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Abstract: Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic
airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus
on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study
results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts
as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen
exposure with a specific, self-limited response. In severe asthma and/or CRS, genome–environmental
interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions,
single or combined type 1, 2, and 3 immunological response pathways are invoked, generating
cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths,
and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully
known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2
cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th
subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired
airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways,
resulting in less inflammation and improved disease control.

Keywords: airways; asthma; chronic rhinosinusitis; biologicals; monoclonal antibody

1. Introduction

Chronic inflammatory airway diseases include several overlapping morbidities, such as asthma
and chronic obstructive pulmonary disease (COPD) in the lower airways; and allergic rhinitis (AR),
nonallergic rhinitis (NAR), and chronic rhinosinusitis (CRS) in the upper airways. AR has a prevalence
of 20–30%, NAR has a prevalence of 10%, and CRS has a prevalence of 10–20%, and these common
diseases cause remarkable suffering and costs [1–3]. They can be subdivided based on such as age of
onset, presence of allergy (skin prick test or systemic allergen specific immunoglobulin E (IgE)), with or
without nasal polyps and/or T helper (Th) cell 2 prominent inflammation. Exposure to environmental
irritants (such as smoking and occupational exposure), recurrent infections, lifestyle factors (such as
obesity, stress), co-existing diseases, and genetic/epigenetic factors play a role in disease onset and
progression [4,5]. The diagnostic methods include clinical examination, lung function tests, allergy tests,
and paranasal sinus computed tomography scans [5–7]. Symptom control of mild cases can be well
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achieved by the basic treatment such as inhaled/intranasal corticosteroids, inhaled beta agonists,
antihistamines, and nasal lavage [5,6]. Patients with moderate to severe forms often suffer from
recurrent infective exacerbations and disease recurrence/progression despite maximal baseline therapy
and surgeries. Hence, they require advanced diagnostic methods and therapeutics. Antibodies are
an important part of humoral adaptive immunity and homeostasis. They also play a role in airway
diseases such as IgE in allergy and CRS with nasal polyps (CRSwNP), antibody deficiency in CRS,
and aberrant antiviral IgG responses in asthma exacerbations [5,8]. Since their introduction about
five decades ago, a wide range of monoclonal antibodies are nowadays commercially available and
have been largely used in basic and clinical science of airways. This review focuses on presenting two
main airway pathologies of human adults: asthma and CRS. We first introduce monoclonal antibodies
and their role in biomarker diagnostics of adult asthma and CRS. Secondly, we present the role of
monoclonal antibodies as advanced therapeutics of asthma/CRS.

2. Monoclonal Antibodies

Antibodies (immunoglobulin (Ig) A, IgD, IgE, IgG, IgM) are secreted by B-cells that are activated
to plasma cells after antigen presentation in regional lymph nodes or secondary lymphoid organs
(Figure 1) [9]. Monoclonal antibodies (mAbs) come from a single B-cell parent clone and recognize
specifically a single epitope per antigen [10]. Antibodies are crucial to make leukocytes (such as T
killer cells) to detect and destroy pathogens and infected host cells. MAbs are made for laboratory and
therapeutic use by various techniques. The first technique described in 1975 was based on creating a
hybridoma by combining an activated B-cell from an immunized animal spleen and immortalized
myeloma cell, resulting in a stable hybrid cell line producing monoclonal antibody [11]. The first
mAbs used in therapeutic purposes were of murine origin, which generated unwanted immunogenic
reactions and human anti-mouse antibody formation [12]. The revolution of molecular biology
techniques has enabled the production of humanized and fully human mAbs that have helped to
tackle this problem, although anti-drug antibodies are still one of the outcomes of immunogenicity [12].
For research and laboratory use, there are exponential numbers of commercially available specific
monoclonal antibodies for immunoassays such as immunohistochemistry, immunofluorescence and
enzyme-linked immunosorbent assay (ELISA) [13]. Since their invention about 50 years ago, there has
been a large interest to use monoclonal antibodies in experiments to discover relevant proteins and
pathways behind airway pathologies [14,15].
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Figure 1. Monoclonal antibodies in the treatment of airway diseases, with their postulated pathways. 
Abbreviations: DC = dendritic cell, FCER1A = Fc fragment of Immunoglobulin E receptor 1A, FcyRIIIa 
= Fc fragment of IgG low affinity IIIa receptor, IgA = Immunoglobulin A, IgE = Immunoglobulin E, 
IgG = Immunoglobulin G, IgM = Immunoglobulin M, IL(-4, -4Rα, -5, -5Rα, -13, -13Rα, -25, -33) = 
Interleukin(-type), ILC2 = Group 2 innate lymphoid cells, NK cell = Natural killer cell, TFH cell = T 
follicular helper cell, Th1 = T helper type 1, Th2 = T helper type 2, TSLP = Thymic stromal 
lymphopoietin. 

