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Abstract: The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-
dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling
technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl
methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth
physicochemical characterization was made, including solid-state determination, particle size and
size deviation analysis, film appearance evaluation, determination of weight variation, thickness,
folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug
nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and
most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was
selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration
was first optimized with drug-free formulations. The best mechanical film properties were achieved
for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels
were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies,
three different drug levels were tested. With the optimum concentration, films were flexible and
homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals
remained in the nano size range in the polymer films, particle sizes being in all film formulations
from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted
polymer films, the physicochemical behavior and pharmaceutical performance of the films were very
similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a
very promising option for the production of immediate-release improved- solubility formulations.

Keywords: 3D printing; film formulation; nanocrystals; polymer; poor solubility; semi-solid extru-
sion; wet milling

1. Introduction

Today, poor solubility creates great challenges in the drug industry, and nanosizing is
an efficient and simple way to overcome the problem [1,2]. However, nanosizing is just the
first step in the manipulation of raw drug material. After nanonization, production of the
final formulation is still needed. Drug nanosuspensions can be formulated for oral drug
delivery purposes, for example, for solid dosage forms, like tablets, capsules, granules, or
the more novel oral polymeric films [3,4].

Oral polymeric films (also named oral thin films or oral strips) are a recent drug
delivery form, which has high patient compliance, because they can be administered
without water [5]. They can be produced, for example, by solvent casting [4], hot-melt
extrusion [6], electrospinning [7], or 3D printing techniques [8], and for nanocrystal-based
drug delivery systems, nanosuspensions can be used as such by only mixing the suspension
with a polymeric excipient solution.

Fast-dissolving drug delivery systems have been studied since the late 1970s. They
were invented in order to avoid swallowing problems with tablets, mainly for children or
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elderly populations. Oral polymeric films are formulated so to dissolve upon contact with
moist surfaces, like mucus layers or tongue in the mouth. When the dissolution takes place
in the mouth, drug degradation and first-pass metabolism can be avoided [9].

Oral polymeric films have been utilized for water–soluble drugs, but are also a good
option for poorly water-soluble drugs [5]. The challenge with nanoparticle-based materials
in polymeric films is, however, how to obtain homogeneous and mechanically performant
films [10].

With the aid of 3D printing, solid, or, in some cases, semisolid objects, with various
shapes, are produced through digitally controlled layer-by-layer material addition. In
biomedical and pharmaceutical applications, the main interest in 3D printing has been in
personalized medicine [11], but also bulk production is studied. The first drug formulation
produced by 3D printing, approved by the FDA in 2015, was tablet formulation. 3D printing
is indeed a group of different techniques, each having its own advantages and still presenting
many open questions [12]. Their biomedical and pharmaceutical applications are numerous,
such as tissue engineering [13], biopharmaceuticals [14], transdermals [15], tablet formu-
lations with different geometries to fine-tune the drug release profiles [16], orodispersible
formulations [17], just to mention a few.

Semi-solid extrusion 3D printers are suitable for printing hydrogel materials, for
example, for polymeric film formulations, such as printed orodispersible films [13]. The
benefits of this type of printing are the low printing temperature, allowing handling of
even thermolabile drugs, and the use of disposable syringes, which can guarantee a high
quality and purity of the end product [18]. In this type of printing, the viscosity of the
printing ink is crucial for the end product properties, while the rheological properties
reflect the printing performance [19]. For example, polymer concentration is related to
the viscosity of the printing ink: when the viscosity of the feeding liquid/suspension
is lowered, also the printing pressure is lowered [20,21]. When printing nanomaterials,
incorporating nanosuspensions to the feed alters the rheological properties of the system,
such as viscosity, which complicates the process further.

