
https://helda.helsinki.fi

Spectral Temporal Information for Missing Data Reconstruction

(STIMDR) of Landsat Reflectance Time Series

Tang, Zhipeng

Multidisciplinary Digital Publishing Institute

2021-12-31

Tang, Z.; Amatulli, G.; Pellikka, P.K.E.; Heiskanen, J. Spectral Temporal Information for

Missing Data Reconstruction (STIMDR) of Landsat Reflectance Time Series. Remote Sens.

2021, 14, 172.

http://hdl.handle.net/10138/349185

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



����������
�������

Citation: Tang, Z.; Amatulli, G.;

Pellikka, P.K.E.; Heiskanen, J.

Spectral Temporal Information for

Missing Data Reconstruction

(STIMDR) of Landsat Reflectance

Time Series. Remote Sens. 2022, 14,

172. https://doi.org/10.3390/

rs14010172

Academic Editor: Junjun Jiang

Received: 24 November 2021

Accepted: 28 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spectral Temporal Information for Missing Data Reconstruction
(STIMDR) of Landsat Reflectance Time Series

Zhipeng Tang 1,2,* , Giuseppe Amatulli 3,4, Petri K. E. Pellikka 1,2 and Janne Heiskanen 1,2

1 Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland;
petri.pellikka@helsinki.fi (P.K.E.P.); janne.heiskanen@helsinki.fi (J.H.)

2 Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki,
00014 Helsinki, Finland

3 School of the Environment, Yale University, New Haven, CT 06511, USA; giuseppe.amatulli@yale.edu
4 Center for Research Computing, Yale University, New Haven, CT 06511, USA
* Correspondence: zhipeng.tang@helsinki.fi

Abstract: The number of Landsat time-series applications has grown substantially because of its
approximately 50-year history and relatively high spatial resolution for observing long term changes
in the Earth’s surface. However, missing observations (i.e., gaps) caused by clouds and cloud
shadows, orbit and sensing geometry, and sensor issues have broadly limited the development of
Landsat time-series applications. Due to the large area and temporal and spatial irregularity of
time-series gaps, it is difficult to find an efficient and highly precise method to fill them. The Missing
Observation Prediction based on Spectral-Temporal Metrics (MOPSTM) method has been proposed
and delivered good performance in filling large-area gaps of single-date Landsat images. However, it
can be less practical for a time series longer than one year due to the lack of mechanics that exclude
dissimilar data in time series (e.g., different phenology or changes in land cover). To solve this
problem, this study proposes a new gap-filling method, Spectral Temporal Information for Missing
Data Reconstruction (STIMDR), and examines its performance in Landsat reflectance time series. Two
groups of experiments, including 2000 × 2000 pixel Landsat single-date images and Landsat time
series acquired from four sites (Kenya, Finland, Germany, and China), were performed to test the
new method. We simulated artificial gaps to evaluate predicted pixel values with real observations.
Quantitative and qualitative evaluations of gap-filled images through comparisons with other state-
of-the-art methods confirmed the more robust and accurate performance of the proposed method.
In addition, the proposed method was also able to fill gaps contaminated by extreme cloud cover
for a period (e.g., winter in high-latitude areas). A down-stream task of random forest supervised
classification through both gap-filled simulated datasets and the original valid datasets verified that
STIMDR-generated products are relevant to the user community for land cover applications.

Keywords: remote sensing; k-Nearest Neighbor regression; machine learning; random forest classifi-
cation; time-series analysis

1. Introduction

Time series has become the dominant form of remote sensing data for monitoring
changes on the land surface [1,2]. Since the launch of the first Landsat sensor in 1972,
Landsat satellites have observed changes in the land surface from space and have made the
longest medium-resolution time series available for free [3,4]. The long archive, together
with other satellites such as Sentinel-2, is a valuable resource for various applications,
ranging from long-term land use and land cover (LULC) monitoring [5,6] and burned area
estimation [7] to crop monitoring [8] and characterization of land-surface phenology [9]
over shorter periods.

However, Landsat time-series applications are limited by missing observations (i.e.,
gaps), which continue to be a major obstacle, particularly when a dense time series is

Remote Sens. 2022, 14, 172. https://doi.org/10.3390/rs14010172 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010172
https://doi.org/10.3390/rs14010172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1885-340X
https://orcid.org/0000-0002-5996-9268
https://orcid.org/0000-0002-3899-8860
https://doi.org/10.3390/rs14010172
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010172?type=check_update&version=1


Remote Sens. 2022, 14, 172 2 of 27

required [10]. This has stimulated research to reconstruct missing values and to produce
gap-free imagery [10]. Reconstructing gap-free Landsat images in a time series is often
more challenging than reconstructing single-date images for additional considerations of
time series features.

One of the key factors is the number of valid (cloud-free) observations in the time
series, which depends on satellite orbit and sensor geometry, clouds, and sensor issues [11].
Landsat has a 16-day revisit cycle; thus, a single Landsat sensor acquires approximately
23 scenes from 1 path and row per year. The number of observations can be greater if
several Landsat sensors are available or if the pixel is covered by several Landsat paths.
However, because of clouds and cloud shadows (CCS), the number of valid observations
per pixel is typically considerably less than 23. Cloud cover can also be extremely high in
some cases, for example, larger than 90% in the tropics during the wet season [12].

Gaps can be small or large in area and temporally and spatially irregular, which
is another key factor that should be considered in reconstructing Landsat time series.
For example, gaps resulting from Landsat 7 ETM+ Scan Line Corrector (SLC) failure are in
a wedge shape [13]. Gaps resulting from continuous cloud cover are often irregular and
large in area.

The methods to reconstruct SLC-off gaps are relatively well established [3,13–15].
However, gaps caused by CCS with greater temporal and spatial irregularity are more
challenging to reconstruct. For time-series processing, spatial-based, temporal-based,
and hybrid methods (i.e., those that use more than one of the spectral, spatial, and temporal
information sources) are commonly developed in recovering various types of gaps [16–18],
e.g., state-of-the-art methods that belong to these types are reviewed in Section 2.

In this work, we propose a novel gap-filling method named Spectral Temporal Informa-
tion for Missing Data Reconstruction (STIMDR). To implement STIMDR, a pre-imputation
for the image that is to be reconstructed is required. There are four main steps in STIMDR.
The first step is to calculate the weight based on the spectral and temporal information
(Section 3.2.2). Secondly, Section 3.2.3 describes how to find the most similar observations
per pixel over the time series in the pre-imputation image based on spectral and temporal
criteria. Thirdly, weighted STMs are calculated using the most similar observations and
their weights (Section 3.2.4). Finally, the k-NN regression is used to predict the gap pixels
based on the weighted STM feature space (Section 3.2.5). The new proposed method is
suited to global implementation subject to a proper tuning procedure, which was provided
by the sensitivity test varying from site to site.

2. Related Work
2.1. Spatial-Based Methods

Spatial-based methods assume that the missing data can be reconstructed from the
valid data with similar spatial autocorrelation or geometrical structure by means of similar
contextual information from the adjacent cloudy regions, e.g., moving window [13]. Such
methods include diffusion methods [19], variation-based methods [20], and geostatistical
kriging methods [21]. A recently proposed ordinary kriging gap-filling displayed good
performance in marine remote sensing using miscellaneous and variant environmental
datasets [22]. The spatial-based methods often take into account correlations in the spatial
domain (local and nonlocal correlations), which can be severely dependent on the size of
the gaps and the similarity of contextual structures [23]. Due to the spatial variation of
the land cover and thus of the spectral signal, they are typically suitable for recovering
small-area gaps and ineffective for large-scale cloud cover or complicated applications [24].

