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Abstract: Experiments measuring the interaction between genotypes and environments measure the
spatial (e.g., locations) and temporal (e.g., years) separation and/or combination of these factors.
The genotype-by-environment interaction (GEI) is very important in plant breeding programs. Over
the past six decades, the propensity to model the GEI led to the development of several models and
mathematical methods for deciphering GEI in multi-environmental trials (METs) called “stability
analyses”. However, its size is hidden by the contribution of improved management in the yield
increase, and for this reason comparisons of new with old varieties in a single experiment could reveal
its real size. Due to the existence of inherent differences among proposed methods and analytical
models, it is necessary for researchers that calculate stability indices, and ultimately select the superior
genotypes, to dissect their usefulness. Thus, we have collected statistics, as well as models and their
equations, to explore these methods further. This review introduces a complete set of parametric and
non-parametric methods and models with a selection pattern based on each of them. Furthermore,
we have aligned each method or statistic with a matched software, macro codes, and/or scripts.

Keywords: genotype-by-environment interaction (GEI); stability; GGE biplot; AMMI model;
dynamic concept

1. Introduction

In multi-environment trials (METs) where a set of genotypes are tested in a set of
environments (locations, years or combination of them), recommendation of genotypes
to specific environments or delineation of mega-environments is the main plant breeding
goal [1,2]. In such experiments, genotypes are usually tested in each environment in a ran-
domized complete-block design with more than two replications. In these circumstances,
METs facilitate the identification of genotypes that show a small variability or that are
consistent across multiple locations. When a series of genotypes are examined in METs, in
addition to the additive effect of genotype (G) and environment (E), a multiplicative effect
arises from the interaction between these main factors, which is known as the genotype–
environment interaction (GEI) effect. Indeed, the GEI is referred to the discordance of the
genotype’s response in each environment. Hence, the GEI can be classified into two groups:
(i) crossover or qualitative interaction and (ii) non-crossover of quantitative interaction.
In the first definition, the differential response of genotypes to various environments is
referred to as a crossover interaction when genotype ranks change from one environment

Plants 2022, 11, 414. https://doi.org/10.3390/plants11030414 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11030414
https://doi.org/10.3390/plants11030414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-5782-5327
https://orcid.org/0000-0002-0107-1068
https://orcid.org/0000-0002-0241-9636
https://doi.org/10.3390/plants11030414
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11030414?type=check_update&version=1


Plants 2022, 11, 414 2 of 24

to another. On the other hand, non-crossover interaction represents changes in the magni-
tude of genotype performance without change in rank order of genotypes across diverse
environments. In this context, if the response of a genotype to environments is parallel to
the mean response of all genotypes, it is identified as stable [3,4].

The propensity to model the GEI led to the development of a series of methods and
approaches called “stability analyses”, the concepts of which precede even analysis of
variance (ANOVA) [5]. The terms “performance stability” and “phenotypic stability” are
usually used to refer to fluctuations in the phenotypic expression of crop performance
while the genotypic composition of the genotypes remains stable [6]. Investigation of
stability is important in any breeding program, where the GEI effect should be dissected.
Leon [7] defined two concepts of stability based on the goal and on the characteristics
under consideration, which are termed “static” and “dynamic” concepts of stability. In
the static concept, a specific stable genotype has a performance that is unaffected by the
environmental conditions. Furthermore, this concept is analogous to the biological concept
of stability such that the yield performance of a stable genotype has an environmental
variance near to zero [6]. The dynamic concept states that a stable genotype has no deviation
from predictable response to environments. In other words, the performance of a stable
genotype is accordance with the estimated level or the prediction for each environment.
Thus, the genotypic response to environmental conditions is not equal for all genotypes.
Becker [8] stated that this concept is analogous to the agronomic concept of stability, and
most breeders prefer to apply it to select high yielding genotypes in their METs. However,
it is worth noting that there is no absolute decision on classifying stability parameters based
on dynamic and static concepts. For instance, in many studies, some stability parameters
have a dynamic concept due to their correlation with yield performance. On the contrary,
some studies reported a static concept for them. Hence, we believe that dynamic and static
concepts depend on the nature of data and test environments and that classifying them in
an absolute scale is not logical.

2. Importance of the GEI Effect

The importance of the GEI can be revealed from the relative contributions of the
new varieties and followed by improved management to performance increases from
direct comparisons of performances of them with old varieties in a single experiment [8].
According to available data, the genetic improvements have accounted for 50% of the total
gains in performance per unit area for major crops over the past seven decades. Silvey [9]
stated that GEI confounds partitioning of the contributions of improved cultivars and
improved environment to the economic performance in different crop plants. The GEI has
considerable effects on all stages of a breeding program and has several implications for
the allocation of resources. For instance, a large GEI could mean the establishment of two
target breeding environments (sites) in a region, instead of one, thus requiring increased
input of resources [10]. The heritability of a quantitative trait such as grain yield plays a
key role in determining genetic advances in the selection cycle. Indeed, heritability is the
amount of phenotypic variation in a population that is attributable to individual genetic
differences and is considered as a baseline of any breeding program [11]. As a component
of the total phenotypic variance, the GEI has a negative effect on heritability. In other
words, a large effect of the GEI results in smaller heritability; thus, progress from selection
would be limited [8]. In METs, the best linear unbiased prediction (BLUP) is a useful model
that will provide an ideal opportunity for the estimation of heritability across various
environments [12,13]. Furthermore, this model provides additional information for the test
of stability, adaptability, and simultaneous stability-adaptability in METs, which will be
described in the following.

3. Deciphering GE Interaction Using Different Statistical Methods

Various statistical models and approaches have been proposed to analyze and interpret
the GE interaction over environments and these can be divided into two major groups.
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The first group includes the parametric stability statistics that are further divided into two
classes: (i) univariate and (ii) multivariate approaches (Figure 1). This group of stability
statistics relies on distributional assumptions about environmental, genotypic, and their
interaction effects. The second group is non-parametric stability statistics, which requires
no primary assumptions. Non-parametric approaches are estimated based on the mean
values of the response trait and ranking of genotypes. Indeed, this procedure results in
the reduction of the bias caused by outliers, and no assumptions are needed about the
distribution of observed values. Hence, the non-parametric statistics are easy to use and
make it easy to decipher GEI, and additions or deletions of one or a few genotypes have little
effect on the results [14]. In this way, if the breeder is only interested in the existence of rank-
order differences across environments, the non-parametric statistics provide an excellent
alternative to the parametric stability statistics currently used [15]. To comprehensively
review the different stability statistics, we listed various methods and approaches. Table 1
shows the pattern of selection based on each calculated statistic and parameter.
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Table 1. List of parametric and non-parametric stability statistics to analyze GEI effect in
METs experiments.

