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Abstract: Introduction: Urbanization has caused dramatic changes in lifestyle, and these rapid
transitions have led to an increased risk of noncommunicable diseases, such as type 2 diabetes.
In terms of cost-effectiveness, screening for diabetic retinopathy is a critical aspect in diabetes
management. The aim of this study was to review the imaging modalities employed for retinal
examination in diabetic retinopathy screening. Methods: The PubMed and Web of Science databases
were the main sources used to investigate the medical literature. An extensive search was performed
to identify relevant articles concerning “imaging”, “diabetic retinopathy” and “screening” up to
1 June 2021. Imaging techniques were divided into the following: (i) mydriatic fundus photography,
(ii) non-mydriatic fundus photography, (iii) smartphone-based imaging, and (iv) ultrawide-field
imaging. A meta-analysis was performed to analyze the performance and technical failure rate of
each method. Results: The technical failure rates for mydriatic and non-mydriatic digital fundus
photography, smartphone-based and ultrawide-field imaging were 3.4% (95% CI: 2.3–4.6%), 12.1%
(95% CI: 5.4–18.7%), 5.3% (95% CI: 1.5–9.0%) and 2.2% (95% CI: 0.3–4.0%), respectively. The rate
was significantly different between all analyzed techniques (p < 0.001), and the overall failure rate
was 6.6% (4.9–8.3%; I2 = 97.2%). The publication bias factor for smartphone-based imaging was
significantly higher than for mydriatic digital fundus photography and non-mydriatic digital fundus
photography (b = −8.61, b = −2.59 and b = −7.03, respectively; p < 0.001). Ultrawide-field imaging
studies were excluded from the final sensitivity/specificity analysis, as the total number of patients
included was too small. Conclusions: Regardless of the type of the device used, retinal photographs
should be taken on eyes with dilated pupils, unless contraindicated, as this setting decreases the
rate of ungradable images. Smartphone-based and ultrawide-field imaging may become potential
alternative methods for optimized DR screening; however, there is not yet enough evidence for these
techniques to displace mydriatic fundus photography.

Keywords: diabetic retinopathy; fundus photography; mydriatic photography; screening; smartphone-
based imaging; ultra-wide-field scanning laser ophthalmoscope; diabetic macular edema

1. Introduction

Dramatic changes in lifestyle have led to an increased risk of noncommunicable
diseases, such as type 2 diabetes [1]. The prevalence of diabetes mellitus (DM) has been
steadily increasing over the past three decades from an estimated 108 million in 1990 to
over 415 million people worldwide, or 1 in every 11 adults [2–4]. The most prominent
increase is noted in low- and middle-income countries.

Diabetic retinopathy (DR) is the leading cause of vision loss both of working-age
adults and of preventable blindness globally. In a meta-analysis, Yau et al. estimated that
the prevalence of any DR among diabetic subjects might reach 34.6% (95% confidence
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interval [CI]: 34.5–34.8), while the prevalence of vision-threatening diabetic retinopathy
(VTDR) is 10.2% (95% CI: 10.1–10.3) [5]. The risk of DR is higher in individuals with type
1 diabetes, compared to those with type 2 diabetes. Hyperglycemia remains the most
important modifiable risk factor for DR [6].

The development of a screening program for DR in Europe was encouraged by the
St. Vincent Declaration in 1989 [7], which has set a target to reduce new cases of blindness
by one third within a 5-year period. In terms of cost-effectiveness, screening for DR is a
critical aspect of DM management [8,9]. Screening for DR is predominantly warranted by
the fact that the major complications—macular edema and proliferative DR—respond to
treatment [10,11]. According to the International Council of Ophthalmology Guidelines
for Diabetic Eye Care 2017, examinations performed for DR screening should involve
visual acuity assessment with current spectacles and retinal evaluation (ophthalmoscopy
or fundus photography) [12]. In recent years, an important development was noted,
particularly in retinal imaging techniques. The aim of this study was to review the imaging
modalities employed for retinal examination in diabetic retinopathy screening. The article
did not evaluate methods for DR grading, nor deep-learning algorithms for automated DR
detection, which may, however, play a significant role in the future [13].

2. Materials and Methods
2.1. Literature Search

The PubMed and Web of Science databases were the main sources used to investigate
medical literature. An extensive search was performed to identify relevant articles concern-
ing “imaging”, “diabetic retinopathy” and “screening” up to 1 June 2021 (Appendix A).
The following keywords were used in various combinations: diabetes, diabetic, retinopathy,
macular edema, screening, imaging, fundus, photography, and scanning laser ophthal-
moscopy. Of the studies retrieved, we reviewed all publications in English and abstracts of
non-English publications. The reference lists of the articles analyzed were also considered
as a potential source of information. We attempted to present all publications, analyzing the
accuracy of various retinal imaging methods employed for DR screening. Emphasis was
placed on studies published after the meta-analysis by Bragge et al. [14] and Hu et al. [15];
however, in contrast to those studies, we did not evaluate the performance of different
manual methods of the eye examination and aimed to analyze the performance of different
technologies. Our study did not aim to compare the accuracy of automated vs. manual
analysis, but solely to evaluate the utility of technical methods for obtaining images. Stud-
ies were critically reviewed to create an overview and guidance for further research. No
attempts were made to discover unpublished data. In addition to the PubMed and Web of
Science searches, selected chapters from relevant textbooks were included.

2.2. Statistical Analysis

Articles were included in our statistical analysis if they met the following criteria:
(i) the study evaluated an imaging modality, and the outcome of interest was the detection
of diabetic retinopathy; (ii) the study defined a reference standard for DR detection to
which the imaging method was compared; (iii) a threshold for DR detection was defined;
and (iv) the sensitivity and specificity for DR detection was specified, or data were given
to calculate them. If any investigation presented more than one threshold level for DR
detection (e.g., the detection of any DR or alternatively VTDR) the performance for all
thresholds was analyzed. In studies comparing the performance of conventional photogra-
phy and digital photography with the reference standard, we analyzed only outcomes for
the digital method. If more than two imaging techniques were applied within the study, all
methods were included in the analysis. Meta-analyses were performed by using Stata 14.2
(StataCorp, College Station, TX, USA) environment, i.e., by employing two Stata routines,
namely, METAAN (random-effects meta-analysis command) for failure rate calculations
and MIDAS (Meta-analytical Integration of Diagnostic Accuracy Studies) for appraisal
of sensitivity and specificity of the investigated diagnostic tests. Due to the observed
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heterogeneity between the studies, random-effects models were applied. When assessing
subgroup differences in the meta-analyses, a Chi-squared test was used. The level of
p < 0.05 was deemed statistically significant.

3. Results

The search identified 2137 unique articles. After removing duplicates and irrelevant
studies, 148 articles were included in the review. Table 1 presents the testing accuracy in
studies on imaging modalities used for detecting diabetic retinopathy.

