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Abstract: In this study, more accurate information on the levels of aerosol optical depth (AOD) was
calculated from the assimilation of the modeled AOD based on the optimal interpolation method.
Additionally, more realistic levels of surface particulate matters over the Arctic were estimated using
the assimilated AOD based on the linear relationship between the particulate matters and AODs. In
comparison to the MODIS observation, the assimilated AOD was much improved compared with
the modeled AOD (e.g., increase in correlation coefficients from −0.15–0.26 to 0.17–0.76 over the
Arctic). The newly inferred monthly averages of PM10 and PM2.5 for April–September 2008 were
2.18–3.70 µg m−3 and 0.85–1.68 µg m−3 over the Arctic, respectively. These corresponded to an
increase of 140–180%, compared with the modeled PMs. In comparison to in-situ observation, the
inferred PMs showed better performances than those from the simulations, particularly at Hyytiala
station. Therefore, combining the model simulation and data assimilation provided more accurate
concentrations of AOD, PM10, and PM2.5 than those only calculated from the model simulations.

Keywords: CMAQ model; MODIS; AERONET; aerosol optical depth (τ); optimal interpolation;
Arctic; data assimilation; PMs

1. Introduction

The Arctic haze composed of sulfate, black carbon, organic matter transported from the
mid-latitude industrial regions of Europe, Russia, and Asia has influences on perturbation
of the radiation balance between the surface and the top-of-atmosphere over the Arctic [1–6].
First, the transported haze particles warm or cool the atmosphere by scattering or absorbing
sunlight, which is the direct effect of aerosol [6,7]. Second, it interacts with clouds to
produce more and smaller droplets, leading to more warmth, which are indirect effects of
aerosol [8–10]. Third, when haze particles deposit into the snow or ice, they absorb more
sunlight by reducing the surface albedo [11].
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Many observations for gaseous species, particulate matters, and clouds have been
carried out at several stations of Ny-Ålesund (Svalbard), Pallas-Sodankylä (Finland), Villum
(Greenland), Summit (Greenland), Alert (Canada), Eureka (Canada), Oliktok Point (USA),
Barrow (USA), Cherskii (Russia), Tiksi (Russia), Thule (Greenland), Hornsund (Svalbard),
and Andenes (Norway) over the Arctic regions to examine the global climate changes, air
pollution, and their interaction [12–18]. Since these observations were spatially sparse,
there was a spatial limitation in providing detailed atmospheric information over the
Arctic. However, it is hard to measure a variety of chemical/physical parameters and
species in three dimensions at the same time. Additionally, in the Arctic regions, there are
many restrictions on research activities due to extreme weather conditions. Nevertheless,
there have been observational efforts to obtain three-dimensional and various information.
The intensive field campaigns, including aircraft-based observation, have been conducted
temporarily in a limited way for several weeks in spring and summer under good weather,
as follows: (i) Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) [19],
(ii) Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) [20],
(iii) Arctic Research of Composition of the Troposphere from Aircraft and Satellite-Phase A
and B (ARCTAS-A and B) [21,22], and (iv) POLARCAT-Greenland Aerosol and Chemistry
Experiment (POLARCAT-GRACE) [23] campaigns during the International Polar Year
(IPY) in 2007 and 2008.

Satellite observation and model simulation are alternatives for large and extreme
environmental regions such as the Arctic [24]. However, these tools also have the following
advantages and limitations. Although satellite-observed data is relatively more accurate
than the model simulation, there are also limitations in spatial and temporal information.
While the model simulation provides perfect spatial information for all atmospheric vari-
ables on an hourly basis, the accuracy of the simulated data is relatively low due to the
uncertainties related to emissions, boundary conditions, and parameterization for aerosol
calculation and atmospheric chemistry [25,26]. In particular, since the atmospheric levels
of PMs are known to be low over the Arctic, the uncertainty in (ship) emissions and infor-
mation on pollutants transported from Europe, Russia, and Asia strongly links with the
performance of model simulation in the Arctic. To solve the issue, many efforts have been
made to conduct the data assimilation of PMs and AOD based on the variational approach
(e.g., 3DVAR and 4DVAR) [27–35], sequential approach (e.g., optimal interpolation, En-
semble Kalman Filter) [36–49], and the combined method [50,51]. For example, Liu et al.
developed the National Centers for Environmental Prediction (NCEP) Gridpoint Statisti-
cal Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system
applied to a dust storm in East Asia [30]. Chai et al. showed promising results in better
estimation in the PM2.5 concentration using the data assimilation of the MODIS-observed
AOD with optimal interpolation (OI) method in the US [47]. Therefore, in this study, we
also attempted to overcome the spatial and temporal limitations in the satellite observation
and the low accuracy in the model simulation through the data assimilation based on the
OI method.

