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Abstract: Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycopro-
teins for infectious particle formation. HDV was the sole known deltavirus for decades and believed
to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like
agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper
virus-independent replication are key for studying the newly discovered deltaviruses. Others and we
have successfully used constructs containing multimers of the deltavirus genome for the replication
of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus
infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic
ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously
reported “2× genome” and the “1.2× genome” infectious clones to initiate replication in cell cul-
ture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and
1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent
infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications
required for studying deltavirus replication and cellular interactions.

Keywords: deltavirus; infectious clone; HDV

1. Introduction

Hepatitis D virus (HDV) is a unique human pathogen. Three years after its discovery
in 1977 in liver specimens of chronically hepatitis B (HBV)-infected patients [1], Rizzetto
and colleagues identified it as a satellite virus of HBV [2]. One can contract HDV in two
different ways, either through acute co-infection with HBV or through superinfection as
a chronic HBV carrier. HBV and HDV co-infection is clinically more severe than HBV
mono-infection; however, the infection usually resolves, resulting in the clearance of both
viruses. Superinfection of a chronic HBV carrier by HDV results in the most severe form of
viral hepatitis; these patients often face hepatic cirrhosis and development of hepatocellular
carcinoma [3]. HDV is a satellite virus that utilizes the envelope proteins of HBV to
assemble infectious viral particles; however, the replication of HDV within the host cell
proceeds independently of HBV [4]. The single-stranded RNA genome of HDV is around
1.7 kilonucleotides (knt) long, although because of high self-complementary, it forms a
double-stranded rod-like structure [5,6]. Within the cell, HDV gives rise to three different
RNA species: the genome, the antigenome, and the mRNA. The antigenome is the exact
complement of the genome, while the mRNA mediates the expression of the delta antigen
(DAg), the sole protein encoded by the HDV genome [5,7]. During the viral life cycle, the
DAg is present in two different forms, small (SDAg) and large DAg (LDAg) [8]. Cellular
editing mediated by adenosine deaminase acting on RNA (ADAR1) converts the amber
stop codon of the SDAg on the antigenomic strand to a tryptophan codon, thus allowing
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the extension of the protein by 19 additional amino acids [9,10]. The two forms of the
protein not only differ in their length but they also have vastly different roles. The SDAg
promotes viral replication, while the LDAg inhibits it and shifts the viral life cycle towards
packaging [8]. The host cell’s RNA polymerases mediate the replication of the HDV genome,
which occurs via a double rolling circle mechanism [11]. A curious feature of HDV is the
presence of ribozyme sequences in both its genome and antigenome [12]. The ribozymes
cut the multimeric HDV RNA species produced during the rolling circle replication into
unit-length pieces [11].

HDV was the sole representative of the unassigned genus Deltavirus until 2018 [13].
The discovery of HDV-like sequences in birds and snakes in 2018 marked the beginning
of a new chapter in deltavirus research by broadening the potential host spectrum [14,15].
First, an HDV-like sequence was discovered in waterfowl during a meta-transcriptomic
study without traces of HBV or hepadnaviral reads but influenza A virus reads instead [14].
Co-incidentally, we reported the identification of a deltavirus in Boa constrictors (Swiss
snake colony virus 1, SwSCV-1, initially known as snake deltavirus, SDeV) in co-infection
with reptarena- and hartmaniviruses but in the absence of hepadnaviral reads [15]. The
next paradigm shift of deltavirus research was the broadening of the scope of putative
HDV helper viruses to include vesiculo-, flavi-, and hepaciviruses [16]. The researchers
further showed that HDV forms infectious particles using the glycoproteins (GPs) of
the aforementioned viruses, not only in liver, but also in kidney cells. Soon after, we
managed to isolate SwSCV-1 along with co-infecting reptarena- and hartmaniviruses from
brain homogenates of an infected snake [17]. We utilized persistently SwSCV-1-infected cell
cultures to demonstrate that reptarena- or hartmanivirus superinfection results in the egress
of infectious SwSCV-1 particles, adding to the evidence that reptarena- and hartmaniviruses
are the likely helpers of the virus [17]. We further demonstrated that expression of arena-
and orthohantavirus GPs in the persistently infected cultures also induces infectious particle
formation [17]. The aforementioned reports provoked several metatranscriptomic studies,
resulting initially in the identification of deltaviruses in subterranean termites, fish, Asiatic
toad, and Chinese fire belly newt in 2019 [18]. In 2020, Paraskevopoulou and colleagues
found a deltavirus in Tome’s spiny rats without sequences for a helper virus, but including
evidence for autonomous replication in cell culture and the host [19]. Metatranscriptomic
studies revealed more deltaviruses in common vampire bats, a lesser dog-like bat, white-
tailed deer, eastern woodchuck, passerine birds, zebra finch, lantern fish, and amboli
leaping frogs [20–22]. The recent findings have sparked deltavirus research and raised
questions about the evolutionary origin of deltaviruses [23–25]. The identification of
deltaviruses across several taxa led to the establishment of a new realm, Ribozyviria, with
family Kolmioviridae including eight genera [26,27].

A number of tools to initiate HDV replication in vitro and to mimic infection have
been developed over the years. The first and probably most widely used method is
the transfection of cells with a plasmid containing a trimer of the entire HDV genome
under the control of the simian virus 40 promoter [4]. In theory, the transfection results
in multimeric RNA transcripts of the HDV genome, which resembles the rolling circle
replication of the virus during actual infection. It is also possible to initiate the replication
by transfecting a vector carrying a monomer of the HDV genome, but in this case, an HDAg-
expressing plasmid needs to be provided in trans [28]. Macnaughton and Lai showed that
direct RNA transfection with HDAg provided in trans can overcome the use of artificial
DNA intermediates to initiate replication. Interestingly, they found that transfection with
1.2× genome-length RNA resulted in the most efficient replication, perhaps because the
ribozymes at both ends of the genome were in duplicate [29]. In our previous study, we
constructed a plasmid containing the entire SwSCV-1 genome in duplicate in head-to-tail
fashion [17], following the idea of the trimeric HDV constructs [4]. The transfection of the
“2×” construct initiates efficient SwSCV-1 replication in snake cells, eventually leading to
persistent infection [17]. The “genome-dimer or 2×” plasmid principle was also successfully
adapted for Tome’s spiny rat virus 1 (TSRV-1), Taeniopygia guttata deltavirus, and Marmota
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monax deltavirus [19,21]. Here, we describe a construct containing 1.2× SwSCV-1 genome,
which, in a manner similar to the previously described 2× SwSCV-1 infectious clone [17],
initiates virus replication, produces infectious particles upon superinfection with Haartman
institute snake virus 1 (HISV-1), and results in persistent infection of the cells. Because
we did not manage to decipher the exact compositions of the plasmid-based 1.2× [30]
and 1.1× [31] genome constructs reported earlier, we based our 1.2× infectious clone
on the RNA transfection studies of Macnaughton and Lai [29] with the aim to generate
shorter DNA constructs to facilitate introduction of mutations or modifications to the
virus genome. Additionally, we wanted to eliminate the T7 promoter we used in the
2× SwSCV-1 infectious clone to avoid the risk of DAg expression via this promoter due to
cellular polymerases, which is reported to occur in mammalian cells [32,33].

