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Abstract: Accurate and rapid diagnostic tools are needed for management of the ongoing coronavirus
disease 2019 (COVID-19) pandemic. Antibody tests enable detection of individuals past the initial
phase of infection and help examine vaccine responses. The major targets of human antibody response
in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the spike glycoprotein (SP) and
nucleocapsid protein (NP). We have developed a rapid homogenous approach for antibody detection
termed LFRET (protein L-based time-resolved Förster resonance energy transfer immunoassay). In
LFRET, fluorophore-labeled protein L and antigen are brought to close proximity by antigen-specific
patient immunoglobulins of any isotype, resulting in TR-FRET signal. We set up LFRET assays
for antibodies against SP and NP and evaluated their diagnostic performance using a panel of
77 serum/plasma samples from 44 individuals with COVID-19 and 52 negative controls. Moreover,
using a previously described SP and a novel NP construct, we set up enzyme linked immunosorbent
assays (ELISAs) for antibodies against SARS-CoV-2 SP and NP. We then compared the LFRET assays
with these ELISAs and with a SARS-CoV-2 microneutralization test (MNT). We found the LFRET
assays to parallel ELISAs in sensitivity (90–95% vs. 90–100%) and specificity (100% vs. 94–100%).
In identifying individuals with or without a detectable neutralizing antibody response, LFRET
outperformed ELISA in specificity (91–96% vs. 82–87%), while demonstrating an equal sensitivity
(98%). In conclusion, this study demonstrates the applicability of LFRET, a 10-min “mix and read”
assay, to detection of SARS-CoV-2 antibodies.

Keywords: SARS-CoV-2; serology; serodiagnosis; TR-FRET; immunoassay

1. Introduction

In December 2020, the number of confirmed cases in the ongoing coronavirus disease
2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), exceeded 70 million, with over 1.5 million deaths [1]. Reliable diagnostic
assays are needed for management of COVID-19 patients and epidemic containment
(“test, trace and isolate”). Nucleic acid tests (NAT) or antigen tests serve to detect acute
SARS-CoV-2 infection, whereas antibody testing tells the past-infection and/or immunity
status. Hence, antibody tests can be used for determining seroprevalences, examining
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vaccine responses in study settings, or finding out whether an individual needs a booster
as in the case of e.g., hepatitis B vaccine. With COVID-19, antibody testing may be the
key in reaching the diagnosis for a patient presenting when the viral RNA has already
waned, e.g., with late thromboembolic complications or prolonged symptoms [2]. The
most widespread methods in antibody detection are enzyme immunoassays (EIAs) and
lateral flow assays (LFAs); the former tend to be highly specific and sensitive yet require
dedicated infrastructure and labor, and deliver the results at best within hours, whereas
LFAs are simple and rapid but may be of substandard diagnostic performance.

We have previously set up rapid homogeneous (wash-free) immunoassays utilizing
time-resolved Förster resonance energy transfer (TR-FRET) [3–8]. For FRET to occur, a
donor and acceptor fluorophore are brought to close proximity (<100 Å), allowing ex-
citation of the donor to result in energy transfer to the acceptor, which then emits at
a distinct wavelength. To reduce autofluorescent background, a chelated lanthanide
donor exhibiting long-lived fluorescence is employed, allowing for time-resolved measure-
ment (TR-FRET). We have developed a TR-FRET -based immunoassay concept termed
LFRET (protein L-based time-resolved Förster resonance energy transfer immunoassay)
and demonstrated its excellent diagnostic performance in detection of antibodies against
Puumala orthohantavirus nucleocapsid protein, Zika virus NS1 and the autoantigen tissue
transglutaminase [5,7,8]. LFRET relies on simultaneous binding to the antibody of interest
of its donor-labeled antigen and of an acceptor-labeled protein L. If the patient’s serum
contains antibodies against the antigen, they bring the two fluorophores to close proximity,
generating a TR-FRET signal. Interestingly, a recent report describes a TR-FRET based 1-h
assay for separate detection of anti-SARS-CoV-2 antibodies of different immunoglobulin
isotypes [9].