The objective of the study is to estimate realistic levels of surface particulate mat-
ter over the Arctic. For this purpose, more accurate AODs are calculated via the data
assimilation procedure using the satellite and ground remotely sensed data.

2. Experiments
2.1. Description of WRF/CMAQ Model Simulations

A year-long Chemistry Transport Model (CTM) simulation was carried out to under-
stand the levels of particulate matter over the Arctic. WRF v3.4.1 modeling [52] was also
carried out to generate meteorological fields, acting as drivers and/or driving atmospheric
chemical and physical processes of the regional CTM model, such as (i) the transports
of species; (ii) chemical losses through chemical reactions and photolysis; (iii) physical
removal through dry and wet depositions. For the WRF model simulation, the initial
and lateral boundary conditions were taken from the National Center for Environmental
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Prediction (NCEP) data [53,54]. The WRF simulation was configured with the following
physical options shown in Table 1.

Table 1. Physical and chemical schemes for WRF/CMAQ simulations.

Model Items Schemes

WRFv3.4.1 Microphysics WRF single-moment 5-class (WSM5) [55]
Long and short wave radiation Rapid Radiative Transfer Model (RRTM) [56]

Cumulus physics Kain-Fritsch scheme [57]
Planetary boundary layer Yonsei University (YSU) scheme [58]

Land surface model 5-layer thermal diffusion land surface model
CMAQv5.1 Gas phase chemistry Statewide Air Pollution Research Center-07 (SAPRC-07) [59]

Aerosol module Six-generation modal CMAQ aerosol model (AERO6) [60]
Advection (Horizontal) yamo and (vertical) wrf scheme
Diffusion (Horizontal) multiscale and (vertical) acm2 scheme

As a 3D-CTM, Community Multi-scale Air Quality (CMAQ) v5.1 model was employed
to simulate the levels of air pollutants over the Arctic for the year 2008 [61]. We decided on
2008 as the target year because many modeling and observation studies were conducted
as part of POLARCAT-IPY, aiming at improving understanding of Arctic pollution and
its impact on climate during International Polar Year (IPY) in 2007 and 2008 [62]. From
a meteorological perspective, it is unusual for the Arctic weather in 2008, which showed
an abnormally cold winter in Greenland, especially with an intense melt season [63]. The
modeling domain centered on Svalbard was configured with 18 km × 18 km horizontal
grid spacing and vertical resolution of 17 layers from surface to 80 hPa, covering the Arctic
Ocean, Greenland Sea, Barents Sea, Norwegian Sea, Greenland, Queen Elizabeth Island, and
some parts of Norway, Sweden, Finland, and Russia (Figure 1a). We employed the SAPRC-
07 mechanism and AERO6 module for the gas-phase chemistry and aerosol (thermo)
dynamics, respectively (Table 1). Information on boundary conditions for atmospheric
gases and aerosols were taken from the output simulated by the Model for Ozone and
Related Chemical Tracers, version 4 (MOZART-4) model (http://www.acom.ucar.edu/
wrf-chem/mozart.shtml) [64].

The anthropogenic emissions of gaseous and particulate species were obtained from
the Monitoring Atmospheric Composition and Climate and megacity Zoom for the En-
vironment projects (MACCity), which has a 0.5◦ resolved database compiled for the
year 2008 [65]. For PM10 and PM2.5, the anthropogenic emissions were taken into ac-
count from the Evaluating the Climate and Air Quality Impacts of Short-lived Pollutants
(ECLIPSE) v4a emission inventories based on the CLE scenario [66]. Furthermore, to
consider biogenic and biomass burning emissions, we used the 0.5◦ resolved Model of
Emissions of Gases and Aerosols from Nature-Monitoring Atmospheric Composition and
Climate (MEGAN-MACC) and Global Fire Emissions Database v3 (GFED3) emission in-
ventories, respectively [67,68]. All emissions were downloaded from the ECCAD archive
(https://eccad3.sedoo.fr/). Figure 1 presented the annual emission fluxes of SO2, NOx,
EC, OC, PM10, and PM2.5 used in the CMAQ model simulations. High emission fluxes
were found over Finland and Russia in the study domain. Despite relatively fewer amounts
of emissions, the ship-emitted pollutants were considered in the emission inventory. The
emissions can be seen along the coastal lines of Norway and Iceland.

http://www.acom.ucar.edu/wrf-chem/mozart.shtml
http://www.acom.ucar.edu/wrf-chem/mozart.shtml
https://eccad3.sedoo.fr/
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Figure 1. Bottom–up emissions of (a) SO2, (b) NOx, (c) EC, (d) OC, (e) PM10, and (f) PM2.5 for the
CMAQ simulations over the Arctic. The red triangles (N) in the panel of (a) represent the locations of
five AERONET stations of Thule, Hornsund, Andenes, Hyytiala, and Kuopio.