2. Materials and Methods
2.1. Cell Culture and Superinfection

The study made use of previously described cultured Boa constrictor kidney cells,
I/1Ki, [34] and persistently SwSCV-1- infected I/1Ki cells, I/1Ki-∆ [17]. The cells were
maintained in Minimal Essential Medium Eagle (Sigma-Aldrich, St.Louis, MO, USA)
supplemented with 10% fetal bovine serum (ThermoFisher Scientific, Waltham, MA, USA),
200 mM L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), 100 µg/mL of streptomycin
(Sigma-Aldrich, St. Louis, MO, USA), and 100 U/mL of penicillin (Sigma-Aldrich, St. Louis,
MO, USA) in an incubator at 30 ◦C with 5% CO2.

To establish another persistently SwSCV-1-infected I/1Ki cell line, designated I/1Ki-
1.2×∆, we transfected I/1Ki cells with a plasmid containing 1.2 copies of the SwSCV-1
genome (described below) and maintained the cells as described above and earlier [17].

To study infectious particle formation of the SwSCV-1-infected cell lines, we conducted
superinfection studies with HISV-1 [35], earlier demonstrated to be an efficient helper
virus for SwSCV-1 [17]. The superinfection studies and detection followed the protocol
described [17]. For the infection, we used 600 copies of HISV-1 S segment RNA per cell,
which corresponds roughly to a multiplicity of infection (MOI) of 10.

2.2. Plasmids and Cloning

We ordered synthetic genes from Gene Universal for the 1.2× copies of the following
kolmiovirids: SwSCV-1 (initially known as snake deltavirus, GenBank accession number:
NC_040729.1) [17], Tome’s spiny rat virus 1 (TSRV-1, initially known as rodent deltavirus,
MK598005.2) [19], dabbling duck virus 1 (DabDV-1, initially known as avian HDV-like
agent, NC_040845.1) [14], Chusan Island toad virus 1 (CITV-1, initially known as toad
HDV-like agent, MK962760.1) [18], and HDV-1 (M21012.1). Each synthetic gene, flanked by
EcoRV restriction sites, contained the full genome with additional nucleotides to include
both the genomic and antigenomic ribozymes twice (Figure 1). Subcloning of the constructs
into pCAGGS followed the procedures described in Szirovicza et al., 2020 [17]. Briefly,
FastDigest EcoRV (ThermoFisher Scientific, Waltham, MA, USA) served to restriction
digest the inserts, followed by purification after agarose gel electrophoresis using the
GeneJET Gel extraction kit (ThermoFisher Scientific, Waltham, MA, USA). T4 DNA ligase
(ThermoFisher Scientific, Waltham, MA, USA) served to ligate the purified inserts into
pCAGGS/MCS plasmid [36] purified from agarose gel by the GeneJET Gel extraction kit
(ThermoFisher Scientific, Waltham, MA, USA) after linearization with FastDigest EcoRI
and XhoI (ThermoFisher Scientific, Waltham, MA, USA) restriction enzymes and T4 DNA
polymerase (ThermoFisher Scientific, Waltham, MA, USA) blunting. We plated chemically
competent Escherichia coli (DH5α strain) transformed with the ligation products on Luria
Broth (LB) agar plates with 100 µg/mL of ampicillin, and incubated overnight (O/N) at
37 ◦C. We picked single colonies and transferred them into 5 mL of LB medium (10 g/L
tryptone, 10 g/L NaCl, 5 g/L yeast extract), followed by O/N incubation at 37 ◦C (220 rpm),
after which the GeneJET Plasmid Miniprep Kit (ThermoFisher Scientific, Waltham, MA,
USA) served for plasmid isolation from 2 mL of the O/N culture. The DNA Sequencing
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and Genomic Laboratory, Institute of Biotechnology, University of Helsinki performed
Sanger sequencing of the preparations and confirmed these to contain an insert of the
correct size. For each virus, we selected two clones, one each with the insert in genomic
and in antigenomic orientation, for plasmid stock preparation using ZymoPURE II Plasmid
Maxiprep Kit (Zymo Research, Irvine, CA, USA).
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Figure 1. Schematic representation of the “1.2× genome” kolmiovirid inserts in forward
(FWD)/genomic orientation. We cloned the 1.2× genome of the displayed kolmiovirid: Swiss
snake colony virus 1 (SwSCV-1, GenBank accession: NC_040729.1, 1.15× genome), human hepatitis
D virus genotype 1 (HDV-1, M21012.1, 1.16× genome), Tome’s spiny rat virus 1 (TSRV-1, MK598005.2,
1.13× genome), Dabbling duck virus 1 (DabDV-1, NC_040845.1, 1.17× genome), and Chusan Island
toad virus 1 (CITV-1, MK962760.1, 1.22× genome) into pCAGGS/MCS plasmid, both in genomic
(FWD—shown in this figure) and in antigenomic (REV) orientation. Each of the inserts, approxi-
mately 1.2× of the genome size, contains a single copy of the genomes flanked from each end by
both the genomic and antigenomic ribozymes. The images were created using SnapGene Viewer
(https://www.snapgene.com/snapgene-viewer/; accessed on 14 October 2019).

2.3. Transfection

Lipofectamine 2000 (ThermoFisher Scientific, Waltham, MA, USA) reagent served
for transfection of I/1Ki cells as described [17,37]. Briefly, we mixed 500 ng of plasmid
DNA in 50 µL of OptiMEM (ThermoFisher Scientific, Waltham, MA, USA) and 3 µL of
Lipofectamine 2000 in 47 µL of OptiMEM (ThermoFisher Scientific, Waltham, MA, USA)
by pipetting up and down, and allowed the complexes to form for 15–30 min at room
temperature (RT). We added 1 mL of trypsinized cells (suspension containing approximately
1.8 cm2 of cells per ml) to the mixture and allowed the suspension to stand at RT for
15–30 min before plating. At 5–6 h post plating, we replaced the transfection mixture by
fully supplemented medium and incubated the cells as described above. We scaled up the
above reaction volumes depending on the amount of cells needed for each experiment.