Successful ink-jet printing of drug nanosuspensions has been demonstrated [22], but,
overall, 3D printing of drug nanosuspensions is rarely studied. However, 3D printing is
a very convenient way to produce oral polymer film formulations, and nanocrystals can
benefit from this type of final formulations. In our earlier study, we successfully produced
drug nanocrystal-loaded oral polymeric films by the film casting method and showed that
a thin-film formulation is a good option for drug nanocrystals [4]. In this study, we aimed
to produce immediate-release formulations based on drug nanocrystals by the 3D printing
method. The model drug, indomethacin, is a Biopharmaceutics Classification System
(BCS) class 2 drug with poor solubility. The solubility of the drug material was improved
by nanonizing it using the wet milling technique before the 3D printing process. The
reasoning for selecting hydroxypropyl methyl cellulose (HPMC) as a film-forming polymer
was dual: it is known to have good film-forming properties for thin-film formulations
and it is also known to be a stabilizer for supersaturated drug solutions [23]. This is an
important functional property for a system, when drug nanocrystals reach a supersaturated
state after dissolution.

In this study, indomethacin nanocrystals were 3D-printed in order to make oral poly-
meric film formulations. The properties of the printed film were first screened using
drug-free films. Based on these studies, the best HPMC concentrations for drug-loaded film
studies were determined. In drug-loaded films, the effect of the amount of nanocrystalline
drug on the properties of the final formulation was studied. Finally, for the best composi-
tion, 3D printing and film casting processes were compared. Thorough physicochemical
and pharmaceutical characterization showed the 3D-printed nanocrystalline drug-loaded
polymer films to be a promising option for immediate drug delivery purposes.
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2. Results
2.1. Production of Drug Nanosuspensions

For drug nanosuspension production, three different stabilizers, HPMC and Poloxam-
ers F127 and F68, were tested. The tested stabilizer concentrations (amount of stabilizers
with respect to the drug amount, % (w/w)) were based on our earlier studies [24]: for
HPMC, the stabilizer amount was selected to be 10% (w/w), for Poloxamer F127, 25%
(w/w), and for Poloxamer F68, 60% (w/w) and 80% (w/w). Particle sizes and PDI values of
the different tested indomethacin nanosuspensions are presented in Table 1.

Table 1. Size and PDI information of the produced indomethacin nanosuspension batches. (The
amount of stabilizer is given in w/w percentages with respect to the amount of drug).

Stabilizer F127 25% HPMC 10% F68 60% F68 80%

Particle size/nm 295.9 ± 1.2 734.7 ± 1.6 239.1 ± 1.8 228.6 ± 3.7
PDI 0.248 ± 0.060 0.232 ± 0.033 0.200 ± 0.011 0.148 ± 0.011

Based on the particle size and PDI results, the smallest particles with the lowest
polydispersity values were obtained with Poloxamer F68 as a stabilizer, and those two
nanosuspension formulations were selected for further film studies.

2.2. Screening Studies for Film Formulations

Based on our earlier thin-film formulation studies, HPMC was selected as a film-
forming polymer, and glycerol as a plasticizer [4]. Low-molecular-weight, meaning also
low-viscosity, HPMC leads to a faster drug release; HPMC E5LV has in earlier studies
shown to possess good film-forming properties [25].

The study was started by screening the optimum polymer concentration. The con-
centration level of the polymer was restricted by the fact that a highly viscose printing
solution can lead to unwanted/uncontrolled bubble formation, which may cause dose
variation problems. Besides, a high HPMC concentration can delay drug release via the
gelling effect [26]. Based on earlier studies, the HPMC concentration of 2.2% (w/v) was
selected as a starting point for the printing tests [4,27].

In film formulations, glycerol was used as a plasticizer. Plasticizers enhance the flex-
ibility of the films and reduce their brittleness. Glycerol is a widely utilized plasticizer
in pharmaceutical formulations and, as a small molecule, can easily penetrate between
polymer chains, which controls the film properties. The presence of a plasticizer can also en-
hance the drug incorporation efficiency into a polymeric film [28]. The polymer/plasticizer
ratio (5:1) was kept constant in all batches [4].

First, blank drug-free polymer films were tested with various polymer concentrations
in order to optimize the film composition. One batch with only HPMC (2.2% (w/v)) was
printed, and the other batches with higher HPMC amounts contained also glycerol. The
HPMC concentration was gradually increased to 10% (w/v). The films were analyzed for
the quality of their appearance, surface roughness, brittleness, and foldability without
being ruptured. The appearance, flexibility, and cutting properties of the blank (drug-free)
films are presented in Table 2.