2.2. Description of Remote-Sensed Observations

The mission of the MODIS instrument equipped on the NASA Earth Observation
System (EOS) platforms of Terra and Aqua satellites is to capture the vertical columnar
aerosol loading and aerosol properties such as AOD, Angström exponent, and single
scattering albedo over the cloud- and snow-free land and ocean. The MODIS/Terra
observes the atmosphere with a descending orbit, passing over the equator at about 10:30
local sun time while the MODIS/Aqua flies northward across the equator at about 13:30
local sun time. In particular, the vertically-integrated aerosol extinction (i.e., AOD, τMODIS)
observed by the MODIS sensor has been used to evaluate the performance of 3D-CTM and
conduct the data assimilation of the model-calculated AODs [69–71]. For such purpose
of study, we obtained the daily level 2 AOD of Terra satellite (MOD04_L2) from the
NASA LAADS (https://ladsweb.modaps.eosdis.nasa.gov/search/). The AOD products
were retrieved at a wavelength of 550 nm through the NASA Collection 6 algorithm (C6).
Although, latest product via the C6.1 algorithm were released, there is no change in the
combined dataset between the C6 and C6.1 collections [72].

https://ladsweb.modaps.eosdis.nasa.gov/search/
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The C6 includes three retrieval algorithms, which are (i) Dark Target (DT) over
vegetated/dark-soiled land retrieved in the visible wavelength [73,74], (ii) Deep Blue
(DB) over the brighter surface in the visible wavelength (e.g., deserts) [75], and (iii) DT over
water surface in the visible and longer wavelength [74,76]. The expected uncertainty of
AOD was reported to be ± (0.05 ± 15%) over land and (0.04 ± 10%, −0.02 ± 10%) over the
ocean [74]. Levy et al. also reported that in comparison with AERONET-retrieved AODs
(τAERONET), 69.4% of τMODIS fall within expected error [74]. In this study, to use more
gap-filled data set, we used a merged AOD product combining the DT with DB over ocean
and land, which is “AOD_550_Dark_Target_Deep_Blue_Combined” data with a spatial
resolution of 10 km × 10 km at the nadir (and 48 km × 20 km near the swath edge) and
the temporal resolution of 5 min [74,77]. In the analysis, only pixels recommended quality
assurance, good and very good flag (QA = 2 and 3) were used [77]. The MODIS-retrieved
AOD (τMODIS) were re-gridded to a model grid of 18 km × 18 km on a daily basis.

Figure S1 shows a spatiotemporal map of the monthly availability of data for the
entire domain, using the merged AOD product. As expected, there were large numbers of
missing pixels over the Arctic Ocean and Greenland because of high surface albedo due
to sea ice and snow cover. The low data availability over the Arctic Ocean region greatly
varies from season to season. On the other hand, higher than 30% of data availability was
found frequently over some parts of the Greenland Sea, Barents Sea, and the Norwegian
Sea. The results indicate that data integration (or assimilation) between model-calculated
and satellite-observed AODs is needed for the regions showing high surface albedo such
as the Arctic to address the defects of each model estimation and satellite observation and
to maximize their advantages.

The AOD product retrieved from the C6 algorithm has been validated with the
AERONET-observed AOD (τAERONET), which is a global network of ground-based sun/sky-
photometers [78]. The sun-photometers measures the sun radiances at the eight typical
channels of 340, 380, 440, 500, 675, 870, 1020, and 1640 nm. The sun-photometers-measured
AODs are regarded as truth because the ground observations are not affected by surface
reflectivity. Thus, in the study, we employed the available AERONET AOD data at five
monitoring sites (Hornsund, Thule, Andenes, Kuopio, and Hyytiala stations) to evaluate
the CMAQ-calculated, MODIS-retrieved, and assimilated-AODs over the Arctic. As shown
in Figure 1a, the Thule, Hornsund, and Andenes stations are adjacent to the coast, so the
AODs in the areas is easily affected by sea salt particles. On the other hand, the Kuopio and
Hyytiala stations are located in the inner parts of Finland, which the air quality is affected
by anthropogenic sources. The level 2.0 product of AOD obtained from the AERONET
archive (https://aeronet.gsfc.nasa.gov) is cloud-screened, quality-controlled, processed
via version 3.0 algorithm [79]. Here, AOD at 550 nm was selected as the same as τMODIS
and calculated by Equations (1) and (2):

τλ = τλ0

(
λ

λ0

)−α

(1)

where, λ and λ0 represent wavelengths at 550 nm and 500 nm, respectively. The Angström
exponent (α) was calculated from the 870 nm (λ1) and 440 nm (λ2) channels [80].

α =
Log

τλ1
τλ2

Log λ1
λ2

(2)

Figure 2 showed the seasonal scatter plots and statistical analysis between τAERONET
and τMODIS over the 5 AERONET stations. For synchronization with the AERONET
observation, the MODIS data were collected within at most 10 km and 30 min in the spatial
and temporal differences.