2.4. Western Blot (WB)

For WB, we washed the cells grown on plates or flasks twice with PBS, scraped
them into PBS, pelleted by centrifugation (500× g, 3–5 min), lysed the cell pellets by RIPA
buffer (50 mM Tris, 150 mM NaCl, 1% Tx-100, 0.1% SDS, 0.5% sodium deoxycholate,
protease inhibitor cocktail), and measured the protein concentration using the PierceTM

BCA Protein Assay Kit (ThermoFisher Scientific, Waltham, MA, USA). For comparing
DAgs of different kolmiovirids, we collected from a 12-well plate nontransfected I/1Ki cells
and those transfected with FWD and REV constructs at 4 days post transfection in 100 µL
of Laemmli sample buffer after two washes with PBS. We separated an equal amount of
protein (or volume, 30 µL/lane, for the experiments done on 12-well plate) for each sample
on SDS-PAGE using 4–20% Mini-PROTEAN® TGX gels (Bio-Rad, Hercules, CA, USA), and
immunoblotted as described [38]. We used 1:4000 dilution for the rabbit anti-SDAg primary
antibody [15] or 1 µg/mL of IgG affinity purified from anti-SwSCV-1 rabbit antiserum [17]

https://www.snapgene.com/snapgene-viewer/
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using recombinant human DAg as described [17], 1:10,000 for AlexaFluor 680 donkey
anti-mouse (IgG) (ThermoFisher Scientific, Waltham, MA, USA), and 1:10,000 for IRDye
800CW donkey anti-rabbit (IgG) (LI-COR Biosciences, Lincoln, NE, USA). The Lab VisionTM

pan-actin mouse monoclonal antibody (ThermoFisher Scientific, Waltham, MA, USA) used
at a 1:200 dilution served for detection of β-actin. The Odyssey Infrared Imaging System
(LI-COR Biosciences, Lincoln, NE, USA) was employed to record the results.

2.5. Immunofluorescence Staining

For immunofluorescence (IF) staining, we plated the cells on collagen coated (10 µg/cm2

type I rat tail collagen (BD Biosciences, Franklin Lakes, NJ, USA) in 25 mM acetic acid, O/N
at 4 ◦C) CellCarrier-96 Ultra plates (PerkinElmer, Waltham, MA, USA). After the removal
of culture media, cells were fixed by incubation in 4% paraformaldehyde in PBS for ~15
min at RT. The IF staining followed the protocol described [17]. We used directly labeled
anti-SDAg-AF488 [17] at 1:500 dilution, rabbit anti-SDAg antiserum at 1:4000 dilution
for detection of SwSCV-1 and 1:100 dilution for the detection of HDV, TSRV-1, DabDV-1,
CITV-1, and for the clean/nontransfected I/1Ki cells, and 1:1000 of either Alexa Fluor 488-
or 594-labeled donkey anti-rabbit immunoglobulin (ThermoFisher Scientific, Waltham,
MA, USA) as the secondary antibody. The Opera Phenix High Content Screening System
(PerkinElmer, Waltham, MA, USA), provided by FIMM (Institute for Molecular Medicine
Finland) High Content Imaging and Analysis (FIMM-HCA, Helsinki, Finland), served for
imaging of the plates stored in the dark at 4 ◦C.

2.6. Detection of Circular RNA Genome

To show the circularity of the SwSCV-1 genome, we performed reverse transcription
(RT) with two different SwSCV-1-specific primers: RT-1 5’-GTTTCCCCACAAATTCTTTGC-
3’; RT-2 5’-CCTCTATCCTACTTCAATTCTC-3’. For the cDNA synthesis, we used Super-
Script™ IV Reverse Transcriptase (ThermoFisher Scientific, Waltham, MA, USA) according
to the manufacturer’s recommendations. The cycling conditions for the RT reaction were the
following: 5 min at 50 ◦C, 15 min at 55 ◦C, 10 min at 60 ◦C, and 15 min at 65 ◦C. Subsequently,
we used three different primer pairs (PP) with neighboring 5’ ends, but their 3’ ends facing
opposite directions, similarly to the method used by Paraskevopoulou et al. for TSRV-1 [19].
With such PPs, one should only be able to amplify a product if the RNA template is circu-
lar. The PPs were the following: PP1 forward 5’-GGATCTGCTTCTTGGATGGAGTTTCC-3’,
PP1 reverse 5’- GAAGAAGAGAAAGCTTGAGGAGCAGC-3’; PP2 forward 5’-
GCTTCTGCTCCTTGCCTCTCAC-3’, PP2 reverse 5’- GGCTCGAGGCTACCACCGAAAGAG-
3’; PP3 forward 5’- GGTTCACTTCCCCAGCTCCTC-3’, PP3 reverse 5’-
CGGGACTAGACGTGAGGGGTG-3’. To amplify the genome starting from the DAg ORF,
we used Phusion Flash High-Fidelity PCR Master Mix (ThermoFisher Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol with the following cycling conditions:
initial denaturation for 1 min at 98 ◦C, three-step amplification at 98 ◦C for 1 s, 68 ◦C for 5 s,
72 ◦C for 35 s repeated for 35 cycles, and the final elongation for 30 s at 72 ◦C.

2.7. Quantitative Reverse Transcription PCR (qRT-PCR)

qRT-PCR served for quantification of viral RNA in the cells. The primers and probe
were the following: forward primer 5’-GAAAGACGCGACAACTGTGAGTC-3’, reverse
primer 5’-GTCTAGTCCCGTTCCGGTTCTATG-3’, and probe 5’ 6-Fam (carboxyfluorescein)-
GGAGATCCGAGAGGGGAGAAGAGGAGAGGTC-BHQ (black hole quencher)-1 3’, which
target SwSCV-1 RNA in genomic orientation. We isolated RNA for qRT-PCR using the
GeneJET RNA Purification Kit (ThermoFisher Scientific, Waltham, MA, USA) with the
addition of carrier RNA when purifying RNA from cell culture supernatants. We used
TaqMan® Fast Virus 1-Step Master Mix (ThermoFisher Scientific, Waltham, MA, USA) to
set up 10 µL (half volume) reactions according to the manufacturer’s recommendations
with the addition of 8% DMSO to prevent secondary structure formation. The AriaMX
real-time PCR system (Agilent, Santa Clara, CA, USA) served for thermal cycling of the
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duplicate samples with the recommended conditions: reverse transcription for 5 min at
50 ◦C; initial denaturation for 20 s at 95 ◦C; two amplification steps at 95 ◦C for 3 s and
60 ◦C for 30 s repeated for 40 cycles.

To generate a control RNA for copy-level quantification, we used the SwSCV-1 FWD
plasmid described in Szirovicza et al., 2020 [17]. Briefly, FastDigest SmaI (ThermoFisher
Scientific, Waltham, MA, USA) following manufacturer’s protocol served for linearization
of the plasmid. The GeneJet Gel Purification Kit (ThermoFisher Scientific, Waltham, MA,
USA) served for purification of the linearized plasmid after agarose gel separation. We
used the TranscriptAid T7 High Yield Transcription Kit (ThermoFisher Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol to in vitro transcribe the target RNA.
Subsequently, we purified the RNA by the GeneJET RNA Purification Kit (ThermoFisher
Scientific, Waltham, MA, USA), diluted it into diethyl pyrocarbonate-treated water, and
stored the RNA in aliquots at −80 ◦C until use. The NanoDrop 2000 spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA) served for quantification of the control
RNA, and an online copy number calculator (http://endmemo.com/bio/dnacopynum.
php; accessed on 16 December 2021) for converting the concentration to RNA copies per
microliter. We ran the control RNA as 10-fold dilution series in duplicates for each run
to generate a standard curve for estimation of RNA copy numbers in cell and cell culture
supernatant samples.