SARS-CoV-2 is an enveloped (+)ssRNA virus with a non-segmented 30 kb genome
and four structural proteins: spike (SP), envelope (E), membrane (M), and nucleoprotein
(NP). Protruding from the viral surface are transmembrane homotrimers of SP, essential
for host cell entry. The S glycoprotein is proteolytically cleaved into subunits S1 and S2, of
which S1 contains the host cell receptor-binding domain (RBD), while S2 mediates fusion
with the host cell membranes [10]. Like SP, the E and M proteins are located on the viral
envelope, whereas NP binds the viral RNA to form a ribonucleoprotein complex that is
encapsulated within the viral membrane.

Antibody responses to SARS-CoV-2 predominantly target the NP and SP. In hospital-
ized patients, the median time from onset of symptoms to IgA, IgM and IgG seroconversion
has been observed to be 11-14 days, with almost all seroconverting by day 21 [11–13]. The
antibody levels correlate with the severity of disease, with few patients apparently not
seroconverting [12]. Moreover, a fraction of the seroconverters do not seem to generate de-
tectable neutralizing antibodies (NAbs) [14]. The NAb response correlates with the presence
of anti-SP antibodies [15,16], with most but not all NAbs targeting the RBD [17]. IgG levels
to other human betacoronaviruses peak within months of infection and wane within years
thereafter [18,19], and reinfections with seasonal human coronaviruses occur as early as
12 months from the previous infection [20]. As for SARS-CoV-2, the persistence of antibodies
and the extent to which they provide protective immunity remains as of yet uncertain.

In this study we introduce rapid wash-free LFRET assays for detection of antibodies against
SARS-CoV-2 NP and SP antigens and compare them with ELISAs and microneutralization.

2. Materials and Methods
2.1. Samples

This study included 77 serum/plasma samples from 40 individuals tested positive
and four samples from four individuals tested negative for SARS-CoV-2 by RT-PCR from
nasopharyngeal swab samples. The positive samples were taken at 8 to 81 days after
onset of symptoms. Additionally, 48 serum samples from asymptomatic individuals
with a comprehensively negative SARS-CoV-2 serology (Euroimmun IgG (EUROIMMUN
Ag, Lübeck, Germany), IFA IgG virus, IFA IgG spike, microneutralization negative) and
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27 seropositive samples (Euroimmun SARS-CoV-2 ELISA (IgG), Abbott Architect SARS-
CoV-2 IgG (Abbott, Abbott Park, IL, USA) and microneutralization positive) were included.
The data and samples were collected under research permit HUS/211/2020 and ethics
committee approval HUS/853/2020 (Helsinki University Hospital, Finland).

2.2. Nucleic Acid Testing

Nucleic acid testing for SARS-CoV-2 was done from nasopharyngeal swab samples
with either the Cobas® SARS-CoV-2 test using the Cobas® 6800 system (Roche Diagnostics,
Basel, Switzerland), a protocol based on one previously described by Corman et al. [21], or
the Amplidiag® COVID-19 test (Mobidiag, Espoo, Finland).

2.3. Molecular Cloning

For protein expression, we acquired the ZeoCassette Vector (pCMV/Zeo) from Ther-
moFisher Scientific (Walham, MA, USA), and excised the Zeocin resistance gene from
the vector using FastDigest EcoRI and XhoI (ThermoFisher Scientific) according to the
manufacturer’s protocol. The excised gene was agarose gel purified, blunted using T4
DNA polymerase (ThermoFisher Scientific), and purified using Ampure XP beads (Beck-
man Coulter, Brea, CA, USA) both following the manufacturer’s protocol. The selection
gene was inserted into pCAGGS/MCS and to the pCAGGS vector bearing SARS-CoV-2
S protein (described in [22,23]) gene by treating the plasmids with FastDigest SapI/LguI
(ThermoFisher Scientific) according to the manufacturer’s protocol, followed by blunting
and purifications as above. The insert was ligated to the plasmids using T4 DNA ligase
(ThermoFisher Scientific) according to the manufacturer’s protocol, and the products were
transformed into Escherichia coli (DH5a strain), followed by plating of the bacteria onto
LB plates with 100 µg/mL of ampicillin and 50 µg/mL Zeocin (ThermoFisher Scientific).
After overnight incubation at 37 ◦C, single colonies were picked and grown in 5 mL of 2 ×
YT medium supplemented with 100 µg/mL of ampicillin and 50 µg/mL Zeocin overnight
at 37 ◦C. The plasmids were purified using GeneJET Plasmid Miniprep Kit (ThermoFisher
Scientific), and those bearing the insert were identified by restriction digestion (FastDi-
gest EcoRI, ThermoFisher Scientific) and agarose gel electrophoresis. For both constructs,
clones with the insert in reverse and forward direction were selected for ZymoPURE II
Plasmid Maxiprep Kit (ZymoResearch, Irvine, CA, USA) preparations done following the
manufacturer’s guidelines. A synthetic SARS-CoV-2 NP gene under Kozak sequence and a
signal sequence MMRPIVLVLLFATSALA flanked by KpnI and SgsI restriction sites was
obtained from ThermoFisher Scientific. The SARS-CoV-2 NP cassette was subcloned into
pCAGGS/MCS-Zeo-fwd vector and plasmid maxipreps prepared as described above.

