
https://helda.helsinki.fi

Bayes in Wonderland! Predictive Supervised Classification

Inference Hits Unpredictability

Amiryousefi, Ali

Multidisciplinary Digital Publishing Institute

2022-03-05

Amiryousefi, A.; Kinnula, V.; Tang, J. Bayes in Wonderland! Predictive Supervised

Classification Inference Hits Unpredictability. Mathematics 2022, 10, 828.

http://hdl.handle.net/10138/349248

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



����������
�������

Citation: Amiryousefi, A.; Kinnula,

V.; Tang, J. Bayes in Wonderland!

Predictive Supervised Classification

Inference Hits Unpredictability.

Mathematics 2022, 10, 828. https://

doi.org/10.3390/math10050828

Academic Editors: Andrea Prati,

Luis Javier García Villalba and

Vincent A. Cicirello

Received: 1 February 2022

Accepted: 3 March 2022

Published: 5 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Bayes in Wonderland! Predictive Supervised Classification
Inference Hits Unpredictability
Ali Amiryousefi * , Ville Kinnula and Jing Tang

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
ville.kinnula@helsinki.fi (V.K.); jing.tang@helsinki.fi (J.T.)
* Correspondence: ali.amiryousefi@helsinki.fi

Abstract: The marginal Bayesian predictive classifiers (mBpc), as opposed to the simultaneous
Bayesian predictive classifiers (sBpc), handle each data separately and, hence, tacitly assume the
independence of the observations. Due to saturation in learning of generative model parameters, the
adverse effect of this false assumption on the accuracy of mBpc tends to wear out in the face of an
increasing amount of training data, guaranteeing the convergence of these two classifiers under the
de Finetti type of exchangeability. This result, however, is far from trivial for the sequences generated
under Partition Exchangeability (PE), where even umpteen amount of training data does not rule
out the possibility of an unobserved outcome (Wonderland!). We provide a computational scheme
that allows the generation of the sequences under PE. Based on that, with controlled increase of the
training data, we show the convergence of the sBpc and mBpc. This underlies the use of simpler
yet computationally more efficient marginal classifiers instead of simultaneous. We also provide a
parameter estimation of the generative model giving rise to the partition exchangeable sequence as
well as a testing paradigm for the equality of this parameter across different samples. The package
for Bayesian predictive supervised classifications, parameter estimation and hypothesis testing of the
Ewens sampling formula generative model is deposited on CRAN as PEkit package.

Keywords: partition exchangeability; supervised classification; hypothesis testing; asymptotic statistics;
predictive classifiers

MSC: 62C10; 62-08; 62-04

1. Introduction

Under the broad realm of inductive inference, the goal of the supervised classification
is to assign the test objects into a priori defined number of classes learned from the training
data [1]. While the choice of a proper inductive operator is often due to an algorithmic
search, still one of the most applicable frameworks that optimally handle these scenarios
is Bayesian [2]. This is the result of a formulation that with a given prior information
and accruing observed data, gradually enhances the precision of the inferred population’s
parameters [3]. In these cases, with increasing amount of observed data, the accuracy of
the predictions regarding the generative models parameters will asymptotically improve.
In general, this asymptotic improvement is observed for the behaviour of the classification
of maximum likelihood estimates (MLE) [4]. This is the underlying factor for the more
specific case where the number of possible outcomes in a given class is predefined and is
essentially a closed set of discrete species [5]. The asymptotic learning saturation tailored to
the predictive classifiers is due to the fact that the learning of the underlying proportional
probabilities assigned to each observing species is getting more accurate based on the law
of large numbers [6]. This is, however, not intuitively generalizable to the cases where
there is always a positive probability in observing new species. We consider here the
general supervised classification case where the sets of species observed for features are
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not closed a priori, rendering the positive probability of the appearance of new species at
any stage. In the limiting form, the mixture of this species sampling sequence is commonly
used in Bayesian nonparametric scenarios [7]. In our case, the de Finetti type of exchange-
ability [8], seems intractable as it mandates the exchangeability under a defined set of
species. Nevertheless, under this asymptotic scenarios, one solution is to adhere to a form
of partition exchangeability (PE; due to Kingman [9]) that allows the exchangeability of not
only time indices of observed outcomes but also the frequency of the observed species [10].
Next to presentation of the predictive rules under this type of exchangeablity [11] and
asymptotic representation of the number of classes for the sampling species sequences [12],
our derivation based on the Bayesian classifiers shows that given an infinite amount of
data, the simultaneous and marginal predictive classifiers will converge asymptotically.
This is congruent with the similar study under the de Finetti exchangeability with multi-
nomial modelling [5]. In general, due to the existence of marginal dependency between
the data points, the simultaneous and marginal classifiers are not necessarily equal. On
the other hand, their convergence is not intuitive due to the complication posed with a
priori unfixed set of observable species. Upon availability of umpteen amount of data,
however, the results presented here justifies the replacement of the marginal classifiers with
the computationally expensive simultaneous ones.