To normalize the SwSCV-1 RNA levels against a house-keeping gene, we ordered the
following primers and probe for the detection of Boa constrictor glyceraldehyde-3-phosphate
dehydrogenase (GAPDH): forward primer: 5’ CTGGTATGACAACGAATA 3’, reverse
primer: 5’ CAGTCTTTACTCCTTAGATG 3’, and probe 5’ 6-Fam (carboxyfluorescein)-
TGAACCAACAAGTCTACCACACG-BHQ-1 3’. Reference assembly using Python bivitattus
GAPDH (GenBank accession: XM_007429612.3) as the template in Unipro UGENE (http:
//ugene.net/; accessed on 11 July 2019) [39] served to obtain the mRNA for B. constrictor
GAPDH from the reads of our earlier metatranscriptomic studies [35,40–42].

2.8. Near-Infrared Fluorescent Northern Blot

For northern blot analysis, TRIzolTM reagent (ThermoFisher Scientific, Waltham, MA,
USA) used according to the manufacturer’s recommendations served for isolating RNA
from either T75 or T175 flasks of I/1Ki, I/1Ki-2×∆, and I/1Ki-1.2×∆. The samples were sol-
ubilized either into formamide or into milliQ water. The NanoDrop 2000 spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA) was employed for quantification of the RNA.
Subsequently, we ran 3–5 µg of RNA to detect genomic SwSCV-1 RNA, 15–20 µg to detect
antigenomic RNA, and an ssRNA ladder (New England Biolabs, Ipswich, MA, USA) on
agarose–formaldehyde gels using the tricine/triethanolamine buffer system described by
Mansour and Pestov [43]. We employed two different loading dyes to prepare the RNA
samples for the run, either the one described by Mansour and Pestov [43] and prepared
“in-house” or the 2X RNA Loading Dye provided with the ssRNA ladder (New England Bi-
olabs). Then, we transferred the RNAs from the gel to HybondTM-N+ nylon membrane (GE
Healthcare, Chicago, IL, USA) by capillary transfer O/N and cross-linked the RNA to the
membrane by an ultraviolet cross-linker (120 mJ/cm2 at 254 nm) (Analytik Jena, Jena, Ger-
many). After RNA cross-linking, we stained some of the membranes with 0.02% methylene
blue in 0.3M sodium acetate, pH 5.5, to visualize the bands. Incubation in prehybridiza-
tion buffer (5× sodium saline citrate buffer (SSC), 5× Denhardt’s solution (ThermoFisher
Scientific, Waltham, MA, USA), 1% SDS, 50% formamide and 100 µg ultrapure herring
sperm DNA (ThermoFisher Scientific, Waltham, MA, USA)) at 68 ◦C or 48 ◦C (depending
on the probe) for 2–4 h served for blocking the nonspecific binding sites on the membrane.
The following probes (all from Metabion International Ag): ladder-targeting (5’-IR800-
AAGCAGGTCCTCGTCGCCGTACACCTCATCATACA-3’), SwSCV-1 genome-targeting
(5’-IR800-GCTCTCCCCGGCAAGTCTTCTATTTCTGTCCTTCC-3’), SwSCV-1 antigenome-
targeting (5’- IR800-GGAAGGACAGAAATAGAAGACTTGCCGGGGAGAGC-3’), or DAg
mRNA-targeting (5’-IR800-TAATCTCTTTCGGTGGTAGCCTCGAGCCGCCATCC-3’) di-

http://endmemo.com/bio/dnacopynum.php
http://endmemo.com/bio/dnacopynum.php
http://ugene.net/
http://ugene.net/
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luted in prehybridization buffer served for detection. We performed the hybridization
O/N at 68 ◦C (using the genome-targeting probe) or 48 ◦C (using the antigenome- and
mRNA-targeting probes), and washed the membrane once with 2× SSC and 0.1% SDS
for 10 min at 68 ◦C/48 ◦C, followed by two 10 min washes with 1× SSC and 0.1% SDS at
68 ◦C/48 ◦C. After the washes, the Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE, USA) served to record the results. The protocol was adapted from Miller et al.,
2018 [44].

We generated a short (~850 nucleotides long) control RNA fragment using the SwSCV-
1 FWD plasmid described in Szirovicza et al., 2020 [17]. We used FastDigest EcoRV and
Acc65I (ThermoFisher Scientific, Waltham, MA, USA) to linearize and digest the plasmid.
Then, we purified the fragment of interest—containing the T7 promoter—from agarose
gel using the GeneJet Gel Purification Kit. The plasmid fragment was further purified
using SPRIselect magnetic beads (Beckman Coulter, Brea, CA, USA). TranscriptAid T7
High Yield Transcription Kit (ThermoFisher Scientific, Waltham, MA, USA) then served for
in vitro transcription of the target RNA according to the manufacturer’s protocol. Finally,
we cleaned up the RNA using the GeneJET RNA Purification Kit (ThermoFisher Scientific,
Waltham, MA, USA) and stored the RNA at −80 ◦C until further usage. The control RNA
fragment contains the target sequence for the SwSCV-1 DAg mRNA probe described above.

2.9. SwSCV-1 Infection Dynamics in Naïve I/1Ki Cells

We superinfected 2× and 1.2× SwSCV-1 FWD transfected I/1Ki cells (~6 months post
transfection) with HISV-1 (MOI of 10, as described earlier), and collected the supernatants
from both superinfected cell lines at 3 dpi. We used 1:5 and 1:100 diluted supernatants
to inoculate naïve I/1Ki cells plated on 24-well plates (for WB and qRT-PCR) and 96-well
plates (for IF staining), and collected samples for WB, qRT-PCR, and IF staining at 3, 6, and
9 dpi, as described above.

3. Results
3.1. Transfection with 1.2× Genome Construct Initiates Replication of Kolmiovirids

In our previous study, we showed in a transfection-based assay that a plasmid bear-
ing the SwSCV-1 genome in duplicate could initiate SwSCV-1 replication in cell culture,
with highest efficacy observed in boid kidney cells [17]. We hypothesized, based on RNA
transfection studies with HDV [11], that a plasmid bearing a shorter 1.2× genome-length
insert would suffice to initiate translation. With the idea that duplicating the antigenomic
and genomic ribozymes would better facilitate replication, we ordered synthetic genes
representing the 1.2× genome of SwSCV-1, TSRV-1, DabDV-1, CITV-1, and HDV-1. Figure 1
shows the organization of the synthetic blocks that we subsequently cloned in both reverse
and forward orientation into a pCAGGS/MCS expression vector under the CAG promoter.
Unlike in our earlier study, in which we included an additional T7 promoter in the antige-
nomic orientation, upstream of the DAg to the synthetic construct [17], we did not include
additional promoters that could unintentionally facilitate DAg translation. The resulting
constructs we named according to the 1.2× “kolmiovirid” FWD and 1.2× “kolmiovirid”
REV scheme. The FWD constructs drive transcription of the respective kolmiovirid genome,
due to which the expression or translation of the DAg should only occur following virus
replication, since the DAg ORF is in antigenomic orientation. On the other hand, the
REV constructs would generate antigenomic transcripts that would likely also mediate the
DAg translation.