As expected from Figure S1, the synchronized hourly dataset were small (N = 139
during the periods of April–September 2008) because the MODIS data-set was filtered due

https://aeronet.gsfc.nasa.gov
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to the high surface albedo. The overall correlation coefficients (Index of Agreement) were
0.73 (0.81) and were good, particularly for April and August 2008. From the analysis, the
slopes between τAERONET and τMODIS were smaller, in particular in warm seasons, which
indicates that the MODIS AOD was possibly underestimated. Therefore, the underesti-
mated τMODIS would affect the surface PM10 and PM2.5 estimations from the assimilated
AOD. In the study, AERONET AODs (τAERONET) were also used to determine the free
parameter for the data assimilation. The details were discussed later in Section 2.3.

Figure 2. Scatter plots between hourly τAERONET and τMODIS for (a) April, (b) May, (c) June, (d) July,
(e) August, (f) September, and (g) all months. Their statistical analysis of R (correlation coefficient),
S (slope), N (number of data), MB (mean bias), NMB (normalized mean bias, %), and IOA (index of
agreement) was presented.

2.3. CMAQ-Derived and Assimilated AODs

The radiant energy is attenuated in the atmosphere by aerosol scattering and absorp-
tion. The attenuation is expressed by the extinction coefficient (σext = σsct + σabs, unit:
Mm−1), which depends on the particulate composition with respect to particle size [81].
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With consideration of all modeled particulate species, the CMAQ-derived AOD was cal-
culated by integrating the aerosol extinction coefficient vertically from the surface to the
top-of-atmosphere:

τCMAQ =
N

∑
i=1

(σsct + σabs)∆zi =
N

∑
i=1

(σext)∆zi (3)

where, ∆zi and N are layer thickness at each layer and 17 layers, respectively. The AOD was
calculated using the extinction coefficients estimated from the empirical “reconstructed
mass-extinction method” as following Equations (4) and (5). We used the formula of
Pitchford et al. [82] instead of the original Interagency Monitoring of PROtected Visual
Environments (IMPROVE) extinction equation because of the possibly significant contribu-
tions of sea salt to extinction over the oceans [82,83]. Light scattering by sea salt aerosol
was not considered in the original IMPROVE formula. Additionally, our domain covers a
wide range of ocean, as shown in Figure 1.

σext(Mm−1) ≈
N
∑

s=1
αs,dry fs(RH)[Cs]

≈ 2.2× fF(RH)× [(NH4)2SO4]F + 4.8× fL(RH)× [(NH4)2SO4]L
+2.2× fF(RH)× [NH4NO3]F + 4.8× fL(RH)× [NH4NO3]L
+2.8× [OM]F + 6.1× [OM]L
+10.0× [EC]F
+1.7× fSS(RH)× [SS]
+0.6× [CORS] + 0.6× [SOIL]

(4)

fF(RH) = fL(RH) = fSS(RH) = a1 ×
RH

1− RH
+ a2 for RH ≥ b1

fF(RH) = fL(RH) = fSS(RH) = 1 for RH < b1

(5)

where, fs(RH) denotes the hygroscopic growth factor for ammonium sulfate, ammonium
nitrate, and sea salt as a function of relative humidity (RH, %). Specifically, fs(RH) is
classified into fF(RH), fL(RH), and fSS(RH) for fine, large, and sea salt particles, respectively.
The fs(RH) is also function of coefficients of the a1 and a2 in Equation (5), which are 0.4175
and 1.2312 for fine aerosol (F), 0.2381 and 1.3276 for large aerosol (L), and 0.2913 and 2.3308
for sea salt (SS). The reference relative humidity (b1) is 37% for fine and coarse aerosol and
46% for sea salt. Cs represents the concentrations of species (s), which are organic mass
(OM), element carbon (EC), sea salt (SS), coarse mass (CORS), and soil-derived mass (SOIL),
respectively. αS,dry is the dry mass extinction coefficients (m2 g−1) of the species (s). Here,
we used the constant values of αS,dry for ammonium sulfate, ammonium nitrate, sea salt,
and organic mass calculated from the Mie theory at 550 nm under the dry condition [82].

Many investigators have used the data assimilation technique by combing model-
ing and observations to produce an optimal estimated AOD of the evolving state of the
system [38,42,84]. We performed the data assimilation every hourly using the OI (op-
timal interpolation) method expressed as the following Equations (6)–(9). For the data
assimilation, the MODIS data were collected every hour within a 30 min in time differences.

τ′m = τm + K(τ0 − Hτm) (6)

K = BHT(HBHT + O)
−1

(7)

The τ’, τm, and τo represent hourly assimilated, model-calculated, and MODIS-observed
AODs, respectively. H is the linear observation operator allowing the calculation of the
model equivalents in observation location. K denotes the Kalman gain matrix combining
the error covariance matrix for the modeled (B) and observed (O) fields.

