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Abstract: Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC).
The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small
T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis,
and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript
levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a
potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared
to V−MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated
that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33
expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant
human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could
be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly
stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest,
significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared
to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-
33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the
IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore,
neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.

Keywords: cytokines; IL-33; Merkel cell carcinoma; inflammation; ST2/IL1RL1; IL1RAcP;
tumor microenvironment

1. Introduction

Merkel cell carcinoma (MCC) is a rare but highly aggressive neuroendocrine skin
cancer associated with Merkel cell Polyomavirus (MCPyV; 80% of the cases) or UV expo-
sure [1–3]. MCPyV is a non-enveloped, double-stranded DNA virus with a circular genome
of ~5 kb [4]. The viral genome is divided into three major regions: the non-coding control
region (NCCR), the early region, and the late region. The NCCR contains the origin of
replication, as well as the early and late promoters that control expression of the early
region and the late region, respectively. The early region encodes large T-antigen (LT), small
T-antigen (sT), 57 kT, and a protein called alternative LT open reading frame (ALTO) [5–8].
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While the oncogenic potential of LT and sT are well documented, the roles of 57 kT and
ALTO in the viral life cycle and MCC tumorigenesis remain elusive [9]. The late region
encodes for the viral capsid proteins VP1 and VP2 [10]. The MCPyV genome is maintained
as episomal circular dsDNA during the normal life cycle but is integrated in virus positive
(V+) MCCs [11]. Characteristic for V+ MCC is the expression of a C-terminal truncated LT
(tLT), resulting from mutations or a reading frame shift, which introduce premature stop
codons [7,12–14].

Inflammatory pathways have been associated with tumor progression and therapy
resistance [15,16]. Cancers may arise from sites of chronic irritation and inflammation,
while oncogenic mutations may activate inflammatory signal transduction cascades [17,18].
Cytokines are central mediators in an inflammatory tumor microenvironment. Interleukin-
33 (IL-33) is considered as an “alarmin” (endogenous danger signal) released following
cellular damage [19] and belongs to the IL-1 family of cytokines that are expressed in
multiple organs and cell types in both humans and mice. It is the ligand for the “suppression
of tumorigenicity 2 L receptor” (ST2) and “IL-1 receptor accessory protein” (IL1RAcP) [20].

IL-33 induces cytokine and chemokine expression in various cell types and tissues [21].
Aberrant expression of IL-33 and its receptors has been described for multiple types of can-
cer [20,22], and has also been linked to increased malignancy and worse prognoses [23,24]. Of
interest, a recent study has reported a protection against osteosarcoma tumorigenesis as a
result of functional polymorphism in the IL-33 promoter region [25]. Several reports on
IL-33 have described a wide variety of effects attributed to tumor growth, such as increased
cell adhesion, invasion, survival, and proliferation [19,20,22,26]. Furthermore, IL-33 af-
fects the tumor microenvironment (TME) through immune cells, such as myeloid-derived
suppressor cells (MDSCs), dendritic cells (DCs), and regulatory T cells (Tregs) [19]. We
have previously reported an increased expression of the C-C motif ligand 17/thymus and
activation-regulated chemokine in V+ MCC compared to V− MCC [27]. In the current
study, we examined the effect of MCPyV T-antigens (T-ags) on IL-33 expression and its
functional role in MCC.

2. Results
2.1. Differential Expression of Inflammatory Cytokines and Receptors in MCC Cell Lines

The RT2 profiler PCR array was used to access the expression pattern of different
inflammatory cytokines and receptors in V+ MKL-1, MKL-2, MS-1, and WaGa MCC cell
lines and in V−MCC-13 cells. Gene expression of 84 different genes was determined, with
a gene considered as differentially expressed when the expression level exceeded two-fold
in all the cell lines examined. Most of the genes examined were detectable (MCC-13 82/84,
MKL-1 83/84, MKL-2 83/84, MS-1 80/84, WaGa 81/84) with Cq values < 35. Compared to
MCC-13 cells, the number of differentially expressed genes was 65 for MKL-1 (13 upregu-
lated, 52 downregulated), 71 for MKL-2 (60 upregulated, 11 downregulated), 63 for MS-1
(18 upregulated, 45 downregulated), and 70 for WaGa (19 upregulated, 51 downregulated)
(Figure 1A–D). Overall, the data demonstrated that 22 different inflammatory cytokines
and receptors were differentially expressed (12 upregulated, 10 downregulated) between
all V+ cell lines and the V−MCC-13 cell line.



Int. J. Mol. Sci. 2022, 23, 3702 3 of 23

Figure 1. Relative expression comparison of 84 inflammatory cytokines and receptors genes between
MCPyV-positive and negative Merkel cell carcinoma cell lines. The figure depicts a log transformation
plot of the relative expression level differences for each gene (2−∆Ct) between (A) MCC-13 cells vs.
MKL-1 cells, (B) MCC-13 cells vs. MKL-2 cells, (C) MCC-13 cells vs. MS-1 cells, and (D) MCC-13 cells
vs. WaGa cells. The lines indicate a two-fold change in the gene expression threshold.

2.2. Increased IL-33 Expression in MCPyV Positive-MCC Cell Lines Compared to Virus Negative-
MCC Cell Lines

One of the genes with higher transcript levels in virus-positive cells, compared with
virus-negative cells, was the IL-33 gene. We decided to focus on this cytokine because its
role in viral infections (including tumor viruses), immunoresponses, and cancer is well
established [20,28–33]. To confirm this at the protein level, western blots were performed
on lysates from V+ and V− cell lines using an IL-33-specific antibody. The result revealed
a two- to three-fold higher IL-33 levels in the V+ cell lines (MKL-1, MKL-2, MS-1, and
WaGa) in comparison to the V− cell lines (MCC-13, MCC-26, and UISO), and the hTERT-
immortalized human dermal fibroblast cell line fHDF/TERT166 (Figure 2).
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Figure 2. IL-33 expression levels in V− and V+ MCC cell lines. Top panel: Western blot analysis of
IL-33 expression in V−MCC (MCC-13, MCC-26, and UISO) and V+ MCC (MKL-1, MKL-2, MS-1,
and WaGa) cell lines. Immortalized human dermal fibroblasts (fHDF) were used as control cells and
GAPDH was used as a loading control. Bottom panel: ratio of the values obtained by densitometric
scanning of the signals obtained with IL-33 and GAPDH antibodies.