3. Chronic Inflammatory Airway Diseases 

3.1. Asthma and Airway Allergy 

Asthma is characterized by reversible lower airway obstruction [6]. Reversible obstruction can 
be resolved spontaneously by time but also by bronchodilators. Typical asthma symptoms include 
recurrent or prolonged (over 8 weeks) cough, wheezing, dyspnea, nighttime symptoms, and an 
overproduction of mucus. Reversible airway obstruction can be diagnosed by spirometry and peak 
expiratory flow (PEF) monitoring, and bronchial hyperresponsiveness is detected with methacholine 
or mannitol challenge or by exercise test [6,16,17]. This reversible obstruction is caused by 
inflammation of bronchus epithelia and is associated with Th2 type inflammation and cytokines in 
approximately 50% of adult asthma patients. The prevalence of asthma varies, being up to 10% in 
adults [16]. Severe asthma has been defined as needing drug therapy at Global Initiative for Asthma 
(GINA) step level 4 or 5 and having recurrent per oral corticosteroid courses or maintenance 

Figure 1. Monoclonal antibodies in the treatment of airway diseases, with their postulated
pathways. Abbreviations: DC = dendritic cell, FCER1A = Fc fragment of Immunoglobulin E
receptor 1A, FcyRIIIa = Fc fragment of IgG low affinity IIIa receptor, IgA = Immunoglobulin
A, IgE = Immunoglobulin E, IgG = Immunoglobulin G, IgM = Immunoglobulin M, IL(-4,
-4Rα, -5, -5Rα, -13, -13Rα, -25, -33) = Interleukin(-type), ILC2 = Group 2 innate lymphoid
cells, NK cell = Natural killer cell, TFH cell = T follicular helper cell, Th1 = T helper type 1,
Th2 = T helper type 2, TSLP = Thymic stromal lymphopoietin.

3. Chronic Inflammatory Airway Diseases

3.1. Asthma and Airway Allergy

Asthma is characterized by reversible lower airway obstruction [6]. Reversible obstruction can
be resolved spontaneously by time but also by bronchodilators. Typical asthma symptoms include
recurrent or prolonged (over 8 weeks) cough, wheezing, dyspnea, nighttime symptoms, and an
overproduction of mucus. Reversible airway obstruction can be diagnosed by spirometry and peak
expiratory flow (PEF) monitoring, and bronchial hyperresponsiveness is detected with methacholine or
mannitol challenge or by exercise test [6,16,17]. This reversible obstruction is caused by inflammation
of bronchus epithelia and is associated with Th2 type inflammation and cytokines in approximately
50% of adult asthma patients. The prevalence of asthma varies, being up to 10% in adults [16].
Severe asthma has been defined as needing drug therapy at Global Initiative for Asthma (GINA) step
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level 4 or 5 and having recurrent per oral corticosteroid courses or maintenance treatment with per
oral corticosteroid or having recurrent exacerbations or at least one severe exacerbation in the last
12 months [6]. Severe uncontrolled asthma is reported in 2.3–3.6% of patients with chronic asthma.
Severe uncontrolled eosinophilic asthma has been estimated to form less than 1% of all asthma [18].

3.2. CRS

CRS is defined as the presence of two or more symptoms, one of which is either nasal obstruction
or nasal discharge, together with facial pain/pressure or loss of smell, for more than 12 weeks [5].
The overall prevalence of CRS has been estimated to be 10.9%, with wide variation between countries
(6.9% to 27.1%) [2]. Traditionally, CRS has been classified into two subtypes: CRS with nasal polyps
(CRSwNP) and without nasal polyps (CRSsNP), which is diagnosed after endoscopic evaluation of
the presence of bilateral polyps in the middle meatus. Data on the overall prevalence of CRSwNP are
limited, but it is estimated to be approximately 2–3% [5,19,20]. However, the inflammatory profile of
CRS has proven to be more complex than whether or not polyps are present [21]. Therefore, the new
European Position Paper on Rhinosinusitis and Nasal polyps (EPOS) guidelines propose a new clinical
classification, which is based first on the etiology (primary vs. secondary) and then the localization of the
disease (unilateral vs. bilateral), followed by the evidence of either type 2 or non-type 2 inflammation [5].
The diagnostics of CRS consist of clinical examination including nasal endoscopy, computed tomography
imaging, validated patient symptom questionnaires (for example, the sinonasal outcome test SNOT-22),
olfactory tests, and histopathologic examination of inflamed tissue [5]. The symptoms are caused
by chronic inflammation of the upper airway mucosa, and the prolonged inflammation may cause
tissue remodeling [5]. In CRS, the remodeling of sinonasal tissues consists mostly of polyp formation,
goblet cell hyperplasia, and epithelial barrier abnormalities. Barrier remodeling results in greater
permeability, facilitating prolonged or recurrent CRS [5]. All of these changes are usually seen in type
2 CRS and, despite being only a minority of the cases, the most severe forms of CRS leading to high
use of oral corticosteroids/antibiotics and recurrent surgeries are often type 2 CRS [5]. To evaluate
the endotype, the combination of phenotype (e.g., CRSwNP, non-steroidal anti-inflammatory drugs
(NSAID) exacerbated respiratory disease (N-ERD), co-morbid asthma), response to treatment (surgery,
systemic corticosteroids, antibiotics) and also markers such as polyp eosinophilia are key instruments
to estimate it [5,22,23].