2.4. Protein Expression and Purification

We initially attempted producing SARS-CoV-2 SP in Expi293F cells utilizing the
Expi293 Expression System (ThermoFisher Scientific). Briefly, the pCAGGS plasmid bear-
ing codon-optimized SARS-CoV-2 spike1 was transiently transfected into Expi293F cells as
advised [22,23], except that we used spinner flasks (disposable 125 mL spinner flask, Corn-
ing, Corning, NY, USA) for the culture. Protein purification from supernatants collected
at five days post transfection followed the protocol described and yielded 0.2–0.3 mg per
100 mL culture, in line with earlier reports [22,23].

Next, we transfected adherent HEK293T cells with pCAGGS-SARS-CoV-S-Zeo plas-
mids using Fugene HD at 3.5:1 ratio, in suspension as described [24]. The transfected cells
were plated onto six-well plates, and at 48 h post transfection subjected to Zeocin selection,
150 µg/mL Zeocin in high glucose DMEM (Dulbecco’s Modified Eagle’s Medium, Millipore-
Sigma, St. Louis, MO, USA) supplemented with 5% fetal bovine serum (Gibco, ThermoFisher
Scientific) and 4 mM L-glutamine. Two days after initiating the selection, the cells were
trypsinized and transferred into fresh wells, with fresh media and antibiotics provided at
2 to 3 day intervals. Once confluent, the cells were trypsinized, counted (TC20 cell counter,
Bio-Rad Laboratories, Hercules, CA, US), diluted to ~30 cells/mL, and dispensed onto 96-well
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plates, 100 µL per well. Once confluent, the cells were switched to serum-free FreeStyle 293
Expression Medium (ThermoFisher Scientific) with 100 µg/mL Zeocin, and incubated at
37 ◦C 5% CO2. At 48 h, the medium was analyzed for the presence of SARS-CoV-2 SP by
dot blotting; briefly via drying 2.5 µL of the supernatant onto a nitrocellulose membrane,
which then was blocked (3% skim milk in Tris-buffered saline with 0.05% Tween-20), washed,
probed with rabbit anti-RBD (40592-T62, Sino Biological, Beijing, China), washed, probed
with anti-rabbit IRDye800 (LI-COR Biosciences, Lincoln, NE, USA), washed, and read using
Odyssey Infrared Imaging System (LI-COR Biosciences). The clone with most SARS-CoV-2
SP in supernatant, HEK293T-spike-D5, was then expanded in DMEM with 5% FBS, 4 mM
L-glutamine and 100 µg/mL Zeocin, and ampouled for storage in liquid nitrogen. The
HEK293T-spike-D5 cells were suspension cultured in spinner flasks in Expi293 Expression
Medium (ThermoFisher Scientific) with 100 µg/mL of Zeocin, and stored in liquid nitrogen
and tested for the ability to produce SARS-CoV-2 S protein in both Expi293 and FreeStyle 293
Expression Medium (both ThermoFisher Scientific). After culturing in the spinner flask for 5
to 8 days, a density of >3 × 106 cells/mL was reached. The protein from the supernatant was
purified as described2, with yields of 0.8–1.2 mg per 100 mL.

For production of SARS-CoV-2 NP, Expi293F cells were transfected with pCAGGS-
SARS-CoV-2-NP-Zeo using Fugene HD; briefly, with 100 µg of the plasmid diluted into
10 mL of OptiMEM (MilliporeSigma), and 350 µL of Fugene HD added, followed by
mixing and 15 min incubation at room temperature, after which the plasmid mix was
added onto Expi293F cells in Expi293 Expression Medium at 2.5 × 106 cells/mL. After
four days the supernatant was collected, and the protein purified (yield ~1 mg per 100 mL
culture) as described for S protein2. The remaining cells were treated with 0.25% Trypsin-
EDTA (MilliporeSigma) to remove dead cells, and after two washes were put back into
the spinner flask with fresh Expi293 Expression Medium supplemented with 100 µg/mL
of Zeocin. Eventually a population of cells started to proliferate (Expi-NP-zeo cells), and
were aliquoted in liquid nitrogen. The protein production and purification occurred as
described above with yields of ~1 mg per 100 mL culture.

