
SGD. Moreover, F is the Fisher matrix of L, defined as the covariance of the objective func-
tion. For logistic regression, F is equal to the Hessian of L, as reflected in Equation (A3). The
second term in Equation (A1) corresponds to the noise injection that adds standard normal
noise (see Equation (A4)) to the optimal model wopt in the direction of the Fisher matrix.

Appendix A.1.2. Unlearning Algorithm

The unlearning algorithm takes as input the currently employed model w, the deleted
subset of the training data Dm ⊂ D, and outputs an updated model wu given by

wu := w− F−1∆︸ ︷︷ ︸
Newton Correction

+ σF−1/4b︸ ︷︷ ︸
Noise Injection

, (A5)

where

∆ = ∇L(w,D \Dm), (A6)

F = ∇2L(w,D \Dm), (A7)

where b is the same as in Equation (A4). As shown in Equation (A6), ∆ is the gradient of
the objective function L (Equation (2)), and similar to Equation (A1), F is the Fisher matrix,
now computed on the remaining training data after deletion (D \ Dm). The first term in
Equation (A5) corresponds to the corrective Newton step that aims to unlearn the deleted
data Dm. The second term corresponds to noise injection and adds standard normal noise
b (see Equation (A4)) to the updated model wu in the direction of the Fisher matrix (see
Equation (A7)).

As defined in Equation (A5), the unlearning algorithm computes an updated model
in a single step. A more elaborate approach is to split the deleted data in mini-batches of
size m′ ≤ m and use Equation (A5) sequentially for each of them. This approach leads to
multiple and smaller corrective Newton steps, which in turn lead to a more effective ML

https://version.helsinki.fi/mahadeva/unlearning-experiments
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model at the cost of efficiency. For this experimental study, we used this mini-batch version
of the unlearning algorithm, as shown in Algorithm A1.

Algorithm A1: FISHER mini-batch
Input : Employed model w, Current training data D, Deleted data Dm,

Parameter σ, Mini-batch size m′, objective function L
Output : Updated model parameters wu

1 s←
⌈ m

m′
⌉
; Split Dm into s mini-batches {D1

m′ ,D2
m′ , . . . ,Ds

m′}
2 D′ ← D; wu ← w
3 for i← 1 to s do
4 D′ ← D′ \ Di

m′ ; ∆← ∇L(wu,D′); F ← ∇2L(wu,D′)
5 wu ← wu − F−1∆
6 if σ > 0 then
7 Sample b ∼ N (0, 1)d

8 wu ← wu + σF−1/4b
9 end

10 end
11 return wu

Appendix A.1.3. Trade-Off Parameters

As explained earlier (Section 3.1), the noise parameter σ controls the trade-off between
effectiveness and certifiability. Moreover, the size of the mini-batches τFISHER

= m′ serves as
the efficiency parameter that controls the trade-offs between efficiency on one hand and
effectiveness and certifiability on the other. The lowest efficiency is achieved when m′ = 1
(i.e., unlearning one deleted data point at a time incrementally). However, this comes at the
massive cost of recomputing the Fisher matrix after every single deleted data point. The
highest efficiency is achieved when m′ = m (i.e., unlearning all deleted data at once), which
comes at the cost of effectiveness due to a single crude, corrective Newton step. In typical
real settings, one would choose a value m′ between the two extremes.

Appendix A.2. INFLUENCE Unlearning Method

The INFLUENCE unlearning method is as follows [4]. Its approach is based on ML
influence theory [17]. At a high level, unlearning is performed by computing the influence
of the deleted data on the parameters of the trained ML model and then updating the
parameters to remove that influence. Moreover, it uses a modified objective function that
incorporates noise injection:

Lσ(w;D) = L(w, D) +
σb>w
|D| , (A8)

where L and b are the same as in Equations (2) and (A4), respectively. The second term in
Equation (A8) describes the noise injection, where σ is the noise parameter. The amount of
noise is scaled with respect to the size of the training data D.