In the following section, we derive the MLE of the single parameter of the underlying
generative model assigned to the data under PE and Lagrangian hypothesis testing scheme
regarding this parameter for one-sample and multiple-sample tests. This will be followed
by a section on the derivation and computational performance of the marginal Bayesian
predictive classifiers (mBpc) and simultaneous Bayesian predictive classifiers (sBpc), and
their relative asymptotic behaviour in different classifications settings. We also introduce the
algorithms used to implement the classifiers along with classification results on simulated
datasets from partition exchangeable sequences. Lastly, some notes regarding the adequacy
of each model and its specific use is provided in the last section. We also provide the
implementation of all the derived functions presented in this paper as a freely available R
package deposited on CRAN as PEkit package (https://cran.r-project.org/web/packages/
PEkit/index.html, accessed on 23 December 2021 ).

2. Partition Exchangeability

Assume that number of species related to our feature is unfixed a priori. Upon
availability of the vector of test labels S, under the PE framework, we can deduce the
sufficient statistic for each subset of data. To define this statistic, consider the assignment of
arbitrary permutation of integers 1, . . ., |sc| to the items in sc where nc = |sc| is the size
of a given class c. Introducing the I(. . .) indicator function and ncl = Σi∈sc I(xi = l) as the
frequency of items in class c having value l ∈ χ (where χ is the species set χ = {1, 2, ..., r}
and xi ∈ x is the ith test item), then in terms of count of the test data in the class c, x(c) as
shown in [13], the sufficient statistic is

ρct =
∞

∑
l=1

I(ncl = t), (1)

Note that the above is the sufficient statistic for a specific class c. The vector of
sufficient statistic ρc = (ρct)

nc
t=1 indicates a partition of the integer nc such that ρct is the

frequency of specific feature values that have been observed only t times in class c of
test data. Given the above formulation [14], the random partition is exchangeable if and
only if two different sequences having the same vector of sufficient statistics have the
same probabilities of occurring. Independent of the classes and according to Kingman’s
representation theorem [9], the probability distribution of the vector of n observations
with sufficient statistic ρ = (ρ1, ρ2, . . . , ρn) with ρt = ∑∞

l=1 I(nl = t) for t = 1, 2, . . . , n,
under partition exchangeability will follow the Poisson–Dirichlet (ψ) (PD) distribution.

https://cran.r-project.org/web/packages/PEkit/index.html
https://cran.r-project.org/web/packages/PEkit/index.html
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This distribution (also known as the Ewens sampling formula [15]) and its comprehensive
review, history and its applications are thoroughly discussed in [16] and is presented as;

p(ρ|ψ) = n!
ψ(ψ + 1) . . . (ψ + n− 1)

n

∏
t=1

{
(

ψ

t
)ρt

1
ρt!

}
, (2)

where,

∀ ψ ∈ R+, ρ ∈ Sρ,

Sρ =

{
(ρ1, ρ2, . . . ρn) |

n

∑
i=1

iρi = n, ρi ∈ N0, i = 1, 2, . . . n

}
.

Note that the ψ is the only parameter of the PD distribution and is controlling the
level of diversity of the observed species such that values close to zero for this parameter
is leading to a more degenerative outcomes and bigger values are underlying the higher
diversities.