2.3. MCPyV T-Antigens Stimulates IL-33 Promoter Activity and Increases IL-33 Expression

Hallmarks of V+ MCC tumors and cell lines are the integration of the MCPyV genome
and the presence of a nonsense mutation in the LT gene encoding a C-terminal truncated
form of LT (tLT) [7,12–14]. We investigated whether full-length LT (LT), tLT variants,
and sT could induce the expression of IL-33. Therefore, MCC-13 cells were transiently
co-transfected with a luciferase reporter plasmid driven by the IL-33 promoter and an
expression plasmid for either MCPyV LT, three tLT variants (LTMKL-1, LTMKL-2, LTMS-1),
or sT. The pcDNA3.1 empty vector (EV) was used as a control plasmid. The MCPyV sT,
LT, and tLT variants significantly upregulated IL-33 promoter activity (Figure 3A), and
increased IL-33 protein levels in MCC-13 cells at 24 h post-transfection (Figure 3B). These
results show that full-length and tLT, as well as sT, can increase the transcriptional activity
of the IL-33 promoter and enhance IL-33 expression levels.

To identify which sequences in the IL-33 promoter mediated LT- and sT-stimulated
promoter activity, we generated luciferase reporter plasmids with truncated IL-33 promoter
sequences. The LT of human polyomaviruses has been shown to bind directly to DNA
through GRGGC motifs [34]. The IL-33 promoter contains two predicted MCPyV LT
binding sites at position −821/−817 and −199/−195, thereby suggesting that LT may
stimulate IL-33 promoter activity by binding to these sites. The tLT versions lack their
DNA binding domain and are unable to bind directly to DNA [7]. However, all three tLT
variants enhanced IL-33 promoter activity. To further ensure that LT-triggered stimulation
of the IL-33 promoter was independent of direct binding, we deleted one or both LT motifs
in the IL-33 promoter. MCC-13 cells were transiently co-transfected with pGL3_IL-33
(−1050/+50), pGL3_IL-33 (−656/+50), pGL3_IL-33 (−598/+50), pGL3_IL-33 (−460/+50),
pGL3_IL-33 (−210/+50), or pGL3_IL-33 (−160/+50) luciferase plasmids, and with either
of the LT, LTMKL-2, or sT expression plasmids. The truncated promoter (−160/+50) had a
significantly higher basal activity than the (−1050/+50) promoter. Nevertheless, the activity
of truncated promoter fragments was still increased by LT, LTMKL-2, and sT (Figure 4A–C).
The mutation of either one or both LT binding motifs did not abrogate the stimulation of
the IL-33 promoter activity by LT or tLT (Figure 4D,E). There was no significant difference
between LT- and LTMKL-2-induced transactivation of the different IL-33 promoter fragments
(p varied between 0.1232 to 0.9020), except for the −656/+50 construct, which was stronger
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activated by LTMKL-2 than by LT (p = 0.008). Although both LT and LTMKL-2 potentiated the
transcriptional activity of the IL-33 promoter with single or double mutated LT binding
motifs, induction of the promoter with mutation of the most upstream LT binding motif or
of both motifs was significantly stronger by LT (p = 0.0260 and 0.0144, respectively) than by
LTMKL-2, whereas this truncated LT variant stimulated the IL-33 promoter with mutated
proximal LT binding motif better then full-length LT (p = 0.0212). These results indicate
that the direct binding of LT to the IL-33 promoter is not required for transactivation, and
suggests that LT, LTMKL-2, and sT-induced activation is mediated by the most proximal
promoter sequences.
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Figure 3. MCPyV T-antigens stimulate IL-33 promoter activity and induce IL-33 expression levels.
(A) MCC-13 cells were co-transfected with a luciferase reporter vector driven by the IL-33 promoter
fragment spanning the nucleotides −1050/+50, together with an expression plasmid for full-length
LT (FLTA), tLT (LTMKL-1, LTMKL-2, LTMS-1), sT, or pcDNA3 (empty vector; EV). Luciferase activity was
assessed 24 h after transfection. Each bar represents the average of three independent parallels ± SD.
Luciferase values were normalized for total protein in each sample. ** p ≤ 0.01, *** p ≤ 0.001 and
**** p ≤ 0.0001. (B) MCC-13 cells were transfected with expression plasmids for LT or tLT, sT, or
empty vector, and protein expression was measured at 24 h after transfection. IL-33 expression was
normalized with GAPDH. The image is representative for three independent experiments. (C) Ratio
of the values obtained by densitometric scanning of the signals obtained with IL-33 and GAPDH
antibodies. The ratio for empty vector:GAPDH was arbitrarily set as 1.0 ± standard deviation
(* p < 0.05; ** p < 0.01; *** p < 0.001; ****p<0,0001).
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Figure 4. Effect of MCPyV LT and sT on the activity of IL-33 promoter mutants. (A–C) MCC-13
cells were co-transfected with a luciferase reporter plasmid containing the human IL-33 promoter
encompassing sequences−1050 to +50 or truncated version, together with an empty expression vector
pcDNA3.1 (EV) or an expression of plasmid encoding MCPyV full-length LT (A), LTMKL-2 (B) or sT (C).
(D,E) MCC-13 cells were co-transfected with a luciferase reporter plasmid containing IL-33 promoter
sequences −1050/+50, or with a mutation of either one or both potential LT binding sites, together
with empty vector, LT (D) or LTMKL-2 (E). Mutated sequences are indicated in red. Luciferase values
were normalized to the total protein concentration in the sample. Each bar represents the average
± SD of three independent parallels. Each experiment was performed 2 to 4 times, and similar results
were obtained. * p < 0.05, ** p < 0.01; *** p < 0.001.