Statistic Symbol Pattern of
Selection Type of Method Year of

Proposition References

Environmental variance S2 Minimum value Parametric 1917 [16]
Mean variance component θ Minimum value Parametric 1959 [17]

GE variance component θ′ Maximum value Parametric 1960 [18]
Wricke’s ecovalence W2 Minimum value Parametric 1962 [19]

Regression coefficient bi See Section 3.2.5 Parametric 1963 [20,21]
Deviation from regression S2

di Minimum value Parametric 1966 [21]
Tai’s stability statistics λ and α Minimum value Parametric 1971 [22]

Shukla’s stability variance σ2 Minimum value Parametric 1972 [23]
Pinthus’s coefficient of determination R2 Maximum value Parametric 1973 [24]

Coefficient of variance CV Minimum value Parametric 1978 [25]
Nassar and Huhn’s and Huhn’s statistics S(1, 2, 3, 6) Minimum value Non-parametric 1979 [26,27]

Superiority index P Maximum value Parametric 1988 [28]
Kang’s rank-sum KR Minimum value Non-parametric 1988 [29]

TOP-Fox TOP See Section 3.1.3 Non-parametric 1990 [30]
Yield stability index YS Maximum value Parametric 1993 [31]

Averages of the squared eigenvector values Ev Minimum value Parametric 1994 [32]
Thennarasu’s non-parametric statistics NP(1−4) Minimum value Non-parametric 1995 [33]

Sums of the absolute value of the IPC scores SIPC Minimum value Parametric 1997 [34]
Sum across environments of the GEI modeled

by AMMI AMGE Minimum value Parametric 1997 [34]

Distance of IPCAs point with origin in space D Minimum value Parametric 1997–98 [35,36]
AMMI stability value ASV Minimum value Parametric 2000 [37]

Stability measure based on fitted AMMI model Wi(AMMI) Minimum value Parametric 2002 [38]
AMMI Based Stability Parameter ASTAB Minimum value Parametric 2005 [39]

Harmonic mean of genotypic values HMGV Minimum value Parametric 2007 [40]
Relative performance of genotypic values RPGV Minimum value Parametric 2007 [40]

Harmonic mean of RPGV HMRPGV Minimum value Parametric 2007 [40]
Genotype stability index GSI Maximum value Non-parametric 2008 [41]

Modified AMMI stability value MASV Minimum value Parametric 2012 [42]
Absolute value of relative contribution

of IPCAs Za Minimum value Parametric 2012 [42]

Sum across environments of absolute value of
GEI modeled by AMMI AV(AMGE) Minimum value Parametric 2012 [42]

AMMI stability index ASI Minimum value Parametric 2014 [43]
Modified AMMI stability index MASI Minimum value Parametric 2018 [44]

Weighted average of absolute scores WAASB Minimum value Parametric 2019 [45]

3.1. Non-Parametric Stability Statistics
3.1.1. Huehn’s and Nassar and Huehn’s Statistics

In 1979, Huehn [26] proposed rank-based non-parametric stability statistics to rank
genotypes in a MET. These proposed statistics have since been developed to incorporate
the statistical properties and significance for the two first non-parametric methods (Z1 and
Z2) suggested by Nassar and Huehn [27]. These statistics are (1) the mean of the absolute
rank differences of a genotype over all tested environments (S(1)), (2) the variance among
the ranks over all tested environments (S(2)), (3) the sum of the absolute deviations for each
genotype relative to the mean of ranks (S(3)), and (4) the sum of squares of rank for each
genotype relative to the mean of ranks (S(6)). To calculate these statistics, the mean yield
data were transformed into ranks for each genotype and environment, and the genotypes
are considered stable if their ranks are similar across environments. The lowest value for
each of these statistics reveals high stability for a certain genotype. Additional details
regarding mathematical relations are shown in the following formula:

S(1) = 2
n−1

∑
j

n
∑

j′=j+1

∣∣rij − r′ij
∣∣

[N(N − 1)]
, S(2) =

n
∑

j=1

(
rij − ri.

)2

(N− 1)
, S(3) =

n
∑

j=1

(
rij − ri.

)2

ri.
, S(6) =

n
∑

j=1

∣∣rij − ri.
∣∣

ri.
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where rij is the rank of the ith genotype in jth environment,
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environments for each genotype, and N is the number of test environments. Additionally,
the significance tests, Z1 and Z2, for the S(1) and S(2) statistics were developed in a way that
was similar to that suggested by Nassar and Huhn [27] as follows:

Z(m) =
[
S(m)

i − E(S(m)
i )

]2
/V(S(m)

i ), m = 1, 2

where E(Si(m)) is expectation of Si(m), and V(Si(m)) is variance of Si(m). Furthermore, these
statistics are estimated according to the following equations:

E(S(1)) = (K2 − 1)/3K, E(S(2)) = (K2 − 1)/12
V(S(1)) = (K2 − 1)[(K2 − 4)(N + 3) + 30]/45K2N(N− 1)
V(S(2)) = (K2 − 1)[(2(K2 − 4)(N− 1) + 5(K2 − 4)]/360N(N− 1)

In the above equations, N and K are the number of environments and genotypes,
respectively. Finally, the obtained Z values were tested by χ2 test.

3.1.2. Kang’s Rank

This statistic was introduced by Kang [29] to select high-yielding and stable corn geno-
types across various environments. This method, which is named Kang’s rank-sum (RK),
uses both yield and Shukla’s stability variance (σ2

i) as a selection index. This parameter
gives a weight of one to both yield and stability statistics to identify high-yielding and
stable genotypes. The genotype with the highest yield and lower σ2

i are assigned a rank of
one. Then, the ranks of yield and stability variance are added for each genotype and the
genotypes with the lowest rank-sum are the most desirable.

3.1.3. TOP-Fox

As another non-parametric stability statistic, Fox et al. [30] suggested an ideal and
simple parameter to superiority measure of general adaptability. This method is a stratified
ranking approach that includes scoring the number of test environments in which each
entry ranked in the LOW (bottom), MID (middle), and TOP (top) thirds of trial entries. The
genotype that occurred mostly in the top third (high top value) was considered a widely
adapted cultivar. The proportion of environments at which the genotype occurred in the
each of these groups was determined to form the non-parametric measures of LOW, MID,
and TOP, respectively. A high value of TOP (genotype that occurred mostly in the top third)
was revealed to be a widely adopted genotype.

3.1.4. Yield stability index (YS)

The yield stability (YS) statistic was introduced by Kang [31]. According to this method,
a genotype with the highest mean yield is given the lowest rank (rank = 1). Similarly, a
rank of 1 was assigned for the stability parameter with the lowest estimated value. Stability
ratings were calculated as follows: −2, −4, and −8 for stability measures significant at
p < 0.1, 0.05, and 0.01, respectively and 0 for the non-significant stability measure. The
stability ratings of −2, −4, and −8 were selected because they changed genotype ranks
from those based on the yield alone. Hence, this statistic would help breeders in selecting
the genotypes with high and relatively stable yields across different environments as it
integrates stability and yield performance of genotypes.