3.1. Technical Failure Rate

The technical failure rates for mydriatic digital fundus photography, non-mydriatic
digital fundus photography, smartphone-based imaging and ultrawide-field imaging were
3.4% (95% CI: 2.3–4.6%), 12.1% (95% CI: 5.4–18.7%), 5.3% (95% CI: 1.5–9.0%) and 2.2% (95%
CI: 0.3–4.0%), respectively (Figure 1). The failure rate was significantly different between
all pairs of the analyzed techniques (p < 0.001). The overall failure rate for all techniques
was 6.6% (4.9–8.3%; heterogeneity [I2] = 97.2%).
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aging: 12.1% (95% CI: 5.4–18.7%, I2 = 98.6%), smartphone-based imaging: 5.3% (1.5–9.0%; I2 = 
87.7%), ultrawide-field imaging: 2.2% (0.3–4.0%; I2 = 89.5%). Overall, for all techniques: 6.6% 
(4.9–8.3%; I2 = 97.2%). Weights are calculated from random effects analysis. 
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was too small. 

The pooled sensitivity for all the methods was 0.84 (95% CI: 0.8–0.88) (Figure 2). In 
terms of sensitivity, mydriatic fundus photography (0.85 [95% CI: 0.77–0.91], I2 = 0.0; 
Figure 3) and non-mydriatic fundus photography (0.85 [95% CI: 0.77–0.9], I2 = 38.85; 
Figure 4) had lower sensitivity than smartphone-based imaging (0.91 [95% CI: 0.85–0.94], 
I2 = 98.47; Figure 5). There was a statistically significant difference between all three 
groups (p < 0.001). Due to the high heterogeneity of smartphone-based imaging studies, 
the results should be taken with caution. 

Figure 1. Forest plot presenting the technical failure of the analyzed techniques. Overall values for
mydriatic fundus photography: 3.4% (95% CI: 2.3–4.6%, I2 = 82.7%), for non-mydriatic fundus imag-
ing: 12.1% (95% CI: 5.4–18.7%, I2 = 98.6%), smartphone-based imaging: 5.3% (1.5–9.0%; I2 = 87.7%),
ultrawide-field imaging: 2.2% (0.3–4.0%; I2 = 89.5%). Overall, for all techniques: 6.6% (4.9–8.3%;
I2 = 97.2%). Weights are calculated from random effects analysis.
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Table 1. Testing accuracy in studies on imaging modalities used for detecting diabetic retinopathy.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Mydriatic digital
fundus

photography
Pugh et al. 1993 [16] 352 3-field 45◦ (Canon CR3) Y 3.7 7-field 30◦ Zeiss,

any DR 61 85 0.74 (0.66–0.82)

Harding et al. 1995 [17] 320 3-field 45◦ (Canon
CR4-45NM) Y 1.8 Slit-lamp

biomicroscopy, VTDR 89 (80–98) 86 (82–90)

Joannou et al. 1996 [18] 663 60◦ photography
(Canon CF-60) Y N/A

Dilated
ophthalmoscopy,

any DR
93 89

Stellingwerf et al. 2001
[19] 469 2-field 50◦

(Canon CF-60) Y 2 7-field 30◦, any DR 83 88 0.71

Stellingwerf et al. 2001
[19] 469 2-field 50◦

(Canon CF-60) Y 2 7-field 30◦, VTDR 95 99 0.71

Olson et al. 2003 [20] 586
2-field 50◦

(digital Topcon camera,
manual assessment)

Y 4.4
Dilated

ophthalmoscopy,
any DR

83 (77–89) 79 (75–83)

Olson et al. 2003 [20] 586
1-field 50◦ (digital

Topcon camera,
manual assessment)

Y 4.4
Dilated

ophthalmoscopy,
any DR

80 (74–86) 88 (84–91)

Scanlon et al. 2003 [21] 1549 2-field 45◦

(Topcon NRW5S) Y 3.7 Slit-lamp
biomicroscopy, VTDR 87.8 86.1 0.67–0.75

Scanlon et al. 2003 [22] 239 2-field 45◦ (Canon CR6) Y 1.5 7-field 30◦,
referrable DR 87.4 (83.5–91.5) 94.9 (91.5–98.3) 0.8

Lawrence et al. 2004 [23] 151 3-field 45◦

(Topcon TRC-NW5SF) Y N/A 7-field 30◦, any DR 66 86

Lawrence et al. 2004 [23] 103 3-field 45◦

(Topcon TRC-NW6S) Y N/A 7-field 30◦, any DR 85 81

Murgatroyd et al. 2004
[24] 750 1-field 45◦

(Topcon TRC-NW6S) Y 7
Slit-lamp

ophthalmoscopy,
“Referrable DR”

81 (76–87) 92 (90–94) 0.86

Murgatroyd et al. 2004
[24] 752 3-field 45◦

(Topcon TRC-NW6S) Y 6.5
Slit-lamp

ophthalmoscopy
“Referrable DR”

83 (78–88) 93 (91–96) 0.88
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Table 1. Conts.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Aptel et al. 2008 [25] 158 1-field 45◦ Y N/A
Indirect

ophthalmoscopy,
any DR

89.74 98.3 0.9

Aptel et al. 2008 [25] 158 3-field 45◦ Y N/A
Indirect

ophthalmoscopy,
any DR

97.44 98.3 0.95

Molina Fernández et al.
2008 [26] 99 3-field 45◦

(Topcon TRC-50 EX) Y 17.2
Ophthalmological

Examination,
referrable DR

85 (62.1–96.8) 96.4 (85.1–98.9)

Neubauer et al. 2008 [27] 128 1-field 45◦ (Zeiss
VisucamPRO NM) Y N/A

7-field 30◦ Zeiss
FF450plus images,
ETDRS level 35

99 (94–100) 92 (73–99) 0.87 (0.81–0.92)

Baeza et al. 2009 [28] 432 1-field 45◦

(Topcon CRW6S) Y 1.4 7-field 30◦, any DR 77 (71–83) 98 (96–99) 0.77

Baeza et al. 2009 [28] 432 2-field 45◦

(Topcon CRW6S) Y 1.6 7-field 30◦, any DR 86 (81–91) 95 (92–98) 0.82

Baeza et al. 2009 [28] 432 3-field 45◦

(Topcon CRW6S) Y 2.1 7-field 30◦, any DR 85 (80–90) 94 (91–97) 0.81

Baeza et al. 2009 [28] 432 1-field 45◦

(Topcon CRW6S) Y 1.4 7-field 30◦, VTDR 82 (72–92) 99 (97–100) 0.84

Baeza et al. 2009 [28] 432 2-field 45◦

(Topcon CRW6S) Y 1.6 7-field 30◦, VTDR 95 (89–100) 98 (97–100) 0.91

Baeza et al. 2009 [28] 432 3-field 45◦

(Topcon CRW6S) Y 2.1 7-field 30◦, VTDR 95 (89–100) 98 (96–99) 0.89

Sengupta et al. 2019 [29] 233 3-field 45 degree images
(Topcon TRC-50DX) N 2.6–4.3 Dilated fundus

examination, any DR (92.6–94.9) (85.5–98.2) 0.68 (0.67–0.73)