2.4. MCPyV T-Ags Stimulate ST2/IL1RL1 and IL1RAcP Promoter Activity

Human and mouse ST2/IL1RL1 genes have two alternative promoter regions, the distal
and proximal promoters, followed by the noncoding first exons, E1a and E1b [35]. Transcrip-
tion from the distal promoter generates mRNA for the membrane-bound ST2L/IL1RL1L
receptor protein, whereas the proximal promoter produces transcripts for the soluble form
of the sST2/sIL1RL1 receptor [36]. To study the effect of the MCPyV T-ags on ST2/IL1RL1
promoter regulation, we cloned the distal (pGL3_ST2L−100/+82) and the proximal pro-
moter (pGL3_sST2−499/+100) into the luciferase reporter plasmid pGL3-basic. MCC-13
cells were co-transfected with MCPyV LT, tLT, or sT and luciferase reporter plasmid, with
either the distal or proximal promoter. The results demonstrated a moderate, but signifi-
cant, upregulation of the distal promoter activity by the T-ags, while a more pronounced
stimulation of the proximal promoter activity was observed for all LT. No significant effect
was detected for sT. Interestingly, tLT variants more potently stimulated the distal ST2
promoter compared to full-length LT (Figure 5A).

We also evaluated the effect of MCPyV T-ags on the IL1RAcP promoter activity us-
ing pGL3_IL1RAcP (−1397/+184) and pGL3_IL1RAcP (−517/+184) luciferase reporter
plasmids. With the exception of LTMKL-2, all MCPyV LT variants and sT upregulated
the IL1RAcP promoter activity of both constructs; LTMKL-1 and LTMS-1 provoked higher
IL1RAcP promoter activity compared to LT, LTMKL-1, and sT (Figure 5B).
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Figure 5. Effect of MCPyV T-ag on ST2/IL1RL1 and IL1RAcP promoter activity in MCC-13 cells. Cells
were co-transfected with a luciferase reporter vector driven by ST2/IL1RL1 or IL1RAcP promoter
sequences and full-length LT (LT), tLT (LTMKL-1, LTMKL-2, and LTMS-1), sT, or empty vector (EV). The
promoter fragments spanning nucleotides for ST2/IL1RL1 were −100/+82 and −499/+100 (A) and
for IL1RAcP they were −1397/+184 and −517/+184 (B). Luciferase activity was assessed following
overnight cultivation of transfected cells. Each bar represents the average of three independent
parallels +SD. Luciferase values were normalized to the total protein in each sample. * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.

2.5. Effect of IL-33, ST2, and IL1RAcP on the Activity of the MCPyV Early and Late Promoter

Previous studies have demonstrated that different cytokines can modulate human
polyomavirus promoter activity [27,37–40]. Therefore, we examined the effect of IL-33,
ST2/IL1RL1, and IL1RAcP (both the membrane-bound and soluble forms of the receptors)
on MCPyV early and late promoter activity. Co-transfection with increased concentrations
of plasmid encoding full-length IL-331–270aa (FL-IL-33) increased both early and late pro-
moter activity (Figure 6A). Stimulation of transfected cells with the recombinant cytokine
domain of hIL-33 (CyD-rhIL-33) increased both early and late promoter activity in a dose-
dependent manner (Figure 6A). Recombinant human FL-IL-33 (FL-rhIL-33) and CyD-IL-33
(CyD-rhIL-33) proteins also stimulated the MCPyV late promoter activity, whereas no signif-
icant effect was observed on the early promoter, with the exception of 2.5 ng/mL FL-rhIL-33
and 5.0 ng/mL CyD-rhIL-33 (Figure 6B). IL-33 has several functional domains, including
a nuclear domain, an activation domain, and an IL-1-like cytokine domain (Figure 6C).
To identify which domain(s) of IL-33 could activate the MCPyV promoter, we generated
expression plasmids for each domain or combination of the domains. The MCPyV early
promoter was significantly induced when cells were transfected with 250 ng expression
plasmid encoding IL-33 fragments spanning residues (1–65), (1–270), or (1–65,112–270),
whereas transfection with 500 ng expression vector for IL-33 (112–270) resulted in increased
early promoter activity (Figure 6D). The late promoter was only activated by IL-33 frag-
ments encompassing residues (1–270), (1–65,112–270), and (112–270). The highest tested
concentration was required for all these expression plasmids, except for the expression
plasmid IL-33 (1–65,112–270), where both concentrations significantly stimulated the late
promoter activity (Figure 6D).

We further evaluated the effect of ST2, both the membrane-bound (ST2L) and the
soluble form (sST2) of the protein, on MCPyV early and late promoter activity. We show
that ST2L decreased the MCPyV early but increased the late promoter activity, whereas
sST2 increased the activity of the late promoter in a dose-dependent manner (Figure 7A).
Moreover, we observed that sST2 had a more robust effect on late promoter compared
to early promoter activity. We also investigated the effect of both the membrane-bound
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form and the soluble form of IL1RAcP on the MCPyV early and late promoter activity.
Interestingly, we found that low concentrations of both membrane-bound and soluble
forms of IL1RAcP resulted in a significant stimulation of late promoter activation, while
an inhibition was observed with an increase in expression plasmid concentration. The
transcriptional activity of the early promoter was only enhanced by the soluble from of
IL1RAcP (Figure 7B).