3.1.5. Thennarasu’s Statistics

Since the rank of genotypes in the specific environments cannot be done according to
the phenotypic values, the stability of test genotypes has to be estimated independently
of the genotypic effect. To solve this challenge, a correction of ranking patterns of test
genotypes and environments based on the corrected phenotypic values was developed.
Four NP(1–4) statistics are a set of alternative non-parametric stability statistics defined by
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Thennarasu [33]. Indeed, these parameters are based on the ranks of adjusted means of the
genotypes in each environment.

The formulas to compute these statistics are shown below:

NP(1) = 1
N

n
∑

j=1

∣∣∣r∗ij −M∗di

∣∣∣ NP(2) = 1
N

[
n
∑

j=1

∣∣∣r∗ij −M∗di

∣∣∣/Mdi

]

NP(3) =

√
∑
(

r∗ij−r∗i.

)2

N
ri.

NP(4) = 2
N(N−1)

[
n−1
∑

j=1

n
∑

[j′=j+1]

∣∣∣r∗ij − r∗ij′
∣∣∣/ri.

]

In the above relations r∗ij is the rank of ith genotype in the jth environment based on
adjusted data, r∗ij is the mean ranks for adjusted data, M∗di the median ranks for adjusted
data, and ri. and Mdi are the same parameters obtained from the original data (unadjusted).
Low values of these statistics indicate high stability.

In general, non-parametric stability parameters are easy to use and interpret. Further-
more, any deletions or additions of one or a few genotypes have no significant effects on
the results. In this regard, if breeders are only interested in the existence of rank order
differences across environments, these methods provide the best alternative to parametric
models currently used. Hence, the relative comparisons of the tested genotypes are more
important than absolute comparisons. As non-parametric methods are based on rank
values, a target genotype is considered stable if it reveals a constant ranking pattern across
different environments. There are numerous reports related to the use of non-parametric
methods in analyzing the GEI effect and selection of stable genotypes in different crops. For
instance, Ahmadi et al. [46] used a set of non-parametric methods to investigate stability of
grain and forage yields in 14 advanced lines of grass pea in semi-warm regions of Iran for
three consecutive years. According to their results, among non-parametric parameters, the
TOP parameter showed a dynamic concept of stability and showed a strong correlation with
grain and forage yields. In a study conducted by Karimizadeh et al. [47], non-parametric
statistic S(6) showed a dynamic concept of stability and well-recognized high-yielding
and stable lentil genotypes in a MET experiment. Khalili and Pour-Aboughadareh [48]
evaluated yield stability and adaptability of 40 barley doubled haploid lines in eight
environments, reporting a dynamic concept of stability for TOP parameter. However,
Sabaghnia et al. [49] reported a positive correlation between grain yield and NP(2), NP(3),
and NP(4) stability parameters in durum wheat genotypes, and also showed a dynamic
concept of stability for these measurements. Alizadeh et al. [50] investigated the GEI effect
in a set of winter rapeseed lines, demonstrating that parameters such as S(2), S(3), S(6),
NP(2), NP(3), and NP(6) along with KR, due to their strong correlation with seed yield,
which enabled them to identify high-yielding and stable lines. Afzl et al. [51] reported
that among non-parametric stability statistics, S(1), S(3), S(6,) and NP(4) with a dynamic
concept are superior to evaluate high-yielding and stable safflower genotypes. In another
study in canola, Mortazavian and Azizinia [52] reported that for nonparametric methods,
TOP, Si(1), and RK parameters were useful in detecting the stability of the genotypes. Non-
parametric analysis of the phenotypic stability in chickpea genotypes showed that TOP
and RK parameters are ideal measurements for identify the most stable genotypes [53].
Furthermore, Vaezi et al. [54] have highlighted the usefulness of RK, S(3), S(6), NP(2), NP(3),
and NP(4) parameters in selecting high-yielding and stable barley genotypes across different
diverse environments.

3.2. Parametric Stability Statistics

3.2.1. Environmental Variance (S2)

Romer [16] proposed the variance of yield performance for test genotypes across
environments as a stability parameter. The mathematical equation for this parameter is
as follows:

S2 = ∑ (Rij −mi)
2/(e− 1)
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where Rij is yield of ith genotype in the jth environment, mi is grand mean yield across all
environments, and e is the number of environments. The minimum value of S2 refers to
the greatest stability. Derived stability measures include the square root value (S) and its
coefficient of variation.

3.2.2. Mean Variance Component (θ)

Plaisted and Peterson [17] proposed the variance component of GEI for interactions
between each of the possible pairs of genotypes. This statistic considers the average of the
estimate for all combinations with a common genotype to be a measure of stability. This
stability statistic is described by the following equation:

θ =
p

2(p− 1)(q− 1)

q

∑
j=1

(xij − xi. − x.j + x..)
2 +

SSGE
2(p− 2)(q− 1)

SSGE = ∑ ∑ (xij − xi. − x.j + x..)
2

In the above equation, Xij is the grain yield of genotype ith in environment jth; Xi. is
the mean grain yield of genotype ith; X.j is the mean grain yield of the environment jth; X..
is the grand mean; SSGE is the GEI sum square; and p and q are the numbers of genotypes
and environments, respectively. Based on this statistic, the genotypes that show a lower
value for θi are considered more stable.

3.2.3. GE Variance Component (θ′)

This statistic is a modified measure of stability parameter. As shown in the following
equation, ith genotype is deleted from the entire set of data, and the GEI variance from this
subset is the stability index for the ith genotype [18].

θ′ =
−p

(p− 1)(p− 2)(q− 1)

q

∑
j=1

(xij − xi. − x.j + x..)
2 +

SSGE
(p− 2)(q− 1)

where Xij is the grain yield of genotype ith in environment jth; Xi. is the mean grain yield
of genotype ith; X.j is the mean grain yield of the environment jth; X.. is the grand mean;
SSGE is GEI sum square; and p and q are the numbers of genotypes and environments,
respectively. Based on this statistic, the genotypes that show higher values for this statistic
are considered more stable.

3.2.4. Wricke’s Ecovalence (W2)

Wricke [19] proposed the concept of ecovalence as the contribution of each genotype
to the GEI sum of squares. The ecovalence (W) of the ith genotype is its interaction with
the environments, squared and summed across environments. Thus, genotypes with low
values have smaller deviations from the mean across environments and are more stable.
The following equation shows the mathematical process of this stability statistic:

W2 = ∑ (X ij − Xi. − X.j + X..