Lois et al. 2021 [30] 281 7-field imaging
(Not specified) 6.0 Clinical examination,

proliferative DR 85 (77–91) 38 (41–56)



Diagnostics 2021, 11, 1802 6 of 27

Table 1. Conts.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Non-mydriatic
digital fundus
photography

Williams et al. 1986 [31] 120 1-field 45◦ (Kowa or
Canon CR3 camera) N N/A (excluded) Dilated fundus

examination, any DR 96 98 N/A

Pugh et al. 1993 [16] 352 1-field 45◦ (Canon CR3) N 14 7-field 30◦ Zeiss,
any DR 81 97 0.62 (0.54-0.70)

Peters et al. 1993 [32] 1044 1-field 45◦ (Canon CR4) N 32 Ophthalmological
exam, VTDR 100 82 N/A

Siu et al. 1998 [33] 150 1-field 45◦

(Canon CR-45UAF) N N/A
Indirect

ophthalmoscopy,
any DR

64 (43–85) 90 (84–96)

Taylor et al. 1999 [34] 222 1-field 45◦ (Canon CR5) N N/A 7-field 30◦ Zeiss,
any DR 74 (68–80) 96 (94–98) N/A

Taylor et al. 1999 [34] 222 1-field 45◦ (Canon CR5
Digital) N N/A 7-field 30◦ Zeiss,

VTDR 85 (80–90) 98 (96–100) N/A

Bursell et al. 2001 [35] 108

3-field 45◦, Joslin Vision
Network Technology

protocol (Topcon
TRC NW-5S)

N 2.8 7-field 30◦ Zeiss FF4
camera, any DR 89 97 0.87

Maberley et a. 2003 [36] 200 1-field 45◦ (Topcon
TRC NW5SF) N 1.0

Slit-lamp
ophthalmoscopy,

any DR
84.4 (79–90) 79.2 (74.1–84.3) 0.85 (0.78–0.92)

Lin et al. 2002 [37] 197
patients

2-field, 640 × 480 px
black-and-white images

(Canon CR5-45NM)
N 8.1 7-field 30◦ Zeiss FF4

camera, referrable DR 78 86 0.4

Scanlon et al. 2003 [21] 1549 1-field 45◦

Topcon NRW5S) N 19.7 Slit-lamp
biomicroscopy, VTDR 86.0 76.7 0.67–0.75

Perrier et al. 2003 [38] 196 2-field 45◦

(Topcon CRW6) N 14.2 7-field 30◦, any DR 95.7 78.1 0.76

Perrier et al. 2003 [38] 196 3-field 45◦

(Topcon CRW6) N 18.4 7-field 30◦, any DR 97.6 71.9 0.71

Perrier et al. 2003 [38] 196 4-field 45◦

(Topcon CRW6) N 18.4 7-field 30◦, any DR 97.6 65.6 0.65

Herbert et al. 2003 [39] 288 1-field 45◦

(Topcon TRC-NW5S) N 4
Slit-lamp

ophthalmoscopy,
any DR)

38.0 95.0 0.84
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Table 1. Conts.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Lawrence et al. 2004 [23] 151 1-field 45◦

(Topcon TRC-NW5SF) N N/A 7-field 30◦, any DR 66 66

Lawrence et al. 2004 [23] 103 1-field 45◦

(Topcon TRC-NW6S) N N/A 7-field 30◦, any DR 76 45

Murgatroyd et al. 2004
[24] 585 1-field 45◦

(Topcon TRC-NW6S) N 36
Slit-lamp

ophthalmoscopy
(referrable DR)

77 (71–84) 95 (93–97) 1.0

Phiri et al. 2006 [40] 325 1-field 45◦ (digital
Canon CR6) N 14.0 7-field 30◦,

referrable DR 84.1 (65.5–93.7) 71.2 (58.1–81.1) 0.65

Lopez-Bastida et al. 2007
[41] 1546 1-field 45◦

(Topcon TRC-NW6S) N 7.2 (required
pupil dilation)

Slit-lamp
ophthalmoscopy

(VTDR)
100 100 1

Lopez-Bastida et al. 2007
[41] 1546 1-field 45◦

(Topcon TRC-NW6S) N 7.2 (required
pupil dilation)

Slit-lamp
ophthalmoscopy

(any DR)
92 (90–94) 96 (95–98) 0.89

Aptel et al. 2008 [25] 158 1-field 45◦

(Topcon TRC-NW6S) N 11.4
Indirect

ophthalmoscopy,
any DR

76.9 99.2 0.82

Aptel et al. 2008 [25] 158 3-field 45◦

(Topcon TRC-NW6S) N 13.3
Indirect

ophthalmoscopy,
any DR

92.3 97.5 0.9

Molina Fernández et al.
2008 [26] 247 3-field 45◦

(Topcon TRC-50 EX) N 38.4
Ophthalmological

Examination,
referrable DR

66.7 (41–86.7%) 98 (89.1–99.9)

Molina Fernández et al.
2008 [26] 135 3-field 45◦

(Topcon TRC-50 EX)

N
(not routine,
in selected

cases)

27.4
Ophthalmological

Examination,
referrable DR

76.9 (56.4–91) 93.4 (84.1–99.2)

Vujosevic et al. 2009 [42] 108 3-field, 1392 × 1040 px
(Nidek) N N/A

7-field 30◦ Topcon
TRC 50IA,

referrable DR
82 92 0.74 (0.61–0.87)

Vujosevic et al. 2009 [42] 108 1-field, 1392 × 1040 px
(Nidek) N N/A

7-field 30◦ Topcon
TRC 50IA,

referrable DR
71 96 0.67 (0.5– 0.80)

Baeza et al. 2009 [28] 432 1-field 45◦

(Topcon CRW6S) Y 15.3 7-field 30◦, any DR 68 (60–75) 98 (96–100) 0.68
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Table 1. Conts.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Baeza et al. 2009 [28] 432 2-field 45◦

(Topcon CRW6S) Y 17.1 7-field 30◦, any DR 76 (70–83) 94 (90–98) 0.77

Baeza et al. 2009 [28] 432 3-field 45◦

(Topcon CRW6S) Y 17.6 7-field 30◦, any DR 79 (73–86) 94 (90–98) 0.77

Baeza et al. 2009 [28] 432 1-field 45◦

(Topcon CRW6S) Y 15.3 7-field 30◦, VTDR 67 (54–80) 99 (98–100) 0.75

Baeza et al. 2009 [28] 432 2-field 45◦

(Topcon CRW6S) Y 17.1 7-field 30◦, VTDR 80 (69–91) 99 (98–100) 0.85

Baeza et al. 2009 [28] 432 3-field 45◦

(Topcon CRW6S) Y 17.6 7-field 30◦, VTDR 82 (81–92) 99 (98–100) 0.86

Gupta et al. 2014 [43] 1000 3-field,
Zeiss Visupac 450+ N 25.6 Dilated fundoscopy,