When comparing the appearances of the printed films, all films were visually trans-
parent and without any coloring. When the polymer concentration was increased, film
thickness was also increased. Further, higher polymer concentrations led to rougher films,
and the flexibility was reduced. HPMC 2.85% (w/v)–glycerol 0.57% (w/v) and HPMC
3.5% (w/v)–glycerol 0.7% (w/v) films displayed the best mechanical properties: they were
soft enough and sufficiently resistant to bending and stretching. The thickness of these
two films was lower but they were not brittle. Accordingly, these two HPMC–glycerol
combinations were selected for further studies with drug nanosuspension-loaded films.
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Table 2. Appearance, flexibility, and cutting properties of blank films. HPMC and glycerol concentrations are expressed in
% (w/v), and their ratio was kept constant (5:1) throughout the tests.

Composition Appearance Flexibility Cutting

HPMC 2.2% No bubbles, little folds,
low thickness

Flexible film, does not break by
folding, brittle, quite elastic, slightly

deformable before breaking
Easy to cut, does not break

HMPC 2.85%
Glycerol 0.57%

Homogeneous film, little folds,
low thickness

Flexible, resistant to bending, softer
than HPMC 2.2% film, not brittle

Easy to cut, linear cut,
no ripples

HMPC 3.5%
Glycerol 0.7%

Homogeneous film, some little
folds, no bubbles

Flexible, resistant to bending, not
brittle, no cracks

Easy to cut, linear cut,
no ripples

HMPC 4%,
Glycerol 0.8%

Film has some little bubbles,
medium thickness, little folds Flexible, does not break by bending Easy to cut, does not break,

linear cut, no ripples

HMPC 5%
Glycerol 1%

Film is wavy (little folds), only
few little bubbles, thicker than the

films with less HPMC
Flexible, does not break by folding

Easy to cut, harder than
the films with a lower

amount of HPMC, does
not break

HMPC 6%,
Glycerol 1.2%

Film has some little bubbles,
thicker than the films with a lower
amount of HPMC, heterogeneous,

has thicker and thinner areas

Tends to break by folding, quite
resistant to bending

Easy to cut, does not break,
harder than the films with
a lower amount of HPMC

HMPC 10%
Glycerol 2%

No folds, some little bubbles,
thicker and harder as compared

to all the other films

More plastic, not elastic, breaks easily
when bended

Easy to cut, does not
break, hardest film

2.3. Indomethacin Nanosuspension-Loaded Films

Indomethacin nanosuspension-loaded film formulations were produced by the same
3D printing method as blank films. A high drug concentration (above 40–50% (w/w))
can lead to the formation of brittle films [29], and based on pre-testing, we selected the
polymer/drug solution ratio of 2:1 throughout the study. HPMC and Poloxamer have
been shown to be compatible with each other in film formulations; combined, they form
homogeneous gels, which have good resistance towards erosion and good film-forming
ability [30].

First, a fresh nanosuspension was directly mixed without any dilution with the poly-
mer solution (keeping a constant solution ratio of 2:1). The resulting film was opaque and
very brittle, indicating a too high solid particle concentration in the printing suspension.
Hence, different dilutions of the nanosuspension were tested. Three solutions at three
different dilutions of nanosuspension concentrations were prepared: 9% (v/v), 13% (v/v),
and 26% (v/v). The most concentrated solution (26% v/v) was more brittle and more
opaque than the diluted ones. In order to find the best film formulation, different dilutions
of nanosuspensions, with two different stabilizer amounts (Poloxamer F68 60% and 80%)
were printed with both combinations of HPMC/glycerol (2.85%/0.57% and 3.5%/0.7%)
(Table 3).

Table 3. Composition of the different tested film samples for printing (films 1A–3C). As a reference
sample, film casting was performed with a 13% nanosuspension concentration (films 4A–4C).

Nanosuspension F68 60% Nanosuspension F68 80%

Nanosuspension
Concentration

HPMC 2.85%
Glycerol 0.57%

HPMC 3.5%
Glycerol 0.7%

HPMC 2.85%
Glycerol 0.57%

HPMC 3.5%
Glycerol 0.7%

9% 1A 1B 1C 1D
26% 2B 2C

13% (printed) 3A 3B 3C
13% (casted) 4A 4B 4C
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Physicochemical and Mechanical Characterization of the Films

In our earlier studies, we showed that the produced indomethacin nanocrystal formu-
lations, used in this study, are crystalline after the nanomilling [24]; hence, in this study,
only the printed formulations were analyzed. In the thermograms, neither melting point
peak of indomethacin nor glass transition in films was detectable, probably due to the
relatively small amount of drug in the film formulation (Figure 1). The thermogram of the
film formulation was very similar to that of pure HPMC, which reflected the high amount
of HPMC in the final film formulation.