2.2. Temporal-Based Methods

Temporal-based methods, which employ time-series information, have the potential to
reconstruct even the largest gaps without the influence of surrounding pixels. The represen-
tative methods consist of linear and spline interpolations. Akima spline interpolation [25,26]
is based on a piecewise function composed of a set of polynomials, third degrees at most,
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producing a curve of given points with a successive interval that tends to have a natural
look or resemble manual drafting [27]. It has been commonly applied to interpolating
missing values in satellite imagery [28–30]. A drawback of Akima spline interpolation
is that single noise-like (e.g., cloud-contaminated pixels) observations can result in large
changes in the interpolation curve [31].

Steffen spline, a one-dimensional monotonic interpolation based on piecewise cubic
functions [31], is an alternative interpolator. It has proved to be a stable and well-behaved
interpolation method for time-series applications [32,33]. However, Steffen spline may
have issues recovering peak and trough values by interpolating monotonic curves between
each interval. Akima spline and Steffen spline methods are accessible from an open-source
software Processing Kernel for geospatial data (Pktools) [34,35], written in C++ and relying
on the GDAL API.

In addition, as another open-source project for state-of-the-art remote sensing, Orfeo
Toolbox (OTB) provides a spline gap-filling method [36–39], which has received strong
interest [40,41]. It combines linear and spline methods depending on the number of valid
dates in the temporal profile. Orfeo Toolbox, together with Pktools, provides fast, flexible,
and scalable features and functions for raster-based workflows with language integration
using Bash or Python [42]. They also enable multi-core parallel processing of very large
datasets owing to efficient algorithms and optimized memory management.

2.3. Hybrid Methods

Hybrid methods have been particularly successful in filling different types of gaps [43,44].
A popular hybrid method is the window regression (WR) method [14,45], which employs
linear regression on the data selected within a spatial neighborhood of the gaps and in the
temporal domain close to the date of the gaps (i.e., a spatial-temporal window). It has
good performance in recovering Landsat ETM+ SLC-off data and MODIS NDVI time series.
However, the spatial window-based models often have difficulties in recovering pixels that
have heterogeneous land cover in the neighborhood, especially for coarser spatial resolution
analysis [46].

Spatial coherence and temporal seasonal regularity was used in a gap-filling method
that performed well in test sets featuring with 20% and 50% gaps [47]. This method
was developed in four steps: (i) the adaptive selection of spatio-temporal neighborhood
of the gaps, (ii) ranking of the subset temporal images, (iii) the estimation of empirical
quantiles characterizing gaps, and (iv) quantile regression predicting the gaps. The method
is available as an open-source R package, namely, gapfill. It contains the C++ source code
and enables parallel computation in an R environment. gapfill may recover large-area gaps,
but its efficiency decreases as the number of gap-filling routine repeats increases due to the
large size of gaps [48].

Spectral-Angle-Mapper-based Spatio-Temporal Similarity (SAMSTS) was proposed to
fill large-area gaps [10], and a fill-and-fit approach was used to predict within-year satellite
time series spatially and temporally [49]. However, the segmentation process involved in
SAMSTS can produce unwanted values [18].

Missing Observation Prediction based on Spectral-Temporal Metrics (MOPSTM) was
developed to recover large-area gaps in Landsat images [18,50]. MOPSTM uses a k-Nearest
Neighbor (k-NN) machine-learning method to predict missing observations based on the
valid pixels in the target image and statistical spectral-temporal metrics (STMs) computed
for a 1-year period as feature space [50]. MOPSTM may be sensitive to the time period. A 1-
year period may obtain insufficient valid observations or even zero observations; however,
a longer time period is more likely to include noise and dissimilar pixels (e.g., difference in
phenology or changes in land cover).

A new branch of hybrid methods that includes deep learning theories has been the
subject of great interest [24,51]. From the perspective of nonlinear expression ability of
deep learning theory, hybrid methods involving spatial–temporal–spectral information
have developed to recover images contaminated with dead pixels and thick clouds [24,52].
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For example, the limitations of the state-of-the-art methods reviewed above are sum-
marized in Table 1.

Table 1. Limitations of the state-of-the-art gap-filling methods that have been compared in this work.

Method Type Details Limitation Reference

Akima spline Temporal Spline models Single noise-like (e.g., cloud-contaminated pixels)
observations can result in large changes in the
interpolation curve [31].

[25]

Steffen spline Temporal Spline models Steffen spline may have issues recovering peak and
trough values by interpolating monotonic curves
between each interval.

[31]

OTB spline Temporal Linear and spline models in
Orfeo Toolbox

OTB spline has the same limitations that Akima
spline method has.

[36,39]

WR Hybrid Window regression WR has difficulties in recovering pixels that have
heterogeneous land cover in the neighborhood,
especially for coarser spatial resolution analysis [46].
In addition, it is inefficient to reconstruct large-area
gaps.

[14,45]

gapfill Hybrid Quantitle regression fitted to
spatio-temporal subsets

gapfill may recover large-area gaps, but its efficiency
decreases as the number of gap-filling routine
repeats increases due to the large size of gaps [48].

[47]

SAMSTS Hybrid Spectral-Angle-Mapper
based Spatio-Temporal
Similarity

The segmentation process involved in SAMSTS can
produce unwanted values [18].

[10]

MOPSTM Hybrid Missing Observation
Prediction based on
Spectral-Temporal Metrics

MOPSTM may be sensitive to the time period due to
the lack of mechanics that exclude dissimilar data in
time series (e.g., different phenology or changes in
land cover).

[18]

3. Materials And Methods
3.1. Study Area

We used the same four Landsat 8 sites as were used in developing MOPSTM, and each
site was reorganized into 60 km × 60 km areas. The locations are in Taita Taveta County,
Kenya (3◦18′S, 38◦30′E), Pirkanmaa province, Finland (61◦30′N, 23◦46′E), Brandenburg,
Germany (52◦00′N, 13◦24′E), and the Qinghai-Tibet Plateau, China (28◦40′N, 89◦10′E)
(Figure 1). The four sites feature various topographical and vegetation types, such as
tropical montane forest in hilly areas and savannas in the plains in Site 1; boreal forests,
croplands, and lakes in Site 2; broad-leaved forests and croplands in relatively flat terrain
in Site 3; and high plains and mountains above the timberline in Site 4. The LULC types in
the four sites are forest, bushland, grassland, cropland, built-up areas, and water.

3.2. STIMDR Algorithm

A flowchart summarizing the STIMDR algorithm is shown in Figure 2. For conve-
nience, we refer to an image having pixels that have been labeled as simulated gaps in the
CCS mask as a “target image”. Here, we summarize the procedure of the main steps, and
then, in the following sections, we explain them in greater detail. Before the gap-filling
process, the Landsat time series is preprocessed, and a pre-imputation of the missing data
in the target image is required because missing data cannot be used to calculate the spectral
similarity between the target image and the other images. Here, the MOPSTM gap-filled
images are used as the pre-imputation images.
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Figure 1. Location of the study areas. Site 1: Taita Taveta County, Kenya; Site 2: Pirkanmaa province,
Finland; Site 3: Brandenburg, Germany; and Site 4: Qinghai-Tibet Plateau, China.
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Figure 2. Workflow of the STIMDR method corresponding to the subtitles in Section 3.2.
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The main steps in STIMDR are (i) to calculate the weight based on the spectral and
temporal information, (ii) to find the most similar observations per pixel over the time series,
(iii) to calculate weighted STMs including the weighted mean and weighted quantiles (10th,
25th, 50th, 75th, and 90th percentiles) with the spectral and temporal weights, and (iv) to
train the k-NN regression using valid pixels in the target image and to predict missing
values in the gaps. The overall procedure is repeated for each image in the time series.

3.2.1. Landsat Time Series and Preprocessing

We obtained Landsat 8 Operational Land Imager (OLI) Collection 1 Level-2 Surface
Reflectance products from the USGS website https://earthexplorer.usgs.gov (accessed on
10 November 2021) the four sites (Table 2) and used seven spectral bands, including ultra
blue, blue, green, red, near-infrared (NIR), and two shortwave infrared (SWIR1 and SWIR2)
bands in each image. We reorganized the image size as 2000 × 2000 pixels for each site and
obtained a long temporal period from the beginning of 2014 to the end of 2018. Images
entirely covered by CCS were excluded, and thus the number of images collected over the
5-year period differed between sites. We performed the same preprocessing steps, e.g.,
removing pixels contaminated by CCS from CFMask cloud masks [53] and converting the
reflectance to a range between 0 and 1 as was performed for the MOPSTM method [18].
At the end of this phase, we had the target image pre-imputed with temporary values (for
missing data) that would be replaced with the final gap-filled values.