VTDR 91.1 99.3 0.92

Smartphone-
based

imaging
Ryan et al. 2015 [44] 600 iPhone 5 + 20D lens N 1.5 7-field dilated fundus

photography, any DR 81 (75–86) 94 (92–96) 0.76 (0.71–0.82)

Ryan et al. 2015 [44] 600 iPhone 5 + 20D lens N 1.5 7-field dilated fundus
photography, VTDR 54 (40–67) 99 (98–100) 0.64 (0.52–0.76)

Rajalakshmi et al. 2015
[45] 602

Android Phone +
Remidio Fundus on

Phone imaging system
(4-field)

Y N/A 7-field dilated fundus
photography, any DR 92.7 (87.8–96.1) 98.4 (94.3–99.8) 0.90 (0.85–0.95)

Rajalakshmi et al. 2015
[45] 602

Android Phone +
Remidio Fundus on

Phone imaging system
(4-field)

Y N/A 7-field dilated fundus
photography, VTDR 87.9 (83.2–92.9) 94.9 (89.7–98.2) 0.80 (0.71–0.89)

Russo et al. 2015 [46] 240 iPhone 5 + D-Eye
Adapter (5-field) Y 3.7

Slit-lamp
biomicroscopy, no

apparent DR
96 (90–98) 90 (83–95) 0.78 (0.71–0.84)

Ryan et al. 2015 [44] 600 iPhone 5 + 20 D lens Y 1.8 7-field dilated fundus
photography, any DR 50 (43–56) 94 (92–97) 0.48 (0.41–0.56)

Ryan et al. 2015 [44] 600 iPhone 5 + 20 D lens Y 1.8 7-field dilated fundus
photography, VTDR 59 (46–72) 100 (99–100) 0.71 (0.6–0.82)

Toy et al. 2016 [47] 100
iPhone 5s + Volk

ClearField lens + Paxos
Scope adapter

Y 4.0
Dilated fundus

examination,
referrable DR

91 99 0.7
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Table 1. Conts.

Technique Study Number
of Eyes

Imaging Details
and Device

Pupil
Dilation

Technical Failure
Rate [%]

Reference Standard,
(Testing Accuracy

Analyzed for)

Sensitivity [%]
(95% CI) *

Specificity [%]
(95% CI) * Kappa (95% CI)

Kim et al. 2018 [48] 142
iPhone 5S + Cellscope
Retina optical system

(5-field)
Y 16

Dilated fundus
examination,
referrable DR

93.3 56.8 0.55–0.63

Rajalakshmi et al. 2018
[49] 602

Android Phone +
Remidio Fundus on

Phone imaging system
(4-field) + EyeArt

AI Algorithm

Y N/A Dilated fundus
examination, any DR 95.8 (92.9–98.7) 80.2 (72.6–87.8) 0.78 (0.71–0.86)

Rajalakshmi et al. 2018
[49] 602

Android Phone +
Remidio Fundus on

Phone imaging system
(4-field)+ EyeArt

AI Algorithm

Y N/A Dilated fundus
examination, VTDR 99.1 (95.1–99.9) 80.4 (73.9–85.9) 0.75 (0.67–0.83)

Sengupta et al. 2019 [29] 233
HTC One M8 + Remidio

Fundus on Phone
imaging (3-field 45◦)

Y 1.7–2.1 Dilated fundus
examination, any DR

93.1 (88.3–96.4)
94.3 (89.7–97.2)

89.1 (68.2–92.2)
94.5 (84.9–98.9) 0.55 (0.50–0.57)

Ultrawide-field
imaging Silva et al. 2012 [50] 206

Stereoscopic 100◦ and
200◦ images

(Optos Resmax)
Y 0.5 7-field dilated fundus

photography, any DR (95–100) (81–100) 0.95 ± 0.03

Szeto et al. 2019 [51] 322 Non-stereoscopic 200◦

(Optos Daytona) N 7.1 Dilated fundus
examination, any DR 67.7 (60.0–74.8) 97.8 (93.6–95.5) 0.63

Szeto et al. 2019 [51] 322 Non-stereoscopic 200◦

(Optos Daytona) N 7.1 Dilated fundus
examination, VTDR 72.6 (58.2–84.1) 97.8 (92.7–98.1) 0.71

Manjunath et al. 2015
[52] 2046 Non-stereoscopic 200◦

(Optomap P2000) Y 1.1 Clinical examination,
VTDR 84.0 (81–87) 69.0 (67–72) 0.75

Lois et al. 2021 [30] 281 Optos System
(Not specified) 5.0 Clinical examination,

proliferative DR 83 (75–89) 54 (46–61)

* If analyzed for two or more observers, values for each observer or preferably the average for the observers is presented. Abbreviations: CI—confidence interval, DR—diabetic retinopathy, VTDR—vision-
threatening diabetic retinopathy.
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3.2. Sensitivity and Specificity in Cases without Technical Failure

The articles included in the study are presented in Table 1; ultrawide-field imaging
studies were excluded from the final analysis, as the total number of patients included was
too small.

The pooled sensitivity for all the methods was 0.84 (95% CI: 0.8–0.88) (Figure 2).
In terms of sensitivity, mydriatic fundus photography (0.85 [95% CI: 0.77–0.91], I2 = 0.0;
Figure 3) and non-mydriatic fundus photography (0.85 [95% CI: 0.77–0.9], I2 = 38.85;
Figure 4) had lower sensitivity than smartphone-based imaging (0.91 [95% CI: 0.85–0.94],
I2 = 98.47; Figure 5). There was a statistically significant difference between all three groups
(p < 0.001). Due to the high heterogeneity of smartphone-based imaging studies, the results
should be taken with caution.
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The pooled specificity for all methods was 0.92 (95% CI: 0.89–0.94) (Figure 2). The
specificity of mydriatic fundus photography (0.91 [95% CI: 0.84–0.94], I2 = 98.47) was not dif-
ferent from that of non-mydriatic fundus photography (0.93 [95% CI: 0.89–0.96], I2 = 98.82).
The pooled specificity of smartphone-based imaging studies (0.94 [95% CI: 0.83–0.98],
I2 = 98.92) was significantly better than that of mydriatic (p < 0.001) and non-mydriatic
fundus photography (p < 0.001). There was no difference observed in the specificity for
mydriatic and non-mydriatic photography (p > 0.05). The receiver operating characteristic
(ROC) curves of the analyzed methods are shown in Figures 6–8.