Figure 1. DSC thermograms of indomethacin, Poloxamer F68, HPMC, and 3D-printed film (exo up).

From the drug-loaded films, particle size after redispersion of the film pieces, visual
appearance of the films, thickness, number of foldings before film breaking, weight varia-
tion of film pieces, drug content in the film pieces, and disintegration time were analyzed
(Table 4).

The drug particle size of all the formulations was in the nanometer range, from 313 nm
to 496 nm. The film formation process, both in 3D printing (films 1, 2 and 3) and in casting
(film 4), slightly increased the particle size: the particle size in the printing/casting solution
was appr. 225 nm. The appearance of all films was quite homogeneous. Some small air
bubbles were visible in some films, and some aggregated drug spots were also seen in some
films, which indicated uneven delivery of the drug in the film. Films were yellowish-white
in color, and mostly opaque.

Films with the lowest amount of drug nanosuspension (1A, 1B, 1C, and 1D) had good
folding endurance properties, but the weight variation and drug content uniformity were
not good. The disintegration times were good for immediate-release formulations.

Films with the highest amount of nanosuspension (films 2B and 2C) were brittle, easily
breakable, and did not endured folding. A too high drug amount caused poor endurance
of the films. Cutting of these films was also difficult, the cut was not linear, and the films
tended to break (rather than being cut) while cutting. It was clear that the drug content in
these films was too high for good-quality films to be formed. The disintegration times of
these films were the longest, and weight variations and variations in drug amount were
high for these compositions.
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Table 4. Characteristics of the drug-loaded films: particle size values measured for the printing suspensions before printing and after film redispersion, appearance of the films, film
thicknesses, folding endurance (number of foldings before the film is broken), weight variations, drug amounts, and disintegration time results (n = 3–6).

Film
Particle Size/nm Appearance Thickness/µm Folding Endurance Weight

Variation/mg
Drug

Amount/µg
Disintegration

Time/sNanosuspension Dispersed Film

1A 227.9 ± 1.8 346.5 ± 6.9 Uniform film, few little bubbles, no folds,
flexible, not brittle 51 ± 8 4 ± 1 5.45 ± 1.23 616 ± 151 101 ± 1

1B 227.9 ± 1.8 428.6 ± 1.8 Uniform film, few little bubbles, no folds, 44 ± 5 4 ± 1 5.22 ± 0.34 544 ± 44 78 ± 1

1C 225.4 ± 1.4 400.5 ± 8.4 Uniform film, no bubbles no folds, flexible,
not brittle 47 ± 11 3 ± 1 5.58 ± 1.27 638 ± 166 84 ± 2

1D 225.4 ± 1.4 405.0 ± 12.3 Mostly uniform film with little aggregation
spots, little folds, no bubbles 55 ± 16 4 ± 1 7.16 ± 2.25 714 ± 235 101 ± 2

2B 227.9 ± 1.8 496.3 ± 10.8
Homogeneous film, no folds, small
aggregation spots, only single small

bubbles, thick, not brittle
100 ± 15 2 ± 1 10.08 ± 1.34 2266 ± 549 234 ± 1

2C 225.4 ± 1.4 418.2 ± 15.4 Homogeneous film, no folds, no visible
aggregation, no bubbles, thick, not brittle 110 ± 25 1 ± 1 10.42 ± 1.70 2804 ± 824 232 ± 1

3A 227.9 ± 1.8 313.2 ± 9.9 Considerably homogeneous film, some
aggregation spots, no bubbles 58 ± 6 4 ± 1 6.10 ± 0.07 1003 ± 15 108 ± 1

3B 227.9 ± 1.8 378.6 ± 3.5 Almost homogeneous, very few small
aggregation spots, no bubbles 64 ± 5 4 ± 1 6.87 ± 0.45 945 ± 74 153 ± 1