Appendix A.2.1. Training Algorithm

This uses SGD to optimize the noisy objective:

w∗ :=
SGD

arg, min
w

Lσ(w,D). (A9)

Note that when σ is increased, the effectiveness of the ML model decreases, as the SGD
algorithm prioritizes minimizing the second term in Equation (A8) rather than the original
objective function captured by the first term.
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Appendix A.2.2. Unlearning Algorithm

The unlearning algorithm approximates the influence of the deleted subset Dm ⊂ D on
the parameters of the currently employed model w and performs the update as follows:

wu := w + H−1∆(m), (A10)

where

∆(m) = ∇L(w,Dm), (A11)

H = ∇2L(w,D \Dm). (A12)

As seen in Equations (A11) and (A12), ∆(m) is the gradient of the objective function L (see
Equation (2)) computed on the deleted data, and H is the Hessian matrix computed on
the remaining training data. The second term in Equation (A10) is known as the influence
function of the deleted data Dm on the model parameters w.

Similar to FISHER, when the unlearning algorithm is performed in mini-batches of
m′ ≤ m, we obtain a more effective ML model at the cost of the efficiency. This is because
we compute the influence function on smaller mini-batches of deleted data multiple times.
For this experimental study, we used this mini-batch version of the unlearning algorithm
as shown in Algorithm A2.

Appendix A.2.3. Trade-Off Parameters

The trade-off parameters for the INFLUENCE unlearning method are similar to those
in the FISHER method. The size of τINFLUENCE

= m′ serves as the efficiency parameter, and σ
serves as the noise parameter.

Algorithm A2: INFLUENCE mini-batch
Input : Employed model w, Current training data D, Deleted data Dm, Mini-batch size m′,

objective function L
Output :Updated model parameter wu

1 s←
⌈ m

m′
⌉
; Split Dm into s mini-batches {D1

m′ ,D2
m′ , . . . ,Ds

m′}
2 D′ ← D; wu ← w
3 for i← 1 to s do
4 D′ ← D′ \ Di

m′

5 ∆(m′) ← ∇L
(

wu,Di
m′

)
; H ← ∇2L(wu,D′)

6 wu ← wu + H−1∆(m′)

7 end
8 return wu

Appendix A.3. DELTAGRAD Unlearning Method

The DELTAGRAD unlearning method is described in [5]. Its approach is to approximate
the SGD steps that would have happened if the deleted data had not been present using
the information from the initial SGD training steps.

Appendix A.3.1. Training Algorithm

It uses SGD followed by noise injection:

w∗ :=
SGD

arg, min
w

L(w,D) + σ · b, (A13)

where b is defined as in Equation (A4)). This noise injection mechanism is a Gaussian
version of the one described in [18] using the results from [23]. In contrast to FISHER

method’s noise injection (Equation (A5)), there is no Fisher matrix to guide the random
Gaussian noise in this mechanism. Therefore, a large value of σ will indiscriminately remove
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information from the employed model, which in turn drastically reduces the effectiveness
of the ML model.

At every iteration of the SGD algorithm (Equation (3)), the parameters wt and objective
function gradients ∇L(wt,D) are stored to the disk.

Appendix A.3.2. Unlearning Algorithm

For this method the unlearning algorithm proceeds in two steps: in the first step, it
approximately updates the stored sequence (wt) of parameters computed by SGD; in the
second step, it injects noise. In summary, and slightly abusing notation, we write

wu := DGAPPROX({wt}) + σ · b (A14)

The first term corresponds to the approximate update of SGD steps, and the second corre-
sponds to noise injection, with b defined as in Equation (A4).

Let us provide more details about how the first term is computed. Upon the deletion
of the current subset of the training data Dm ⊂ D, the unlearning algorithm aims to obtain
the approximate ML model that would have resulted from SGD if Dm had never been used
for training. By definition, in the absence of Dm, the gradient of the objective function at
every step of the SGD algorithm would have been

∇L(wt,D \Dm) =
[n∇L(wt,D)−m∇L(wt,Dm)]

(n−m)
. (A15)

Using Equation (A15), the SGD step from Equation (3) can be rewritten as

wt+1 = wt −
ηt

(n−m)
[n∇L(wt,D)−m∇L(wt,Dm)]. (A16)

These SGD steps lead to a different sequence (wt) of model parameters than the one
obtained before deletion from Equation (3). Consequently, the value of ∇L(wt;D) differs
between the executions of Equation (3) (before deletion) and Equation (A16) (after deletion).
DELTAGRAD’s approach is to obtain a fast approximation of the latter from the former,
thus approximately unlearning the deleted data without performing a full-cost SGD on the
remaining data.