Figure 6. Cont.
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Figure 6. The effect of IL-33 on MCPyV promoter activity in MCC-13 cells. (A) Cells were tran-
siently co-transfected with either IL-33 expression plasmid or empty expression vector pcDNA3.1,
and luciferase reporter plasmid containing either the MCPyV early or the late promoter. Lu-
ciferase activity was measured 24 h after transfection. (B) MCC-13 cells were seeded and serum
starved for 24 h. Cells were then transfected with luciferase reporter plasmid containing either the
MCPyV early or the late promoter, and were exposed to FL-rhIL-33 (1.25–5.0 ng/mL), CyD-rhIL-33
(1.25–5.0 ng/mL), or vehicle (PBS) for 4 h before they were harvested and luciferase activity was
measured. (C) Schematic presentation of the plasmids expressing the full-length or truncated forms
of the IL-33 protein. Human IL-33 mRNA (2.7 kb) encodes a protein of 270 residues with three func-
tional domains: a nuclear, a central activation domain, and an IL-1-like cytokine domain. Sequences
of the different IL-33 domains were cloned into pCMV_His(N)_FLAG(C) plasmid. (D) MCC-13
cells were transiently co-transfected with either MCPyV early and late promoter and 250 ng or
500 ng of plasmids expressing different domains of IL-33, IL-331–270aa, IL-331–65aa, IL-331–65,112–270aa,
IL-331–111aa, IL-3366–111aa, IL-3366–270aa, and IL-33112–270aa. Abbreviations: FL-IL33 (full length IL-33),
CyD-IL-33 (IL-33 with only cytokine domain). Each bar represents the average of three independent
parallels + SD. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001. (E) MCPyV−positive WaGa
cells were treated with recombinant full-length IL-33 (rhFL-IL-33) or with the cytokine domains, and
expression levels of LT were compared with untreated cells. Levels of GAPDH were used as loading
control. Cells were exposed for 16 h with the indicated concentrations of rhFL-IL-33 or rhCyD-Il-33.
The experiment was performed two times and a representative result is shown. The ratio for empty
vector:GAPDH from the two experiments was arbitrarily set as 1.0 ± standard deviation (* p < 0.05;
** p < 0.01).
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Figure 7. The effect of ST2/IL1RL1 and IL1RAcP on MCPyV promoter activity in MCC-13 cells.
MCC-13 cells were transiently co-transfected with a luciferase reporter plasmid containing the early
or late promoter of MCPyV and (A) ST2/IL1RL1 and (B) IL1RAcP expression plasmids, respectively.
pcDNA3.1 was used as an empty expression vector (EV). Luciferase activity was measured at
24 h after transfection. Abbreviations: ST2L (membrane-bound ST2/IL1RL1), sST2 (soluble form of
ST2/IL1RL1), IL1RAcP.L (membrane-bound IL1RAcP), sIL1RAcP (soluble form of IL1RAcP). Each
bar represents the average of three independent parallels ± SD. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
and **** p ≤ 0.0001.

2.6. Effect of IL-33, ST2/IL1RL1, and IL1RAcP on IL-33/ST2-IL1RAcP Complex Promoters

Next, we investigated the effect of IL-33, ST2/IL1RL1, or IL1RAcP on IL-33/ST2-
IL1RAcP complex promoter activity. We observed that both FL-IL-33 and CyD-IL-33
activated IL1RAcP promoter activity (Figure 8A). We also observed an increase or inhi-
bition of IL1RAcP promoter activity by sST2/IL1RL1 and ST2.L, respectively (Figure 8B).
In addition, sIL1RAcP upregulated sST2/IL1RL1 promoter activity (Figure 8C) without
displaying an effect on the ST2.L promoter (data not shown). We did not observe an effect
on IL-33 promoter activity by either ST2/IL1RL1 or IL1RAcP, and no significant effect of
FL-IL-33 or CyD-IL-33 on the promoter of the membrane-bound or soluble forms of the
ST2 receptor was seen (data not shown).

Figure 8. The effect of IL-33, ST2/IL1RL1, and IL1RAcP on IL-33/ST2-IL1RAcP complex promoters.
MCC13 cells were transiently co-transfected with IL-33, ST2/IL1RL1, IL1RAcP, or the empty vector
(EV) as control expression plasmids. The promoter fragments spanning nucleotides for (A,B) IL1RAcP
and (C) sST2/sIL1RL1 were −517/+184, and −499/+100, respectively. Each bar represents the
average of three independent parallels ± SD. The experiment was repeated 3 times. Luciferase values
were normalized with a total protein in each sample. * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.
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2.7. IL-33 Activates Mitogen-Activated Protein Kinase (MAP Kinase) and NF-κB Signaling
Pathways in MCC Cells

IL-33 activates multiple signaling pathways in different cellular systems, including
NF-κB and the MAPK signaling cascades ERK, JNK, and p38 [23,41–45]. The effect on these
pathways in V−MCC-13 cells was investigated after stimulation with CyD-rhIL-33 (1 ng/mL)
for different time periods (5–60 min). The phosphorylation of ERK1/2, JNK, and p38 was
assessed by western blotting using different phospho-specific antibodies (Figure 9A). An
increase in ERK1/2, p38, and JNK phosphorylation was observed, although with different
kinetics and stoichiometry. Robust ERK1/2 phosphorylation was already seen 5 min after
stimulation, while p38 and JNK phosphorylation was noticed after 45 min and 30 min,
respectively. Pre-blocking the IL-33 receptor ST2L with a specific antibody abrogated the
CyD-rhIL-33-induced phosphorylation of ERK1/2 (Figure 9B).

Figure 9. IL-33 upregulates MAP kinase activity. (A) Phosphorylation levels of ERK1/2, p38, and JNK
were determined by western blot analysis using phospho-specific antibodies to detect Thr202/Tyr204
(ERK1/2), Thr183/Tyr185 (JNK), and Thr180/Tyr182 (p38) phosphorylation, when compared to
GAPDH. MCC-13 cells were serum-starved for 24 h, and thereafter stimulated with either vehicle
(PBS) or 1 ng/mL of CyD-rhIL-33 for different time points (5′, 15′, 30′, 45′, and 60′). (B) The blockade
of the ST2 receptor interferes with IL-33-induced activation of ERK1/2 activity. Phospho ERK1/2
levels were determined by western blot. MCC-13 cells were serum starved for 24 h. The cells were
pre-blocked with goat anti-ST2 antibody (2 ng/mL) for a varying time duration of 5–60 min or
with polyclonal normal goat IgG for 5 or 60 min. The cells were then stimulated with CyD-rhIL-33
(1 ng/mL) in the presence of, or without a ST2 receptor antibody, for 60 min. PBS was used as a
vehicle control.

NF-κB is an inducible transcription factor that responds to different inflammatory
mediators, and whose activity is regulated through several mechanisms, both in the nucleus
and cytoplasm [46]. The most prevalent form of NF-κB is the p65:p50 heterodimer [47]. To
evaluate the effect of IL-33 on NF-κB activation, we stimulated MCC-13 cells with 1 ng/mL
of CyD-rhIL-33 protein and monitored the phosphorylation status of p65 and the p50
precursor p105 at different time points (5–60 min). An increase in p65 and p105 phosphory-
lation was observed following stimulation with CyD-rh-IL33 (Figure 10A). Furthermore,
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pre-incubation with a ST2L receptor-specific antibody inhibited the IL-33-induced phos-
phorylation of p65 (Figure 10C). To support our western blot findings, we performed a
NF-κB promoter reporter assay. The MCC-13 cells were co-transfected with the CyD-IL-33
expression plasmid and a luciferase reporter plasmid with an NF-κB responsive promoter.
We determined that CyD-rhIL-33 activated p65 promoter activity with increasing CyD-IL-33
plasmid concentration (Figure 10B), and the promoter activity was inhibited by blocking
ST2L receptor using an anti-ST2 antibody (Figure 10D).