2.1. Parameter Estimation

As one of the main goals of the inductive inference in learning about the underlying
parameters of the observed data, we are interested in the MLE of ψ as the dispersal param-
eter of (2). The MLE of the parameter ψ̂ can be derived from a sample as demonstrated in
Appendix A by solving the following equation for ψ .

n

∑
j=1

ψ

ψ + j− 1
=

n

∑
t=1

ρt. (3)

The sum of sufficient statistics on the right side of the equation equals the observed
number of distinct species in the sample. The left side of the equation equals, as shown by
Ewens in [15], the expected number of distinct species observed given parameter ψ. Thus,
the MLE of ψ is that number for which the observed number of distinct species equals the
expected number of species observed in a sample of size n. There is no closed form solution
for this equation for arbitrary value of n, so the MLE ψ̂ has to be obtained numerically.
As the right side of the equation is a strictly increasing function when ψ > 0, a binary
search algorithm is adhered to find the root of (3) in PEkit (https://cran.r-project.org/web/
packages/PEkit/index.html, accessed on 23 December 2021 ). For assessing the similarity
of the samples under different classes in the supervised classification scenario, an estimate
for ψ can be calculated for each class in the training data separately.

2.2. Hypothesis Testing

Once the parameters are estimated based on the MLE, the second question is about
the similarity or the degree of their distinctiveness across different samples. Toward this
end, we also devised distinguished statistical hypothesis testing frameworks for assessing
the similarity of the estimated parameters with either a single value or across samples.

One-sample test . A Lagrange multiplier test as defined in [17] can be used for
statistical testing of a hypothesized parameter ψ0 under the null hypothesis H0 : ψ = ψ0
for a single sample. The test statistic is constructed as follows:

S(ψ0) =
U(ψ0)

2

I(ψ0)
, (4)

where U is the gradient of the log-likelihood L(ψ), and I is the Fisher information of the
distribution. Under the null hypothesis the test statistic S follows the χ2

1-distribution.

https://cran.r-project.org/web/packages/PEkit/index.html
https://cran.r-project.org/web/packages/PEkit/index.html
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In the case of the PD distribution, these quantities become (the proof of is provided
in Appendix B).

U(ψ0) =
n

∑
i=1

(
ρi
ψ0
− 1

ψ0 + i− 1

)
(5)

I(ψ0) =
n

∑
i=1

(
1

ψ0(ψ0 + i− 1)
− 1

(ψ0 + i− 1)2

)
. (6)

Multiple-sample test. To infer whether there is a statistically significant difference
in the ψ of each sample, we have devised a Likelihood Ratio Test (LRT) [18]. The null hypoth-
esis of the test is that there is no difference in the ψ of each of s samples,
H0 : ψ1 = ψ2 = . . . = ψs, and consequently the alternative hypothesis is the inequal-
ity of at least two ψ. The test statistic Λ is constructed as

Λ = −2 log
sup L(θ0)

sup L(θ̂)
D−→ χ2

d, (7)

whereL(θ0) is the likelihood function of the data given the model under the null-hypothesis,
and L(θ̂) is the unrestricted likelihood of the model. The sup refers to supremum, so the
likelihood is evaluated at the MLE of the parameters. Λ asymptotically converges in
distribution to the χ2

d, where d equals the difference in the amount of parameters between
the models. When testing the ψ of s different samples from the PD distribution with
possibly different sample sizes ns, the model under the null hypothesis has one shared
ψ, while the unrestricted model has s different dispersal parameters, (ψ1, ψ2, . . . , ψs), so
d = s− 1. The likelihood L of multiple independent samples from the PD distribution is a
product of the density functions for the partitions ρ of those samples, and under H1 the
MLE of ψ for each of the samples is evaluated as in (3) from each sample independently,
as the other samples have no effect on the ψ of a single sample. However, under the
null-hypothesis, the samples share a common ψ, the MLE of which according to Section 2.1
would be estimated by solving,

s

∑
i=1

ns

∑
j=1

ψ

ψ + j− 1
=

s

∑
i=1

ns

∑
t=1

ρst. (8)