The unlearning algorithm is shown for reference in Algorithm A3. As seen in line 9, the
term ∇L(wt,D) is approximated using the quasi-Newton L-BFGS optimization algorithm
with the terms wt and ∇L(wt,D), which were stored during training. However, there
exist two issues with this approximation. First, the L-BFGS algorithm requires a history
of accurate computations to produce an effective approximation. Second, consecutive
approximations lead to errors accumulating after several iterations in SGD. The first issue
is addressed by using a burn-in period of j0 iterations, during which the exact gradient
on the remaining dataset ∇L(wt,D \ Dm) is computed. The latter issue is addressed by
periodically computing the exact gradient after every T0 iterations (following the burn-in
period). These are seen from lines 3 to 7. Moreover, in order to use the above DELTAGRAD

algorithm for subsequent data deletions, the terms wt and ∇L(wt,D) that were previously
stored in the disk are updated after unlearning the deleted data Dm. This is described in
lines 6 and 7 and lines 13 and 14.
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Algorithm A3: DGAPPROX

Input :Current training data D, Deleted data Dm, model weights saved during the
training stage or updated later {w0, w1, . . . , wt} and corresponding gradients
{∇L(w0,D),∇L(w1,D), . . . ,∇L(wt,D)}, period T0, total iteration number T,
“burn-in” iteration number j0, learning rate ηt

Output :Updated model parameter wt
1 Initialize w0 ← w0
2 for t← 0 to T − 1 do
3 if [((t− j0) mod T0) == 0] or t ≤ j0 then
4 Compute ∇L(wt,D \Dm) exactly
5 Compute wt by using exact update (Equation (3))
6 Update wt with new wt
7 Update ∇L(wt,D) with ∇L(wt,D \Dm)

8 else
9 Approximate ∇L(wt,D) with L-BFGS algorithm using stored terms wt and

∇L(wt,D)
10 Compute ∇L(wt,Dm)
11 Compute approximate ∇L(wt,D \Dm) using Equation (A15)
12 Compute wt using Equation (A16)
13 Update wt with new wt
14 Update ∇L(wt,D) with approx ∇L(wt,D \Dm)

15 end
16 end
17 return wt

Appendix A.3.3. Trade-Off Parameters

As described in Table 1, the primary τ parameter chosen for the DELTAGRAD method
was the periodicity T0. Based on the discussion of the hyper-parameter of the DELTAGRAD

in [5], the ideal τ parameter would be the training mini-batch size. However, this would
result in a non-standard training stage in the unlearning pipeline for the DELTAGRAD,
which in turn would prevent any comparison with the other unlearning methods. Therefore,
upon fixing the common training stage, we choose the hyper-parameter T0 that best
represents the trade-off between effectiveness and efficiency. The remaining candidate τ
parameters are the burn-in period j0 and the size of the history for the L-BFGS algorithm h.
Following [5], we fix h = 2 for all datasets, and the values of j0 are presented in Table A1.

Table A1. Values of DELTAGRAD burn-in period parameter j0.

Dataset MNISTbMNISTbMNISTb MNISTMNISTMNIST COVTYPECOVTYPECOVTYPE HIGGSHIGGSHIGGS CIFAR2CIFAR2CIFAR2 EPSILONEPSILONEPSILON

j0 10 20 10 500 20 10

Appendix B. Experimental Set-Up

In this section, we discuss the additional details regarding the experiments and the
implementation of the common unlearning pipeline.

Training

Ensuring the training phase of the common unlearning pipeline, especially the op-
timization of each unlearning method, is a difficult task. As mentioned in Section 4.2,
INFLUENCE and FISHER require SGD convergence, and DELTAGRAD can only use vanilla
SGD. The additional constraints come from the DELTAGRAD method. In [5], it is described
that a smaller mini-batch size leads to lower approximation and hence lower effective-
ness. However, choosing a full-batch gradient descent update as described in Equation (3)
to ensure the best performance of the DELTAGRAD method leads to the requirement of
a large number of epochs to achieve convergence for INFLUENCE and FISHER. This is
computationally expensive both in the calculation of full-batch gradients for the large
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datasets such as EPSILON and HIGGS and the number of epochs required in total to reach
convergence. Ideally, to reduce the impact of the latter, we would fix a number of epochs
and then select a larger learning rate η to compensate for the slower average gradient
updates. However, we experimentally found that increasing the learning rate η beyond
one has a significant impact on the performance of DELTAGRAD. This is primarily because
the error in the approximate SGD step is amplified as the learning rate is increased beyond
the optimal learning rate (which results in an increased number of epochs to achieve the
same convergence). These constraints and limitations led us to fix the learning rate to one
and choose large enough mini-batches (for DELTAGRAD performance) while keeping the
number of epochs low (for computational effort) while using a small validation dataset of
the initial training data Dinit. The chosen values of the mini-batch size and the number of
epochs for each dataset are described in Table A2.