Figure 10. IL-33 upregulates NF-κB activity. (A) NF-κB activation was determined by monitoring
phosphorylation of the subunit p65 and the p50 precursor p105. MCC-13 cells were serum starved
for 24 h, and then stimulated with 1 ng/mL of CyD-rhIL-33 for varying times from 5–60 min. PBS
was used as a vehicle control. Relative phospho-p65 and phospho-p105 levels were determined
by western blot using phospho-specific antibodies. (B) The effect of rhIL-33 on NF-κB-mediated
promoter activity. NF-κB activity was measured by using a luciferase reporter plasmid containing
a minimal promoter (TATA box) and a NF-κB-responsive element. Cells were stimulated with
0.24, 0.48, and 0.96 ng/mL of rhIL-33 for 4 h. Luciferase values were normalized to total protein.
(C) The effect of ST2 receptor blocking on the IL-33-induced activation of NF-κB. Phospho-p65 levels
were determined by western blotting. MCC-13 was serum starved for 24 h, and then pre-blocked
with goat anti-ST2 antibody (2 ng/mL) or normal goat IgG for a varying time duration (5–60 min).
The cells were then stimulated with CyD-rhIL-33 (1 ng/mL) for 60 min. PBS was used as a control.
(D) Anti-ST2 antibody ablates the IL-33-induced activation of NF-κB. Cells were transfected with the
luciferase reporter plasmid with an NF-κB responsive promoter and to CyD-rhIL-33 (1 ng/mL) in the
presence of, or without, anti-ST2 antibody (0.5 or 1 µg/mL) for 4 h. Goat IgG was used as a control.
Each bar represents the average of three independent parallels. Luciferase values were corrected for
protein concentration of the samples. * p ≤ 0.05, *** p ≤ 0.001.

2.8. IL-33 and Its Receptors, ST2/IL1RL1, and IL1RAcP Are Expressed in MCC Tissue Samples

The difference in the expression levels of IL-33 in V− and V+ MCC cell lines
(Figure 2) caused us to examine IL-33 levels in MCC tumors. A total of 23 primary cutaneous
MCCs were immunohistochemically stained for LT, CK20, IL-33, ST2/IL1RL1, and IL1RAcP
(Figure 11A–J). Fifteen of twenty-three (65.2%) demonstrated an intranuclear positivity for LT.
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All of the 23 MCC tissue samples displayed a uniform positivity for CK20 (dot-like cytoplasmic),
IL-33 (cytoplasmic), ST2/IL1RL1 (nuclear), and IL1RAcP (nuclear and cytoplasmic).

Figure 11. Immunohistochemical staining of IL-33, ST2/IL1RL1, and IL1RAcP in MCC. Isotype
control and low, intermediate, and high expression of IL-33 (A,D,G,J), ST2/IL1RL1 (B,E,H,K),
IL1RAcP (C,F,I,L), respectively. Scale bar = 50 µm.

Associations of IL-33, ST2/IL1RL1, IL1RAcP expression, clinicopathological factors
(size, sex, age, stage [1 and 2 vs. 3 and 4], LT expression, presence of MCPyV DNA),
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and survival was investigated further with tissue microarray in a series of 138 MCC pa-
tient samples (Figure 11). The vast majority of the MCC samples analyzed expressed
IL-33 (137/138) and IL1RAcP (134/138). IL-33 expression did not show statistically sig-
nificant correlation with the investigated clinicopathological factors (all p-values > 0.05;
Supplementary Table S4). ST2/IL1RL1 expression associated with presence of MCPyV
DNA (p = 0.01), and IL1RAcP expression associated with LT- and DNA-positivity, and less
frequently in tumors located in the head (all p-values < 0.04; Supplementary Table S4). Any
associations between IL-33, ST2/IL1RL1, and IL1RAcP expression and MCC-specific or
overall survival were not found.

2.9. IL-33, sST2, and sIL1RAcP Measurement in Human Patient Plasma Samples

The expression of IL-33, ST2, and IL1RAcP in MCC tissue samples, together with
our in vitro data, suggest that the IL-33/ST2-IL1RAcP axis may play a role in MCC.
This prompted us to compare IL-33, sST2/IL1RL1, and sIL1RAcP levels in the plasma of
12 healthy subjects and 12 MCC patients. The minimum level of 3.1 pg/mL, 31.3 pg/mL,
and 31.2 pg/mL was set as detectable for IL-33, sST2, and sIL1RAcP, respectively (rec-
ommended by the supplier). The mean IL-33 plasma values were 26.14 ± 5.53 pg/mL
and 37.81 ± 4.64 pg/mL for control and MCC patients, respectively (Figure 12A). The
mean sST2/IL1RL1 plasma values were 39.36 ± 14.32 pg/mL and 41.92 ± 14.96 pg/mL for
control and MCC patients, respectively (Figure 12B). Similarly, the mean sIL1RAcP plasma
values were 189.20 ± 139.288 pg/mL and 463.45 ± 110.28 pg/mL for healthy controls and
MCC patients, respectively (Figure 12C). Significantly higher IL-33 and IL1RAcP levels
were found in the MCC patients compared with the healthy individuals.

Figure 12. Detection of IL-33 (A), sST2/IL1RL1 (B), and sIL1RAcP (C) levels in plasma samples from
MCC patients (n = 12) and healthy controls (n = 12) by ELISA. **** p ≤ 0.0001.

3. Discussion

In the present study, we investigated the differential expression of 84 inflammatory
mediators in V+ and V−MCC cell lines and explored a possible role for MCPyV T-ags in
the regulation of these inflammatory mediators. Previous studies reported that MCPyV
sT downregulates IL-2, IL-8, CCL20, and CXCL9 expression in MCC-13 cells [48], while
MCPyV LT, tLT (LT339), and sT upregulate IL-1β, IL-6, IL-8, CXCL1, and CXCL6 in hTERT-
immortalized BJ human foreskin fibroblasts [49]. A previous study by our group also
found that MCPyV LT and tLT upregulate CCL17/TARC expression in a V+ MCC (MKL-2)
cell line, as compared to a V−MCC (MCC-13) cell line [27]. A recent study reported that
MCPyV infection of human dermal fibroblasts triggers the expression of the inflammatory
cytokines IL-1β, IL-6, IL-8, and TNFα [50].