The total sample size was the lowest in smartphone-based imaging studies. Moreover,
the publication bias factor for smartphone-based imaging was significantly higher than for my-
driatic digital fundus photography and non-mydriatic digital fundus photography (b = −8.61,
b = −2.59 and b = −7.03, respectively). The pooled sensitivity and specificity for mydriatic
methods, i.e., mydriatic fundus photography and smartphone imaging, was 0.85 (95% CI:
0.78–0.90) and 0.92 (95% CI: 0.87–0.95), respectively; it was not different to the sensitivity and
specificity of non-mydriatic fundus photography (p = 0.827 and p = 0.921, respectively).
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4. Discussion
4.1. Fundus Examination vs. Retinal Photography

A DR screening examination could hypothetically include a complete ophthalmic
check-up with best-corrected visual acuity after refraction, pupil dilation and state-of-art
retinal imaging including wide-field retinal photography with optical coherence tomogra-
phy [53,54]. This is not performed even in high-resource settings; ideally, a DR screening
program should have as few components as possible, be affordable and available, but
should ensure appropriate referral [55].

With the increasing prevalence of diabetes, one could consider ophthalmology as
under-resourced in some parts of the world. However, even with a sufficient number
of ophthalmologists available, employing them to screen every individual with DM is
not feasible and likely to be inefficient use of resources [14,56]. As a consequence, in
some studies fundoscopy for DR screening was successfully performed by ophthalmo-
logical optometrists [20,57–60], general practitioners [61,62], trained technicians [63] or
nurses [64]. Although in a single study consultants performed better than non-consultant
staff in grading DR, the variability of opinions was significant even for consultants [65].
In another study, the sensitivity and specificity of slit-lamp examination for DR detection
performed by optometrists was 73% and 90%, respectively, compared to the reference
slit-lamp biomicroscopy by ophthalmologists with interest in medical retina [20]. In a
Norwegian investigation the sensitivity and specificity of optometrists for DR evaluation
of 7-field fundus images was 67% (62–72%) and 84% (95% CI: 80–89%), respectively, when
compared to reading by ophthalmologists [66]. Only 5% of optometrists met the required
standard of at least 80% sensitivity and 95% specificity which was postulated as the ul-
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timate requirement for DR screening programs [66]. Still, these differences might rather
be a matter of briefing for specific tasks, than reflect the competence based on the actual
educational background.

Additional criteria should be considered for a screening test — the test should be
inexpensive and non-invasive. Screening techniques cannot be expected to perform as well
as detailed investigative techniques but should be comparable with the original method [67].
In clinical studies the agreement between ophthalmoscopy and color fundus photography
grading by various methods ranges from 34.0% to 86.3% [37]. Interestingly, regarding
the grading of DR, there is evidence indicating that color photography is superior to
fundoscopy alone [10,20,37,63,65,68,69], and particularly to direct ophthalmoscopy [17,33].
Schachat et al. reported that clinical examination underestimates the prevalence of DR
when compared to photography gradings (7.7% vs. 8.7%, respectively) [10]. In another
study, the sensitivity and specificity for ophthalmoscopy compared to grading of 7-field
fundus photographs for the detection of any DR was 51% and 91%, respectively [70].
Even worse rates of performance were reported in an investigation by Lin et al. where
the sensitivity of ophthalmoscopy for DR screening compared with 7-field photography
was 34%, with a specificity of 100% [37]. Pugh et al. found that the sensitivity of an
ophthalmologist in detecting DR was 33% and it was even worse (sensitivity 14%) for a
physician’s assistant when compared to the reference standard, the 7-field photography [16].
Another study reported that ophthalmoscopy missed approximately 50% of eyes with
microaneurysms only when compared to fundus photography [71].

Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 4. Forest plots for the sensitivity and specificity of non-mydriatic fundus photography. 

 
Figure 5. Forest plots for the sensitivity and specificity of smartphone-based fundus imaging. Figure 5. Forest plots for the sensitivity and specificity of smartphone-based fundus imaging.



Diagnostics 2021, 11, 1802 14 of 27

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 24 
 

 

The pooled specificity for all methods was 0.92 (95% CI: 0.89–0.94) (Figure 2). The 
specificity of mydriatic fundus photography (0.91 [95% CI: 0.84–0.94], I2 = 98.47) was not 
different from that of non-mydriatic fundus photography (0.93 [95% CI: 0.89–0.96], I2 = 
98.82). The pooled specificity of smartphone-based imaging studies (0.94 [95% CI: 
0.83–0.98], I2 = 98.92) was significantly better than that of mydriatic (p < 0.001) and 
non-mydriatic fundus photography (p < 0.001). There was no difference observed in the 
specificity for mydriatic and non-mydriatic photography (p > 0.05). The receiver operat-
ing characteristic (ROC) curves of the analyzed methods are shown in Figures 6–8. 

 
Figure 6. Receiver operating characteristic curve for mydriatic fundus imaging. Figure 6. Receiver operating characteristic curve for mydriatic fundus imaging.

Diagnostics 2021, 11, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 7. Receiver operating characteristic curve for non-mydriatic fundus imaging. 

 
Figure 8. Receiver operating characteristic curve for smartphone-based imaging. 

Figure 7. Receiver operating characteristic curve for non-mydriatic fundus imaging.



Diagnostics 2021, 11, 1802 15 of 27

Diagnostics 2021, 11, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 7. Receiver operating characteristic curve for non-mydriatic fundus imaging. 

 
Figure 8. Receiver operating characteristic curve for smartphone-based imaging. Figure 8. Receiver operating characteristic curve for smartphone-based imaging.

It was hypothesized that macular edema with a few hard exudates could be easier
to detect in fundoscopy than in non-stereoscopic photography [68]. Nevertheless, such a
finding was not confirmed in clinical studies [31,65]. In an investigation by Taylor et al. mac-
ulopathy was reported in 147/4312 eyes with camera screening and only in 95/4312 eyes
by ophthalmoscopy alone (p < 0.001); moreover, ophthalmoscopy underestimated the
presence of hard exudates (p < 0.001) [65]. A disadvantage of the fundus camera is its
cost; however, without such a camera, documenting minimal changes over time might be
difficult [63]. However, fundus photography offers the benefit of providing a record of
retinopathy which can be used at a later date to document the progression of retinopathy or
response to treatment. Currently, it might be difficult to consider eye fundus examinations
as a method for DR screening using the resources efficiently.

4.2. Monoscopic vs. Stereoscopic Fundus Photography

Both the original Airlie House DR classification used in the Diabetic Retinopathy
Study [72–74], and the modified DR classification used in the Early Treatment Diabetic
Retinopathy Study, employed 7-field stereographic photography [75] to determine the
grade of DR. In stereographic retinal photography a stereo image is obtained by taking
photographs from two slightly different positions and merging these images enables a
perception of depth [76].