O = ( foτo + εo)
2 I (8)
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B = ( fmτm + εm)
2 exp

[
−

dx
2 + dy

2

2lxy2

]
(9)

where, fo and fm represent fractional error coefficients in the observed and modeled τ,
respectively. εo and εm are minimum error in the observed and modeled τ, respectively.
dx and dy are horizontal grid resolution (i.e., dx = dy = 18 km in this study). lxy is the
horizontal correlation length for errors in the modeled τ. In the sensitivity test, the best
free parameters of fo, fm, εo, and εm on a monthly basis were determined by minimizing
a statistical parameter of χ2 defined in Equation (10). This approach was introduced in
the study of Park et al. [42]. The best values from the sensitivity test were summarized
in Table S2.

χ2 =
1
N

N

∑
i

[
(τi,AERONET − τ′i,m)

2

τ′i,m

]
(10)

N is the number of available data set from the AERONET stations.

3. Results and Discussions
3.1. Simulated, Observed and Assimilated AODs over the Arctic

The CMAQ-calculated AOD (τCMAQ or τm) were compared to those from the MODIS
observations (τMODIS or τo) to evaluate the performances of the model simulations over the
Arctic. As shown in Figure 3 (i.e., green dots), the modeling performance was insufficient in
terms of the correlation coefficients and slopes. There were almost no correlations between
τCMAQ and τMODIS, showing the low values of −0.15–0.26 for all months. In addition, the
slopes are under a bias towards the x-axis.

Figure 3. Scatter plots and statistical analysis between τMODIS and τCMAQ and τassimilated over the
entire domain for (a) April, (b) May, (c) June, (d) July, (e) August, and (f) September 2008. The
statistical analysis of R (correlation coefficient), IOA (index of agreement), MB (mean bias), NMB
(normalized mean bias, %), S (slope), and N (number of data) was presented.
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There are several uncertain issues of emission fluxes, chemistry transport model
simulation, and AOD calculations. Among them, such large underestimations could be
primarily related to the highly uncertain bottom-up emission fluxes over the Arctic. In
Figure S2, we compared the emission fluxes of SO2, NOx, BC, OC, PM10, and PM2.5 from
the several emission inventories over the regions (70◦ N–90◦ N; 60◦ W–60◦ E) including
Greenland Sea, Barents Sea, and the Norwegian Sea. The most emissions over the areas
can be attributed to the shipping activities. The oceanic regions were selected because the
MODIS observed data were distributed mainly over the ocean due to high surface albedo
over the Greenland and Arctic Ocean. As shown in Figure S2, the ECLIPSE inventory
had the smallest values in their emission fluxes. Additionally, the emission fluxes were
considerably different by emission inventory. The emission inventories (ECLIPSE and
MACCity) used in the simulations were marked as an asterisk in Figure S2. For example,
unlike the little amounts of PM10 for the ECLIPSE inventory, the emission fluxes were
~3 Gg yr−1 for both EDGARv4.2 and HTAPv2 and ~10 Gg yr–1 for EDGARv4.3.2. Such a
comparison was also as similar as for PM2.5. For the species of BC and OC, the MACCity
inventory showed relatively small emissions fluxes. In addition to anthropogenic sources,
natural sea salt particles generated from the sea surface, particularly in coastal regions,
have an enhanced contribution to the concentrations of particle matters over the ocean [85].
However, the estimations in the sea salt emissions are afflicted with several uncertain
time-varying information on surf zone, wind speed, sea surface friction velocity, salinity,
sea surface temperature, and dry sea salt particle size [86,87].

Figure 3 also shows the monthly scatter plots between the assimilated (τ’ or τAssim)
and MODIS-retrieved AODs (τMODIS) and their statistical values over the entire domain
(see the red dots). Compared to the statistical analyses between τCMAQ and τMODIS, those
between τAssim and τMODIS was much improved. For example, the correlation coefficients
were improved from −0.15–0.26 to 0.17–0.76. However, there were still low correlations,
particularly in June and July. Additionally, the slopes between τAssim and τMODIS were
close to 1:1 lines (S = 0.38–0.82), indicating the elevated AOD through the data assimilation.
Such improvement can be visually seen from the spatial distributions of the τCMAQ, τMODIS,
and τAssim in Figure S3.

The MODIS observed data produce a complete 2-dimensional set of AOD when
assimilated into the CMAQ-calculated AOD. Thus, τAssim are much improved, compared
with τCMAQ, particularly over Greenland Sea, Norwegian Sea, and the Barents Sea as
shown in Figure S3. Nevertheless, τAssim was still underestimated compared to τMODIS. In
the second column of Figure S3, the white pixels of τMODIS represent the areas indicating
no available data due to cloud contamination or high surface reflectance.