2.5. Protein Labeling

We labeled the SARS-CoV-2 SP and NP with the donor fluorophore europium (Eu)
using QuickAllAssay Eu-chelated protein labeling kit (BN Products and Services Oy,
Turku, Finland) according to the manufacturer’s instructions to generate Eu-labeled SP
(Eu-SP) and NP (Eu-NP). We also labeled recombinant protein L (Thermo Scientific) with
the acceptor fluorophore Alexa Fluor 647 to generate AF647-labeled protein L (AF-L), as
reported [5]. IgG-free bovine serum albumin (BSA) was from Jackson ImmunoResearch
Inc. (West Grove, PA, USA).

2.6. TR-FRET Assays

The LFRET assay was done as described [5] and as depicted in the flowchart in
Figure 1. For calculating the relative TR-FRET signal increase, we here replace the pool of
negative sera with TBS-BSA (50mM Tris-HCl, 150mM NaCl, pH 7.4, 0.2% BSA). The relative
signal increase was converted into arbitrary counts by multiplying with 294.6111 (SP) or
380.0231 (NP). To establish LFRET assays for SP and NP, we optimized the component
concentrations by cross-titration using three positive and three negative sera. For detection
of anti-NP antibodies, we found the optimal on-plate conditions to be serum 1/25, AF-L
500 nM and Eu-NP 5 nM. Likewise, for detection of anti-SP antibodies, we found on-plate
conditions of serum 1/100, AF-L 250 nM and Eu-SP 5 nM optimal. After combining the
reagents, TR-FRET counts were measured at 0, 7, 15, 22, 30, 45 and 60 min with Wallac
Victor2 fluorometer (PerkinElmer, Waltham, MA, USA) and normalized as described [3].
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Figure 1. Simplified protocol for SARS-CoV-2 NP and SP LFRET assay. Eu-NP/-SP = Europium-
labeled nucleoprotein/spike glycoprotein. AF-L = Alexa Fluor™ 647 -labeled protein L. TR-
FRET = time-resolved Förster resonance energy transfer. RT = room temperature. TBS+BSA (50 mM
Tris-HCl, 150 mM NaCl, pH 7.4, 0.2% BSA) was used for all dilutions. On-plate dilutions were 5
nM Eu-NP/500 nM AF-L/serum 1/25 for anti-NP and 5 nM Eu-SP/250 nM AF-L/serum 1/100 for
anti-SP LFRET. For further details see the prior publication [5].

2.7. Enzyme Linked Immunosorbent Assays (ELISAs)

We set up the SARS-CoV-2 SP ELISA as described [23] with the following amendments.
We coated the plates (ThermoFisher Scientific NUNC-immuno 446,442 polysorp lockwell
C8) with 50 µL/well of antigens diluted 1 µg/mL in 50 mM carbonate-bicarbonate buffer
pH 9.6 (Medicago AB, Uppsala, Sweden). As secondary antibodies we made use of poly-
clonal rabbit anti-human IgA-horeseradish peroxidase (HRP), -IgM-HRP, and -IgG-HRP
(all from Dako, Jena, Germany) at respective dilutions of 1:5000, 1:1500, and 1:6000. 1-Step
Ultra TMB-ELISA Substrate Solution (ThermoFisher Scientific) served for the colorimetric
reaction that was terminated by 0.5 M sulphuric acid (Fluka, Buchs, Switzerland), and the
absorbances recorded (HIDEX Sense, Hidex Oy, Turku, Finland) at 450 nm. The N protein
ELISA followed the same protocol.