The perception of depth in assessing DR severity should help us to determine the pres-
ence of macular edema, to differentiate neovascularization from intraretinal microvascular
abnormalities, and to detect pre- and intraretinal hemorrhages [77]. Despite the potential
benefits, acquisition and grading of stereoscopic images is time-consuming and doubles
the number of light flashes that the patient must endure [76]. Moreover, the technique
depends on the experience of photographers, as left and right images must be equally
sharp and illuminated in each pair [78,79]. For the graders, special equipment such as
optical viewers or goggles is needed to achieve the stereo depth and to review them [76].
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The perception of stereoscopy is dependent on the observer’s capability to fuse stereo-
scopically [76]. There is evidence indicating that obtaining stereoscopy is not critical for
the assessment of DR severity, and monoscopic photography can equal the reliability of
stereo photography for full ETDRS DR severity scale grading [76]. Moreover, it might be
questionable whether the cost and logistical concerns involved in obtaining 7-field images
either conventionally, or digitally, would make the method practical and cost-effective for
widespread screening [63,80].

4.3. DR Grading

Within the analyzed studies, two thresholds for DR detection were most commonly
used: VTDR or any symptoms DR. VTDR is usually defined as severe non-proliferative,
proliferative retinopathy and/or macular oedema in at least one eye [81]. Treatment for
VTDR is agreed upon universally [82]: laser treatment is effective [83,84], and vascular
endothelial growth factor inhibitors (anti-VEGFs) can improve the results of treatment in
diabetic maculopathy [85,86] and in some cases of proliferative DR [87,88]. Patients with
mild nonproliferative DR (which is indicated by the presence of at least 1 microaneurysm)
do not require any ophthalmic treatment. Thus, positive screening of patients with any
symptoms of DR could not be considered appropriate. On the other hand, the rate of
DR deterioration is reduced by improved control of blood glucose [89–91] and blood
pressure [92,93], and this could be some benefit of screening patients with any DR.

In terms of methodological correctness and the principles of meta-analysis, future
DR screening research should focus solely on the epidemiology of VTDR. One should
consider that the lower the prevalence of a specific disease, the greater the meticulousness
and usefulness of the meta-analysis performed as regards the investigated diagnostic tests,
which are employed in clinical practice. As mentioned previously, the estimated prevalence
of any DR among diabetic is significantly higher than the prevalence of VTDR (34.6% vs.
10.2%, respectively) [5]. Also VTDR could be considered as the main outcome of interest of
DR screening programmes.

4.4. Mydriatic Versus Non-Mydriatic Fundus Photography

Seven-field mydriatic photography is considered as the gold standard for fundus
imaging, however, the inconvenience and risks associated with mydriasis must be con-
sidered. Even when using a short acting mydriatic (tropicamide), dilating the pupils can
cause discomfort, especially for those who plan to return to work after being screened
or need to drive a car to reach the screening facility [65]. Moreover, pupil dilation is
time-consuming, both for the patient and also for the examiner, thus negatively influencing
efficiency. Finally, as the use of such agents is not popular with patients, it might lead to
poorer compliance [25,94]. For example, in a study by Natarajan et al. 9.4% of patients
did not agree to participate in the screening due to waiting time and potential discomfort
associated with pupil dilation [95]. Non-mydriatic imaging is a faster and less expensive
option than mydriatic photography [68].

Importantly, diabetes is concerned as a risk factor for presenting with a small pupil [96,97].
The pupillary dysfunction demonstrated in diabetes is related to autonomic neuropathy and
primarily involves the sympathetic innervation of the iris dilator [98]. Applying a mydriatic
agent could potentially lead to improving the quality of imaging in these cases. However,
the loss of sympathetic tonus in individuals with diabetes restricts the utility of commonly
used topical anticholinergic agents resulting in inadequate pupil dilation [99]. Sympathetic
denervation is correlated with the duration of the disease and the development of systemic
autonomic neuropathy [100]. Diabetic patients might respond relatively poorly to mydriasis
with topical tropicamide 1%; pupil dilation might be achieved in these patients by additional
application of topical phenylephrine [23,96,101].

In a clinical DR screening study by Murgatroyd et al. mydriasis reduced the proportion
of ungradable photographs from 26% to 5% (p < 0.001) [24]. In another study up to 29.2% of
non-mydriatic images were poorly focused, and as a consequence, partly ungradable [68].
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In an investigation by Pugh et al. 14% of undilated and 3.7% of dilated images were
found ungradable; importantly, after mydriasis most of the ungradable photographs
(42/50) became gradable [16]. Similar results were noted by Baeza et al. who reported
that 15.3–17.6% of non-mydriatic images but only 1.4–2.1% of the mydriatic images were
ungradable [28]. In a study by Peters et al. the rate of ungradable non-mydriatic images was
32%; patients with ungradable images were older (56.0 vs. 46.6 years) and had a pupil size
<4 mm (27% vs. 7%) [32]. Pharmacologic dilation might not only enhance the gradability
of fundus photographs but also their accuracy [16,43]. After pupil dilation, some retinal
findings such as venous beading or nerve fiber layer hemorrhages, are more probable to
be detected [25]. Moreover, in a dark iris population e.g. in Indian eyes, non-mydriatic
digital imaging might result in an even higher (30.6–31%) rate of poor quality photographs,
resulting in low sensitivity and restricting the use of this technique [43]. The diminished
sensitivity of non-mydriatic photographs could be acceptable if a greater percentage of
patients would agree to complete the screening process [102]; however, such a finding
was not confirmed in clinical trials. Pupil dilation might be used when the quality of the
obtained images is poor, e.g. in older patients with advanced cataract or senile miosis [25].
Scotland introduced the concept of staged mydriasis into their screening programme, only
dilating those patients having poor-quality images without mydriasis [82]. The image
quality is assessed by the technician taking the images. Recently, the numbers needing
dilation have currently risen to 34% [82]. In a single study by Molina Fernández et al.
selective mydriasis, based upon the decision taken by the family doctor who performed
the imaging, did not improve the screening performance [26]. Regardless of the type of
the device used, the photographs should be taken on the dilated eye, as this significantly
improves the sensitivity and decreases the rate of ungradable images. Selective mydriasis
did not improve performance of DR screening.

Several of the analyzed studies are more than 10 years old, and one must consider that
in recent years there has been a technical development in fundus cameras. First, advance-
ments in the field of optical sources and detectors have led to miniaturization of optical
assemblies at a lower cost. In line with these developments, miniature table-top fundus
camera system designs have emerged that provide retinal images comparable to those of
traditional fundus cameras [103].Camera systems have evolved to boast sharper images,
having a higher resolution, pupil tracking, and, most recently, portability. Potentially, an
improvement in camera optics could result in decreasing the TFR rate. On the other hand,
this has not been proved in clinical trials.