Figure 4 showed the daily-mean variations of τAERONET, τMODIS, τCMAQ, and τAssim and
their mean values at the AERONET stations of Thule, Hornsund, Andenes, Hyytiala, and
Kuopio for 2008. In addition, the correlation coefficients among the AODs from AERONET,
MODIS, CMAQ, and assimilation were calculated in Table 2 (see the bold numbers for the
statically significant correlation coefficients in Table 2). In terms of daily variations, mean
values, and statistical analysis, τAssim were improved, compared with τCMAQ.

Table 2. Correlation coefficients among AODs from AERONET, MODIS, model, and data assimilation
at several AERONET stations.

Correlation Coefficient (R) Thule Hornsund Andenes Hyytiala Kuopio

τAERONET vs. τMODIS 0.52 0.82 0.75 0.91 0.69
τAERONET vs. τCMAQ 0.21 0.10 0.48 0.13 0.08
τAERONET vs. τAssim 0.03 0.57 0.53 0.65 0.49
τMODIS vs. τCMAQ 0.19 0.38 0.31 0.41 0.30
τMODIS vs. τAssim 0.46 0.82 0.76 0.65 0.29
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Figure 4. Daily mean variations of τAERONET (black closed square), τMODIS (blue open circles),
τCMAQ (green lines), and τAssim (red lines) at several stations of (a) Thule, (b) Hornsund, (c) Andenes,
(d) Hyytiala, and (e) Kuopio. Their mean values with standard deviations for April–September.

The MODIS sensor similarly captures the levels of AODs observed by AERONET at
all stations. The correlation coefficients between τMODIS and of τAERONET were from 0.52
to 0.91 (Table 2). The monthly similarity was also discussed in Figure 2. The similarity
between τAERONET and τMODIS had a positive effect on the performance of data assimilation,
which indicates that the accuracy of MODIS observations is primarily crucial in data
assimilation. Thus, the AODs assimilated by the OI technique produced similar levels and
daily-variations in AOD from the MODIS and AERONET observations, compared to the
model-calculated AOD. Additionally, the analysis increments from the data assimilation
system were still generated in some selected periods, although there were no sufficiently
available data of MODIS AODs (e.g., τMODIS in March, April, and May at Hornsund
station). The results are because the MODIS AODs observed in the adjacent areas provide a
positive effect on the data assimilation. However, as shown in Figure 4, the effect of the data
assimilation was insignificant since there were few available data of MODIS observation;
in particular, in February, March, October, and November. Overall, from the analysis, we
found that the combination between the CMAQ model and data assimilation based on OI
method provided more accurate atmospheric levels and spatial distributions of AODs than
those only calculated from the CMAQ simulations [88].
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3.2. Estimations of Surface PMs from Assimilated AODs over the Arctic

Since the modeled AODs were highly underestimated (e.g., Figure 3 and Figure S3)
due to the uncertain issues related to the emissions and boundary conditions, the low
concentrations of PMs can be expected. Therefore, to estimate more realistic levels of PMs
for the entire domain, the surface PMs were calculated using the assimilated AODs over the
Arctic based on the linear relationship between the concentrations of PMs and AODs. For
the estimations of PM10,CMAQ(w/OI) and PM2.5,CMAQ(w/OI), we used the Equations (11) and
(12) because AOD is regarded as a proxy for concentrations of PMs in many studies [89,90].

PM10, CMAQ (w/OI) =
PM10, CMAQ

τCMAQ
× τCMAQ (w/OI) (11)

PM2.5, CMAQ (w/OI) =
PM2.5, CMAQ

τCMAQ
× τCMAQ (w/OI) (12)

Figure 5a–d and Figure S4 presented the spatial distributions of monthly averaged
PM10 and PM2.5 concentrations calculated from the CMAQ simulations and inferred
from the linear Equations (11) and (12). In Figure 5a,c, the concentrations of modeled
PM10,CMAQ and PM2.5,CMAQ were smaller than 1–2 µg m−3 and were spatially homoge-
neous over the Arctic. In addition, it was clearly shown that the concentrations were
relatively high in southern parts of the domain due to the influences of aerosols trans-
ported from the boundary. On the other hand, the concentrations of PM10 and PM2.5
inferred from the elevated AODs via data assimilation (shown in Figures 3 and 4) increased
by approximately 140–280% in April–September for the entire domain (refer to Table
S1). Monthly average PM10,CMAQ(w/OI) and PM2.5,CMAQ(w/OI) inferred from the assimilated
AODs were 3.50 (± 2.96) and 1.68 (± 1.38) µg m−3 over the entire domain in May, as shown
in Figure 5b,d. We summarized the monthly mean of PM10 and PM2.5 for April–September
in Table S1. Monthly means of PM10,CMAQ(w/OI) and PM2.5,CMAQ(w/OI) over the entire do-
main were between 2.18 and 3.70 µg m−3 and between 0.85 and 1.68 µg m−3, respectively.
The maximum values of PM10,CMAQ(w/OI) and PM2.5,CMAQ(w/OI) were found along the coast-
line and over the Gulf of Bothnia, where the air quality is usually influenced by local air
pollutants emitted from ships [91]. As shown in Figure 5b and Figure S3 for May, there can
be a spatial inconsistency between the assimilated AOD and PMs,CMAQ(w/OI), particularly
over the Gulf of Bothnia (i.e., white circle in Figure 5b. Such inconsistency is related to
the vertical profile of aerosols because while the AODs are quantitative values of aerosols
integrated from the surface to the top of the atmosphere, the PMs are the concentrations at
the surface level.