In this work, we focused on IL-33, one of the cytokines with higher transcript levels
in the V+ MCC cell lines compared to V−MCC cell lines. Previous studies demonstrated
an enhanced expression of IL-33 after viral infections (including tumor viruses), and in
immunoresponses in different malignancies [20,28–33]. Western blot analysis confirmed
higher IL-33 levels in V+ MCC cells than in V−MCC cells and HDF, although IL-33 expres-
sion levels did not vary between V− and V+ MCC patient samples. However, increased
expression of IL-33 receptors ST2/IL1RL1 and IL1RAcP in the tumor cells was associated
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with the presence of MCPyV. Comparing the levels of IL-33 and its receptors in the plasma
of MCC patients and healthy individuals confirmed a higher IL-33 and IL1RAcP in the
patients, whereas no significant difference in ST2 levels was found between the two co-
horts. Previous studies have shown elevated IL-33 plasma levels in lung cancer [51], breast
cancer [52,53], gastric cancer [54], and advanced pancreatic ductal adenocarcinoma [55].

To understand the enhanced level of IL-33 in V+ MCC cells compared with V−MCC
cells, we investigated a possible involvement of MCPyV LT and sT in IL-33 expression
regulation. We found that both viral proteins stimulated the promoter activity of the IL-33
receptors, ST2/IL1RL1 and IL1RAcP, and IL-33 protein expression was increased in MCC-
13 cells transiently transfected with MCPyV T-ags. The regulation of IL-33 expression in
MCC is not understood. Deletion of the DNA-binding domain of LT or mutations in the
LT binding GRGGC motifs did not abrogate LT-induced activation of the IL-33 promoter,
thereby suggesting that no direct binding of LT to DNA is required to activate the IL-33
promoter. Additionally, nuclear localization may not be required, as the tLT variant LTMKL-2,
which lacks a nuclear localization domain [56], was still able to stimulate the IL-33 promoter.
However, we cannot exclude that LTMKL-2, in a complex with other proteins, is transported
into the nucleus. Experiments with truncated IL-33 promoters revealed that the sequences
proximal to the transcription start site can still mediate T-ags-induced activation of the
IL-33 promoter. This suggests that either T-ags interact with components of the initiation
complex or mediate its effect to transcription factors that bind in this region. Indeed, the LT
of polyomaviruses can interact with general transcription factors such as TFIIB, TBP, TAFIIs,
and the B subunit of RNA polymerase II, and with the transcription factors DP1, SP1, p53,
and p300 [34,57]. The IL-33 −160/+50 promoter fragment contains putative binding motifs
for these transcription factors using the PROMO TRANSFAC program [58,59]. Gorbacheva
et al. [60] showed that an increase in the activity of SP1 was associated with elevated levels
of IL-33 in breast and lung cancers [60]. MCPyV sT also potentiated IL-33 promoter activity.
Polyomavirus sT can interact with DP1 and can regulate the activity of transcription factors
such as Elk-1, Ets-1, and AP1 through activation of the MAPK pathway [57,61]. Further
studies are required to unveil the exact mechanism by which MCPyV LT and sT increase
IL-33 promoter activity.

IL-33 possesses transcriptional regulatory functions associated with a homeodomain-
like, helix-turn-helix motif [62–64]. Nonetheless, the activity of IL-33 is regulated by
proteolytic cleavage. Inflammatory proteases from neutrophils (proteinase 3, elastase, and
cathepsin G) [65] and mast cells within the tumor microenvironment (chymase, tryptase,
and granzyme B) [21] can process full-length IL-33 into shorter mature forms (18–21 kDa),
with a 10- to 30-fold higher amount of activity [66,67]. Based on the diverse activity of these
proteolytic variants, we studied a possible autocrine effect of IL-33 and IL-33 fragments
on MCPyV early and late promoter activity. The cytokine domain of IL-33 (CyD-IL-33)
upregulated, whereas full-length IL-33 downregulated the activity of both promoters. The
inhibitory effect of FL-IL-33 was mediated by its nuclear domain. Since both IL-33 receptors
occur in a soluble form, we also examined their effect on MCPyV promoter activity. sST2
increased, whereas sIL1RAcP suppressed both early and late promoter activity. This
suggests that during disease, sST2 may upregulate MCPyV LT and sT expression, and
contribute to MCPyV−induced development of MCC. On the other hand, sIL1RAcP may
repress LT and sT expression.

Earlier reports have demonstrated that IL-33 activates the MAPK pathways in various
cancer cell lines [23,41,68–70], and showed an IL-33/ST2-dependent NF-κB activation [45,71,72].
We confirmed that IL-33/ST2 activated both pathways in MCC cells; this may explain the
stimulatory effect on the MCPyV promoters, which contains putative binding sites for
NF-κB and for ERK1/2 MAPK-regulated transcription factors, such as AP1, ATF/CREB,
c-MYC, ELK1, and SP1 [73,74].

In conclusion, our results demonstrate that MCPyV LT and sT are linked to an altered
expression of IL-33 and its receptors, ST2/IL1RL1 and IL1RAcP. The expression of IL-33
and its receptor ST2/IL1RL1 may constitute an autocrine or paracrine survival loop, which
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contributes to the growth and survival of MCC (Figure 13). Several studies underscore a
versatile role of the IL-33/T2-IL1RAcP pathway in the tumor microenvironment and tu-
morigenesis [20,29], thus making these proteins attractive therapeutic targets and potential
biomarkers in MCC. Proof-of-concept is provided in clinical studies with the IL-33 antibody
etokimab, and with the ST2 antibody astegolimab showing improvement in patients with
atopic dermatitis [75], a peanut allergy [76], or severe asthma [77]. Therapeutic strategies
for targeting IL-33/ST2 signaling for the treatment of various inflammatory diseases are
evolving [78,79]. However, additional studies are required to establish that blocking the
IL33/ST2 axis may have therapeutic potential for MCC treatment.