To test if the shorter constructs will facilitate replication, and to estimate the cross-
reactivity of our rabbit anti-SwSCV-1 DAg antiserum, we transfected I/1Ki cells with each
of the constructs. IF staining of the cells transfected with REV constructs for DAg at 4 days
post transfection (dpt) showed that the anti-SwSCV-1 DAg antiserum clearly cross-reacted
with TSRV-1 and HDV-1, but also to some extent with DabDV-1 and CITV-1 (Figure 2A).
We detected DAg in cells transfected with the FWD constructs of HDV-1, TSRV-1, and
SwSCV-1, suggesting that transfection resulted in replication initiation (Figure 2B). The
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staining for DAg of DabDV and CITV-1 was much less prominent on the cells transfected
with FWD construct; however, the results suggest that replication occurs also with these
viruses. We also performed western blot (WB) on the transfected cells and we were able
to detect DAgs of SwSCV-1, HDV-1, TSRV-1, and DabDV-1 4 days after transfection with
the REV constructs. However, after transfection with the FWD constructs, we were only
able to detect bands for DAgs of SwSCV-1, HDV-1, and TSRV-1 (Figure 2C). The observed
differences between the results of IF staining and WB could be due to the ability of the
antibody to bind conformational epitopes in case of IF staining; however, in WB this would
be less likely.
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stained for the DAg at 4 days post transfection using rabbit α-SwSCV-1 DAg antiserum (1:100
dilution). (B) I/1Ki cells transfected with 1.2× SwSCV-1, HDV-1, TSRV-1, DabDV-1, and CITV-1
FWD constructs and clean cell control were stained for the DAg 4 days post transfection using
rabbit α-SwSCV-1 DAg antiserum (1:100 dilution). Hoechst 33342 served for detection of the nuclei
(left panels), and AlexaFluor 488-labeled donkey anti-rabbit IgG as the secondary antibody for DAg
detection (middle panels). The (right panels) show overlay of the nuclear and DAg staining. The
images were captured using Opera Phenix High Content Screening System (PerkinElmer, Waltham,
MA, USA) with 20× objective. (C) I/1Ki cells transfected with 1.2× SwSCV-1, HDV-1, TSRV-1,
DabDV-1, and CITV-1 REV constructs (left panel) and FWD constructs (right panel) were submitted
for western blot at 4 days post transfection. The samples were separated on 4–20% Mini-PROTEAN
TGX gels (Bio-Rad, Hercules, CA, USA), transferred onto nitrocellulose, and the membranes were
probed with rabbit α-SwSCV-1 DAg antiserum and affinity purified α-HDAg antibody. We loaded
1/3 volume of the 1.2× SwSCV-1 REV and FWD samples. The bands corresponding to the different
DAgs are marked with the black rectangle. The results were recorded using Odyssey Infrared Imaging
System (LI-COR Biosciences, Lincoln, NE, USA).

3.2. The 1.2× and 2× SwSCV-1 Genome Infectious Clones Induce Similar Infection as Judged by
Antigen Expression and Replication

To compare the ability of the shorter 1.2× genome length constructs to initiate repli-
cation, we transfected I/1Ki cells with 1.2× SwSCV-1 FWD and 1.2× SwSCV-1 REV and
compared the antigen expression and SwSCV-1 RNA production between 1 and 5 dpt. IF
staining of the transfected cells at 1–4 dpt demonstrates that both 1.2× and 2× genome
constructs efficiently drive the expression of DAg (Figure 3).

To better estimate the amount of DAg produced by the different constructs, we per-
formed WB on samples collected between 1 and 4 dpt. The results showed that similarly to
the 2× genome constructs, the transfection of 1.2× constructs led to an increasing amount
of DAg expression during the interval studied (Figure 4A). As the amount of DAg appeared
to increase until 4 dpt and because the results of the IF staining suggested minute differ-
ences in the amount of DAg expression through the different construct, we performed WB
analysis of samples collected at 5 dpt. The results indicate that the DAg expression level
in the cells is similar at 5 dpt, regardless of the construct used for transfection (Figure 4B).
DAg expression in REV constructs could be driven by the CAG promoter of the plasmid,
but since levels were similar at 5 dpt, we interpret the result to suggest that DAg expression
is due to replication. To add another dimension to the determination of the replication effi-
ciency, we analyzed I/1Ki cells transfected with the four different constructs for SwSCV-1
RNA levels at 3 and 6 dpt by qRT-PCR. The 2× SwSCV-1 (especially the FWD) genome
construct appeared to initiate replication more rapidly as demonstrated by the higher
amount of SwSCV-1 RNA at 3 dpt (Figure 4C). However, at 6 dpt, the cells transfected
with each of the constructs showed similar SwSCV-1 RNA levels when normalized against
GAPDH mRNA (Figure 4C), supporting the WB-based interpretation that all of the studied
constructs can initiate replication.
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similarly to the 2× genome constructs, the transfection of 1.2× constructs led to an 
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Figure 3. Expression of DAg in I/1Ki cells following transfection with 2× and 1.2× genome SwSCV-
1 FWD and REV plasmids. I/1Ki cells transfected with 2× and 1.2× SwSCV-1 FWD and REV
plasmids were fixed and stained for the DAg using rabbit α-SwSCV-1 DAg antiserum at 1–4 days
post transfection. AlexaFluor 488-labeled donkey anti-rabbit IgG served as the secondary antibody
for DAg detection. The images were captured using Opera Phenix High Content Screening System
(PerkinElmer, Waltham, MA, USA) with 20× objective.
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Figure 4. Western blot of I/1Ki cells after transfection with 2× and 1.2× SwSCV-1 (2×∆ and 1.2×∆,
respectively) FWD and REV constructs. (A) Samples of I/1Ki cells transfected with 2×∆-FWD,
2×∆-REV, 1.2×∆-FWD, and 1.2×∆-REV constructs collected at 1–4 days post transfection were
separated on 4–20% Mini-PROTEAN TGX gels (Bio-Rad, Hercules, CA, USA), transferred onto
nitrocellulose, and the membranes were probed with rabbit α-SwSCV-1 DAg antiserum and mouse
monoclonal anti-pan actin antibody. The left panel shows 2× and the right panel 1.2× genome
constructs. The results were recorded using Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE, USA). (B) Samples of I/1Ki cells transfected with 2×∆-FWD, 2×∆-REV, 1.2×∆-FWD,
and 1.2×∆-REV constructs collected at 5 days, analyzed as described in (A). (C) RNA isolated from
I/1Ki cells transfected with 2×∆-FWD, 2×∆-REV, 1.2×∆-FWD, and 1.2×∆-REV constructs at 3 and
6 days post transfection were analyzed by qRT-PCR targeting genomic SwSCV-1 RNA. In vitro
transcribed RNA target served for obtaining a standard curve to convert cycle threshold values
into copy numbers. qRT-PCR targeting GAPDH mRNA served for normalizing the results between
samples. The y-axis shows copy numbers/reaction. The error bars represent standard deviation.
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3.3. Superinfection of Cells Transfected with 1.2× SwSCV-1 FWD Construct Induces Infectious
Particle Formation