For the validation, we compared the estimated PMs with in-situ observations. Figure 5e–h
showed the daily mean variations of observed, simulated, and estimated PM10 and PM2.5
at Hyytiala, Vindeln, and Virolahi stations. While the temporal variations of the CMAQ-
calculated PM10 and PM2.5 were almost flat, the inferred PMS,CMAQ(w/OI) well represented
the high concentrations of observation. Compared to the in-situ observation (i.e., black
squares), the PMS,CMAQ(w/OI) (i.e., red lines) inferred from the assimilation AODs showed
better performance in the statistical point of view (see the M, MB, IOA, and S in the
figure) than those from the CMAQ simulations (i.e., green lines), particularly at Hyytiala.
The estimated average values of PM10,CMAQ(w/OI) were 4.85 and 3.04 µg m−3 at Hyytiala
and Vindeln, respectively. Additionally, those of PM2.5,CMAQ(w/OI) were estimated to be
3.85 and 4.35 µg m−3 at Hyytiala and Virolahi, respectively. With low biases ranged
from −1.52 to −0.92 µg m−3 except for Vindeln, these estimated values were close to
the observations.

The temporal variations of PMS,CMAQ(w/OI) were also calculated at several sites of
Thule, Hyytiala, Hornsund, Kuopio, Andenes, and the North Pole, as shown in Figure 6.
The estimated surface concentrations of PM10,CMAQ(w/OI) (PM2.5,CMAQ(w/OI)) averaged for
April–September were 5.88, 3.78, 6.37, 2.19, 7.99, 0.61 µg m−3 (2.21, 3.09, 2.54, 1.79, 2.25,
0.41 µg m−3), respectively. As shown in Figure 6, the estimated values increased by ap-
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proximate 170–670% for all regions except the North Pole, compared to those from the
CMAQ model simulations. The temporal variations of model-calculated PM10 and PM2.5
(colored as bright and dark green lines, respectively) remained flat. However, the esti-
mated PM10,CMAQ(w/OI) and PM2.5,CMAQ(w/OI) (colored as red and purple lines, respectively)
fluctuated considerably. In February, March, October, and November, the similar concentra-
tions between the model-calculated PMS and the inferred PMS,CMAQ(w/OI) over Thule and
Hornsund indicate that the effect of data assimilation is insignificant due to the absence of
MODIS observed data originated from high surface reflectivity.

Figure 5. Spatial maps of monthly average PMs calculated from CMAQ simulation and estimated
from the linear relationship between assimilated AODs and PMs for May. (a) PM10 and (c) PM2.5

calculated from the CMAQ simulations. (b) PM10 and (d) PM2.5 estimated from the Equations (11)
and (12). Daily mean variations of observed (black closed squares), modeled (green lines), and
estimated (red lines) PM10 at (e) Hyytiala and (g) Vindeln stations and PM2.5 at (f) Hyytiala and (h)
Virolahi stations. Mean values (M, µg m−3), mean bias (MB, µg m−3), Index of Agreement (IOA),
and slope (S) from the observation (Min-situ), CMAQ simulation (MCMAQ), and linear estimation
(MAssim) for April–September. The closed triangles in Figure (a) and (c) indicate the locations of the
monitoring stations.

As shown in Figure 6, there were two separate groups divided in terms of the ratio of
PM2.5 to PM10. The first group, having relatively low ratios, included Thule, Hornsund,
and Andenes. Their ratios were 0.35, 0.35, and 0.30, respectively. These areas located near
the coastal line have geographical conditions favorable for generating the coarse particle
of sea salts. On the other hand, the second group, showing high ratios of PM2.5 to PM10
concentrations, were Hyytiala and Kuopio. The ratios were 0.80 and 0.77, respectively.
These areas located in inland Finland are easily affected by anthropogenic sources. To
confirm the origin of the air mass, we conducted the 5-day backward trajectory analysis for
April–September using the HYSPLIT v5.0 [92]. From the trajectory analysis, we found that
air masses at Hyytiala and Kuopio were mainly transported from Europe (39–47%) and
the Arctic regions (38–46%) while those arriving at Thule, Hornsund, and Andenes were
originated dominantly from the Arctic regions (81–92%).
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Figure 6. Temporal variations of the modeled (bright and dark green lines) and estimated (red and
purple lines) PM10 and PM2.5 at (a) Thule, (b) Hyytiala, (c) Hornsund, (d) Kuopio, (e) Andenes,
and (f) the North Pole. The RD (relative differences) of PM10 and PM2.5 were also calculated at
each station from following equations of RDPM10 = (PM10,CMAQw/OI–PM10,CMAQ)/ PM10,CMAQ and
RDPM2.5 = (PM2.5,CMAQw/OI–PM2.5,CMAQ)/ PM2.5,CMAQ).