Images in the time series have different numbers of valid pixels (Figure 3). As 53%
of the images in the time series had valid pixels under 20%, Site 3 had the poorest image
quality. In contrast, as 57% of the images in the time series had valid pixels over 60%, Site 4
had the best image quality. As continuous CCS occurred (e.g., between September 2017
and March 2018), Site 2 had the fewest images in the time series.

Figure 3. Time series valid pixel proportion (%) for the four sites: Site 1 (Taita Taveta, Kenya), Site
2 (Pirkanmaa, Finland), Site 3 (Brandenburg, Germany), and Site 4 (Tibet, China). The horizontal
dashed line shows the 20% and 60% level. The unfilled circles are images that have valid pixel
percentage under 20%; grey filled circles are images that have valid pixel percentage between 20%
and 60%; black filled circles are images that have valid pixel percentage over 60%. The percentage of
images for each level is shown on the right side of each panel. Images that were entirely covered by
clouds and cloud shadows are not shown.

https://earthexplorer.usgs.gov
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Table 2. Landsat 8 Operational Land Imager (OLI) images acquired from January 2014 to Decem-
ber 2018.

Site Location Path and Row Sensor Number
of Bands Area (km2) Spatial

Resolution (m)
Number of
Images Collected

1 Taita Taveta, Kenya 167, 62

OLI 8 3600 30

99
2 Pirkanmaa, Finland 189, 17 33
3 Brandenburg, Germany 193, 24 72
4 Tibet, China 139, 40 92

3.2.2. Spectral and Temporal Information

For example, a consistent dense time series of Landsat images is a precondition for
several remote sensing applications. A good time series is characterized by a temporal
consistency, which is defined as data that were collected close in time having similar
values [54,55]. Ideally, images acquired from the same geographic location in the time
series should have similar values; however, natural and artificial disturbances, as well as
phenological shifts (due to climate oscillation cycles), may alter the observations, and thus
change the spectral values at the acquisition time. Therefore, we used the spectral and
temporal information to measure the temporal consistency of the observations per pixel
over the time series. We used the spectral similarity, generated from a root mean square
deviation (RMSD):

RMSD(xj, yj, ti) =

√
∑B

b=1(L(xj, yj, ti, b)− L(xj, yj, ttarget, b))2

B
(1)

where L(xj, yj, ti, b) is the reflectance of the pixel located in (xj, yj) in the bth band of an
image acquired from date ti, i starts from 1 and ends at the total number of pixels in a
image, L(xj, yj, ttarget, b) is the reflectance of the pixel located in (xj, yj) in the bth band of a
target image acquired from date ttarget, and B is the number of bands. A large RMSD value
indicates a large spectral difference between the target image and the image in the time
series. In other words, areas with high spectral difference, such as fields with agricultural
crop rotation, will have large RMSD; other areas with low spectral variation, such as water
or evergreen forest, will have small RMSD.

The spectral weight SW(xj, yj, ti) was computed as the reciprocal of RMSD(xj, yj, ti),
and it was pixel-based:

SW(xj, yj, ti) =
1

RMSD(xj, yj, ti)
(2)

We used the temporal information derived from the acquisition dates between a target
image and images in the time series. Therefore, the temporal weight transformed from that
was image-based and expressed as:

TW(ti) =
1

|D(ti)− D(ttarget)|
(3)

where D(ti) denotes the image acquired on the date of ti, and D(ttarget) denotes the date of
the target image. The unit of the date difference is day.

As combining the individual strength of spatial and spectral domains can make better
use of their hidden correlations [17], we combined SW(xj, yj, ti) and TW(ti) to obtain a new
weight STW(xj, yj, ti) (which is similar to a synthetic index based on the spectral similarity
and geographic distance [13]):

STW(xj, yj, ti) = SW(xj, yj, ti)× TW(ti) (4)

where STW(xj, yj, ti) is the pixel-based spectral and temporal weight, meaning that every
pixel in the time series has a value of STW(xj, yj, ti) with respect to the pixel in the same
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location from the target image. Large values in STW(xj, yj, ti) indicate high similarity of
pixels in the time series and the target image, and small values indicate low similarity
between these pixels.

3.2.3. Selection of the Most Similar Observations Per Pixel Location

Even preprocessed by the cloud removal algorithm [53], observations contaminated
by cloud shadows remain present in the pixel location over the time series [56]. These
observations, as well as the observations resulting from land surface changes at a time,
usually have high heterogeneity (low similarity) to those in the target image, affecting the
weighted spectral response [57,58] and potentially resulting in outliers greatly falling above
or below the observations along the time series over the pixel values. To attenuate such
phenomena, we used a threshold M to filter out the observations with high heterogeneity
in each pixel location. In other words, observations with top M spectral and temporal
weight STW(xj, yj, ti) rankings are selected to derive the weighted STMs. Using a mapping
in α: from N to N, where N is the set of positive integers less than or equal to the number
of images in a time series, tαi is equal to the ith observation that is selected from the time
series. Thus, the selected observations are denoted as (xj, yj, tα1), (xj, yj, tα2), (xj, yj, tα3),
. . . , (xj, yj, tαM ).

A sensitivity test of M helped decide its proper value (Supplementary Table S1).
Although a variety of M yielded the same accuracy in some cases, we chose the one that
fell in the middle of the range. In this work, we used M = 20 in Site 1, M = 20 in Site 2,
M = 11 in Site 3, and M = 5 in Site 4.

3.2.4. Calculation of Weighted STMs

The spectral and temporal weight STW(xj, yj, tαi ) was transformed as below:

W(xj, yj, tαi ) = STW(xj, yj, tαi )/
M

∑
i=1

STW(xj, yj, tαi ) (5)

The range of W(xj, yj, tαi ) is between 0 and 1. A weighted mean matrix was calcu-
lated as:

Lw(xj, yj, b) =
M

∑
i=1

(W(xj, yj, tαi )× L(xj, yj, tαi , b)) (6)

where Lw(b) is the weighted mean reflectance in band b.
In addition to the weighted mean, we also applied the weights to the quantile es-

timation [59,60] and calculated the weighted quantiles (10th, 25th, 50th, 75th, and 90th
percentiles) based on the quantile estimators [61], summarized as a median-unbiased esti-
mator, independently of the underlying distribution. The weighted mean matrix and the
weighted quantiles were stacked together as STMs (Supplementary Figure S1) [18], which
were used as feature space in the k-NN regression described in the next section.

3.2.5. k-NN Regression and Variable Importance

We employed the k-NN regression to find the closest pixels in the feature space (STMs)
to the missing pixel and thus predict the value. We used k-NN regression with KD Tree
in the “FNN v1.1.3” package [62] of the R software environment [63]. Euclidean distance
was employed in the calculation of distance as it was used in [18]. Before running k-NN
models, we tuned the k values between 1 and 25 and then selected the optimal k value
with respect to root mean square error (RMSE). The training and test datasets contained
10,000 pixels for each k tuning experiment. To assess how the variables in the weighted
STMs performed when predicting gaps, we computed the variable importance using the R
package “caret” [64] in the k-NN regression models.
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3.3. Accuracy Assessment
3.3.1. Evaluation Metrics

The filled gaps were qualitatively evaluated by visually examining the spatial continu-
ousness and the presence of noise. Evaluation metrics were also employed to assess the
accuracy quantitatively. The agreement of the gap-filled and actual pixels was evaluated
using RMSE and R2:

RMSE(b) =

√√√√ 1
N
×

N

∑
i=1

(L(xj, yj, b)− L̂(xj, yj, b))2 (7)

RMSE(xj, yj) =

√√√√ 1
B
×

B

∑
b=1

(L(xj, yj, b)− L̂(xj, yj, b))2 (8)

R2 = 1−
∑N

j=1(L(xj, yj, b)− L̂(xj, yj, b))2

∑N
j=1(L(xj, yj, b)− L̄(b))2

(9)

where N is the total number of gap-filled pixels, L(xj, yj, b) and L̂(xj, yj, b) are the actual
and predicted values, respectively, of the ith pixel in bth band, and L̄(b) is the mean value
of L(xj, yj, b) in the bth band.