As the likelihood of multiple independent samples with identical ψ under the null-
hypothesis is just a product of their likelihoods, the derivative of the log-likelihood is just
a sum of the derivatives of each sample’s likelihood. Again, the ψ has to be obtained as
the root of the above equation, which can be found with a small modification to the same
binary algorithm as the one we use to determine the MLE of a single parameter of the PD
distribution. Having found the MLEs of the ψ under null and alternative hypotheses, the
likelihood ratio in the test statistic in Equation (7) can then be expressed as,

s

∏
j=1
L(ρj|ψ̂j) /

s

∏
j=1
L(ρj|ψ̂j), (9)

where the likelihood functionL(ρj|ψ̂j) is the likelihood function of the PD(ρj|ψ) distribution
for the partition ρ of the j-th sample. As the restricted model in the numerator can never
have a larger likelihood than the unrestricted likelihood in the denominator, and both are
positive real numbers, this ratio is bounded between 0 and 1.

3. Supervised Classifiers under PE

Now with the availability of the estimation and testing machinery for the dispersal
parameter of the PD distribution, we can tackle the diverse and controlled scenarios of the
supervised classification under partition exchangeability. Consider the set of m available
training items by M and correspondingly the set of n test items by N. For each item, we
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observe only one feature that can take value from species set χ = {1, 2, ..., r}. Note that
each number in χ is represented with one species such that the first species observed is
represented with integer 1, the second species is represented with integer 2, and so on. On
the other hand, r is not known a priori, denoting the fact that we are uninformative about
all of the species possible in our population. A training item i ∈ M is characterized by a
feature zi such that, zi ∈ χ. Similarly, we have for a test item i ∈ N the feature xi such
that, xi ∈ χ. Collections of the training and test data features are denoted by vectors z and
x, respectively. Furthermore consider that the training data are allocated into k distinct
classes and T is a joint labeling of all the training items into these classes. Simultaneous
supervised classification will assign labels to all the test data in N in a joint manner. We
can consider partitioning of N test elements into k different classes similar to T such that
S = (s1, . . . , sk), sc ⊆ N, c = 1, ..., k be the joint labeling of this partition. The T and S
structures indicate a partition of the training and test feature vectors, such that z(c) and x(c)

represent the subset of training and test items in class c = 1, ..., k, respectively. The S denote
the space of possible simultaneous classifications for a given N and so S ∈ S. We also note
that the predictive probability of observing a new feature value of species j given a set of
prior observations from the PD distribution is

p(xn+1 = j|n) =
nj

N + ψ
(10)

where nj is the frequency of species j in the observed set n. However, if the value j is of a
previously unobserved species, the predictive probability is

p(xn+1 = j|n) = ψ

N + ψ
. (11)

The proof of this arises both from the mechanics of an urn model that [19] showed to
generate the Ewens sampling formula, as well as from [20]. The predictive probability of a
previously unseen feature value is thus higher for a population with a larger parameter ψ
than it is for a population of equal size with a smaller ψ.

mBpc. Now the product predictive distribution for all test data that is assumed to be
independent and identically distributed (i.i.d.) for the marginal classifier under the partition
exchangeability framework becomes:

pmBpc =
k

∏
c=1

∏
i:Si∈c

p(xi = li|z(c), T(c), Si = c)

=
k

∏
c=1

∏
i:Si∈c

(
mi;cl

mc + ψ̂c

)I(mi;cl 6=0)

×

(
ψ̂c

mc + ψ̂c

)I(mi;cl=0)

.

(12)

Note that under a maximum a posteriori rule with training data of equal size for each
class, a newly observed feature value that has not been previously seen in the training data
for any class, will always be classified to the class with the highest estimated dispersal
parameter ψ̂. However, each class still has a positive probability of including previously
unseen values based on the observed variety of distinct values previously observed within
the class.

sBpc. Analogously to the product predictive probability for the case of general ex-
changeability in [5], the product predictive distribution of the simultaneous classifier under
partition exchangeability, is then defined as
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psBpc =
k

∏
c=1

∏
i:Si∈c

p(xi = li|z(c), T(c), Si = c)

=
k

∏
c=1

∏
i:Si∈c

(
mi;cl + ni;cl

mc + ni;cl + ψ̂c

)I(mi;cl 6=0)

×

(
ψ̂c

mc + ni;cl + ψ̂c

)I(mi;cl=0)

.