3C 225.4 ± 1.4 363.7 ± 11.5 Almost homogeneous film, some
aggregation spots 64 ± 8 3 ± 1 5.92 ± 0.70 1145 ± 151 110 ± 1

4A 227.9 ± 1.8 339.4 ± 5.8 Homogeneous film, little bubbles, no folds,
few aggregation spots 46 ± 5 3 ± 1 5.26 ± 0.12 727 ± 28 76 ± 1

4B 227.9 ± 1.8 418.3 ± 8.9 Homogeneous film, little bubbles, no folds,
few aggregation spots 59 ± 8 3 ± 1 5.92 ± 0.52 690 ± 94 111 ± 1

4C 225.4 ± 1.4 337.4 ± 6.7 Most homogeneous film, no bubbles, no
folds, few aggregation spots 55 ± 12 3 ± 1 6.08 ± 1.15 1012 ± 227 68 ± 1
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We tested drug release in 30 min. All film formulations showed immediate drug
release (Figure 2).

Figure 2. Drug release profiles of different film formulations (n = 3).

In all batches, after 10 min of dissolution, all the drug was released. Batches with
a lower drug nanosuspension concentration (1A–D, 3A–C, and 4 A–C) reached 100%
drug release already after 5 min. When 3D-printed (films 3A-C) and casted (films 4A–4C)
films were compared, the casted films dissolved slightly faster, but the difference was
not significant. Films with the highest nanosuspension concentrations (films 2B–2C) had
slightly delayed drug release compared to those with lower drug amounts.

Based on a physicochemical and pharmaceutical analysis, a medium drug nanosus-
pension concentration (13% (v/v)) in the printing suspension seemed to be the best one.
Using that concentration, both 3D printing as well as film casting were used to obtain
drug nanosuspension-loaded films. As shown in Table 4, all these compositions formed
durable films with short disintegration times (appr. 1–2 min). The film-forming process
did not significantly change the final properties of the films, and the films were flexible
and durable, with a good appearance. The weight variation and drug content uniformity
were the best with these formulations, and drug release was immediate.

3. Discussion

In this study, a fast-disintegrating thin-film formulation for nanosuspension was devel-
oped. First, blank polymers and film plasticizers were studied. HPMC was the polymer
of choice for this study, due to its good film-forming properties [4,25,31,32]. HPMC also
stabilizes supersaturated states [33]. In drug nanosuspension formulations, where fast
dissolution is followed by a supersaturated state, the presence of HPMC can be beneficial



Molecules 2021, 26, 3941 8 of 12

for inhibiting uncontrolled and unwanted precipitation; hence, it can also enhance the
absorption. Glycerol was selected as a plasticizer, and it has been widely used in phar-
maceutics in combination with HPMC [34]. It has also been shown that the presence of a
plasticizer can produce more uniform and compact films [35].

For blank films, film-forming polymer (HPMC) concentrations from 2.2% (w/v) to
10% (w/v) were tested. Viscosity is an important factor affecting the film-forming ability.
For HPMC E5 grade, a 2% aqueous HPMC solution has a viscosity of 5.02 mPas [36]. When
the HPMC concentration is further increased, the viscosity is as well gradually increased:
the viscosity of a 3% aqueous solution is 3 mPas, that of a 6% aqueous solution is 43 mPas,
and that of an 8% aqueous solution is 91 mPas [37].

With higher HPMC concentrations, the films were more heterogeneous and harder
and presented separated thicker and thinner areas and some bubbles. All films were
easy to cut and quite flexible. The higher the HPMC concentration, the thicker the films.
HPMC concentrations of 2.85% (w/v) and 3.5% (w/v) produced the most homogeneous and
flexible films, and these concentration were selected for further drug-loaded film studies.
These concentration were slightly higher than those found to be optimal in an earlier study
(2.2%) [38].

Drug-loaded films were produced by mixing the aqueous HPMC/glycerol solution
with the drug nanosuspension. In order to optimize the film composition, three different
concentrations of the drug nanosuspension were tested.