3.3.2. Performance Comparison with Existing Methods

We compared our method, STIMDR, with four hybrid methods (WR, gapfill, SAM-
STS, and MOPSTM methods) and three temporal interpolation methods (a non-rounded
Akima spline, Steffen spline, and OTB spline methods). The performance of SAMSTS and
MOPSTM has been compared in the previous work [18].

The parameters in the WR method were set as follows: The spatial radius r equals
20, the temporal radius t equals 3, and the minimum pairings m equals 3. A large radius
enables missing pixels that are far away from the valid pixels in spatial distance to be
recovered. To speed up the performance, we divided the target image into 4 × 4 pieces.

The gapfill method is open-source and can be performed in parallel computation.
The parameters for the gapfill method were set to default. To speed up the computation
of gapfill, the target image was divided into 10 × 10 pieces, processing with multiple CPU
cores. Since WR and gapfill cannot fill all the gaps in the four Sites, we compared the overall
accuracy in the common regions that were reconstructed by them.

SAMSTS is an open-source algorithm, the parameters of which were set to default
defined in the coding document [65]. As MOPSTM was not computation-demanding, we
trained the target image at its full size.

The temporal interpolation methods did not have large computing time cost, so they
were implemented on the full-size images, processed with multiple CPU cores. Akima
spline interpolation requires a minimum of five points in time series, so we removed the
pixels that had fewer than six valid points in the pixel location throughout the period.

For OTB gap-filling, we chose the “spline” instead of “linear” method as the 5-year
time series met the requirement of more than five valid dates in most of the areas [39].
However, with fewer than three valid dates, it would apply linear interpolation, while with
three or four valid dates, cubic splines with natural boundary conditions would be used.

To better summarize how the STIMDR results have improved over MOPSTM, we com-
pared the histogram of absolute residuals and the median absolute deviation (MAD) [66,67]
of these two methods. The absolute values of residuals are the absolute difference between
the filled values and the actual values in each band; MAD is defined as the median of the
absolute deviations from the median of the data and is a robust estimator of dispersion,
better at highlighting differences in non-parametric data distribution.

Furthermore, we tested if the residual populations were significantly different using
the Wilcoxon rank sum test, which has been frequently used in statistical practice for the
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comparison of skewed data distribution [68,69]. The absolute pixel values of residuals from
the common areas reconstructed by all the methods were compared in this test.

3.3.3. Experiments of Filling Single-Date Images

For filling single-date images, four nearly cloud-free target images from Sites 1–4 were
acquired from 9 March 2017, 21 August 2015, 12 October 2018, and 10 December 2014,
respectively. After simulating gaps, valid pixel percentages were 37.3% (Site 1), 39.3% (Site
2), 15.3% (Site 3), and 26.4% (Site 4). Training datasets contain 30% of the valid data selected
using systematic sampling from the overall valid pixels. As the test datasets were simulated
gaps, there was no overlap between the training and test datasets. The referenced pixels
in gap locations were used to evaluate the k-NN prediction. To obtain stable accuracy, we
repeated the experiments 10 times using different training datasets (30% of the overall
valid pixels).

(i) Overall accuracy using the evaluation metrics

We assessed the overall gap-filling performance using RMSE and R2 that were calcu-
lated from the actual values and filled values using different methods.

(ii) Dependence of the number of the observations

As the number of the observations per pixel location throughout time series can
be a driver behind overall RMSE, we examined how the RMSE relies on the number of
observations using different gap-filling methods. The pixels were from the common regions
that have been filled by these methods.

(iii) Accuracy for spectral bands

To evaluate the accuracy for different spectral bands, we calculated the linear regres-
sion between the filled values and actual values for every single spectral band.

(iv) Accuracy for LULC types

To assess the algorithms’ performance on different LULC types, we evaluated RMSE
for the different methods over six LULC types, including forest, bushland, grassland,
cropland, built-up areas, and water. The reference data were the same datasets that were
used in the previous studies [18].

To examine the accuracy variation of STIMDR with respect to its sensitivity to LULC
type imbalance, we demonstrated RMSE for six LULC types given that one specific LULC
type was missing in the training datasets. We randomly selected 1000 pixels from ev-
ery LULC type, and thus there were a total of 6000 pixels. The 10-fold cross-validation
was applied to the datasets. We eliminated pixels from one specific LULC type in the
training datasets while predicting the test datasets which had pixels from all LULC types.
The specific missing type is from the six LULC types in order. To obtain stable accuracy, we
repeated the experiments 10 times.

3.3.4. Experiments of Filling Images in Time Series

For filling time-series images, gap pixels were simulated by allocating a random
sampling method to valid pixels. Various random 10,000-pixel masks were applied to
each image to create artificial gaps before they were reconstructed by different gap-filling
methods. To obtain comparable results, all gap-filling methods filled the same pixels in
one image while the distributions of the gap pixels were random per image. As WR and
gapfill cannot fill all the gaps in the four Sites, they were not included in the time-series
experiments. Moreover, we did not include SAMSTS because of its lack of support for par-
allel operations. For MOPSTM and STIMDR, the training datasets were both 100,000 pixels.
Images that had a valid pixel number less than 100,000 were removed.

3.3.5. Experiments of Gap-Filled Images for LULC Classification Applications

To evaluate how the gap-filled images perform with respect to remote sensing ap-
plications, we generated LULC products derived from the single-date gap-filled images
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reconstructed by all the methods and compared them with those generated from the
original images.

We used Random forest classifier [41,70,71] with training datasets derived from 5% of
all the pixels in seven bands in the gap-filled and original images by stratified sampling.
The training datasets were from the same location and identical in number for each gap-
filled and original image in each site; the test datasets were all the gap pixels. The number
of test datasets was about 1.22 million, 2.41 million, 3.37 million, and 2.93 million in Sites
1–4, respectively. In each site, different methods had slightly different numbers of the
gap-filled pixels because a few pixels might remain unfilled. For example, Akima and
Steffen methods did not fill any pixel location that had less than six valid observations
over the 5-year period. Accordingly, test datasets of the original images were from the
locations where artificial gaps were created. To compare accuracy between actual and
gap-filled datasets, the classification results were evaluated using producer’s accuracy,
user’s accuracy and overall accuracy [13,72].

It is worth noting that the goal of the LULC classification experiment was not to
generate the best LULC classification products, which can be generally done using more
sophisticated classifiers employed with multiple dates of imagery, ancillary sources of data,
and high-quality LULC reference data [13]. Instead, our goal was to compare between our
method, other gap-filling methods, and real observations, thereby giving us an insight on
how gap-filled images using our method are applicable to remote sensing applications.

4. Results
4.1. Optimization of the k Value and Importance of Variables

RMSE (multipled by 100,000) with respect to the k value ranging from 1 to 25 is shown
in Figure 4. All sites had a strict convex shape of RMSE with an increase in k value. Thus,
the curves showed a steep decrease when k started from one to three and reached the
bottom of a trough before rising. The best k values, corresponding to the minima in RMSE,
were 7, 5, 5, and 3 for Sites 1–4, respectively. Based on all four sites, the average RMSE was
minimized when k was five.
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Figure 4. Dependence of gap-filling accuracy on k value in terms of RMSE in the four sites. The train-
ing and test datasets were set identical with a number of 10,000 for each k tuning experiment. There
was no overlap between the training and test datasets. The four sites had minimum RMSE when k
was equal to 7, 5, 5, and 3, respectively, reaching a minima average at k = 5 for all sites. RMSE was
multiplied by 100,000.
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Forty-two variables (e.g., Site 1 in Supplementary Figure S1) were tested for gap
filling in all sites. The 10 most important variables are shown in Supplementary Figure S2
according to their importance score. A high score represents high importance, and the most
important variables have a score of 100. We found that variable importance differed at
every band. For example, the most important variables for the blue band were itself, green,
ultra blue, and red bands, and the most important variables for the NIR band were itself,
red, and SWIR bands.