(13)

An asymptotic relationship between these classifiers is immediately apparent in these
predictive probabilities. As the amount of training data in each class mc increases, the
impact of class-wise test data nc becomes negligible in comparison, and the difference in
the predictive probabilities approaches zero asymptotically. As the classifiers are searching
for classification structures S that optimize the test data predictive probability given the
training data, and the predictive probabilities converge asymptotically, the classifiers are
searching for the same optimal labeling.

However, the classifiers handle values unseen in the training data differently. This is
the situation where mi;cjl = 0 in the predictive probabilities pmBpc and psBpc The marginal
classifier’s predictive probability for the test data is always maximized by assigning such
a value into the class with the highest ψ̂. The simultaneous classifier, however, considers
the assignment of other instances of an unseen value as well. This can lead to optimal
classification structures where different instances of an unseen value are classified into
different classes. Thus, the convergence of the test data predictive probabilities of the
marginal and simultaneous classifiers is not certain in the presence of unseen values. In
practice, though, as the amount of training data m tends to infinity, the probability of
observing new values from the PD(ψ) distribution presented in Equation (11) tends to 0;
ψ/(ψ + m) → 0 as m → ∞. Unexpected values would be very rare and would have a
minimal effect on the classifications made by the different classifiers causing the asymptotic
convergence of these classifiers as also proved in [13].

Algorithms for the Predictive Classifiers

Next to the representation of the probabilities of the sBpc and mBpc above, we are
interested in computational algorithms for calculating the observed values. Adopting the
learning algorithms defined in [5] for obtaining the numerical outcomes of (12) and (13)
given observed data, we note that these predictive probabilities normalizing constant is
irrelevant for the optimization task. Hence, the computationally more straightforward
marginal classifier with the exigency of individual classification of each test data point
upon their arrival according to a maximum a posteriori rule would be

p̂mBpc : argmax
c=1,...,k

p(Si = c|z(M), xi, T), (14)

which is essentially a choice of a class that maximizes the probability of a given test data to
belong. For the simultaneous classification algorithm on the other hand, define classification
structure S(i)

c to be an identical classification structure to S with only the item i reclassified
to class c. The greedy deterministic algorithm with its maximization algorithm instructions
in this scenario is defined as

p̂sBpc : argmax
S∈S

p(S|x(N), z(M), T), (15)

1. Set an initial S0 with the marginal classifier algorithm p̂mBpc.
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2. Until S remains unchanged between iteration, do for each test item i ∈ N:

p̂sBpc : argmax
S∈{S(i)

1 ,...,S(i)
k }

p(S|x(N), z(M), T). (16)

The simultaneous classifier thus is a more elegant construct based on the marginal
classifier where for each test item, the potential labelling of other test items is also taken
into account.

4. Numerical Illustrations Underlying Convergence

To study the classification performance and convergence of the two different classifiers,
we simulated both training and test datasets from the PD distribution with a generative urn
model described in [10] called the De Morgan process. We varied the amount of training
and test data, the values of the distribution parameter ψ, as well as the amount of classes
k. A pool of 4 million data points was created for each ψ. A small sample of size 1000
was used to train the model first. This sample was augmented with more data from the
same pool for each ψ up to 2 million (without replacement) to form our two small and big
training data sizes. A test dataset created with the same parameters was kept constant for
classification with all training data samples as reflected in Table 1 and Figure 1.

Table 1. The item-wise 0–1 classification error for the marginal and simultaneous classifiers, as well
as the 0–1 absolute difference between the predicted labels between the two classifiers (δ).