To show that the 1.2× SwSCV-1 construct not only initiates virus replication in cell
culture, but also induces infectious particle formation in the presence of a suitable helper virus,
we superinfected 1.2× and 2× SwSCV-1 FWD transfected cells with HISV-1, a hartmanivirus
demonstrated to act as a helper for SwSCV-1 [17]. We titrated the supernatants collected
at 3, 6, and 9 dpi with HISV-1 on clean I/1Ki cells and used supernatants collected from
non-superinfected cells as the control. IF staining of cells inoculated with the supernatants
at 4 dpi for the DAg served for detecting the infected cells (Figure 5A). We determined the
number of infectious units by counting the fluorescent foci at each time point, and the results
showed I/1Ki cells transfected with 1.2× or 2× SwSCV-1 FWD constructs to be equally
effective in producing infectious particles following superinfection (Figure 5B). As observed
for 2× SwSCV-1 FWD in our earlier study [17], the non-superinfected 1.2× SwSCV-1 FWD
cells were not able to produce infectious SwSCV-1 particles (Figure 5A).

Viruses 2022, 14, 107 13 of 23 
 

 

 
Figure 5. Superinfection of 2× and 1.2× SwSCV-1 FWD transfected I/1Ki cells leads to infectious 
particle production. (A) Supernatants collected at 3, 6, and 9 days post HISV-1 superinfection from 
I/1Ki cells—transfected with 2× and 1.2× SwSCV-1 FWD constructs two weeks earlier—were used 
to inoculate clean I/1Ki cells. At four days post inoculation, the cells were fixed and stained using 
rabbit α-SwSCV-1 DAg antiserum and Alexa Fluor 488-labeled donkey anti-rabbit secondary 
antibody. Hoechst 33342 served for staining the nuclei. The top panels show clean I/1Ki cells infected 
with 100-fold diluted supernatant originating from HISV-1 superinfected 2× SwSCV-1 FWD 
transfected cells, and the bottom panels with supernatant originating from HISV-1 superinfected 

Figure 5. Superinfection of 2× and 1.2× SwSCV-1 FWD transfected I/1Ki cells leads to infectious
particle production. (A) Supernatants collected at 3, 6, and 9 days post HISV-1 superinfection from



Viruses 2022, 14, 107 13 of 21

I/1Ki cells—transfected with 2× and 1.2× SwSCV-1 FWD constructs two weeks earlier—were used to
inoculate clean I/1Ki cells. At four days post inoculation, the cells were fixed and stained using rabbit
α-SwSCV-1 DAg antiserum and Alexa Fluor 488-labeled donkey anti-rabbit secondary antibody.
Hoechst 33342 served for staining the nuclei. The top panels show clean I/1Ki cells infected with
100-fold diluted supernatant originating from HISV-1 superinfected 2× SwSCV-1 FWD transfected
cells, and the bottom panels with supernatant originating from HISV-1 superinfected 1.2× SwSCV-1
FWD transfected cells. Undiluted supernatant from non-superinfected cells served as a control. The
images were captured using Opera Phenix High Content Screening System (PerkinElmer, Waltham,
MA, USA) with 20× objective. (B) Opera Phenix High Content Screening System (PerkinElmer,
Waltham, MA, USA) served to count the number of infected cells in (A), which enabled the quantifi-
cation of infectious particles per milliliter of growth medium in terms of fluorescent focus-forming
units (FFFUs—displayed on y-axis). The error bars represent standard deviation.

3.4. Transfection of Cells with the 1.2× SwSCV-1 Construct Results in Persistent Infection

In our previous study, we showed that by maintaining I/1Ki cells after transfection
with the 2× SwSCV-1 FWD construct, we could generate persistently SwSCV-1-infected
cell lines [17]. At the time of preparing this manuscript, we have maintained the I/1Ki-
2×∆ cell line for 2.5 years, and IF staining for DAg shows the cell line to be persistently
SwSCV-1-infected (Figure 6A). To compare the replication behavior of the shorter construct
further, we transfected I/1Ki cells with 1.2× SwSCV-1 FWD and continued passaging the
cells. Analysis of the cells by IF staining for DAg at 8 months post initial transfection
indicates that also the 1.2× SwSCV-1 FWD construct can induce persistent infection in
I/1Ki cells (Figure 6A). We compared the generated cell line, I/1Ki-1.2×∆, to I/1Ki-2×∆
cells further by analyzing the amount of DAg expression using WB. The results show
that DAg expression by I/1Ki-1.2×∆ cells is at least at the level observed in I/1Ki-2×∆
cells (Figure 6B), supporting the observation of a similar replication efficiency. To further
compare the cell lines, we set up a near-infrared fluorescent northern blot assay for detection
of the genomic RNA, antigenomic RNA, and DAg mRNA. As an additional control, we
included an in vitro transcribed RNA of approximately 850 nucleotides corresponding
roughly to the size of SwSCV-1 DAg mRNA. Initially, we prepared the samples for the
denaturing agarose gel run by using an “in-house” loading dye described by Mansour
and Pestov [43], but ran the RNA marker with the loading dye provided by New England
Biolabs (NEB). To our surprise, the northern blot of RNA isolated from I/1Ki-1.2×∆ and
I/1Ki-2×∆ cells using a probe targeting the genomic RNA resulted in the detection of
a doublet band migrating at around 2.8 kilonucleotides (knt) instead of the expected
1.7 knt as compared to the RNA marker (Figure 6C left panel). To study if the use of two
different loading dyes had significantly affected the migration of the RNA, we ran the RNAs
extracted from I/1Ki-2×∆, I/1Ki-1.2×∆, and clean cells as well as the in vitro-transcribed
control RNA and the RNA marker in parallel with both loading dyes. Indeed, the result
showed the loading dye to significantly affect the migration of the RNA, and indicated
that the SwSCV-1 genomic RNA is approximately 1.7 knt in size as judged by migration
(Figure 6C). Therefore, we speculate that the doublet bands observed in the initial run likely
correspond to the circular and nicked forms of the genomic RNA. With the probe targeting
genomic RNA, we also detected a band migrating at around 3.4 knt, which likely represents
the genome dimer reported to be present in the infected cells by other researchers [45]. In
order to detect antigenomic RNA from the persistently infected cells, we had to load 5 times
more RNA, which corresponds roughly to the ratio of genomic and antigenomic RNA
reported for HDV [46]. We were unable to detect DAg mRNA in the persistently infected
cells, even though the probe detected the in vitro transcribed control RNA (Figure 6C). The
result thus suggests that the amount of DAg mRNA in the persistently infected cells is
below our detection limit.
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Figure 6. Comparison of persistently SwSCV-1-infected I/1Ki cells generated following transfection
with 2× and 1.2× SwSCV-1 FWD constructs by immunofluorescence, and western and northern
blot. The 2× SwSCV-1 (I/1Ki-2×∆) cell line was analyzed at approximately 2.5 years and the
1.2× SwSCV-1 (I/1Ki-1.2×∆) at approximately 8 months after initial transfection, during which the
cell lines were passaged at 1–2 week interval. (A) Rabbit α-SwSCV-1 DAg antiserum and Alexa
Fluor 488-labeled donkey anti-rabbit secondary antibody served for IF staining of the fixed cells,
and Hoechst 33342 for staining the nuclei. The top panels show staining of I/1Ki-2×∆ cells, and the
bottom panels the staining of I/1Ki-1.2×∆ cells. The left panels show staining of nuclei in blue, the
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middle panels show DAg staining in green, and the right panels show an overlay. The images were
captured using Opera Phenix High Content Screening System (PerkinElmer, Waltham, MA, USA)
with 20× objective. (B) Samples of naïve I/1Ki cells, I/1Ki-2×∆ cells, I/1Ki-1.2×∆ cells, and the
brain homogenates of SwSCV-1-infected boa constrictors (F18-4 and F-18-5, of [15]) were separated on
4–20% Mini-PROTEAN TGX gels (Bio-Rad, Hercules, CA, USA), transferred onto nitrocellulose, and
the membranes probed with rabbit α-SwSCV-1 DAg antiserum and mouse monoclonal anti-pan actin
antibody. The results were recorded using Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE, USA). (C) Indicated amounts of total RNA isolated from I/1Ki-2×∆, I/1Ki-1.2×∆, and
clean I/1Ki cells and an in vitro-transcribed control RNA (~850 nucleotides long) were prepared using
two different loading dyes (2X RNA loading dye [NEB] or “in-house” loading dye prepared according
to Mansour and Pestov [43]), separated on agarose gel and transferred onto nylon membrane. Probes
were targeting SwSCV-1 genomic RNA and SwSCV-1 DAg mRNA (left and middle panels) and
antigenomic RNA and SwSCV-1 DAg mRNA (right panel); the bands of the marker served for
visualizing the RNA targets. The results were recorded using Odyssey Infrared Imaging System
(LI-COR Biosciences, Lincoln, NE, USA).