4.2. Results for Filling Single-Date Images
4.2.1. Overall Accuracy

Eight gap-filled results are compared in Figure 5, and their pixel-based RMSE values
are displayed in Supplementary Figure S3. In general, STIMDR produced the smoothest
and most natural-looking reconstructed images. MOPSTM was the second best on average,
although it produced artifacts when recovering stripe-shaped gaps for Site 4. SAMSTS
performed better than all methods other than MOPSTM and STIMDR but rendered noisy
pixels (e.g., in Site 3). The three temporal interpolation methods produced similar results.
WR and gapfill could not recover all the gaps, especially the large-area gaps. gapfill only
recovered all the gaps for Site 1, and it performed more accurately than WR and the
temporal interpolation methods. WR was the worst, only recovering adjacent pixels around
the valid pixels but producing extreme large or small values.

In terms of the common regions that had been constructed by all the methods, STIMDR
yielded smaller RMSE and larger R2 values, e.g., (mean values of 10 repeated experiments
with different training datasets) than any other method on average (Figure 6 and the
“Partial” columns in Table 3). MOPSTM was the second best on average even though it had
the lowest accuracy for Site 4. WR delivered the lowest accuracy, which was far worse than
the accuracy of any other method (except for Site 4), e.g., gapfill succeeded in reconstructing
all the gaps only in Site 1, so it has the “Full” result for Site 1 only. For Sites 1–2, gapfill
performed better than temporal interpolation methods, but worse than them for Sites 3–4.
SAMSTS had smaller RMSE than other methods except for MOPSTM and STIMDR and had
the smallest mean RMSE for Site 3 (Figure 6). The OTB spline yielded very similar accuracy
to the Akima spline but was better for Site 2. The Akima and OTB splines outperformed
STIMDR for Site 4 because the interannual features of the land surface changed slowly, and
cloud cover was less frequent during the studied years in high-altitude areas in Site 4.

For methods that were able to fill all the gaps, there was a slight difference between
the full and partial accuracy (Table 3), except for Site 4, where the partial RMSE was
approximately only half the full RMSE for most of the methods.

In addition to RMSE and R2, the histogram of absolute residuals and MAD indicated
a relatively clear improvement between MOPSTM and STIMDR (Figure 7). In Figure 7,
MOPSTM predicted more pixels that had extremely large absolute residuals, especially in
Site 4. The difference in MAD is larger than 20 between these two methods in all sites.

For example, the Wilcoxon rank sum test (Supplementary Tables S2–S5) confirmed
that distributions were mostly significantly different (p < 0.05). Only the Akima spline and
the OTB spline methods were not significantly different for Site 1 (p-value 0.29) and Site 4
(p-value 0.78).
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(a) Gaps (b) Actual (g) Steffen spline (i) MOPSTM (j) STIMDR(f) Akima spline (h) OTB spline(c) WR (d) gapfill (e) SAMSTS

Site 2

0 1.50.75 km

Site 3

0 10.5 km

Site 4

0 10.5 km

Site 1

0 10.5 km

Figure 5. Results of gap-filled images using different methods in the four sites, acquired on 9 March
2017, 21 August 2015, 12 October 2018, and 10 December 2014, respectively, displayed in false color of
R: SWIR1, G: NIR, and B: red surface reflectance: (a) Target images with simulated gaps, (b) referenced
image and the results of (c) WR, (d) gapfill, (e) SAMSTS, (f) Akima spline, (g) Steffen spline, (h) OTB
spline, (i) MOPSTM, and (j) STIMDR. Each image size is 2000 × 2000 30 m pixels, resulting in
60 km × 60 km. The valid pixel percentages were 37.3% (Site 1), 39.3% (Site 2), 15.3% (Site 3),
and 26.4% (Site 4). Missing data are shown in the white regions.
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Figure 6. Comparison of pixel-based RMSE (multiplied by 100,000) of gap-filled images using
different methods for the four sites. The pixels were from the common regions that have been filled
by these methods.

Table 3. Comparison of WR, gapfill, SAMSTS, Akima spline, Steffen spline, OTB spline, MOPSTM,
and STIMDR performance evaluated by RMSE (Equation (7)) and R2 for seven bands of single-date
Landsat 8 images in the four sites. The highest and lowest values are presented in bold. The values in
the parentheses under STIMDR results are the standard deviation of the 10 repeated experiments.
The “Full” filled pixel proportion approximately equals the proportion of all gaps in the target images,
and the “Partial” pixel proportion equals the common pixels that have been recovered by all methods.

Site 1 Site 2 Site 3 Site 4
Full Partial Full Partial Full Partial Full Partial

Filled pixel proportion (%) 62.7 41.4 60.7 22.4 84.7 13.4 73.6 34.8

RMSE
(×100,000)

WR 77,816 11,105 106,531 1177
gapfill 1325 1204 2364 4949 1355
SAMSTS 1135 1081 1715 1715 3830 3395 2349 1390
Akima spline 4231 4231 5685 4769 4343 4342 1114 625
Steffen spline 3477 3534 5182 4379 4053 3945 1247 700
OTB spline 4182 4206 4107 3530 4367 4357 1115 625
MOPSTM 838 831 1358 1381 2664 2687 1927 1395
STIMDR 748 738 1275 1331 2655 2673 1203 715

(0.2) (0.3) (0.5) (0.4) (0.3) (0.5) (3.2) (0.3)

R2

WR 0.003 0.086 0.003 0.946
gapfill 0.836 0.863 0.614 0.361 0.938
SAMSTS 0.851 0.868 0.753 0.741 0.557 0.628 0.827 0.935
Akima spline 0.367 0.379 0.536 0.524 0.520 0.495 0.958 0.983
Steffen spline 0.454 0.462 0.581 0.574 0.560 0.554 0.944 0.977
OTB spline 0.370 0.381 0.611 0.594 0.518 0.494 0.958 0.983
MOPSTM 0.920 0.923 0.829 0.815 0.760 0.749 0.888 0.936
STIMDR 0.934 0.938 0.861 0.839 0.764 0.753 0.952 0.980

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
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Figure 7. Histogram of the absolute values of residuals for MOPSTM and STIMDR in four sites.
MAD stands for the median absolute deviation. The x-axis was scaled by the log base 10 function.
The absolute values of residuals were multiplied by 100,000 .

4.2.2. Dependence of the Number of the Observations

We demonstrate the dependence of the median RMSE of the methods on the number
of observations per pixel location throughout the 5-year period in Figure 8. In general,
the trend indicates a drop in RMSE with an increase in the valid observations in the time
series, such as in Site 2 and Site 4. STIMDR was the least affected by the number of valid
observations in the time series, and it delivered robust performance on pixels that had an
extremely small number of valid observations throughout the time series. WR had the
greatest fluctuation by the valid observations on average, e.g., in Site 1 and Site 3.

4.2.3. Results for Spectral Bands

Scatter plots (Site 1 in Figure 9 and Sites 2–4 in Supplementary Figures S4–S6) show
the relationships between the referenced values and the gap-filled values from the common
regions using the eight methods for seven spectral bands. WR had the largest error, resulting
in an extremely small R2. Temporal interpolation methods had biased fitted lines between
actual and predicted pixels with most of the R2 less than 0.60. SAMSTS was slightly better
than gapfill on average. Both MOPSTM-filled and STIMDR-filled pixels were closer to the
1:1 line than the other methods, indicating their superior performance in each spectral
band. The ranking of the eight methods from the most to the least accurate is STIMDR >
MOPSTM > SAMSTS > gapfill > Steffen spline > OTB spline ≥ Akima spline > WR.
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Figure 8. Dependence of median RMSE on the number of observations in every pixel location
throughout the 5-year period.