)2

where Xij is the grain yield of genotype ith in environment jth; Xi. is the mean grain yield of
genotype ith; X.j is the mean grain yield of the environment jth; and X.. is the grand mean.

3.2.5. Joint Regression Analysis (JRA)

The joint regression (JR) model was first suggested by Yates and Cochran [55]. This
model was proposed again by Finlay and Wilkinson [20], Eberhart and Russell [21], and
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Perkins and Jinks [56], with slight variations, for use in stability analysis and to identify the
stable genotypes in various environments. The JR model is as follows:

Yij = µ+ Gi + Ej + biEj + dij + eij

In the above equation, Yij, µ, Gi, Ej, bi, dij, and eij are the mean yield for ith genotype
in jth environment, the mean of all genotypes, the effect of genotype i, the effect of en-
vironment j, the linear coefficient of the ith genotype on environmental index, deviation
from regression, and the average of the random errors associated with genotypes and
environments, respectively.

In the regression model, the GEI is explained in terms of differential sensitivities to the
improvement of the environment, with some genotypes benefiting more than others from
an increase in environmental quality. Furthermore, the regression model has the advantage
that researchers can use unbalanced data in a univariate model, whereas the other methods
need to be balanced. Finlay and Wilkinson [20] believed that the bi statistic can measure the
stability and relative adaptability, while Eberhart and Russell [21] developed this concept
by computing the deviations from linear regression (S2

di) statistic. Thus, the regression
coefficient (bi) and variance deviation (S2

di) are the two main components of the RJ model.
Accordingly, genotypes with b = 1 and S2

di = 0 (minimum value) are highly stable. When this
feature is associated with high mean performance, genotypes show general adaptability,
and in contrast, when associated with low mean yield, genotypes indicate poor adaptation
to all environments. The bi values greater and lower of 1 explain other important con-
cepts; a bi > 1 shows genotypes that are responsive to high yielding environments, while
a bi < 1 indicates genotypes that are responsive to low-yielding environments.

3.2.6. Tai’s Stability Statistics

In this model of stability, the GEI is partitioned into two components as described
by Tai [22]: (1) the linear response to environmental effects, which is estimated by the α
statistic, and (2) the deviation from the linear response, which is calculated by the λ statistic.
According to this model, genotypes withα =−1 and λ = 1 have the highest stability, whereas
genotypes with α = 0 and λ = 1 show an average stability across environments. This model
also provides a graphical tool for the prediction interval for α = 0 and a confidence interval
for λ values; in this way, the test genotypes can be dispersed in different stability regions of
Tai’s plot.

3.2.7. Shukla’s Stability Variance (σ2)

Shukla [23] suggested the stability variance of genotype ith as its variance across
environments after the main effects of environmental means have been removed. According
to this statistic, genotypes with minimum values are more stable. This statistic is calculated
based on the following equation:

σ2 =

[
p

(p− 2)(q− 1)

]
W2 − ∑ W2

i
(p− 1)(p− 2)(q− 1)

where W2 is Wricke’s ecovalence, and p and q are the numbers of genotypes and environ-
ments, respectively.

3.2.8. Pinthus’s Coefficient of Determination (R2)

This statistic is defined as predictability of response suggested by Pinthus [24] as
another stability parameter, in which a variation of mean yield was explained by geno-
type response across environments. This parametric statistic can be described with the
following equation:

R2 =
b2

i ∑ (x.j − x..)2

∑ (xij − xi.)
2
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where bi is slope regression, Xij is the grain yield of genotype ith in environment jth; Xi. is
the mean grain yield of genotype ith; X.j is the mean grain yield of the environment jth; and
X.. is the grand mean. A genotype with the highest value is intended to be more stable.

3.2.9. Coefficient of Variance (CV)

The coefficient of variation is suggested by Francis and Kannenberg [25] as a paramet-
ric stability statistic through the combination of the coefficient of variation, mean yield, and
environmental variance.

CV =
SDx

X
× 100

where SDx is the standard deviation of a genotype mean across environments and is the
grand mean. Genotypes with low CV, low environmental variance, and high mean yield
are considered the most desirable. Furthermore, by plotting the mean yield (x axis) against
CV values (y axis), test genotypes can be divided into four groups: Group I including
genotypes with high yield and small variation; Group II including genotypes with high
yield and large variation; Group III including genotypes with low yield and small variation;
and Group IV including genotype with low yield and large variation.

3.2.10. Superiority Index (P)

The mean square of distance between the genotype’s response and the maximum
response over environments is defined as superiority index (P) [28]. A low value of Pi
indicates high relative stability. Furthermore, the following equation shows mathematical
relations for this statistic:

P = ∑n
j=1 (Xij −Mj)

2/(2n)

where n is the number of environments, Xij is the yield of the ith genotype in the jth environ-
ment, and Mj is the maximum response (yield) among all genotypes in the
jth environment.

3.2.11. AMMI-Based Stability Statistics

A complete description of GEI requires more sophisticated models or approaches than
the analysis of variance (ANOVA). The ANOVA is an additive model that only explains
main effects and determines if GEI is a significant source of variation, but it cannot pro-
vide further information to highlight the patterns of genotypes (G) and or environments
(E) that give rise to the GEI. Principal component analysis (PCA), as a multivariate tech-
nique, is a useful model that includes no sources of variation for additive main effects
of G or E and does not analyze the interactions effectively. The additive main effects
and multiplicative interaction analysis, which is identified as an AMMI model, consists
in fitting an additive model (ANOVA) for general means, G’s and E’s means, and multi-
plicative model (PCA) for the residual of an additive model or a GEI. Hence, AMMI is a
better model for analysis of the GEI in a MET, because it not only provides an estimate
of the total GEI effect of each genotype but also partitions it into several interaction ef-
fects due to individual environments. Furthermore, the AMMI model provides an easy
interpretation of the obtained results by the graphical biplot tool to stratify genotypes
and the environment [57]. In general, this model can be used as an effective analytical
approach in terms of several aspects: (i) understanding GEI, (ii) improving the accuracy of
yield estimates, (iii) identifying mega-environment patterns, (iv) increasing the flexibility
of experimental designs, and (v) imputing missing data [58,59]. Zobel et al. [57] com-
bined the standard ANOVA with PCA analysis and proposed the following equation for
AMMI model:

Yij = µ+ gi + ej + ∑N
n=1 λnγinδjn + ρij + εij

where µ, gi, and ei are the grand mean, the main effect of the genotype i, and the main
effect of environment j, respectively. The GEI will explain by, where λn, γin, and δjn are the
eigenvalue of the nth interaction PCA (IPCA) retained in the AMMI model, the eigenvector
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for the ith genotype from nth IPCA, and the eigenvector for the jth environment from
the nth IPCA, respectively. N, ρij, and εij indicate the number of IPCA retained in the
AMMI model, the GEI residual, and the random error, respectively. Based on the AMMI’s
output, several stability statistics have been proposed by different researchers for evaluating
genotypes. The following equations describe these statistics.