The HDV RNA genome is circular [6], and we wanted to study if the SwSCV-1 RNA
genome in the persistently infected cells shares this characteristic feature. To that end, we
designed RT primers to transcribe cDNA going over the potential cleavage sites of the
genomic RNA using RNA extracted from I/1Ki-2×∆ and I/1Ki-1.2×∆ cells as the template
(Figure 7A—RT primer 1 and 2). To show that the genome is circular, we designed three
primer pairs (PPs) targeting a region that is continuous with certainty, i.e., the DAg ORF. The
PPs designed have their 3’ ends facing opposite directions on the reverse-complementary
template strands (Figure 7A—PP1 to PP3). As a control, we performed the exact same
reactions with the same set of templates and primers, but without the addition of the RT
enzyme. With both RT primers and PPs 1–3, we succeeded in amplifying the near complete
SwSCV-1 genome, from templates generated in the presence of RT enzyme, indicating that
the SwSCV-1 genome is indeed circular (Figure 7B).
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genomic and antigenomic ribozyme (RT primer 1) or just the antigenomic ribozyme (RT primer 2)
to include the putative cleavage sites of the genomic RNA. The subsequent PCR employed three
different primer pairs (PP1–PP3) targeting the DAg ORF to amplify the nearly complete SwSCV-1
genome. The figure shows the location of primers in the SwSCV-1 genome map. (B) The PCR
products with PP1 to PP3 from templates produced from the RNAs extracted from I/1Ki-2×∆ and
I/1Ki-1.2×∆ in the presence (left half of both gels) or absence (right side of both gels) of RT enzyme.
The top panel shows PCR products with RT primer 1 and the bottom with RT primer 2 separated on
1.2% agarose gel with GelRed for visualization of the bands, the expected size of the amplicons is
roughly 1650 nt.

3.5. Inoculation of Naïve I/1Ki Cells with SwSCV-1 Results in Productive

Lastly, we wanted to study if SwSCV-1 released from cells originally transfected
with 1.2× and 2× SwSCV-1 FWD (experiment conducted 6 months post transfection)
superinfected with HISV-1 would result in productive infection in naïve I/1Ki cells. We
used supernatants collected at 3 dpi from the HISV-1 superinfected cells (earlier observed
to contain adequate amount of infectious SwSCV-1, Figure 6A) at two dilutions, 1:5 and
1:100, to inoculate naïve I/1Ki cells, and collected samples from the inoculated cells at 3, 6,
and 9 dpi. IF staining, qRT-PCR, and WB served to monitor, respectively, the increase in
the number of infected cells, SwSCV-1 RNA, and DAg within the cells.

IF staining of the inoculated cells for DAg at 3 dpi showed prominent nuclear staining;
however, at 6 and 9 dpi, after the infection had properly established and spread to new
cells, DAg showed more pronounced cytoplasmic staining (Figure 8A). To assess the spread
of infection, we quantified the number of infected cells at each time point based on the
IF staining for DAg. The increase in the number of infected cells and the DAg amount
coincided with the increase in the amount of SwSCV-1 RNA in the cells as studied by
qRT-PCR (Figure 8C). The number of infected cells increased roughly 4-fold during the
course of the infection (Figure 8B). WB from the cell pellets collected 3, 6, and 9 dpi showed
an increase in the amount of DAg over the course of the experiment (Figure 8D).
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Figure 8. SwSCV-1 infection on naïve I/1Ki cells. Supernatants from I/1Ki cells transfected six
months ago with 1.2× or 2× SwSCV-1 FWD were collected three days post superinfection with
HISV-1 and subsequently used to inoculate naïve I/1Ki cells at 1:5 and 1:100 dilutions. (A) Rabbit
α-SwSCV-1 DAg antiserum and Alexa Fluor 488-labeled donkey anti-rabbit secondary antibody
served for IF staining of the fixed cells, and Hoechst 33,342 for staining the nuclei. The left panels
show an overlay of DAg (green) and nuclear (blue) staining of I/1Ki-2×∆ cells and the right panels
the staining of I/1Ki-1.2×∆ cells fixed at 3, 6, or 9 dpi. The images were captured using Opera Phenix
High Content Screening System (PerkinElmer, Waltham, MA, USA) with 20× objective. (B) Opera
Phenix High Content Screening System (PerkinElmer, Waltham, MA, USA) served for enumerating
the number of infected cells at each time point. The dark bars represent cells inoculated with 1:5
dilution of HISV-1 superinfected 2× SwSCV-1 and the light bars cells inoculated with 1:5 dilution
of HISV-1 superinfected 1.2× SwSCV-1 cell culture supernatant. (C) RT-PCR served to quantify
the amount of SwSCV-1 RNA in the cells at each time point. The number of SwSCV-1 RNA copies
in the reaction (corresponding to 1/20 of RNA extracted from cells of a single 24-well plate well)
normalized against housekeeping gene (GAPDH). (D) Samples of cells inoculated with 1:5 or 1:100
diluted supernatant collected from HISV-1 superinfected 2× SwSCV-1 FWD or 1.2× SwSCV-1 FWD
transfected cells were separated on 4–20% Mini-PROTEAN TGX gels (Bio-Rad, Hercules, CA, USA),
transferred onto nitrocellulose, and the membranes probed with rabbit α-SwSCV-1 DAg antiserum,
rabbit α-HISV NP antiserum, and mouse monoclonal anti-pan actin antibody. The top panels show
the results recorded using Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA),
and the bottom panels show results for the quantification (using Image Studio Lite Ver 2) of the HISV
NP and DAg bands normalized against the actin signal.