4.2.4. Results for LULC Types

Figure 10 demonstrates RMSE for six LULC types in four sites. Consistent with the
overall RMSE (Table 3), STIMDR had the highest accuracy for most of the LULC-specific
situations. The greatest difference between the performance of STIMDR and the temporal
interpolation methods was observed at the water type in Site 4. The overall ranking for the
six methods from the most to the least accurate in terms of LULC accuracy is STIMDR >
MOPSTM > SAMSTS > Steffen spline > OTB spline ≥ Akima spline.

In terms of sensitivity to LULC type imbalance (Figure 11), STIMDR did not show
a clear drop in RMSE of a specific LULC type when this LULC type was missing in the
training datasets. For example, the grassland type in Site 1 yielded almost the similar RMSE
no matter which LULC type was missing in the training datasets. It should be noted that
some types were sensitive to the absent proportion of pixels from their own types in the
training datasets. Such types are forest in Site 1, bushland in Site 3, and cropland in Sites 2
to 4.
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Figure 9. Density scatter plot of WR, gapfill, SAMSTS, Akima spline, Steffen spline, OTB spline,
MOPSTM, and STIMDR predicted values (y-axis) and referenced values (x-axis) for seven spectral
bands in Site 1. The black dashed line is the 1:1 line, and the solid blue lines indicate the linear
regression fits. Darker color shading: regions with a large density of points; lighter color shading:
regions with a small density of points. RMSE was multiplied by 100,000. All pixels are from the
common reconstructed regions.
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Figure 10. RMSE for different land use and land cover (LULC) types in four sites. The grey line is the
proportion of the land use and land cover types in each site. RMSE was multiplied by 100,000.

4.3. Results for Filling Images in Time Series

RMSE for reconstructed Landsat 8 time series is demonstrated in Figure 12. The num-
bers of the images evaluated were 95, 32, 68, and 91 for Sites 1–4, respectively. With respect
to the average RMSE of the five methods, STIMDR was always the smallest (2966, 2105,
3206, and 3298 for Sites 1–4, respectively) while the OTB spline was always the highest
(4928, 10,465, 8697, and 8477 for Sites 1–4, respectively). In addition to considerable im-
provement in accuracy, STIMDR showed high overall robustness as it had very few outliers
(relatively high RMSE values), which occurred many times using the OTB spline method.

4.4. Results of Gap-Filled Images for LULC Classification Applications

For example, Table 4 demonstrates the LULC classification results for all Sites. Com-
pared with the gap-filled images using other methods (Table 4), STIMDR-filled images
had the closest overall accuracy to the original images for producing classification prod-
ucts and even surpassed the original images (74.3%) in overall accuracy in Site 2 (74.9%).
This supports the assertion that STIMDR results can be used in LULC mapping applica-
tions. In addition to STIMDR, MOPSTM also showed similar classification results to the
original images.
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Figure 11. The sensitivity of STIMDR to LULC types when a specific LULC type is missing in the
training datasets. The row indicates all the LULC types, and the column indicates the missing LULC
type. The color and size of the circle represent the RMSE values (multiplied by 100,000). Larger RMSE
are of red color and larger size.

1000

3000

10,000

R
M

SE
 (×

10
0,

00
0)

Akima spline
Steffen spline
OTB spline
MOPSTM
STIMDR

3000

10,000

30,000

1000

3000

10,000

30,000

2014−01−01

2015−01−01

2016−01−01

2017−01−01

2018−01−01

2019−01−01
Date

R
M

SE
 (×

10
0,

00
0)

1000

3000

10,000

30,000

2014−01−01

2015−01−01

2016−01−01

2017−01−01

2018−01−01

2019−01−01
Date

Akima spline average
Steffen spline average
OTB spline average
MOPSTM average
STIMDR average

Site 1 Site 2

Site 3 Site 4

Akima_A: 7562
Steffen_A: 7341

OTB_A: 8697
MOPSTM_A: 3378
STIMDR_A: 3206

Akima_A: 4458
Steffen_A: 4304

OTB_A: 4928
MOPSTM_A: 3091
STIMDR_A: 2966

Akima_A: 6836 
Steffen_A: 6603
OTB_A: 10,465 

MOPSTM_A: 2231
STIMDR_A: 2105

Akima_A: 7539
Steffen_A: 7450

OTB_A: 8477
MOPSTM_A: 3522
STIMDR_A: 3298

Figure 12. Accuracy of time-series experiments using Akima spline, Steffen spline, OTB spline,
MOPSTM, and STIMDR with respect to RMSE based on 10,000 simulated gap pixels in each image in
the time series for four sites. The Landsat 8 images were acquired from the beginning of 2014 until
the end of 2018. Akima_A, Steffen_A, OTB_A, MOPSTM_A, and STIMDR_A stand for the average
RMSE of the Akima spline, Steffen spline, OTB spline, MOPSTM, and STIMDR methods, respectively.
The y-axis was scaled by the log base 10 function. RMSE was multiplied by 100,000.
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Table 4. Accuracy assessment of land cover classifications based on gap-filled images using (1)
SAMSTS, (2) Akima spline, (3) Steffen spline, (4) OTB spline, (5) MOPSTM, and (6) STIMDR gap-
filling methods, and (7) original images for Sites 1–4.

Producer’s Accuracy (%) User’s Accuracy (%)
Site Class (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

1

forest 25.6 20.2 22.5 20.3 20.2 21.5 26.7 43.2 48.3 49.4 48.2 54.2 55.1 49.9
bushland 89.2 92.7 92.3 92.6 93.3 92.7 92.2 72.3 70.1 70.7 70.1 71.2 71.8 72.5
grassland 22.2 13.9 15.7 14.1 17.2 19.2 21.7 41.8 39.2 40.5 38.9 42.2 43.6 46.0
cropland 15.4 7.9 9.1 7.9 9.0 12.1 14.1 31.9 24.6 26.4 25.1 34.4 37.1 37.6

built-up areas 11.3 5.0 6.6 4.9 7.9 9.2 9.3 3.9 8.5 10.2 8.2 8.0 8.8 6.9
water 15.5 19.9 21.2 19.1 17.3 19.4 21.9 8.1 11.9 11.5 11.5 13.5 12.2 11.5

Overall accuracy (%) 66.4 66.1 66.4 66.1 67.4 67.7 68.2

2

forest 87.9 87.5 87.7 87.6 89.6 90.1 88.6 73.0 72.8 73.9 73.7 73.8 73.8 73.9
bushland 2.9 2.3 2.5 2.8 2.3 2.4 2.5 16.0 20.6 20.0 20.0 19.9 21.4 19.7
grassland 2.3 1.2 1.2 1.0 0.3 0.6 1.2 19.6 16.6 17.9 17.8 15.8 17.4 18.4
cropland 64.3 63.2 65.3 65.5 68.4 67.9 66.0 64.2 62.0 63.0 63.2 68.2 68.1 66.5

built-up areas 40.9 39.9 40.9 42.1 44.5 43.3 47.3 55.7 54.1 54.6 57.2 61.0 61.6 58.9
water 93.0 93.7 94.3 94.2 94.1 94.3 93.7 90.5 90.6 90.3 90.2 90.5 90.4 91.3