2.8. Microneutralization

For the SARS-CoV-2 microneutralization assay we first cultured Vero E6 cells on
96-well plates (ThermoFisher Scientific) overnight at +37◦C in 2% MEM (Eagle Minimum
Essential Media (MilliporeSigma) supplemented with 2% inactivated fetal bovine serum
(ThermoFisher Scientific), 2 mM L-glutamine (ThermoFisher Scientific), 100 units penicillin,
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and 100 µg/mL streptomycin (MilliporeSigma)). The following day we made a two-fold
dilution series (1:20 to 1:1280) of the serum samples in 2% MEM and combined 50 µL
of each dilution with 50 µL of virus (1000 plaque forming units (pfu)/mL in 2% MEM).
The serum-virus mixes were kept for 1h at +37 ◦C. The cells were inoculated with the
serum-virus mixes and grown at +37 ◦C. After 4 days, the cultures were formalin-fixed,
stained with crystal violet and the neutralization titers recorded.

3. Results
3.1. LFRET Incubation Time, Cutoff Values and Performance

LFRET assays for SARS-CoV-2 SP and NP were set up using Eu-labeled in-house
antigens and AF-labeled protein L. First, the assay conditions were optimized separately for
SP and NP using three knownanti-SP/-NP ELISA-positive and three known anti-SP/-NP
ELISA-negative samples (included in the full 129-sample panel). The remaining 123
samples were tested in the optimized conditions. For detection of both anti-SP and -NP
antibodies, measurement at 7 min was found optimal.

Cutoffs for both anti-SP and -NP LFRET were set by measuring LFRET signals relative
to buffer in 48 samples tested negative by anti-SP and -NP ELISA. The average plus four
standard deviations was set as cutoff: 228.37 + 4 × 27.59 = 338.76 counts for anti-SP and
220.94 + 4 × 27.73 = 331.86 counts for anti-NP LFRET.

Performances of the anti-SP and anti-NP LFRET assays were then determined with
the 129 samples including 77 sera or heparin/EDTA plasmas from 44 individuals with a
previous RT-PCR-confirmed SARS-CoV-2 infection, four samples from four individuals
negative for SARS-CoV-2 by both RT-PCR and serology, and 48 samples from individuals
with a comprehensively negative SARS-CoV-2 serology. The sensitivities and specificities of
SARS-CoV-2 anti-SP and anti-NP LFRET in detection of PCR-positive individuals were 86%
and 100%, and 76% and 100%, respectively. The combined anti-SP/-NP LFRET sensitivity
and specificity were 90% and 100%; if either anti-SP or -NP LFRET was positive, the
composite result was considered positive (Table 1). The development of LFRET signals
over time among patients with follow-up samples available is shown in Figure S1.

Table 1. Sensitivity and specificity of ELISA and LFRET in detection of SARS-CoV-2 -PCR-positive individuals for all
patients and hospitalized patients at different time points from symptom onset. Absolute numbers of samples are stated
after the percentages. Altogether, 19 samples from nine PCR-positive individuals for whom the onset of symptoms is
unknown are excluded. NP = nucleoprotein. SP = spike glycoprotein. LFRET = protein L–based time-resolved Förster
resonance energy transfer immunoassay. ELISA = enzyme-linked immunosorbent assay.

Patient Group All Samples >8 Days after
Onset

>13 Days after
Onset All Samples >8 Days after

Onset
>13 Days after

Onset

SP LFRET sensitivity (specificity 100% (52/52)) SP IgG ELISA sensitivity (specificity 100% (52/52))
All patients 86% (50/58) 92% (49/54) 95% (38/40) 90% (52/58) 94% (51/54) 100% (40/40)

Hospitalized 83% (24/29) 92% (23/25) 100% (13/13) 83% (23/29) 92% (23/25) 100% (13/13)

NP LFRET sensitivity (specificity 100% (52/52)) NP IgG ELISA sensitivity (specificity 94% (49/52))
All patients 76% (44/58) 81% (44/54) 80% (32/40) 93% (54/58) 98% (53/54) 100% (40/40)

Hospitalized 79% (23/29) 92% (23/25) 100% (13/13) 86% (25/29) 96% (24/25) 100% (13/13)

SP/NP LFRET sensitivity (specificity 100% (52/52)) SP/NP IgG ELISA sensitivity (specificity 94% (49/52))
All patients 90% (52/58) 94% (51/54) 95% (38/40) 93% (54/58) 98% (53/54) 100% (40/40)

Hospitalized 86% (25/29) 96% (24/25) 100% (13/13) 86% (25/29) 96% (24/25) 100% (13/13)

3.2. ELISAs and Microneutralization

In order to compare the performance of LFRET with classical serology, we tested the set
of samples described above with SARS-CoV-2 anti-SP and anti-NP IgA, IgM and IgG ELISAs
as well as with SARS-CoV-2 microneutralization. The panel of seronegatives was excluded
from anti-NP IgA and IgM, as well as from anti-SP IgM ELISAs. Altogether 107 samples
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underwent microneutralization, including 64 samples from RT-PCR positive patients and
43 seronegative samples. Microneutralization titers of ≥20 were considered positive.