Averages of the Squared Eigenvector Values (EV)

The average of the squared eigenvector value (EV) parameter was proposed by Zobel [32]. Ac-
cording to the following equation, three parameters EV1, EVV, and EVF are computed as follows:

EVi = ∑N
n=1

γ2
in

N
For EV1, N is one; for EVV, N is the number of IPC that retain in the AMMI model
via validation procedures; and for EVF, N is the number of IPC that retain the AMMI
model via F-test. Genotypes with the lowest values for these statistics are identified as the
most stable.

Sums of the Absolute Value of the IPC Scores (SIPC)

Based on the AMMI’s results, three other stability statistics were suggested by
Sneller et al. [34]. These statistics (SIPC1, SIPCV, and SIPCF) are calculated based on
sums of the absolute value of the IPC scores for each test genotype according to the
following equation:

SIPC = ∑N
n=1

∣∣∣λ0.5
n γin

∣∣∣
Similar to the EV statistic, for SIPC1, N is one; for SIPCV, N is the number of IPCs that

are retained in the AMMI model via validation procedures; for SIPCF, N is the number of
IPCs that retain in the AMMI model via F-tests. λn and γin are the eigen value of the nth
IPCA that is retained in the AMMI model and the eigenvector for the ith genotype from the
nth IPCA, respectively. The lowest values for these statistics showed the highest stability.

Sum across Environments of the GEI Modeled by AMMI (AMGE)

The further three AMMI-based stabilities are the sum across environments of the GEI
modeled by AMMI [34]. Similar to SIPCs, there are three forms of this statistics:

AMGE = ∑M
N ∑N

n=1 λnγinδjn

where λn, γin, and δjn are the eigenvalue of the nth interaction PCA (IPCA) retained in the
AMMI model, the eigenvector for the ith genotype from nth IPCA, and the eigenvector for
the jth environment from the nth IPCA, respectively. For AMGE1, N is one; for AMGEV, N
is the number of IPCs that are retained in the AMMI model via validation procedures; for
AMGEF, N is the number of IPC that retain in the AMMI model via F-tests. Lower values
of these statistics showed the highest stability.

Distance of IPCAs Point from Origin in Space (D)

Annicchiarico [35] proposed two AMMI-based statistics through the distance of IPCA
point with origin in space (D). In other words, these statistics provide the GEI estimate of
a particular genotype with a group of environment samples. In this way, the greater the
D value of a genotype, the greater the distance of the genotype from the origin of IPCAs.
Hence, the genotype with the lowest value of these statistics would be the most stable. The
following equation provides the mathematical formula for D:

Da =
[
∑N

n=1 (λnγin)
2
]0.5
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where λn and γin are the eigenvalue of the nth IPCA retained in the AMMI model and the
eigenvector for the ith genotype from nth IPCA, respectively.

Zhang et al. [36] proposed another form of this statistic as DZ:

Dz =
[
∑N

n=1 (γin)
2
]0.5

Similarly to Da, genotypes with the lowest value of this statistic are the most stable.

AMMI Stability Value (ASV)

Purchase et al. [37] developed another stability statistic based on the two first IPCA
scores for each genotype. The AMMI stability value (ASV) is the distance from the coordi-
nate point to the origin in a two dimensional scattergram of IPCA1 scores against IPCA2
scores. This measurement is described as follows:

ASV =

√(
SSIPCA1

SSIPCA2
(IPCA1)

)2
+ (IPCA2)2

where SSIPCA1/SSIPCA2 is the ratio between the sum of squares from the first and second
interaction principal component axis, and IPCA1 and IPCA2 are the genotypic scores of
these components in the AMMI model. The genotype with the lowest value of this statistic
would be more stable.

Stability Measure Based on Fitted AMMI Model (W(AMMI))

Raju [38] proposed a measure of stability that may be viewed as Wricke’s ecov-
alance (W2). Because this statistic is calculated based on the AMMI model, it is denoted
by W(AMMI).

W(AMMI) =
N

∑
n=1

λ2
nγ

2
ni

In the above equation, λm and γin are the singular value for the PCA axis and the
ith genotype IPCA score for the axis, respectively. N is the number of significant IPCAs.
Therefore, it can be stated that the stability rank order obtained from W(AMMI) is equivalent
to that of W2. The genotype with the lowest value of this statistic would be the most stable.
It is worth noting that when the first IPCA only is retained in the AMMI model, this statistic
can be changed to the FP statistic:

FP = λ2
l γ

2
1i

In this situation, λ2
1 is same for all genotypes; thus, the absolute value γ is sufficient for

comparison, and a lower value of γ explains the greater stability. The comparison of
genotypes for stability based on this statistic will be equivalent to the comparison based
on the biplot with first IPCAs axis. If the two first IPCAs are retained in the AMMI model,
stability comparisons will be equivalent to the comparisons based on biplots with the first
two PCA axes. Indeed, its equation will be as follows:

B = ∑2
n=1 λ

2
nγ

2
ni

This is clear that the last statistics will be less precise than W(AMMI), as is evident
from the fact that they could not exploit the information in detail. In other words, the
reliability of a stability statistic improves with the increase in the number of axes retained in
the model.

AMMI Based Stability Parameter (ASTAB)

The AMMI-based stability parameter (ASTAB) was proposed by Rao and Prab-
hakaran [39] as follows:

ASTAB = ∑N
n=1 λnγ

2
in
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where λn and γin are the eigenvalue of the nth IPCA and the eigenvector value for the
ith genotype. A genotype is considered to be more stable when the value of this statistic
is lower.

Genotype Stability Index (GSI)

Farshadfar [41] developed a stability statistic based on the rank of mean yield of
genotype across environments (RY) and rank of ASV value (RASV). According to this
criterion, a genotype with the highest value of GSI would be more stable.

GSI = RASV + RY

Modified AMMI Stability Value (MASV)

The modified AMMI stability values (MASV) was suggested as another stability
statistic by Zali et al. [42] as follows:

MASV =

√
∑N−2

n=1

(
(

SSIPCAn

SSIPCAn+1
)(IPCAn)

)2
+ (IPCAN)

2

The main difference between MASV and ASV is the use of all significant IPCAs in the
MASV statistic. Similar to ASV, a genotype with the lowest value of MASV will be selected
as the most stable.

Absolute Value of Relative Contribution of IPCAs (Za)

Zali et al. [42] also proposed the absolute value of relative contribution IPCA as another
statistic to measure of stability.

Za = ∑N
i=1|θnγin|

where θn is the percentage sum of squares explained by the nth IPCA and N is the number
of IPC that are retained in the AMMI model via the F-test. Lower values of Za show the
highest stability.