4. Discussion

The identification of novel HDV-like agents, significantly divergent from HDV [14,15,18–21],
which until 2018 was the sole representative of the previously unassigned genus Deltavirus,
has increased the interest in HDV and kolmiovirid research. The identification of HDV-
like agents in various host species without traces of hepadnaviruses by others and us
led to questioning the strict association of HDV and HBV. Co-incidentally, Perez-Vargas
and colleagues showed that HDV is able to use helper viruses other than HBV to form
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infectious particles [16]. We demonstrated that SwSCV-1 efficiently utilized reptarena-
and hartmaniviruses as its helpers, and that the co-expression of different arena- and
orthohantavirus glycoproteins can drive infectious particle formation [17]. Construction of
infectious clones is the first step in demonstrating that the sequences recovered through
metatranscriptomic analyses are indeed complete and capable of driving replication. We
reported generation of such a clone by inserting two copies of the SwSCV-1 genome in head-
to-tail fashion into a mammalian expression vector, pCAGGS [17]. The same approach was
proven functional for TSRV-1 [19] as well as for the HDV-like agents in Taeniopygia guttata
and Marmota monax [21]. The first HDV infectious clone contained a trimeric HDV genome,
and the authors utilized a dimeric genome-containing plasmid with deletion in the DAg
ORF to demonstrate the protein’s role in replication [4]. Constructs containing multiples of
the genome make synthetic inserts longer and complicate mutational studies because each
modification needs to be inserted/generated multiple times. This motivated us to attempt
generation of 1.2× genome infectious clones for initiation of kolmiovirid replication. The
availability of tools and reagents at hand forced us to focus on comparing the replication
initiation between 2× and 1.2× SwSCV-1 genome clones in depth, but we were also able to
demonstrate that a similar approach might work for the recently identified kolmiovirids.

The replication of HDV occurs via rolling circle replication by cellular RNA poly-
merases [11], during which the genomic and antigenomic ribozymes cut the produced
genome multimers into unit-length pieces [47]. The recently identified kolmiovirids pre-
sumably share the same replication strategy and possess the genomic and antigenomic
ribozymes [14,15,19,21,48]. Based on the HDV literature [49–51], we reasoned that du-
plicating the genomic and antigenomic ribozyme sequences would facilitate initiation of
replication and/or production of unit-length genome (and antigenome). Indeed, RNA
transfection studies with HDV have shown 1.2× genome copies to be most efficient in
induction of virus replication [29], and a similar approach has been applied to generate
HDV infectious clones, although we were unable to decipher the exact organization of
the constructs [30,31,52]. By applying the same principle, we constructed 1.2× genome
infectious clones for HDV-1, SwSCV-1, TSRV-1, DabDV-1, and CITV-1 in both genomic and
antigenomic sense, and tested the clones in I/1Ki cells, which efficiently support replication
of SwSCV-1 following transfection with the 2× genome clone [17]. In the REV constructs,
the CAG promoter of the pCAGGS vector should mediate DAg translation, which pro-
vides a source of DAg for the first rounds of replication. For HDV, the reports suggest
existence of an internal promoter that could drive the production of DAg [28,53], such
a promoter would presumably act in both our REV and FWD constructs and could also
contribute to replication initiation. Indeed, the comparison of DAg production following
transfection with 1.2× and 2× genome SwSCV-1 FWD and REV constructs demonstrated
detectable DAg levels to appear earlier in cells transfected with REV constructs (Figure 4A).
We thus used the IF staining of DAg from I/1Ki cells transfected with the 1.2× genome
REV constructs (HDV-1, TSRV-1, DabDV-1, and CITV-1) to estimate the cross-reactivity of
the anti-SwSCV-1 DAg antiserum [15] with DAg of the different viruses. The antiserum
appeared to cross-react best with TSRV-1 DAg that is the closest relative of SwSCV-1 from
the kolmiovirids included [19]. The fact that HDV-1 DAg showed prominent nuclear
staining, as would be expected based on the HDV literature [54], increased our confidence
in the specificity of the IF staining. The antiserum appeared to cross-react moderately well
with the DAg of DabDV-1, showing mainly cytoplasmic staining. While the CITV-1 DAg
appeared to be barely detectable with the antiserum, the results did suggest production of
CITV-1 DAg. Although the expression of DAg could come from internal promoters, we
think that the DAg produced following transfection of FWD constructs is due to initiation of
replication. While the inability of our SwSCV-1 DAg antiserum to cross-react with the DAgs
of the other viruses tested likely explains the lower signal, it is also likely that the different
kolmiovirids are not replicating optimally in the B. constrictor cells. We hypothesize that
each of the kolmiovirids would be through promoter usage adapted to replicating in a
specific host species.
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Along with our data on the ability of 1.2× and 2× genome SwSCV-1 constructs to
initiate replication and to induce a persistent infection, we demonstrated the presence of
circular SwSCV-1 RNA in the infected cells. We also demonstrated that inoculation of naïve
I/1Ki cells with supernatants containing infectious SwSCV-1 and a suitable helper virus
results in productive infection. These observations strongly support our conclusion that
plasmid transfection of I/1Ki cells indeed efficiently initiates SwSCV-1 replication.

The 1.2× genome construct design described herein (analogous to constructs described
for HDV) could help to reduce the complexity of introducing mutations, and facilitate
synthetic gene design for molecular biology studies of the recently identified kolmiovirids
and those that will be identified in the future. Our results with SwSCV-1 show that the
1.2× genome clone is at least as efficient as the 2× genome clone in initiation of replication.
Furthermore, our results indicate that introduction of the insert in either genomic or
antigenomic orientation functions equally well in the B. constrictor kidney cell model.
Further studies with HDV-1, TSRV-1, DabDV-1, and CITV-1 in cell lines of various species
could serve to demonstrate species specificity of the viruses, and to provide first evidence
on the potential role of kolmiovirid promoters in mediating species-specific replication.
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