The ELISA cutoffs were set at average plus four standard deviations of absorbances
measured from 14 serum samples from SARS-CoV-2 seronegative Department staff members.

The sensitivities and specificities of ELISAs for anti-SP IgA, IgG and IgM in samples
from SARS-CoV-2 RT-PCR-positive individuals were 91% and 98%, 90% and 100%, and 66%
and 100%, respectively. The corresponding sensitivities and specificities of anti-NP ELISAs
were 75% and 100% (IgA), 92% and 94% (IgG), and 16% and 100% (IgM), respectively
(Figure S2). Pearson correlation between anti-SP and anti-NP IgG ELISAs was 0.90, 0.79
between IgM ELISAs and 0.31 between IgA ELISAs.

3.3. Comparison of LFRET, ELISA and Microneutralization

Comparison between the LFRET signals and ELISA absorbances is presented in Figure 2.
For anti-NP antibodies, the correlation between LFRET and IgA or IgM ELISA results was
low (R = 0.25 for IgA and R = 0.13 for IgM). With IgG ELISA a stronger correlation of
R = 0.62 was seen, apparently hampered by saturation of the ELISA signal. For anti-SP-
antibodies, correlations between IgA, IgG and IgM ELISAs were R = 0.52, R = 0.62 and
R = 0.56, respectively. Higher LFRET signals were seen in samples from patients with severe
disease, especially in anti-SP LFRET and when samples taken less than two weeks from onset
were excluded (Figure S3). The agreement between anti-NP ELISA and LFRET was 88–89%,
and that between anti-SP ELISA and LFRET 96–98% (Table S1). The samples representing
discordance between PCR, LFRET and/or ELISA are detailed in Table S2.

The LFRET and ELISA results are compared with microneutralization titers in Figure 3.
Higher neutralization titers were observed in samples from hospitalized individuals. Sensi-
tivities and specificities of LFRET and ELISA in samples identified as microneutralization-
positive or -negative are shown in Table S3.

We also assessed the two LFRET assays using receiver operating characteristic (ROC)
curves. With the assumption that a positive result in either IgM, IgG or IgA ELISA for a
given sample signifies “true” positivity, the respective areas under the curve (AUCs) for
both the anti-NP and the anti-SP LFRET assays were very high, 0.94 and 0.97 (Figure S4).

3.4. Comparison of LFRET with Commercial Assays

To assess agreement between LFRET and commercial antibody assays, we tested in
anti-NP- and anti-SP-LFRET 27 samples previously determined positive by both Euroim-
mun and Abbott Architect SARS-CoV-2 IgG assay using manufacturer-defined cutoffs.
Moreover, the 48 negative samples were tested with the Euroimmun assay. Agreement be-
tween anti-SP-LFRET and the commercial assays was 100%, whereas with anti-NP-LFRET
it was 93% (Table S4).



Viruses 2021, 13, 143 8 of 12

Viruses 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

Figure 2. ELISA (x-axis) vs. LFRET (y-axis) results by disease severity. (a) Anti-NP IgA ELISA vs. anti-NP LFRET (N = 81, R = 0.25). 
(b) anti-NP IgG ELISA vs. anti-NP LFRET (N = 129, R = 0.62). (c) anti-NP IgM ELISA vs. anti-NP LFRET (N = 81, R = 0.13). (d) anti-SP 
IgA ELISA vs. anti-SP LFRET (N = 129, R = 0.53). (e) anti-SP IgG ELISA vs. anti-SP LFRET (N = 129, R = 0.62). (f) anti-SP IgM ELISA 
vs. anti-SP LFRET (N = 81, R = 0.56). Color of the dot indicates SARS-CoV-2 PCR result and disease severity: cyan = PCR negative; 
yellow = non-hospitalized, PCR-positive; red = non-ICU hospitalized, PCR positive; black = hospitalized in ICU, PCR positive. Hori-
zontal and vertical black lines indicate LFRET and ELISA cutoffs. On the x-axis, ELISA absorbance on a logarithmic scale and on the 
y-axis, LFRET signal on a logarithmic scale. SP = spike glycoprotein. NP = nucleoprotein. LFRET = protein L–based time-resolved 
Förster resonance energy transfer immunoassay. ELISA = enzyme immunoassay. R = Pearson’s correlation coefficient. 