Table A2. Values of training parameters common for all unlearning methods.

Dataset Epochs Mini-Batch Size

MNISTb 1000 1024
MNIST 200 512

COVTYPE 200 512
HIGGS 20 512
CIFAR2 500 512

EPSILON 60 512

Appendix C. Extended Deletion Distribution Results

We present the extended results for the uniform-random and uniform-informed dele-
tion distributions in Figure A1. We increased the fraction of data deleted from 0.5 to 0.995.
We see that the drop in both Acctest and Accdel only occurred when we deleted beyond
90% of the initial training data. We also clearly see that the drop in both metrics was
much steeper for the uniform-informed distribution compared with the uniform-random
distribution. This indicates that the informed deletions were deleting outliers that were
required by the ML model to effectively classify samples.

Appendix D. Extended Experimental Results

In this section, we provide the extended results of the experiments discussed in
Section 4.

Appendix D.1. Deletion Volumes

As mentioned in Section 4, we evaluated the unlearning methods for three volumes
of deletion corresponding to different drops in test accuracy of the retrained model. In
Table A3, we present both the fraction and the volume of deletion corresponding to 1%, 5%
and 10% drops in test accuracy when targeted-informed deletions were used. They are
named small, medium and large volumes of deletion, respectively.
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Figure A1. Extended deletion distribution results. Deletion fraction varied from 0.5 to 0.995. Only
uniform-random and uniform-informed deletion distribution results are reported.

Table A3. Fraction and volume of deleted data of initial data volume, corresponding to different
drops in Acctest for fully retrained model and targeted-informed deletion.

Dataset
Small Medium Large

1% Drop 5% Drop 10% Drop

Fraction |Dm| Fraction |Dm| Fraction |Dm|

MNISTb 0.2 2396 0.3 3594 0.375 4493
MNIST 0.01 600 0.05 3000 0.075 6000

COVTYPE 0.05 26,145 0.10 52,291 0.15 78,436
HIGGS 0.01 99,000 0.05 495,000 0.10 990,000
CIFAR2 0.05 500 0.125 1250 0.2 2000

EPSILON 0.1 4000 0.2 8000 0.25 10,000

Appendix D.2. Efficiency and Certifiability Trade-Off

Here, we present the extended results for all volumes of deletion and σ = 1 as the
efficiency parameter τ is varied in Figure A2. The legend for τ is the same as that displayed
in Figure 3. The key takeaway here is that the trends described in Section 6 were similar for
the small and medium volumes of deletion.
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(b) Medium deletion volume.
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Figure A2. Efficiency and certifiability trade-off results for σ = 1 at different volumes of deletion:
(a) small, (b) medium and (c) large. AccDis is reported on the y-axis and the speed-up in running
time on the x-axis. The legend is the same as in Figure 3.

Appendix D.3. Efficiency and Certifiability Trade-Off

The results are shown in Figure A3. The trends described in Section 6 also apply for
the small and medium volumes of deletion.

Appendix E. When to Retrain Strategies

The implementation details for the pipeline experiments are shown in Table A4.

Table A4. Batch sizes and thresholds κ for the pipeline experiments.

Dataset Batch Size κ for AccErrκ for AccErrκ for AccErr κ for AccDisκ for AccDisκ for AccDis

MNISTb 100 0.25, 0.5, 1 1, 2, 5
MNIST 100 0.25, 0.5, 1 1, 2, 5
COVTYPE 1000 0.25, 0.5, 1 1, 2, 5
HIGGS 10,000 0.25, 0.5, 1 10, 20, 50
CIFAR2 100 0.25, 0.5, 1 1, 2, 5
EPSILON 500 0.25, 0.5, 1 1, 2, 5