Overall accuracy (%) 72.8 72.4 73.1 73.2 74.9 74.9 74.3

3

forest 85.2 85.7 87.2 85.6 88.8 90.0 89.8 84.4 83.8 85.1 83.9 85.4 85.5 87.0
bushland 2.7 0.6 1.1 0.6 3.4 1.5 2.4 15.5 31.7 27.7 27.8 16.6 20.2 24.9
grassland 13.5 9.4 11.4 8.9 17.6 16.0 14.9 38.9 56.1 55.9 53.3 39.8 47.5 49.8
cropland 93.6 94.2 94.8 94.3 93.6 94.0 94.6 87.4 85.8 86.5 85.7 89.8 89.8 90.0

built-up areas 26.7 13.8 15.2 12.7 37.1 35.9 36.3 50.3 47.6 52.1 47.1 55.2 58.2 57.3
water 64.9 68.5 69.8 67.5 61.2 67.0 70.9 62.2 63.2 66.3 61.7 58.2 62.3 70.6

Overall accuracy (%) 84.8 84.3 85.2 84.2 86.4 86.9 87.4

4

forest 0.1 0.1 0.1 0.1 0.1 0.1 0.1 17.1 7.7 7.0 9.2 17.1 2.3 16.8
bushland 0.2 0.3 0.4 0.3 0.2 0.3 0.3 6.9 7.3 8.5 6.7 6.9 8.2 8.5
grassland 98.0 97.7 97.6 97.6 98.0 97.7 97.6 85.5 85.8 85.8 85.8 85.5 85.7 85.7
cropland 4.1 2.1 3.8 3.8 4.1 2.1 3.6 4.9 6.0 6.2 5.0 4.9 6.0 5.4

built-up areas 23.1 24.8 25.3 25.4 23.1 24.8 24.8 44.4 43.0 43.1 42.9 44.4 42.0 42.7
water 10.4 10.6 11.6 11.3 10.4 10.6 11.4 38.6 38.0 38.1 38.2 38.6 38.3 37.7

Overall accuracy (%) 83.1 83.0 83.0 83.0 83.1 83.0 83.0

5. Discussion

The ability to produce gap-free Landsat time series in a simple and efficient way
can significantly improve remote-sensing applications for land-surface characterization,
analysis, and monitoring [1]. Although there are several image reconstruction methods
proposed to fill Landsat 7 SLC-off [73] and CCS gaps [74,75], methods that are simple
to tune on a global scale, fast in computation, and robust in producing a time series of
gap-free imagery are still scant [76,77]. The newly published method, Missing Observation
Prediction based on Spectral-Temporal Metrics (MOPSTM), has demonstrated high per-
formance in predicting large-area gaps with respect to spatially heterogeneous land-cover
areas and has the potential to generate gap-free Landsat time series [18]. However, it is
limited to deriving STMs for a fixed period (e.g., one year), thus restricting its performance
by ignoring useful spectral and temporal information beyond the fixed period. Moreover,
MOPSTM is unable to fill gaps in extreme circumstances where local areas are entirely
covered by successive CCS during the 1-year period. Therefore, we propose a new method,
STIMDR, to overcome the limitations of MOPSTM and produce gap-free images in a longer
time series by employing spectral and temporal information to select similar observations
per pixel location.

5.1. Comparisons with the Other Gap-Filling Methods

STIMDR was compared with three temporal interpolation methods (Akima spline, Stef-
fen spline, and OTB spline) and four other hybrid methods (WR, gapfill, SAMSTS, and MOP-
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STM), each of which has been commonly used in remote sensing applications [28,33,36].
STIMDR held overwhelming advantages over these methods in visual accuracy assessment
between gap-filled images versus actual images in terms of visual analysis (Figure 5),
pixel-based RMSE (Supplementary Figure S3), quantiles of pixel-based RMSE (Figure 6),
median RMSE dependent on the number of valid observations (Figure 8), quantitative
evaluation of spectral bands (Figure 9) and LULC types (Figure 10), and a down-stream
task of LULC classification (Table 4). The overall ranking of the eight methods from the
most to the least accurate is STIMDR > MOPSTM > SAMSTS > gapfill > Steffen spline >
OTB spline ≥ Akima spline > WR.

Reliant on the size of the spatial neighborhood, WR failed to recover all the gaps,
especially those that covered a large area. gapfill can recover pixels that have a long distance
to the valid pixels, but can fail in filling gaps of an enormous spatial size. The disadvantages
of the temporal interpolation methods are rather distinct, one important pitfall of which is
overfitting [78]. In addition, making no use of spatial information resulted in obvious arti-
facts at the junctions (e.g., Site 1 in Figure 5f–h). Potential issues of temporal interpolation
methods that could affect the accuracy are the length of the temporal interval of the missing
values, the number of existing valid pixels, and whether the cloud-contaminated pixels
exist among the valid pixels. For example, the Akima and Steffen spline methods had the
largest RMSE for Site 2, where the fewest valid pixels were collected among the four sites
over the period. WR and the temporal interpolation methods tended to have good perfor-
mance when sufficient valid observations existed in the time series (e.g., Site 4). Superior to
WR, gapfill, and the temporal interpolation methods, SAMSTS delivered higher accuracy
but produced unwanted noise, likely due to the segmentation process [18]. MOPSTM per-
formed more accurately for Sites 1–3 than all methods other than STIMDR, but performed
the least accurately for Site 4. STIMDR was the greatest improvement over MOPSTM in
Site 4, which proved the positive effects of using spectral and temporal weights. Moreover,
STIMDR is capable of predicting smooth values at the junctions, which likely benefits from
employing k nearest pixels in the spatial neighborhood.

Generating and employing weights enable more important observations to be empha-
sized [79–81]. Employing weights can be an effective way to improve performance [82–84].
The weights in STIMDR contain spectral and temporal information, which measures the
temporal consistency per pixel over the time series. Observations with low temporal
consistency often have small weights and thus have little impact on the weighted STMs.
For example, pixels that undergo large LULC changes are more likely to have very small
spectral similarity and a very large temporal distance given that large LULC changes are
not typically observed over a short period [50]. Reducing the effects of the low-temporal-
consistency observations helps improve the quality of STMs.

5.2. Computational Efficiency

The computations of WR, gapfill, MOPSTM and STIMDR were performed as parallel
jobs using a single node in the Puhti supercomputer of CSC—IT Center for Science Ltd.,
Finland, equipped with 50 GB RAM in total and an Intel® Xeon® Gold 6230 processor with
seven physical cores at 2.10 GHz base frequency. For filling the single-date images in a
partial size, WR took about 10 hours on average for an image size of 500 × 500 pixels using
1344 physical cores and 1.2 GB RAM for each core. gapfill ran over 20 h (maximum 40.5 h)
on average for a image size of 200 × 200 pixels, consuming 8400 physical cores and 3 GB
RAM for each core, making it the computationally heaviest (Table 5). For the experiment
of gap-filling single-date images in a full size (2000 × 2000 pixels), the processing time
of MOPSTM and STIMDR were about 1.8 and 2 h (without accounting for MOPSTM-
imputation processing time) on average per image with seven bands, consuming 7 and
112 physical cores and approximately 40 GB RAM, respectively. The computation of the
OTB spline in the Puhti supercomputer equipped with 2.5 GB RAM per core and 6 physical
cores took about 0.6 h on average for the same experiment. The computations of the Akima
and Steffen spline methods were conducted as parallel jobs on Yale University’s Grace
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cluster of 80 IBM NeXtScale nx360 M4 servers, using 7 E5-2660_v3 cores and about 2.8 GB
RAM per core. For the same experiment, the Akima and Steffen spline methods took about
0.5 h each. SAMSTS was running on an Intel Core i5-7200 CPU at 2.50 GHz processor,
1 CUP core, 15 GB RAM, and took about 8 h. It should be noted that different programming
languages are of different efficiency in running the same program.

Table 5. The computational efficiency of the gap-filling methods: WR, gapfill, SAMSTS, Akima spline,
Steffen spline, OTB spline, MOPSTM, and STIMDR.