All drug-loaded films were quite homogeneous and uniform in appearance, and only
some minor aggregation spots were visible in some films. The higher drug loading led to
easily breakable films with low folding endurance, and the film flexibility was lowered.
Lower drug amounts in the film led to more flexible and durable films. In a study with a
micronized drug, it has been noticed that acceptable polymer films were produced when
the drug amount was below 30% (w/w) in the final composition [10]. Dispersed solid
particles change the viscosity of the system and, hence, have an influence on the flow
properties and, correspondingly, mechanical properties of films. The concentration in our
study was close to the earlier reported limit, but in the earlier study, the particles were
micronized, while we used nanonized particles [10]. This led to different behaviors in the
suspension. For example, with nanonized particles, there is no sedimentation, but the
aggregation tendency is higher.

The highest drug amount had a clear effect also on film thickness and disintegration
time. The thickness with the highest nanosuspension concentration was from 100 nm to
110 nm, while with the lower nanosuspension concentrations, it was from 44 nm to 64 nm.
The disintegration times with higher drug amounts were around 4 min, while with lower drug
amounts, they were from 1 to 2.5 min. This difference also affected the drug release studies.

Particle size was measured after film redispersion. In all film formulations, the particle
size after redispersion was from 313 nm to 496 nm. Though the particle size was slightly
increased from the original particle size before film formation (225–227 nm), still, it was
below 500 nm in all cases and clearly in the nanometer range, indicating that indomethacin
nanocrystals were not irreversibly aggregated during the film formation process. For
nanocrystal-based formulations, it is typical that the particle size in the final formulations is
slightly increased as compared to that in freshly prepared nanosuspensions. For example,
when nanocrystals were spray-dried, the particle size increased from 330 nm to values
ranging from 360 nm to 560 nm [39]. The increase could be due to, for example, to
excipient absorption on top of the particle surface or to moisture absorption. Similarly,
the microenvironment around the particles is often changed due to altered measurement
conditions (solution composition), which affects the measured hydrodynamic radius of
the particles.

The highest nanosuspension concentration (26% in the printing ink) was clearly too
high to obtain good-quality films. The drug concentration caused film breakability, lower
resistance to folding, uneven drug loading to the film, and slow drug release rate. In 3D
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printing, the viscosity of the printing ink is an important parameter, and a high suspension
concentration has an impact on that.

Based on the mechanical and pharmaceutical analysis, film formulations having
the medium drug concentration (13% nanosuspension) were the best ones. With this
composition, two different film-forming processes, namely, 3D printing and film casting,
were compared. 3D-printed films showed less variation in the measured properties, though
also casted films reached good results. With both techniques, the size of redispersed particle
was from 310 to 420 nm. The main difference was in drug loading values, as printed films
showed higher drug loading compared to casted ones, but the drug release was slightly
faster for casted films (complete drug release in 2 to 3 min) as compared to printed films
(3 to 5 min).

For the drug-loaded printed formulations, three different variables were studied,
namely, drug amount, HPMC concentration, and stabilizer (Poloxamer) amount in the
nanocrystal formulation. In this study, polymer and stabilizer concentrations did not have
a real impact on the final product’s properties. The HPMC concentration was already
optimized in the drug-free formulation studies, and the differences between the two tested
levels were very small. In the same way, two different tested Poloxamer concentrations
produced very similar particle size values.

As a conclusion, in this study, fast-dissolving oral polymeric film preparations loaded
with drug nanocrystals were successfully produced by the 3D printing method. Drug
loading level as well as polymer concentration impacted the final product’s properties.
When the best film compositions made by 3D printing were compared to the same compo-
sitions prepared by film casting, both techniques resulted to produce high-quality films.
The main differences between these two film formulations were in their drug loading and
drug release properties, though the differences were very small.

4. Materials and Methods

Indomethacin was used as a poorly soluble model drug (Tokyo Chemical Industry Co.,
Tokyo, Japan). Poloxamer 188 (F68, Sigma-Aldrich Chemie GmbH, Steinheim, Germany)
and Poloxamer 407 (F127, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) were used
as stabilizers, hydroxypropyl methylcellulose (HPMC) (E5 Premium LV, The Dow Chemical
Company, Midland, Michigan, USA) as a film-forming polymer and also as a stabilizer
in the milling studies, and glycerol (glycerol 85%, Oriola, Espoo, Finland) as a plasticizer.
Water used was ultrapurified Milli-Q-water (Millipore SAS, Molsheim, France).