Figure 13. The IL-33/ST2 axis in MCPyV−positive MCC. The T-antigens of MCPyV stimulate
expression of IL-33. Excreted IL-33 can bind to its receptors ST2 and IL1RAcP on the cell surface and
this will activate the NF-κB and MAPK pathways, subsequently resulting in the expression of NF-κB
and MAPK-responsive genes. IL-33 also increases the expression of the MCPyV T-antigens, and this
will kindle an autostimulatory loop of IL-33 expression.

4. Materials and Methods
4.1. Materials

The primary antibodies used in this study are displayed in Supplementary Table
S1. The recombinant proteins include recombinant human full-length IL-33 (FL-rhIL-33)
(cat.#TP760633, Origen Technologies, Inc. Rockville, MD, USA) and recombinant human
cytokine-domain IL-33 (CyD-rhIL-33) (cat.# 3625-IL, R&D systems, Abingdon, UK).

4.2. Plasmids

The empty expression plasmid pcDNA3.1(+) was purchased from Invitrogen. Full-
length LT expression plasmid pcDNA6.MCV.cLT206.V5_CM2B4 was purchased from Addgene
(Cambridge, MA, USA), while the expression plasmid for LTMKL-1, LTMKL-2, and LTMS-1 were
constructed by site-directed mutagenesis using the original pcDNA6.MCV.cLT206.V5_CM2B4
plasmid and have been previously described [27]. pNFκB-LUC plasmid was obtained
from Clontech (Takara Bio, Mountain View, CA, USA), and MCPyV sT-FLAG was a
kind gift from Andrew Macdonald [80]. IL-33, ST2 (IL1RL1), and IL1RAcP expression
plasmids were generated by cloning amplified cDNA into pCMV3_His(N)_FLAG(C).
The plasmids pGL3_IL33(−1050/+50), pGL3_ST2L(−100/+82), pGL3_sST2(−499/+100),
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pGL3_IL1RAP(−1397/+182), and pGL3_IL1RAP(−517/+182) were amplified by PCR of
the promoter sequence from genomic DNA purified from blood, and cloned into the lu-
ciferase reporter plasmid pGL3-basic (Promega). Luciferase reporter plasmids containing
truncated versions of the IL-33 promoter were generated by site-directed mutagenesis using
complementary primers containing a KpnI restriction enzyme motif, and additional KpnI
site was introduced in the pGL_IL33(−1050/+50) vector. The plasmid was then digested
with KpnI and re-ligated. Site-directed mutagenesis was also applied to destroy each of the
two putative LT motifs in the IL-33 promoter. A double IL-33 promoter mutant, in which
both LT binding motifs were destroyed, was also generated. The primers used for cloning
are shown in Supplementary Tables S2 and S3. All constructs were verified by sequencing.

4.3. Cell Lines and Human Tissue Samples

MCC-13, MCC-26, UISO, MKL-1, MKL-2, and MS-1 cell lines were kindly provided by
Dr. Baki Akgül (University of Cologne, Cologne, Germany). The WaGa cell line was a kind
gift from Dr. JC Becker (University Duisburg-Essen, Duisburg, Germany). MCC-13, MCC-
26 [81], and UISO [82] are V−MCC cell lines, whereas MKL-1 [83], MKL-2, WaGa [84,85],
and MS-1 [86] are V+ MCC cell lines. The immortalized human dermal fibroblast cell
line fHDF/TERT166 was purchased from Evercyte GmbH (Vienna, Austria) and kept in
FibroUp (Evercyte; Wien, Austria, cat. no. MHT-008), 1:1 DMEM/Ham’s F-12 (Biochrom,
Nuremberg, Germany; cat. no. F4815), 2 mM GlutamaxTM-I (ThermoFisher Scientific,
Waltham, MA, USA; cat. no. 35050061), 10% FBS, and 100 mg/mL G418 (Invivogen, San
Diego, CA, USA; cat. no. ant-gn5). Both V+ and V− cells were grown in RPMI-1640
containing 10% FBS, streptomycin (100 µg/mL), and penicillin (100 U/mL). The cells were
kept in a humidified CO2 incubator at 37 ◦C. Human MCC tissues were obtained during
2000–2015 from the St. Olavs University Hospital Trondheim, Norway, in accordance
with the ethical approval from the Regional Ethical Committee (REK NORD application
number 2016/988). Plasma samples from 12 MCC patients were obtained with consent, in
accordance with the ethical approval from the Ethics Committee of Karolinska Institutet,
Sweden (2010/1092-31/3). Plasma samples from healthy individuals were obtained with
consent and approved by the Regional Committee for Medical and Health Research Ethics,
Northern Norway (REK151884).

Tumor tissues and clinical data was available from 168 patients diagnosed with MCC
in Finland between 1 January 1979, and 31 December 2013 (Supplementary Table S4).
Patients were identified and clinical data were obtained from hospital case records, and
the Finnish Cancer Registry and FFPE tissue samples were collected from the pathology
archives. Tissue microarrays were constructed and expression of MCPyV LT and the
presence of MCPyV DNA in tumor tissue was detected as described in detail earlier [87].
The study protocol was approved by the Ethics Committee of Helsinki University Central
Hospital (HUS/1455/2017). The Ministry of Health and Social Affairs granted permission
to collect patient data (STM/398/2005) and the National Authority for Medicolegal Affairs
to collect tissue samples (4942/05.01.00.06/2009).

4.4. Transfection

Cells were seeded out in 6- and 12-well cell culture plates with a total number of 2× 105

and 1.0× 105, respectively. At the time of transfections, the cells were approximately 80–90%
confluent, and jetPRIME (Polyplus-transfection SA, Illkirch, France) was used to transfect
all plasmids, according to the manufacturer’s instructions. For gene promoter analysis,
the cells were transfected with polyethylenimine (PEI linear MW25000; transfection grade,
cat.# 3966–1, Polysciences, Warrington, PA, USA). DNA was mixed with 150 mM NaCl,
and a mixture of PEI:150 mM NaCl was then added to the DNA at a ratio DNA:PEI of 1:4.
This mixture was incubated for 15 min at room temperature, and then carefully added to
the cells. The medium containing the transfection mixture was replaced 4 h later. A total of
2 µg DNA per well in a 6-well plate, and 1 µg of DNA per well in a 12-well plate was used
to transfect cells. All experiments were performed 24 h after transfection.
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4.5. RNA Extraction

RNA extraction was performed using the RNeasy® Plus Mini kit (Qiagen, Hilden, Ger-
many), according to the manufacturer’s protocol. For RNA yield and quality, A260/A280
and A260/A230 ratios were analyzed with the Nano-Drop® ND-2000 spectrophotometer
(NanoDrop Technologies, ThermoFisher Scientific, Waltham, MA, USA).