Sum across Environments of Absolute Value of GEI Modeled by AMMI (AV(AMGE))

The third stability statistic developed by Zali et al. [42] is the sum across environments
of the absolute value of genotype× environment interaction modeled by AMMI (AV(AMGE)).
This statistic is calculated as follows:

AV(AMGE) = ∑E
j=1 ∑N

n=1

∣∣λnγinδjn
∣∣

where λn, γin, and δjn are the eigenvalue of the nth interaction PCA (IPCA) retained in the
AMMI model, the eigenvector for the ith genotype from nth IPCA, and the eigenvector for
the jth environment from the nth IPCA, respectively. N is the number of significant IPCs
retained in the AMMI model via F-test. A genotype with the lowest value of AV(AMGE) will
be selected as the most stable

AMMI Stability Index (ASI)

The AMMI stability index (ASI) is another methodology for measuring stability pro-
posed by Jambhulkar et al. [43] as follows:

ASI =
√[

(IPCA1× θ2
1)

2
+ (IPCA2× θ2

2)
2
]

where IPCA1 and IPCA2 are the scores of the two first principal component interactions,
respectively. θ2

1 and θ2
2 are percentage sum of squares explained by the first two IPCAs

effects, respectively. The lowest value of this statistic shows the most stability.
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Modified AMMI Stability Index (MASI)

Ajay et al. [44] modified the ASI statistic as follows:

MASI =
√

∑N
n=1 IPCA2

n × θ2
n

Unlike ASI, MASI computes stability value considering all significant IPCAs in the
AMMI model. In the above equation, IPCAn and θ2

n are the scores of the nth IPCA and the
percentage sum of square explained by the nth IPCAs effects, respectively. Similar to ASI,
the lowest values show the most stability.

3.2.12. BLUP-Based Stability Statistics

The best linear unbiased prediction (BLUP) is known as the best methodology for the
estimation of random effects in the linear model [60]. Using the BLUP and the restricted
maximum likelihood (REML), several parameters were proposed for measuring perfor-
mance and stability simultaneously [40]. The first parameter is the harmonic mean of
genotypic values (HMGV) that identifies the genotype with the highest harmonic mean
across environments, as the most stable, as follows:

HMGV =
E

∑E
j=1

1
GVij

The second parameter is the relative performance of genotypic values (RPGV), which
is considered as an adaptability index and computed as follows:

RPGV =
1
E∑E

j=1 GVij/µj

The harmonic mean of RPGV (HMRPGV) is the third BLUP-based stability parameter
that considers stability, adaptability, and mean performance simultaneously. This parameter
is calculated as follows:

HMRPGV =
E

∑E
j=1

1
GVij/µj

In the above formulas, GVij, µj, and E are the genotypic values (BLUP) for the ith
genotype in the jth environment, the grand mean for each environment j, and the number
of environments, respectively. As has been mentioned by Resende et al. [40], the highest
values of these parameters are suitable.

3.2.13. The Weighted Average of Absolute Scores (WAASB)

Recently, Olivoto et al. [45] developed an interesting integrated stability statistic based
on AMMI and BLUP models. This statistic is the weighted average of absolute scores from
the singular value decomposition of the matrix of the best linear unbiased predictions for
the genotype × environment interaction effects generated by a linear mixed-effect model.
This index is estimated as follows:

WAASB =
∑

p
k=1|IPCAik × EPk|

∑
p
k=1 EPk

where IPCAik is the score of the ith genotype (or environment) in the kth IPCA, and EPk
is the amount of the variance explained by the kth IPCA. According to this statistic, a
genotype with the lowest WAASB value is considered the most stable. Furthermore, for
identifying highly productive and stable genotypes, we can also use a biplot based on the
WAASB and grain yield. Indeed, in this way, all the estimated IPCA axes contribute to
identifying the stability in a bi-dimensional plot.
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Thus far, many research articles and notes have been released regarding the importance
of the GEI effects and various parametric statistical models (e.g., Fasahat et al. [61]; van
Eeuwijk et al. [62]; Malosetti et al. [63]); however, based on the nature of data in each trial,
researchers use some of the stability approaches and models to identify stable genotypes
and target test environments. On the other hand, there are numerous reports available
regarding the applicability of these methods to select stable varieties in METs (see van
Eeuwijk et al. [62]); here, we highlighted some of key studies to show the importance of
them in the breeding programs. For instance, Zali et al. [42] used a set of AMMI-based
stability statistics to identify of most stable chickpea genotypes. In a study conducted
by Dehghani et al. [64], integrating parametric and nonparametric statistics results in
identifying the most stable tall fescue genotypes in METs. Additionally, these authors
declared that the GSI index with a dynamic concept of stability is an ideal parameter to select
superior genotypes. Burbano-Erazo et al. [65] used a set of AMMI-based methods to test
the stability of common bean genotypes for heat and drought environments. They reported
that the ASV and YSI parameters allow selecting stable genotypes across environments.
Integrating some parametric and non-parametric stability indices in a study conducted
by Vaezi et al. [2] showed that the bi and CV parameters have a positive and significant
correlation with grain yield in a set of barley genotypes. Indeed, these parameters provided
a measure of stability in a dynamic sense.

Ajay et al. [66] exploited 12 AMMI-based stability parameters and simultaneous selec-
tion for yield and stability (SSI) to select superior genotypes of peanut when 52 genotypes
were tested for two years under two phosphorus levels. In this experiment, AMMI-based
stability parameters such as ASI, ASV, ASTAB, AVAMGE, Da, EV, FA, MASI, and SIPC
showed a positive and significant correlation with mean yield. Moreover, they stated that
although the mentioned parameters have a dynamic concept of stability, only some of them,
such as SIPC, MASI, and MASV, were useful for the identification of stable high-yielding
genotypes. Verma and Singh [67] showed that among a collection of parametric AMMI- and
BLUP-based stability parameters, the superiority indices would provide reliable estimates
of genotype performance. Among parametric methods, YSI and HMRPGV simultaneously
provide a status of stability and productivity. HMRPGV measures genotypic stability
and productivity in METs. Indeed, this parameter provides simultaneous selection for
productivity and phenotypic stability in the context of a mixed model. Results of the
study performed by Mahadevaiah et al. [68] in the delineation of genotype × environment
interaction for identification of stable genotypes of sugarcane revealed that screening of
drought-tolerant and stable genotypes using the GSI parameter has a considerable associa-
tion with the multi-environment BLUP results, so this parameter could be used as an ideal
indicator in the similar experiments. Verma and Singh [67] identified the high-yielding
and stable genotypes of wheat using HMRPGV parameter. In regard to YSI parameter,
Jamshimoghaadm and Pourdad [69], in a study of the effects of GEI on seed yield in spring
safflower genotypes, reported a dynamic concept of stability for it and stated that this
parameter is a useful tool for identifying ideal genotypes in MET experiments. Agyeman
et al. [70] used the REML and BLUP model to test the stability of a set of maize genotypes in
a MET trial. Furthermore, they were able to predict the genetic gain and accrue estimations
of performance using the BLUP model. In a comparative study, Anuradha et al. [71] used a
set of AMMI- and BLUP-based stability statistics to select stable and high-yielding finger
millet genotypes. Based on the obtained results, they stated that several statistics, such as
ASV, ASTAB, AVAMGE, DA, Dz, EV, and FA, proved that all have equal potential in the
identification of stable genotypes.