4.5. Single vs. Multiple-Field Imaging

One major concern in single-field imaging is that a smaller area of the retina is imaged;
particularly the nasal retina is of importance for a valid evaluation of the DR stage [78].
From a mathematical point of view, a 30◦ angle field-of-view is equal to visualizing the
retinal area of 56.4 mm2, while a 45◦ angle equals to the visualization of a 124.8 mm2

area [104]. In these terms, a retinal area visualized with a single 45◦ image cannot be
considered equivalent to seven 30◦ shots; with two- or three-field 45◦ images the area could
be comparable.

Different protocols were applied with regional DR screening programs, e.g., a single-
field 45◦ photography in Singapore [105], two-field 45◦ photography in England [106], or
five-field 45◦ photography in France [107]. In the study of Aptel et al. there was a major
difference seen in the sensitivity of detecting DR between single-field and three-field 45◦

non-mydriatic photographs (76.92% vs. 92.31%, respectively; p < 0.001) [25]. The study by
Perrier et al. presented no significant difference in sensitivity between two, three and four-
field non-mydriatic photography (95.7%, 97.6% and 97.6%, respectively) [38]. Moreover,
additional images reduced the specificity (which was 78.1%, 71.9% and 65.6% for two-,
three- and four-field imaging, respectively) and led to a higher rate of ungradable images
(14.2%, 18.3% and 18.3%, respectively; p values not stated) [38]. The poor quality of adding
extra-field to two-field imaging translated into an increase of 6.2% in the rate of referral
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to an ophthalmologist [38]. Baeza et al. noted that by increasing the number of fields
from one to three the sensitivity slightly increased (from 68% to 79%) [28]. Importantly,
applying mydriasis led to a decrease in the rate of ungradable images (from 15.3–18.3%
to 1.4–2.1%) [28]. In another study the performance of two-field evaluation was similar to
single-field photography; including nasal images did not bring added value to macular
images [20]. Moreover, despite mydriasis, the nasal images had poorer quality than macular
images (3.5–8.1% of nasal images were ungradable) [20]. These findings are analogous to
the meta-analysis by Hu et al. who reported that single-field non-mydriatic photography
might be inadequate to detect DR [15].

4.6. Handheld and Smartphone-Based Devices

To expand screening programs into rural areas it would be beneficial to have access to
low-cost portable, easy to operate, and high image quality fundus cameras [108]. Tran et al.
have shown that it is possible to construct a hand-held mydriatic fundus camera prototype
at a cost of less than 1000 USD [109]. Their front-end module was retrofitted to go with sev-
eral consumer cameras; however, those with smaller CMOS (Complementary Metal Oxide
Semiconductor) sensors showed loss of image detail or increased image noise compared to
larger CMOS devices [109]. In the following years, several portable eye fundus cameras
were developed which have a digital camera incorporated. These include the Smartscope
Pro (Optomed, Oulu, Finland) commercialized as Pictor (Volk Optical, Mentor, OH, USA),
Horus DEC 200 (MiiS, Nsinchu, Taiwan), Genesis-D (Kowa, Nagoya, Japan), Signal (Top-
con Corporation, Tokyo, Japan), Dragonfly (Eyefficient; Aurora, OH, USA), VersaCamTM
DS-10 (Nidek, Gamagori, Japan) or Visuscout 100 (Carl Zeiss Meditec AG, Jena, Germany).

Another option for retinal imaging is the use of a smartphone’s in-built camera. A
smartphone can be used to capture pictures of the posterior segment of the eye during
slit-lamp indirect ophthalmoscopy with a 78 D lens [110,111]. Haddock et al. [112] and
Bastawrous [113] suggested using the coaxial light source of the phone rather than that
of the slit-lamp; in their technique the phone is being kept in one of the examiners hand,
while the other hand is holding a 20 D or 28 D lens. For examinations performed in general
anesthesia, additionally a Koeppe contact lens was applied, which was useful in receiving
a wider field of view, keeping the lids open and the cornea wet [112]. Images obtained
with a 20 D lens have a smaller imaging area of <45◦ when compared to a combination
of a 60 D with a 90 mm focal length lens (area of 92◦) [114,115]. A special attachment
which is designed to hold a specific lens at a prescribed, but adjustable distance from the
camera lens, might improve the ease-of-use of such imaging methods [116,117]; and such
an attachment can be 3D-printed [116].

Currently, several adapters for cell phones have become commercially available: D-Eye
(D-Eye, Padova, Italy), PanOptic + iExaminer (Welch Allyn, Skaneateles Falls, NY, USA),
MII RetCam (MII RetCam Inc., Coimbatore, India), iNview/Vistaview (Volk Optical, Men-
tor, OH, USA) or the Peek Vision (Nesta, London, UK) [29,118]. The PanOptic and D-Eye
have limited imaging fields (25◦ and 20◦, respectively). Interestingly, the Fundus-On-Phone
System (Remidio, Bengaluru, India) is smartphone based, but not handheld. The technical
details and a review of the currently developed systems was published elsewhere [103]
and does not fall within the scope of this paper.

A significant limitation of several smartphone-based systems is the requirement of
mydriasis. Moreover, it might be difficult to consider the resolution of a smartphone’s
in-built camera (particularly in older phones, which have been used in several studies) to
that of a professional desktop camera. Another problem is glare, improper exposure or
difficulties in capturing ideally sharp images [103,119]. For example, iPhone’s built-in flash
has a fairly high intensity, and efforts are made to design imaging systems with an external
light source with varying intensity levels [103]. Finally, sophisticated skill is required to
perform the imaging as the beam alignment is problematic, and stability of the camera
is required [103]. Thus, unless the examiner is already adept at indirect ophthalmoscopy,
it can be challenging to obtain high-quality images that are useful for evaluation [120].
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Some might prefer to use portable cameras that have slit lamp attachments. On the other
hand, a single study has shown that medical students who were previously unfamiliar
with indirect ophthalmoscopy were able to successfully acquire images after 15 minutes
of training [121], and some of them preferred smartphone ophthalmoscopy compared to
conventional direct ophthalmoscopy [122].

4.7. Ultrawide-Field Imaging

Ultrawide-field scanning laser ophthalmoscopy (UWF-SLO) employs confocal laser
scanning microscopy combined with a concave elliptical mirror, having the capability of
capturing up to 200◦ of the retina in a single image, without pupil dilation in less than one
second [123]. With the steering function it is possible to obtain a greater field under mydriasis
with a light inside the camera guiding the patients’ eye [79]. During the examination a low-
powered green (532 nm) and red light (633 nm) simultaneously scan the retina and choroidal
tissue; a composite picture is created by digital combination of the two wavelengths [50].
By scanning a smaller area (100◦ instead of 200◦) it is possible to obtain images having
higher resolution up to 11 µm [50]. Although ultrawide images can be obtained with or
without mydriasis, a study by Rasmussen et al. showed that the quality of mydriatic and
non-mydriatic images obtained with Optos 200Tx (Optos, Dunfermline, United Kingdom)
did not differ significantly [79]. One should mention that currently there are a variety of
Optos devices enabling UWF-SLO imaging; it is also possible to obtain 102-degree UWF-SLO
images with Spectralis (Heidelberg Engineering, Heidelberg, Germany) [124].