Training (m) Test (n) No. Clusters (k) Dispersion (ψ) p̂mBpc p̂sBpc |δ|

2× 106 2× 103 2 1, 2 0.491 0.491 0
103 2× 103 3 1, 10, 50 0.3408 0.2823 0.0626
105 2× 103 3 1, 10, 50 0.2768 0.2758 0.0010
103 2× 103 5 1, 100, 103, 5× 103, 104 0.7535 0.5865 0.167

2× 106 2× 103 5 1, 100, 103, 5× 103, 104 0.434 0.364 0.115

1e+03 5e+03 1e+04 5e+04 1e+05 5e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal vs. simultaneous classifier, psis used:1, 10, 50

Training data

0ï
1 

er
ro

r

Marginal
Simultaneous
Convergence

Asymptotic behaviour of mBpc and sBpc 

mBpc
sBpc
Convergence

Training data

0-
1 

er
ro

r

Figure 1. The classification error of the marginal and simultaneous classifiers with datasets from
PD distribution with ψ ∈ (1, 10, 50), as well as the convergence of their labellings. Rows 2 and 3 in
Table 1 are included in the figure.

The above results next to our experiments show that the simultaneous classifier
performs better than the marginal classifier especially as the number of the classes is higher
and training data is small. As the amount of training data increases, the predictions of
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the classifiers converge, as the extra information in the test data used by the simultaneous
classifier becomes negligible. This behaviour is illustrated in Figure 1. Additionally, the
first row of the Table 1 shows that the classifier fails on the binary classification task with
datasets created with ψ of 1 and 2. This is because the classes created with ψ of such
similar magnitude will be distributed very similarly, tailored both from similarity of these
values and their closeness to zero. Thus the classification results are no better than random
guessing (accuracy of 0.491). The data is in fact so homogeneous in this case, that the
labelings of the two different classifiers already converge with test data of size 1000. On the
other hand, the biggest difference underlies the 4th row where, despite a clear distinction
between the competing classes ψ, the sBpc is distinctively performing better than mBpc but
both predictions are even worse than random guessing. This is due to the small training
samples and, as marked, the improvement is considerable for each classifier and also their
difference is decreasing. Compared with the three-class groups of the second and third
row of the Table 1, we conclude that the number of classes is playing a more pivotal role in
accuracy of the classifiers than the distinction between the underlying dispersal parameters.
However, this dominating factor is in service to the number of training data as well such
that increasing amount of training data could overrule this differentiating cause.

Altogether, the above results support the hypothesis that the marginal and simultane-
ous classifiers converge in their labelings with enough training data. This justifies the use
of the marginal classifier in place of the more accurate simultaneous one with large data.
Still, the simultaneous classifier is more accurate with smaller training data, as it benefits
from the information in the test data.

5. Discussion

Previously unseen or unanticipated feature values are challenging scenarios in stan-
dard Bayesian inductive inference. Under general exchangeability as formalized by de
Finetti, upon such an observation, the entire alphabet of anticipated feature values must
be retrospectively changed. Due to consideration of the specificity of the type of data
being generated under PE, the classifiers introduced here, however, are based on a fully
probabilistic framework and, as such, are equipped with a specific formulation that allow
the updating of their predictions autonomously. This choice of classifiers are shown to
have multiple advantages in population structure studies where there is a need for ac-
commodating the appearance of the unseen species [21]. The classification of previously
unseen feature values here is handled through the use of a parameter learned from the
training data, instead of, for example, using an uninformative Dirichlet-prior [6]. The
superiority in classification accuracy of labeling the test data simultaneously instead of one
by one was also shown under partition exchangeability. The assumption that test data is
i.i.d. is obviously an unrealistic one. The two classifiers considered here only converge in
prediction as the amount of training data approaches infinity. This is a special case of the
coincidence of the exchangeablity laws in the limiting forms for the mixture of the infinitely
divisible distributions under specific conditions [22]. From the computational point of
view, however, the simultaneous classifier exhibits the exponentially increasing cost as
the amount of test data increases, making it unfeasible to use for large-scale prediction.
Additionally, the algorithm presented here is only capable of arriving at local optima, leav-
ing still the chances of being sub-optimal in multimodal scenarios. Further research could
be directed at the Gibbs sampler-assisted algorithms presented in [5] to more thoroughly
scan the optimization space, although the convergence of such algorithms with large test
datasets is also uncertain. An implementation for the supervised classifiers considered
could also be extended for the two parameter distribution Poisson–Dirichlet (α, ψ) [23]
(Appendix C).