Stability analyses are evolving continuously to add precision to the GEI component.
Instead of depending upon a single method and approach, papers published analyzing
this effect and the prediction of phenotypic stability of various crops are often found in
the integration of several models. The main objective in each study is to select the correct
method or model of analysis to capture the maximum GEI effect. Although the AMMI
and BLUP models are the most commonly used models so far, each of them has some
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disadvantages. To solve this problem, Olivoto et al. [45] combined the features of both
models and developed a unique stability parameter and named it WAASB. Indeed, this
model is the newest model, and so far, its merit has been continuously evaluated by breeders.
In barley, Pour-Aboughadareh et al. [72,73] exploited the WAASB parameter to identify
the high-yielding and stable genotypes of barley. They reported that this parameter can be
ideal index for identify superior varieties in METs experiments. Koundinya et al. [74] used
the WAASB parameter to select of stable cassava genotypes under drought environments.
Nataraj et al. [75] evaluated the usefulness of the WAASB parameter to identify the high-
yielding and stable genotypes of soybean in a METs experiment and reported a good
capability of this model in the grouping of the genotypes based on their performance
and stability.

3.2.14. GGE Biplot Approach

The GGE biplot methodology is a graphical tool that superbly helps breeders to
interpret the GEI in MET experiments. The first theory of this methodology was described
by Yan [76], and then numerous studies used this method and reported its advantage
compared with other numerical methods. The GGE biplot includes of a set of biplot
interpretation models, whereby important questions regarding genotype and environment
evaluation can be visually addressed [77]. The detailed description of this methodology
and interpretation of each biplot can be found in the review of Yan and Tinker [77]. In this
section we address how this methodology could help the breeder to interpret the GEI effect,
and to select the ideal genotypes across different environments with high yield and the
most stability.

The most important application of this methodology can summarized as follows [75]:

(1) Providing a ranking pattern for test genotypes based on their yield performance of
any specified environment;

(2) Providing a ranking pattern for test environments based on the relative yield perfor-
mance of any specified genotype;

(3) Comparing the yield performance of any given pair genotypes across environments
(4) Recognizing the best genotype(s) in each test environment;
(5) Identifying potential mega-environments based on the best genotype;
(6) Simultaneously investigating the genotypes based on stability and average performance;
(7) Determining discriminating ability and representativeness power of test environments;
(8) Visualizing all the above features for a subset of the data by removing some of the

genotypes or environments.

Two stability indices, the GGE Distance (GGED) and GGE Instability index (GGEIN),
can be calculated by the GGE biplot model. The GGED measures the distance of each
genotype from the “ideal” genotype, which is defined as the virtual genotype that has the
highest mean performance and stability. The GGEIN parameter approximates the geno-
type’s contribution to the GEI [78]. The GGE biplot methodology is one of the analytical
tools, which alone or in combination with other methods is commonly used for the analysis
of the GEI in various crops. There are numerous reports in the literature on the applicability
of this methodology in breeding programs. Hence, to show the importance of this graphical
tool in various breeding programs, we have only highlighted some of the papers published
during the last two years (2020–2022) for each crop (Table 2).
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Table 2. Some examples of the use of the GGE biplot methodology in METs in different crops.

Crop Number of
Genotypes

Number of
Environments Target Trait References

Mung bean 22 12 Resistance to leaf spot [79]
Pyrethrum 10 4 Dry flower yield [80]

Sorghum 324 3 Grain yield/Panicle
weight [81]

Sorghum 22 24 Grain yield [82]
Groundnut 95 4 Grain yield [83]
Potato 50 3 Tuber yield [84]
Soybean 6 16 Grain yield [85]
Cowpea 27 18 Grain yield [86]
Chickpea 126 24 Resistance to Fusarium [87]
Barley 20 12 Grain yield [88]
Sunflower 11 16 Grain yield [89]
Sugarcane 16 4 Cane yield [90]
Common vetch 6 8 Forage yield [91]
Rice 103 6 Grain yield [92]
Melon 36 3 Fruit yield [93]
Wheat 24 24 Grain yield [94]
Maize 15 7 Grain yield [95]
Pigeonpea 15 5 Grain yield [96]
Cotton 21 8 Seed yield [97]
Durum wheat 5 16 Seed quality [98]

4. How We Can Compute Stability Statistics?

Progress in computer sciences and programming languages has resulted in the advent
of various script codes and software that help breeders to analyze the big data sets in their
experiments. In other words, the breeder using these tools can better interpret the GEI
effect and select the best genotypes with an acceptable accuracy. In this section, we have
tried to address any macro codes, script, and software that enable computation of stability
statistics., Tables 3–5 provide more information regarding features and capability of each
software and packages. The features of each software are shown in Table 3.

Table 3. Features of existing software for analyzing the GEI effect in METs experiments.

Feature GGE GENES GenStat IRRISTAT AMMISOFT GEA-R STABILITYSOFT

Windows support
√ √ √ √ √ √ √

Unix/Linux support
√ √

Mac OSX support
√ √

Portable
√

GUI (graphical user interface)
√ √ √ √ √ √ √

Offline usage capability
√ √ √ √ √ √ √

4.1. GGE Biplot Software

This software specialist computes the GGE biplot analysis. The results obtained by
this software will be graphically released [76].

4.2. GENES

GENES is a software package used for data analysis and processing with different
biometric models for genetic studies applied to plant and animal breeding. It allows
parametric and non-parametric stability statistics to be computed and presents integration
with MS Word, MS Excel and Paint. It is also compatible with the free software R and
Matlab, through the supply of useful scripts available for complementary analyses in
different areas [99].

4.3. GenStat Software

This software is a Windows-based statistical tool [100]. Using this software, the
researcher can compute the AMM model and GGE biplot analyses.
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4.4. AMMISOFT

Gauch and Moran [101] developed a Windows-based software that enables breeders
to understand complex GEI and AMMI models. Using this software, breeders can obtain
more information about AMMI families.