Figure 2. ELISA (x-axis) vs. LFRET (y-axis) results by disease severity. (a) Anti-NP IgA ELISA vs. anti-NP LFRET (N = 81, R = 0.25). (b) anti-NP IgG ELISA vs. anti-NP LFRET
(N = 129, R = 0.62). (c) anti-NP IgM ELISA vs. anti-NP LFRET (N = 81, R = 0.13). (d) anti-SP IgA ELISA vs. anti-SP LFRET (N = 129, R = 0.53). (e) anti-SP IgG ELISA vs. anti-SP
LFRET (N = 129, R = 0.62). (f) anti-SP IgM ELISA vs. anti-SP LFRET (N = 81, R = 0.56). Color of the dot indicates SARS-CoV-2 PCR result and disease severity: cyan = PCR negative;
yellow = non-hospitalized, PCR-positive; red = non-ICU hospitalized, PCR positive; black = hospitalized in ICU, PCR positive. Horizontal and vertical black lines indicate LFRET and
ELISA cutoffs. On the x-axis, ELISA absorbance on a logarithmic scale and on the y-axis, LFRET signal on a logarithmic scale. SP = spike glycoprotein. NP = nucleoprotein. LFRET = protein
L–based time-resolved Förster resonance energy transfer immunoassay. ELISA = enzyme immunoassay. R = Pearson’s correlation coefficient.
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Figure 3. Microneutralization vs. LFRET and ELISA. Microneutralization titers are on the x-axis and LFRET signal or ELISA
absorbance on the y-axis. Logarithmic scale is used on both axes. (a) Microneutralization titer vs. anti-SP LFRET signal
(N = 107, ρ = 0.87). (b–d) Microneutralization titer vs. anti-SP IgG, IgA and IgM ELISA (N = 107, 107 and 67, ρ = 0.68, 0.86
and 0.81). (e) Microneutralization titer vs. anti-NP LFRET signal (N = 107, ρ = 0.83). (f–h) Microneutralization titer vs.
anti-NP IgG, IgA and IgM ELISA (N = 107, 67 and 67, ρ = 0.81, 0.69 and 0.61). Color of the dots indicate SARS-CoV-2 PCR
result and disease severity: cyan = PCR negative; yellow = non-hospitalized, PCR-positive; red = non-ICU hospitalized,
PCR positive; black = hospitalized in ICU, PCR positive. Horizontal black lines indicate LFRET/ELISA cutoffs. SP = spike
glycoprotein. NP = nucleoprotein. LFRET = protein L–based time-resolved Förster resonance energy transfer immunoassay.
ELISA = enzyme immunoassay. ρ = Spearman’s rank correlation coefficient.



Viruses 2021, 13, 143 10 of 12

4. Discussion

We set up rapid LFRET immunoassays for detection of anti-SARS-CoV-2 SP and NP
antibodies to identify individuals exhibiting an immune response against SARS-CoV-2. Man-
agement of both COVID-19 patients and the ongoing pandemic at the population level calls
for accurate diagnostic tools applicable in various settings, including resource poor areas
without central laboratory facilities. Antibody assays allow for detection of individuals past
the initial infection phase as well as for assessment of a possible vaccine response.

We have previously employed LFRET in diagnosis of viral and autoimmune diseases.
Here, we reduced the incubation time from 20 to 7 min. The simple and rapid “mix and
read” workflow of the assay could allow faster turnaround time from sample arrival to
results as well as higher throughput compared to the currently popular ELISAs. Moreover,
the ease and speed of performing LFRET makes it feasible for use in diverse environments,
including point-of-care and limited-resource settings.

Combined anti-SP/-NP LFRET (i.e., if either assay is positive, the composite result
is positive) was equal to anti-SP IgG ELISA in terms of sensitivity (90%) and specificity
(100%) in identification of RT-PCR -positive individuals (Table 1). In hospitalized patients,
the sensitivities of both anti-SP and anti-NP LFRET reached 100% by two weeks from
symptom onset, importantly for clinical use. The LFRET signals of hospitalized COVID-19
patients exceeded those of non-hospitalized (Figure 2 and Figure S3), in line with previous
studies showing higher antibody levels in patients with severe clinical presentation [12,15].
In follow-up, the LFRET signals first showed a rapid rise within three weeks from onset
and thereafter plateaued or slowly declined (Figure S1).