An advantage of UWF-SLO is assessment of peripheral pathologies which could be
overlooked if a smaller angle is imaged [125,126]. It was hypothesized that a subset of DR
patients might exhibit peripheral distribution of retinal lesions, unavailable for visualization
in fundus photography [50,127]. Moreover, one-third of retinal hemorrhages and/or
microaneurysms, intraretinal microvascular abnormalities and new vessels elsewhere
might be situated outside the ETDRS fields, and visible in UWF-SLO but not in 7-field
ETDRS photography [126]. UWF-SLO has, as well, the potential of identifying peripheral
retinal lesions and vitreous pathologic findings [128]. Another potential benefit could be
the reduction in the rate of ungradable images due to better imaging technology [127]. In
some of the UWF-SLO systems obtaining fluorescein angiography images is possible [129].

A study by Silva et al. showed that UWF-SLO may underdiagnose proliferative
DR [50]. This was presumably associated with colour distortion from the machine and,
therefore, requires significant magnification of the images to evaluate discrete retinal lesions.
The recently released Clarus 500 and Clarus 700 (Carl Zeiss Meditec AG, Jena, Germany)
capture “true-color” images that may potentially enable more accurate identification of
DR lesions, although this has yet to be demonstrated in clinical trials [130]. Within the
currently published studies, images obtained with Clarus were consistent with current
UWF-SLO devices in assessing the severity of DR, with no statistically significant difference
in patient or technician preference, and image acquisition time [131–133]. The Eidon
confocal scanner (Centervue, Padova, Italy) couples confocal imaging with natural white-
light illumination to obtain a true-colour image using a white LED (440–650 nm). The
Spectralis (Heidelberg Engineering, Heidelberg, Germany) has a dedicated Spectralis
MultiColor Module, which is not available in the standard version of the device and uses
three laser wavelengths simultaneously to receive color images; thus, the basic version
of device cannot be considered as optimized for DR screening. Potentially, UWF-SLO
could be less susceptible to media opacities or decreased pupil diameter compared with
conventional fundus photography [78]. However, in another study, all images of patients
with proliferative DR were found ungradable due to glare associated with media opacities
in a dense cataract or vitreous hemorrhage [51]. In the investigation by Aiello et al.,
UWF-SLO imaging in a clinical setting increased the frequency of DR identification nearly
two-fold but the agreement with ETDRS 7-field imaging was moderate [134].
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One disadvantage of the UWF-SLO technology compared to other approaches is
that it is still more costly [78]. This issue could be critical to wide-spread use of UWF-
SLO for DR screening, as a screening examination should be inexpensive. For example,
expenditures on the English DR Screening Program which employed fundus cameras were
approximately 85.6 million USD or 40 USD per person screened [106]. With UWF-SLO
devices, which are significantly more expensive than fundus cameras, these costs could
even be higher. Although the results of the English program are excellent, high costs
preclude implementation of this strategy worldwide; in several studies emphasis is placed
on new, cost-effective systems. On the other hand, Lois et al. showed that savings associated
with UWF-SLO for DR assessments are greater than for 7-field photography mainly due to
longer time to obtain and read images in the 7-field photography technique [30]. Future
research may aim to clarify the association of peripheral diabetic lesions with the stage of
DR [135]. One might discuss whether UWF-SLO is advisable for screening of high-risk DR
or proliferative DR [136]. This aspect requires further validation [51].

4.8. Multimodal Imaging Techniques and Potential Future Directions

Multimodal imaging techniques employ several imaging methods to examine a par-
ticular finding. Quantitation of retinal thickness and precise topographic mapping of the
retina have been useful in assessing retinal thickness in both non-clinically significant mac-
ular edema and clinically significant macular edema [137]. Optical coherence tomography
(OCT) is more reproducible and more sensitive to follow changes in retinal thickness when
compared to fundus photography [138]. Technically, it is possible to obtain simultaneous
or immediately sequential fundus photographs and OCT images [139]. Such devices are
commercially available, e.g. in the Maestro2 (Topcon Corporation, Tokyo, Japan) or the
Revo FC (Optopol Technology Sp. z o.o., Zawiercie, Poland) [140]. Importantly, adding
OCT to the assessment of maculopathy improves the sensitivity and specificity of detecting
clinically significant macular edema as well as any maculopathy (i.e., exudates only) [52].
Both of the aforementioned devices also allow obtaining OCT-angiography images. Never-
theless, current limitations of OCT angiography include a small field of view, projection
and motion artifact, and inability to assess flow and filling speeds or vascular competence
by assessing dye leakage [141]. OCT can also be combined with UWF-SLO imaging [52].

Other technical advantages may play a role in multimodal DR assessment in the
future [141]. Enhanced depth imaging OCT or swept-source OCT could allow improved
choroidal visualization [142]. Choroidal thickness was shown to be altered in patients with
diabetes and diabetic choroidopathy; it was suggested that a change in choroidal thickness
may precede any retinopathy [143–145]. Adaptive optics allow a noninvasive acquisition of
images of the retina with cellular-level resolution and assessment of individual photorecep-
tor cells [146]. Hyperspectral imaging might be a promising way to measure oxygenation
in the retinal blood vessels; this is important because hyperglycaemia is known to increase
retinal oxygen consumption [147,148].
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Appendix A. Search Strategy

Literature searches of the PubMed and Web of Science databases were conducted in
30 June 2021; the search strategies are as follows. Specific limited update searches were
conducted after 30 June 2021. Reference lists of the included studies were also considered
as a source of publications.

Appendix A.1. PubMed Search (Publication Date 1/10/11–06/30/2021)

((“diabetes”[Title]) OR (“diabetic”[Title])) AND ((“retinopathy”[Title]) OR (“macu-
lar edema”[Title]) OR (“macular oedema”[Title])) AND ((“screening”[Title]) OR (“imag-
ing”[Title]) OR (“fundus”[Title]) OR (“photography”[Title]) OR (“scanning laser ophthal-
moscopy”[Title])). 1339 references.

Appendix A.2. Web of Science Search (Publication Date 1/10/11–6/30/2021)

(TI=(“diabetes”) OR TI=(“diabetic”)) AND (TI=(“retinopathy”) OR TI=(“macular edema”))
AND (TI=(“screening”) OR TI=(“imaging”) OR TI=(“fundus”) OR TI=(“photography”) OR
TI=(“scanning laser ophthalmoscopy”)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S,
CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years.
2051 references.
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