4.5. GEA-R Software

Genotype × Environment Analysis with R for Windows is a user-friendly and free
software developed in the International Maize and Wheat Improvement Center (CIMMYT)
by Pacheco et al. [102]. This software can perform procedures analysis for the AMMI model,
site regression GGE biplot (SREG), partial least squares (PLS), and factorial regression and
computes several parametric and non-parametric stability statistics.

4.6. IRRISTAT Software

This software is a free and user-friendly tool that was developed by the Biometrics
Unit at the International Rice Research Institute (IRRI) [103]. Using this software, the AMMI
model and some stability statistics can be computed.

4.7. STABILITYSOFT Software

Pour-Aboughadareh et al. [104] developed another free and user-friendly web-based
software to compute several parametric and non-parametric stability statistics. This soft-
ware provides an R script code for all estimated statistics. This software is compatible with
UNIX platforms, Windows, and MacOSX, and it provides information on both Pearson’s
and Spearman’s rank-order correlation coefficients among measured stability statistics.

4.8. SAS

Over the past thirty years, various macro codes have been released by researchers
to compute some stability statistics. Piepho [105] published the first SAS’s code, which
only was able to calculate the Shukla’s stability variance (σ2), coefficient of variance (CV),
and deviation from regression (S2

di). After then, Hussein et al. [106], Akbarpour et al. [107],
and Dia et al. [108] developed other codes that enable breeders to calculate other stability
statistics. Among these, the SAS macro code developed by Dia et al. [108]—-which has
been called SASG×E—-is more complete compared to other codes.

4.9. Scripts for R Software

R is identified as a free software environment for statistical computing and graphics.
This software is compatible with a wide variety of Windows, MacOS, and UNIX platforms.
Due to this advantage, many researchers and plant breeders have been encouraged to
create scripts for computing stability statistics. Until now, there have many R scripts that
each enable calculation of some stability parameters. However, Olivoto and Lucio [109]
developed an R package “metan” for analyzing the GEI effect in plant breeding experiments.
This package enables breeders to compute the AMMI model and GGE biplot, as well as
estimating several parametric and non-parametric stability statistics.

Table 4. The capability of different software for computing the stability statistics.

Statistic Symbol GGE Biplot GENES GenStat IRRISTAT AMMISOFT GEA-R STABILITYSOFT

Mean variance
component θ

√

GE variance component θ′
√

Wricke’s ecovalence W2 √ √ √

Regression coefficient bi
√ √ √ √

Deviation from
regression S2

di
√ √ √ √
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Table 4. Cont.

Statistic Symbol GGE Biplot GENES GenStat IRRISTAT AMMISOFT GEA-R STABILITYSOFT

Environmental variance S2 √

Tai’s stability statistics λ and α
√ √

Shukla’s stability
variance σ2 √ √ √

Pinthus’s coefficient of
determination R2 √ √

Coefficient of variance CV
√ √

Nassar and Huhn’s and
Huhn’s statistics S(1, 2, 3, 6) √ √

Superiority index P
√ √

Kang’s rank-sum KR
√

TOP-Fox TOP
Yield stability index YS
Averages of the squared
eigenvector values Ev

Thennarasu’s
non-parametric statistics NP(1−4) √

Sums of the absolute
value of the IPC scores SIPC

Sum across
environments of the GEI
modeled by AMMI

AMGE

Distance of IPCAs point
with origin in space D

AMMI stability value ASV
Stability measure based
on fitted AMMI model W(AMMI)

AMMI Based Stability
Parameter ASTAB

Harmonic mean of
genotypic values HMGV

Relative performance of
genotypic values RPGV

Harmonic mean of RPGV HMRPGV
Genotype stability index GSI
Modified AMMI stability
value MASV

Absolute value of
relative contribution of
IPCAs

Za

Sum across
environments of absolute
value of GEI modeled by
AMMI

AV(AMGE)

AMMI stability index ASI
Modified AMMI stability
index MASI

Weighted average of
absolute scores WAASB

AMMI model †
√ √ √ √ √ √

GGE ††
√ √ √ √ √ √

† AMMI model and related biplots; †† the biplot obtained by interpreting GEI effect.

Table 5. The capability of SAS and R macro- and script codes in computing stability statistics.

Statistic Macro Codes for SAS
Packages and Codes for R

Phenability Stability Agrostab Stabilitysoft PBTools Ammistability Metan

θ
√ √

θ′
√ √

W2 √ √ √ √ √

bi
√ √ √ √ √ √ √

S2
di

√ √ √ √ √ √ √ √

S2 √

λ and α
√

σ2 √ √ √ √ √ √ √

R2 √

CV
√ √ √ √ √ √

S(1,2,3,6) √ √ √ √ √ √

P
√ √ √
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Table 5. Cont.

Statistic Macro Codes for SAS
Packages and Codes for R

Phenability Stability Agrostab Stabilitysoft PBTools Ammistability Metan

KR
√ √ √

TOP
√ √ √

YS
√

Ev
√ √

NP(1−4) √ √ √ √

SIPC
√ √

AMGE
√ √

D
√ √ √

ASV
√ √

Wi(AMMI)
√ √

ASTAB
√ √

HMGV
√

RPGV
√

HMRPGV
√

GSI
√ √

MASV
√ √ √

Za
√ √

AV(AMGE)
√ √

ASI
√ √

MASI
√ √

WAASB
√

GGE
√ √ √

AMMI
√ √ √ √

References [105] [106] [107] [108] [110] [111] [112] [104] [113] [114] [109]

5. Conclusions

It is clear that the selection of genotypes for target environment(s) is affected by the
GEI effect. For this reason, over the three past decades, numerous statistical models and
approaches have been proposed to analyze GEI as well as identify the high-yielding and
most stable genotypes. This fact is not unexpected in that each stability parameter or statistic
result shows a specialist ranking pattern for genotypes. Hence, in each experiment, it is
best that plant breeders compute all statistics and ultimately select the superior genotypes
based on their yield performance and stability, as it is clear there are several stability
models and approaches to the analysis of the GEI effects in METs. Some of these models
are based on the genotypic contribution to GE variance, and some are based on G + GE
(e.g., univariate or multivariate). Models and/or methods based on G + GE are more
repeatable if they are calculated within mega-environments because mean yield is more
repeatable. It seems that to allow better decisions on the selection of the superior genotypes,
a complex of parametric and non-parametric stability statistics can be used as an additional
tool. Another issue we should bear in mind is the fact that GEI is always affected by biotic
and abiotic factors, some of which are dynamic (e.g., insect–disease incidence), static (e.g.,
temperature, precipitation), or complex factors. Hence, in each experiment, attention to the
causes of GEI is very important and should be dissected. In this review, we tried to gather
all statistical models and their related statistics that can help breeders for their breeding
aims. Furthermore, we anticipate that the presented information regarding software and
packages can help breeders to accelerate their data analysis and to compare different models
and methods.
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