Method Language Size in Pixels CPU
Cores a

RAM Used
per Core

Estimated Running
Time per Core

WR R 500 × 500 1344 1.2 GB 10 h
gapfill R, C++ 200 × 200 8400 3 GB 20 h (max 40 h)
SAMSTS C 2000 × 2000 1 15 GB 8 h
Akima spline C++ 2000 × 2000 7 2.8 GB 0.5 h
Steffen spline C++ 2000 × 2000 7 2.8 GB 0.5 h
OTB spline C++, Python 2000 × 2000 6 2.5 GB 0.6 h
MOPSTM R 2000 × 2000 7 40 GB 1.8 h

STIMDR R 500 × 500 b 112 12 GB 0.2 h
2000 × 2000 c 7 40 GB 1.8 h

a CPU cores in total for processing the image in a full size. b The spitted size for calculating spectral and temporal
weights. c The full size for the k-NN regression.

5.3. Optimizing the User-Defined Parameters in a Global Implementation

In terms of implementing the proposed method globally, e.g., we recommend the
performance of STIMDR in the High-performance-Computing environment where multiple
cores are involved. We also recommend the same preprocessing steps that were performed
in this work. The implementation of gap-filling can be mainly three steps: (i) calculating the
pre-imputation of a target image using an accurate method (e.g., MOPSTM), (ii) calculating
the spectral and temporal weights, and (iii) training and predicting in the k-NN regression.
Although there are only a few parameters in STIMDR, tuning the optimal parameters is an
unsolved problem, which is common in global implementation applications [85].

There are two parameters: (i) M, which selects the number of similar observations in
the pixel location over the time series, and (ii) k values in the k-NN regression. Tuning M
is challenging as different sites may have different optimal M. For example, the optimal
M was around 20 for Site 2, while it was only 5 for Site 4. It seems that the sites with less
vegetation tend to have a small M because the land surface is quite temporally stable. Sites
located in cloud-prone areas are supposed to have large M so that more pixels will be
included to derive STMs, e.g., the baseline is that M should be large enough to include at
least an annual cycle of observations.

In this work, the k values in the k-NN regression were decided per site according to
Figure 4, and thus k values can differ per site. Although a prior k value is challenging to
define because training datasets can vary greatly from site to site, it is possible to predefine
k values ranging from five to eight as a compromise before testing the method for other
datasets. This was based on the fact that five was the optimal value to minimize the average
RMSE for the four sites. A separate k tuning process is recommended when STIMDR is
applied on a global scale. Other options, such as the weighted k-NN [86] that enables
automatic k tuning in R package “kknn” [87], can be considered to replace the unweighted
k-NN regression.

5.4. Limitations and Future Work

The minor disadvantage of STIMDR is that a pre-imputation of missing values in
target images is required to calculate the spectral and temporal weights. However, it
is not a problem if the pre-imputation of missing values is not available, as mean and
median composites can be alternatives to imputing missing pixels in target images [88,89].
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Furthermore, any other gap-filled products or a different source image acquired from a
close date to the target image can be alternatives to the pre-imputation images.

Another limitation of STIMDR is that it can be biased to predict the missing values
when the valid pixels are of a poor quality (e.g., a part of contaminated pixels remaining)
or the lack of LULC types that are sensitive to seasonal variations (e.g., crop types). For ex-
ample, STIMDR may have poor performance in filling cropland pixels if no cropland data
can be collected in the training data (Figure 11). However, there are useful ways to avoid
this extreme situation, e.g., extending the geographic extent of the target images to include
sufficient pixels from the missing LULC type [18].

The performance of STIMDR is related to the quality of the weighted STMs. STMs
derived from biased time-series data where information for an individual season is missing
can affect the prediction of STIMDR using the k-NN regression.

In principle, STIMDR is applicable to other similar time series (e.g., Sentinel-2), and this
should be tested in future studies. Here, the method was a better alternative to WR, gapfill,
Akima spline, Steffen spline, OTB spling, SAMSTS, and MOPSTM and has the potential to
be combined with other methods (e.g., image compositing, temporal smoothing, and model
fitting) [18,49]. Future work can also focus on comparisons between gap-filling methods
with image blending (fusion) techniques.

6. Conclusions

We propose a new gap-filling method, STIMDR, and demonstrated its potential to
produce gap-free Landsat time series. The greatest advantage of the improved method is
that it offers a flexible and effective way to derive target-image specific spectral-temporal
metrics based on weights considering both spectral and temporal information. With STMs
being the feature space, the k-NN regression machine-learning method was applied to train
and predict missing values by setting identical model parameter and size of training and
testing datasets per study site. STIMDR outperformed three spline interpolation methods
(Akima spline, Steffen spline, and OTB spline) and four hybrid methods (WR, gapfill,
SAMSTS, and MOPSTM) on Landsat 8 images of four sites with different land covers and
topographies from 2014 to 2018. The results indicated its high performance in recovering
heterogeneously vegetated areas such as tropical forests, broad-leaved forests in Europe,
and high plateau vegetation in China. In follow-up studies, this method could be used
to analyze the time-series features of remote sensing images, such as forest attributes and
rangeland characterizations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14010172/s1, Figure S1: The weighted spectral-temporal metrics (STMs) for one target image
in Site 1 acquired on 9 March 2017, displayed in false color of R: SWIR1, G: NIR, and B: red. W10th
denotes weighted 10th, W25th denotes weighted 25th, W50th denotes weighted 50th, W75th denotes
weighted 75th, W90th denotes weighted 90th percentiles and WM denotes weighted mean, Figure S2.
Ten most important variables in the k-NN regression model. There were 10,000 training and testing
pixels from target images. The horizontal axis denotes the importance scores, and the vertical axis
denotes the ten most important variables containing weighted mean (WM), and weighted 10th, 25th,
50th, 75th, and 90th percentiles, Figure S3. Pixel-based RMSE (multiplied by 100,000) of gap-filled
images using different methods (corresponding to Figure 5 in the four sites, displayed in false color of
R: SWIR1, G: NIR and B: red surface reflectance. (a) window regression (WR), (b) gapfill, (c) SAMSTS,
(d) Akima spline, (e) Steffen spline, (f) OTB spline, (g) MOPSTM, and (h) STIMDR. Each image size is
2000 × 2000 30 m pixels, resulting in 60 × 60 km. The valid pixel percentages were 37.3 (Site 1), 39.3%
(Site 2), 15.3% (Site 3), and 26.4% (Site 4). Only gap pixels that have reconstructed are displayed, and
the gap pixels that failed to be constructed are displayed in the black regions. Figure S4. Density
scatter plot of window regression (WR), gapfill, SAMSTS, Akima spline, Steffen spline, OTB spline,
MOPSTM, and STIMDR predicted values (y-axis) and validation values (x-axis) for seven spectral
bands in Site 2. The black dashed line is the 1:1 line and the solid blue lines show the linear regression
fits. Darker color shading: regions with a large density of points; lighter color shading: regions
with a small density of points. RMSE was multiplied by 100,000. Figure S5. Density scatter plot
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of window regression (WR), gapfill, SAMSTS, Akima spline, Steffen spline, OTB spline, MOPSTM,
and STIMDR predicted values (y-axis) and validation values (x-axis) for seven spectral bands in Site
3. RMSE was multiplied by 100,000. Figure S6. Density scatter plot of window regression (WR),
gapfill, SAMSTS, Akima spline, Steffen spline, OTB spline, MOPSTM, and STIMDR predicted values
(y-axis) and validation values (x-axis) for seven spectral bands in Site 4. RMSE was multiplied by
100,000, Table S1. The sensitivity of threshold M with respect to the root-mean-square error (RMSE),
multiplied by 100,000.Table S2. Pairwise comparisons for Site 1 using Wilcoxon rank sum test where
p-value larger than 0.05 are labeled in bold. Table S3. Pairwise comparisons for Site 2 using Wilcoxon
rank sum test where p-value larger than 0.05 are labeled in bold. Table S4. Pairwise comparisons
for Site 3 using Wilcoxon rank sum test where p-value larger than 0.05 are labeled in bold. Table S5.
Pairwise comparisons for Site 4 using Wilcoxon rank sum test where p-value larger than 0.05 are
labeled in bold.
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