Appendix E.1. AccDis Strategy

The empirical correlations between AccDis and AccErrinit when targeted-random
deletions were performed and the FISHER unlearning method (m′ = m) while the deletion
ratio was varied are shown in Table A5. As noted in Section 7, the Pearson correlations are
high for all datasets excluding HIGGS. The low Pearson correlation values for the HIGGS

dataset can be attributed to the the variance resulting from the selection of the deleted
class seen in Figure 2. We postulate that this is because of the particular way that missing
values have been treated for the HIGGS dataset. Data points that have missing feature
values disproportionately belong to class 1. Therefore, this tends to cause a steeper drop
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in accuracy when data from class 1 is targeted. In turn, this leads to the lower predictive
capability of the linear estimation strategy described in Equation (8).
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Figure A3. Efficiency and effectiveness trade-off results for σ = 1 at different volumes of deletion:
(a) small, (b) medium and (c) large. AccErr is reported on the y-axis and the speed-up in running
time on the x-axis. The legend is the same as in Figure 3.

The extended results of the pooled EstDis mean and the speed-up are shown in Table A6
and Figure A5, respectively. In Figure A5, we observe that for the uniform-informed deletion
distribution, more pipeline restarts were triggered compared with uniform-random, a conse-
quence of the deletion of more informative samples, leading to a larger estimated disparity
AccDis.

Table A5. Correlation between AccErrinit and AccDis with targeted-random deletion distribution
for the FISHER method.

Dataset Pearson Corr. Spearman Corr.

MNISTb 0.963 0.612
MNIST 0.999 1
COVTYPE 0.881 0.964
HIGGS 0.478 0.892
CIFAR2 0.938 0.976
EPSILON 0.8787 0.891

Appendix E.2. AccErr Strategy

Here, we describe a strategy to monitor and trigger the pipeline to restart based on the
effectiveness of the updated model wu.

When a subset of the existing data Dm ⊂ D is deleted, the updated model wu is
obtained from the unlearning stage of the pipeline. We propose an estimate of AccErr using
the test accuracy of initial model AccErrinit, defined in Equation (7). The Accinit

test is stored
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during the initialization of the pipeline, when w∗init is obtained after training on the initial
dataset Dinit. If the computed AccErrinit does not exceed the predefined threshold, then
wu is employed for inference; otherwise, the pipeline restarts, obtaining a new w∗init by
training on the remaining dataset Dinit := D. The Accinit

test is also recomputed and updated,
and the pipeline resumes.

An example of the pipeline’s execution is shown in Figure A4 for the MNISTb dataset
and targeted-random deletions at a predefined threshold of κ = 0.25. We must note that
the pipeline estimate of the AccErr is zero, corresponding to the restarts of the pipeline.
This indicates that at that iteration, the updated model’s AccErrinit was exceeding the
threshold, and a restart was triggered. These pipeline restarts require retraining from
scratch and hence increase the running time of the pipeline.

100 1100 2100 3100 4100
Num  Deletions

0.0

0.1
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% Estimate
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Restart
True

Figure A4. AccErr strategy pipeline run at κ = 0.1 for the MNISTb dataset, as well as FISHER method
with σ = 1 and targeted-informed deletions.

In Figure A6, we report the speed-up for different values of κ and deletion distributions
as a function of the number of deletions. Here, a speed-up of 1× corresponds to retraining
at every iteration of the pipeline. Observe how the lower values of κ lead to earlier drops
in the speed-up, indicating the pipeline has been reset. Moreover, we observed this
decrease in speed-up more significantly for the more adversarial deletion distributions
(targeted-random and targeted-informed). In the less adversarial deletion distribution
(uniform-random and uniform-informed), we observed only the smallest κ led to drops in
the speed-up, indicating that the strategy was adaptive. Lastly, even for the lowest value of
κ and the most adversarial deletion distribution of targeted-informed, we observed for
all datasets a significant speed-up compared with always retraining.

In Figure A4, we observe that as the number of deletions increased, the AccErrinit
underestimated the true AccErr of the model. We quantified these relative estimation errors
of AccErr for a given threshold κ as

EstErrκ =
max(AccErr− κ, 0)

κ
· 100%, (A17)

where AccErr is the true AccErr computed using the fully retrained model w∗. A relative
estimation error percentage of 50% for κ = 0.25 implies that the true AccErr was 0.375. For
each run of the pipeline, we computed the mean EstErr (e.g., the mean EstErr was 4.9% for
the pipeline run in Figure A4). Then, for multiple pipeline runs for different random seeds
of σ and the deletion distributions, we reported the mean of the relative estimation error.
In Table A7, we report the mean of EstErr for each dataset and the value of κ for different
deletion distributions. The largest mean EstErr corresponded to the smallest value of κ,
while larger values of κ had very small mean EstErr values across deletion distributions.
We note that the HIGGS dataset had significantly larger mean EstErr values as a result of
the larger number of deletions in each batch size. Selecting a larger threshold κ resulted in
lower estimation errors.