Indomethacin nanosuspensions were prepared by the wet milling technique in a
planetary ball mill (Pulverisette 7 Premium, Fritsch Co., Idar-Oberstein, Germany) [24].
Parameters for the milling were as follows: pearl size Ø 1 mm, drug amount 1 g, milling
speed 1100 rpm, total milling time 30 min (10 times 3 min milling, and after each 3-min
milling, a milling vessel was placed into an ice bath in order to cool it down for 10 min).

Mean particle size and polydispersity index (PDI) values of the nanoparticles were
analyzed by Photon Correlation Spectroscopy (PCS) (Malvern Zetasizer 3000HS, Malvern
Instruments, Malvern, UK). Particle size information was collected from freshly prepared
nanosuspensions as well as from 3D-printed and casted films after redispersion of the films.
For redispersion, 0.9 × 0.9 cm2 sized film pieces were cut and dispersed in 5 mL of water.
Before particle size analysis, 2 min sonication was performed.

The film-forming polymer solution for 3D printing was prepared by dissolving HPMC
and glycerol into water. For the printing gel solution, drug nanosuspensions were diluted
with water to three different concentrations, namely, 9% (v/v), 13% (v/v), and 26% (v/v).
Polymer solution: the nanosuspension ratio was kept constant (2:1, i.e., two parts of
polymer solution (12 mL) and one part of diluted drug nanosuspension (6 mL)).

Printing was performed with a Multitool 3D Printer, (ZMorph VX, Wroclaw, Poland)
with thick paste extruder—option with a syringe. Before filling the syringe, a small piece
of Parafilm was placed on the top of the lid in order to prevent the liquid from running
through. Then, the syringe was filled with the printing solution (at least 20 mL), closed,
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and set into the printer. A spherical film print with the diameter of 0.7 mm was produced
in a Petri dish. The printing parameters were as follows: layer height 2 mm, path width
1 mm, printing speed 10 m/s, paste thickness 5%.

Solvent film casting was performed with the same solutions as printing, but the
solution (9 mL) was just poured in a Petri dish.

After printing and casting, the films were dried for 14–18 h in an oven at 40 ± 1 ◦C.
All the films were characterized in appearance, folding endurance, thickness, weight

variation, drug content uniformity, disintegration, drug release, and physical state of the
drug. For all film characterization analyses, the films were cut to 0.9 × 0.9 cm2 pieces.

Appearance was detected by visual and microscopical observation (Leica microsys-
tems CMS GmbH, Bensheim, Germany).

Folding endurance was tested by calculating the number of repetitive foldings stress-
ing the same specified area of the film until cracks were noticed.

Film thickness was determined by a digital micrometer (Sony Magnescale Inc., DZ521,
Japan). Measurements were repeated for each sample in 5 randomly selected different
positions, and the average thickness was calculated.

For the weight variation test, 3 pieces were randomly selected for each film, and the
average weight was calculated.

For the content uniformity test, for each film, 3 randomly selected film pieces were
tested. Each sample was placed into a volumetric flask and dissolved in 50 mL of ethanol.
Drug amount was determined by a UV–Vis spectrophotometer (UV-1600PC, VWR Interna-
tional, Leuven, Belgium) at 318 nm wavelength.

The disintegration test was performed in Petri dishes. For each film, 6 different pieces
were tested by putting each of them separately into a Petri dish containing 20 mL of water.
The dishes were stirred at 10 s intervals. Film disintegration was detected visually.

Drug release studies were performed with the pharmacopeial paddle method in
potassium phosphate buffer (pH 6.8, 500 mL). For each film, 3 pieces were tested. A 3 mL
sample was withdrawn at preselected time intervals (0.5, 1, 1.5, 2, 3, 5, 15, and 30 min)
and was replaced with the same amount of fresh buffer. The drug concentration was
determined by a UV–Vis spectrophotometer at 318 nm wavelength.

The physical state of the drug was studied by differential scanning calorimetry (DSC
823e, Mettler Toledo, Columbia, USA). Besides the formed films, pure indomethacin,
poloxamer, and HPMC were analyzed. For the analysis, samples were put into aluminum
pans, which were closed with a perforated cap. The scanning rate was 5 ◦C/min, from
25 ◦C to 200 ◦C. Measurements were performed under a nitrogen gas flow (50 mL/min).
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