4. Summaries and Conclusions

In the study, we examined the spatial and temporal variations of aerosol optical
depths and estimated the surface PM10 and PM2.5 concentrations over the Arctic. For the
investigation, a 1-year simulation was carried out over the Arctic using the WRF-CMAQ
model. The performances of the WRF-CMAQ simulations were then evaluated by com-
parison with MODIS-observed AODs. The model-calculated AODs (τCMAQ) were highly
underestimated, compared to the MODIS-retrieved AODs (τMODIS), and the correlation
between τCMAQ and τMODIS was low over the Arctic.

To produce optimal estimated AODs, we utilized data assimilation based on the opti-
mal interpolation (OI) technique by combing the model-calculated and satellite-observed
AODs. The assimilated AODs (τAssim) were spatially and temporally compared with the
MODIS and AERONET observed AODs. In terms of daily variations, mean values, and
statistical analysis, τAssim were much more improved, compared with τCMAQ. The correla-
tion coefficients were also improved from −0.15–0.26 to 0.17–0.76 over the Arctic. In the
comparison with τMODIS, τAssim showed better correlation coefficients (R = 0.46–0.82) than
those (R = 0.19–0.41) of τCMAQ at Thule, Hornsund, Andenes, and Hyytiala station. We also
showed that the analysis increments from the data assimilation system were generated in
some selected periods, although there were no sufficiently available data of MODIS AODs.
Overall, combining the CMAQ model and satellite observation (based on the OI method)
provided more accurate atmospheric concentrations and spatial distribution of AOD than
those only calculated from the model simulation.

In this study, since the modeled quantities were highly underestimated, the sur-
face PMs were calculated from the assimilated AODs and the linear relation between
the model-calculated PMs and AODs to estimate more realistic levels of PMs over the
Arctic. The monthly average of PM10 (PM2.5) inferred from the assimilated AODs was
between 2.18 and 3.70 µg m−3 (between 0.85 and 1.68 µg m−3), which relatively increased
by 140–280%. Compared to the in-situ observation, the PM10 and PM2.5 inferred from the
assimilated AODs showed better performance in the statistical point of view than those
from the CMAQ simulations, particularly at Hyytiala. The estimated surface concentra-
tions of PM10,CMAQ(w/OI) (PM2.5,CMAQ(w/OI)) averaged for April–September were 5.88, 3.78,
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6.37, 2.19, 7.99, 0.61 µg m−3 (2.21, 3.09, 2.54, 1.79, 2.25, 0.41 µg m−3) at Thule, Hyytiala,
Hornsund, Kuopio, Andenes, and the North Pole, respectively.

Further fundamental improvement will be required, particularly in terms of the
accuracy of ship emissions and boundary conditions for the Arctic simulations, although
the MODIS data assimilated into the model-calculated AODs provided more accurate
atmospheric levels of AOD and PMs in this study. In addition, the algorithm for AOD
retrievals over some snow-covered regions (i.e., high surface reflectance) was recently
developed by several investigators [93,94]. Moreover, the gap-filling technique based on
artificial intelligence (AI) is nowadays a promising method [95,96]. Thus, it is expected
that more accurate atmospheric levels of PMs can be available over the Arctic through the
application of these studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076
-3417/11/4/1959/s1, Figure S1: Spatiotemporal map of the monthly availability of the MODIS
AOD product for the entire domain, Figure S2: Annual emission fluxes of (a) SO2, (b) NOx, (c) BC,
(d) OC, (e) PM10, (f) PM2.5 for the regions (70◦ N–90◦ N; 60◦ W–60◦ E) from the eighteen inventories,
Figure S3: Spatial distributions of the CMAQ model-estimated (first column), MODIS-observed
(second column), and assimilated (third column) AODs over the Arctic from April 2008 to September
2008, Figure S4: Spatial distributions of monthly averaged PM10 and PM2.5 calculated from the
CMAQ simulations and inferred from the linear relationship between PMs and assimilated AODs,
Table S1: Monthly mean of PM10 and PM2.5 from the CMAQ simulation and linear estimation and
their relative differences over the entire domain, Table S2: The optimized free parameters obtained
from the sensitivity test.
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