6. Conclusions

We provided an estimation and hypothesis testing scheme for the dispersal parameter
of the PD distribution tied with the sequences under PE. These derivations next to the
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algorithms for the computational calculation of the simultaneous and marginal Bayesian
predictive classifiers and their implementations as a software package PEkit (https://
cran.r-project.org/web/packages/PEkit/index.html, accessed on 23 December 2021 ) in
R, would facilitate the smoother application of these classifiers and provides a conductive
avenue toward PEs more effective disposition and prevalence in the community. In short,
we provided the computational evidence that the marginal and simultaneous predictive
classifiers under partition exchangeability converge in their classification assignment with
presence of umpteen amount of training data. This asymptotic convergence of the classifiers,
justifies the interchangeable use of them and hence, legitimizing forgoing of the sPpc’s
negligible superiority in accuracy, for the mPpc’s huge computational advantage. Of course,
under reasonably small amount of training data, this would be more of a preferential
interplay, but altogether, these Bayesian classifiers are robust probabilistic judgmental
apparatus for supervised classification tasks in the inductive inference domain. Next to
these results, we underlie the presented derivations and exclusive tool for PE sequences.
Namely, the hypothesis testing paradigm, random generation of the PD distribution, and
its numerical MLE formulation, would be of a great use for the experiments underlying
species sampling sequences.
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Appendix A. Maximum Likelihood Estimate

Here we provide the technical details for deriving the MLE in Equation (3) as well as
the components U and I in the Lagrange Multiplier test described in Equations (5) and (6).
The task is to find the first derivative of the logarithm of the Ewens sampling formula and
its root in Equation (2), as well as the second derivative needed for the Fisher information.
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L(ψ) = log(n!) +
n

∑
i=1
{−log(ψ + i− 1) +

ρi log ψ− ρi log ρi − log(ρi!)}

=> l(ψ) =
n

∑
i=1
{−log(ψ + i− 1) + ρi log ψ}

l′(ψ) =
n

∑
i=1

(
− 1

ψ + i− 1
+

ρi
ψ

)
= U(ψ)

The MLE is found by finding the root of the equation:

n

∑
i=1

(
− 1

ψ̂ + i− 1
+

ρi

ψ̂

)
= 0

n

∑
j=1

ψ̂

ψ̂ + j + 1
=

n

∑
t=1

ρt

Appendix B. Lagrange Multiplier Test

According to Ewens in [15], the left side of the above equation equals the expected
number of unique values observed with this ψ and this sample size n, while the right side
is the observed number of unique values:

E[
n

∑
t=1

ρt|ψ, n] =
n

∑
i=1

ψ̂

ψ̂ + i− 1

This is needed for the Fisher information I, along with the second derivative of l(ψ):

l′′(ψ) =
n

∑
i=1

(
1

(ψ + i− 1)2 −
ρi
ψ2

)

=
n

∑
i=1

1
(ψ + i− 1)2 −

k
∑n

i=1 ψ2 ,

where k denotes the observed amount of unique values in the sample. The Fisher informa-
tion then becomes:

I(ψ) = −E[l′′(k; ψ)|ψ]

=
E[k|ψ]

∑n
i=1 ψ2 −

n

∑
i=1

1
(ψ + i− 1)2

=
n

∑
i=1

(
1

ψ(ψ + i− 1)
− 1

(ψ + i− 1)2

)
,

where the expectation of k is as described from above.

Appendix C. A Note on Two-Parameter PD

A two-parameter formulation of the distribution presented in [23]. The added param-
eter in PD (α, ψ) is called the discount parameter. The role of the parameters is discussed
in length in [16]. In short, the α is defined to fall in the interval [−1, 1]. When it is posi-
tive, it increases the probability of observing new species in the future proportional to the
amount of already discovered species, while decreasing the probability of seeing the newly
observed species again. When α is negative, the opposite is true and the number of new
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species to be discovered is bounded. The single parameter PD(ψ) is the special case of the
two parameter distribution with α set to 0, PD(0, ψ). The two parameter distribution is
not considered further here, as the estimation of the parameters becomes a daunting task
compared to the simple one parameter formalization.
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