The agreement between ELISA and LFRET was ~90% for anti-NP -antibodies and
>95% for anti-SP -antibodies (Table S1), and respective AUCs were 0.94 and 0.97 (Figure S4).
With the anti-NP and anti-SP LFRET vs. IgG ELISA results combined, the overall agree-
ment between the methods was 96% (124/129 samples). A closer look at the discordance
(Table S2) shows three samples (65, 72 and 86) from PCR-positive individuals who re-
mained seronegative in both LFRET and ELISA, likely due to early sampling (Figure S1).
Four samples (71, 70, 7 and 24) were negative in LFRET but positive in PCR and ELISA:
The first two were taken 8 and 13 days post onset of symptoms and positive in anti-NP IgA
ELISA, suggestive of early IgA seroconversion, a phenomenon observed previously [25].
The other two were taken 4 and 9 weeks after onset from non-hospitalized patients positive
in anti-SP and -NP IgG and/or IgA ELISAs. These ELISA reactivities were weak (Figure 2e),
suggesting that the negativity in LFRET might reflect lower analytical sensitivity. Two
samples (82, 92) were negative in LFRET and RT-PCR but positive in anti-NP IgG ELISA.
Additionally, two samples (103, 121) were negative in LFRET and MNT, but positive in
either anti-NP IgG ELISA or anti-SP IgA ELISA. No false positives were observed in LFRET.
Agreement rates between commercial assays and anti-SP-/anti-NP-LFRET were 100% and
93%, respectively (Table S4).

In microneutralization, all but one of the reactive samples were also positive in anti-SP
LFRET, IgG and IgA ELISAs and anti-NP IgG ELISA (Figure 3), the exception being an
ICU patient sampled 13 days after onset with an MNT titer of 20 and positive anti-NP
IgA ELISA (Table S2, sample 70). Some seroconverters did not exhibit a detectable NAb
response, as observed previously [14]. Interestingly, the specificities of the LFRET assays
in identification of the non-neutralizing individuals as negatives (91% for SP and 96% for
NP) were higher than those of IgG ELISAs (87% for SP and 82% for NP) (Table S3). This
may be due to lower analytical sensitivity of LFRET, as the undetectable neutralization
could result from lower overall levels of anti-SARS-CoV-2 antibodies in the LFRET-negative
but ELISA-positive samples. Nevertheless, among the assays evaluated, anti-SP LFRET
demonstrated the best overall performance in identification of samples containing NAbs,
with a sensitivity of 98% and a specificity of 91%.

Our study has some limitations. Our SARS-CoV-2 -positive samples originated from
symptomatic patients. Individuals with asymptomatic infection may mount a lower an-
tibody response [26], whereby the sensitivity of LFRET among such individuals might
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be lower. Moreover, we did not examine antibodies against the widely circulating coron-
aviruses OC43, HKU1, NL63 and 229E, which could cross-react in the SARS-CoV-2 LFRET
and reduce its specificity. However, the RT-PCR and neutralization results strongly indi-
cated that the observed antibody responses were SARS-CoV-2 -specific.

In conclusion, this study demonstrates the applicability of the LFRET approach to
detection of SARS-CoV-2 antibodies. While the new approach in sensitivity and specificity
appears to parallel ELISA, it is as rapid and easy to perform as LFA, requiring only
combination of the diluted sample with a reagent mix and reading the result after 7 min. In
prediction of neutralization capacity, anti-SP LFRET outperformed ELISA in specificity, at
equal sensitivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
915/13/2/143/s1, Supplementary data. Figure S1: Development of LFRET signals in follow-up
samples; Figure S2: SARS-CoV-2 spike glycoprotein (SP) versus nucleoprotein (NP) ELISA; Figure S3:
LFRET vs. disease severity after two weeks from onset; Figure S4: Receiver operating character (ROC)
curves for LFRET; Table S1: Agreement between ELISA and LFRET; Table S2: Detailed information
on samples with discordance between PCR, LFRET and ELISA results; Table S3: Sensitivity and
specificity of LFRET/ELISA in detecting microneutralization (MNT) positive (titer ≥ 20) samples;
Table S4: Agreement between LFRET and commercial antibody assays.
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