4.6. cDNA Construction and Quality Control

The iScript™ cDNA Synthesis Kit (BioRad, Hercules, CA, USA) was used to gener-
ate cDNA. A total of 1–2 µg of RNA was converted to cDNA, according to the man-
ufacturer’s instructions. To determine the presence of genomic DNA contamination,
PCR with the housekeeping APRT primers (5′-CCCGAGGCTTCCTCTTTGGC-3′ and
5′-CTCCCTGCCCTTAAGCGAGG-3′) was performed. In case of genomic DNA contam-
ination in the purified RNA sample, RT-PCR will generate an 800 bp fragment, whereas
RT-PCR of RNA gives a 300 bp amplicon [88]. PCR products were visualized on a 1%
agarose gel stained with GelRed™ Nucleic Acid Gel Stain (Biotium, Cambridge Bioscience,
Bar Hill, UK).

4.7. RT2 Profile PCR Array

Human cytokine and receptor gene transcription was measured using the human RT2

Profiler PCR Inflammatory Cytokines and Receptors Array (PAHS-011ZA, SABiosciences,
Qiagen). The cDNA was added into RT2 SYBR Green Mastermix and amplified using the
Light Cycler 96 (Roche Diagnostics, Indianapolis, IN, USA) with 95 ◦C for 10 min, followed
by an alteration of 95 ◦C (15 s) and 60 ◦C (1 min) for 45 cycles. All data were collected by
the Light Cycler 96 SW 1.1 software and analyzed using the Gene Glob PCR Array Data
Analysis Web Portal (Qiagen, Hilden, Germany). For considering a gene differentially
expressed, we used a 2-fold change as a cut-off.

4.8. Luciferase Assays

For luciferase assays, approximately 24 h after transfection, cells were lysed in 100 µL Lu-
ciferase Assay Tropix Lysis solution (ThermoFisher Scientific) with freshly added
0.5 mM DTT. Cells were scraped, transferred to Eppendorf tubes, and then centrifuged for
3 min at 12,000× g. Twenty µL of the supernatant was added to a 96-well microtiter plate
containing 50 µL luciferase buffer (Promega, Madison, WI, USA). The CLARIOstar Plus
Microplate reader (BMG Labtech, Ortenberg, Germany) was used to measure relative lu-
ciferase units (RLU). Each experiment was repeated three times with three parallel samples
for each experiment. Luciferase values were corrected for the total protein concentration,
which was measured using the MN protein quantification assay (Macherey-Nagel GmbH,
Düren, Germany).

4.9. Immunoblotting

Western blot was performed by separating protein samples on 4–12% NuPAGE Bis-Tris
Mini Gels (Invitrogen Life Technologies, Carlsbad, CA, USA), according to the manufac-
turer’s protocol. Proteins were blotted onto a 0.45 µm PVDF membrane (Millipore, Billerica,
MA, USA), and blocking was performed using TBS-T (TBS with 0.1% Tween-20; Sigma
Aldrich) containing 5% (w/v) dried skimmed milk for 1 h. The protein was probed by
incubating the membrane with the primary antibody overnight at 4 ◦C. After washing
the membrane 3 times with TBS-T, an appropriate secondary antibody was added for
1 h at room temperature. After 2 washes with TBS-T and 2 washes with washing buffer,
antigen-antibody complex was visualized using SuperSignal™ West Pico Chemilumines-
cent Substrate (Cat.#34080 Thermo Fisher Scientific, Rockford, IL, USA). The Magic-Mark™
Western standard from Invitrogen Life Technologies was used to estimate the molecular
mass of the detected proteins. Densitometric analysis of western blots was performed by
using imageJ (NIH, Bethesda, MD, USA).
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4.10. Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue sections were deparaffinized in xylene
and graded alcohols, and then hydrated and washed in PBS. After antigen retrieval in
a sodium citrate buffer (pH 6) in a microwave oven, the endogenous peroxidase was
blocked by 0.3% H2O2 for 15 min. Sections were incubated overnight at 4 ◦C with
the primary antibodies against MCPyV−LT, IL-33, ST2/IL1RL1, IL1RAcP, and CK20
(Supplementary Table S1). As a secondary antibody, either the anti-rabbit-HRP Signalstain
(R) DAB Substrate kit (Cat.# 8059S Cell Signaling Technologies, Beverly, MA, USA) or
anti-mouse EnVision-HRP (Dako, Agilent Technologies, Inc., Santa Clara, CA, USA) was
used. A matched isotype control was used as a control for nonspecific background staining.
Staining intensity was scored as negative, low, intermediate, or strong when >20% of tumor
cells showed protein expression.

4.11. Plasma Levels of IL33, ST2/IL1RL1, and IL1RAcP in MCC Patients and Healthy Controls

Plasma concentrations of IL-33, ST2IL1RL1, and IL1RAcP were measured by enzyme-
linked immunosorbent assay (ELISA) using Human ST2/IL-33R DuoSet ELISA, Human
IL-1 RAcP/IL-1 R3 DuoSet ELISA and Human IL-33 Quantikine ELISA Kit (R&D systems,
Abingdon, U.K), according to the manufacturer’s protocol. The assay ranges for IL-33,
ST2/IL1RL1, and IL1RAcP were 3.1–200 pg/mL, 31.2–2000 pg/mL, and 31.2–2000 pg/mL,
respectively.

4.12. Statistical Analysis

The RT2 Profiler PCR Array data analysis version 3.5 (http://dataanalysis.sabiosciences.
com/pcr/arrayanalysis.php accessed on 21 January 2020) was used for inflammatory cy-
tokines and receptor data analysis. For the analysis, values with a fold change ≥2 and
a p-value less than 0.05 were considered significant. GraphPad Prism 6 software was
used for statistical analysis and graph design. The Student’s t-test was used to compare
differences between the experimental and control group, with a p-value < 0.05 considered
statistically significant.
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