Mach. Learn. Knowl. Extr. 2022, 4 617

Table A6. Pooled mean of EstDisκ% for the AccDis strategy at different thresholds κ. Noise parameter
σ = 1.

Dataset κκκ
UniformUniformUniform
RandomRandomRandom

UniformUniformUniform
InformedInformedInformed

TargetedTargetedTargeted
RandomRandomRandom

TargetedTargetedTargeted
InformedInformedInformed

MNISTb
1.0 0.00± 0.0 0.00± 0.0 0.01± 0.0 0.81± 1.1
2.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
5.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

MNIST
1.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.60± 0.5
2.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
5.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

COVTYPE
1.0 0.00± 0.0 0.32± 0.6 8.01± 1.5 28.88± 3.6
2.0 0.00± 0.0 0.00± 0.0 0.42± 0.2 7.34± 1.5
5.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.16± 0.1

HIGGS
10.0 0.00± 0.0 0.00± 0.0 109.32± 7.7 86.99± 3.6
20.0 0.00± 0.0 0.00± 0.0 30.68± 2.0 20.79± 1.1
50.0 0.00± 0.0 0.00± 0.0 1.78± 0.2 1.31± 0.1

CIFAR2
1.0 0.17± 0.2 2.93± 3.3 3.68± 2.5 43.84± 11.1
2.0 0.00± 0.0 0.15± 0.3 0.24± 0.3 11.31± 5.2
5.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.22± 0.4

EPSILON
1.0 0.01± 0.0 0.06± 0.1 20.01± 2.1 19.37± 2.6
2.0 0.00± 0.0 0.00± 0.0 2.93± 0.5 2.09± 0.4
5.0 0.00± 0.0 0.00± 0.0 0.22± 0.1 0.00± 0.0
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Figure A5. Speed-up of AccDis strategy at different thresholds κ. Rows correspond to different
deletion distributions. Dashed line indicates speed-up of 1× . Note that for HIGGS, κ ∈ 10, 20, 50.
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Table A7. Pooled mean of EstErrκ% of the AccErr strategy for each threshold κ. Noise parameter
σ = 1.

Dataset κκκ
UniformUniformUniform
RandomRandomRandom

UniformUniformUniform
InformedInformedInformed

TargetedTargetedTargeted
RandomRandomRandom

TargetedTargetedTargeted
InformedInformedInformed

MNISTb
0.25 0.00± 0.0 0.00± 0.0 0.00± 0.0 1.55± 0.8
0.50 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.01± 0.0
1.00 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

MNIST
0.25 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
0.50 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
1.00 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

COVTYPE
0.25 1.65± 1.2 0.30± 0.4 4.20± 1.5 0.60± 0.7
0.50 0.34± 0.3 0.00± 0.0 0.30± 0.1 0.06± 0.1
1.00 0.02± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

HIGGS
0.25 104.50± 12.2 62.26± 10.9 97.66± 7.2 34.24± 4.9
0.50 38.58± 5.2 18.90± 4.1 40.46± 4.2 11.74± 1.8
1.00 11.98± 2.2 4.57± 0.7 10.40± 0.9 1.74± 0.6

CIFAR2
0.25 1.03± 1.0 5.44± 6.3 6.03± 2.4 9.78± 5.8
0.50 0.00± 0.0 0.75± 1.5 0.30± 0.6 0.95± 1.0
1.00 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0

EPSILON
0.25 2.64± 1.0 3.26± 1.0 20.07± 2.6 20.61± 2.3
0.50 0.29± 0.2 0.57± 0.2 4.47± 0.6 3.68± 0.6
1.00 0.00± 0.0 0.06± 0.1 0.70± 0.3 0.31± 0.1
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Figure A6. Speed-up of AccErr strategy at different thresholds κ. Rows correspond to different
deletion distributions. Dashed line indicates speed-up of 1×.
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