3.3. Co-Morbid Asthma and CRS

Asthma, CRS, and AR are all multifactorial chronic airway diseases that have partly overlapping
pathogenetic mechanisms and risk factors [24]. These environmental risk factors, such as exposure to
pollution and tobacco smoke, are linked to asthma and CRS pathogenesis and disease aggravation
via the disruption of interplay of epithelial barriers with particles, allergens, and microbes [25,26].
In CRS, the most commonly discussed microbial agent is Staphylococcus aureus, but some evidence
also implicates dysbiosis of the microbial community as a whole rather than a specific dominant
pathogen [5,27].

CRS, AR, and asthma all have several subforms. The main phenotypes of CRS are CRSsNP
and CRSwNP [5], yet there are additional subtypes of CRS such as allergic fungal rhinosinusitis,
isolated sinusitis, eosinophilic CRS, central compartment allergic disease, and non-eosinophilic CRS.
In AR, there is evidence that the sensitization profile and/or allergic multimorbidity are associated
with morbidity in children [28] and adults [29]. In asthma, differences are seen between different
asthma types in their genetic backgrounds, association with AR and CRS, and possibly also in
microbe–host interactions [26]. Childhood-onset asthma is, more often than adult-onset asthma,
associated with genetic predisposition, whereas the background of adult-onset asthma is often
multifactorial. In adult-onset asthma, the activation of inflammatory molecular pathways leads to
persistent mucosal inflammation, variable airway obstruction, and tissue remodeling [30].
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Up to 40% of patients with CRSwNP and asthma are hypersensitive to acetylsalicylic acid (ASA)
and/or other non-steroidal anti-inflammatory drugs (NSAID) [31]. NSAID exacerbated respiratory
disease (N-ERD) usually includes a triad of CRSwNP, asthma, and hypersensitivity to ASA and/or
other NSAIDs. Abnormalities of the cyclooxygenase (COX) pathway, severe eosinophilic hyperplastic
inflammation, and tissue remodeling with fibrosis in both paranasal sinuses and lower airways are
characteristics of N-ERD [32–35]. The treatment of N-ERD consists of conventional asthma and CRS
medications; however, repeated oral corticosteroid courses are often also needed [36,37]. The CRSwNP
of N-ERD patients is often resistant to medical treatments and may lead to repeated paranasal surgeries.

Oral ASA treatment after desensitization (ATAD) has shown to be effective in improving quality
of life (QOL) and total nasal symptom score in patients with N-ERD [5,38]. However, the treatment is
associated with adverse effects (typically gastrointestinal) and should be continued strictly on a daily
basis [5]. Studies with ATAD show high discontinuation rates, and not all patients benefit from it [5,39].
Monoclonal antibodies have shown efficacy in patients with severe CRS + N-ERD [40–42].

3.4. Mechanisms behind Airway Diseases

The airway epithelium secretes cytokines such as thymic stromal lymphopoietin (TSLP),
interleukin 33 (IL-33), and IL-25 in response to tissue damage, pollutants, pathogen recognition,
or allergen exposure [43] (Figure 1). These cytokines are involved in the activation of innate lymphoid
cells type 2 (ILC2). The activation of ILC2 leads to the release of IL-9, IL-4, IL-13, and IL-5, and to
Th2 type inflammation both in asthma and CRS [44–46]. IL-9 has a role in mast cell involvement and
airway hyperreactivity [47]. IL-4 and IL-13 are involved in B-cell maturation and IgE production [43].
IL-5 is a growth factor important for the proliferation, maturation, and activation of eosinophils,
which associate both with asthmatic inflammation and with (IgE-dependent) allergic inflammation.
Eosinophilia, IgE production, and goblet cell hyperplasia result from the Th2 type cytokines [48,49].
Eosinophilic inflammation is found both in allergic and non-allergic conditions. Allergen sensitization is
developed when naïve T lymphocytes are differentiated into Th2 type cells and further allergen-specific
IgE producing B-cells [7].

CRS is often associated with mucociliary dysfunction [50,51]. Microbial agents, especially S. aureus,
and microbiome dysbiosis seem to play an important role in CRS pathogenesis. S. aureus can directly
affect mucosal barrier function leading to type 2 inflammation via serine protease-like protein (Spl),
TSPL and IL-33 [52,53]. S. aureus colonization is especially common in patients with CRSwNP,
but S. aureus-specific IgE has been associated with both CRSwNP and asthma [22,52,53]. Type 2
cytokines inhibit t-PA (tissue plasminogen activator), which results in fibrin mesh deposition to form
the nasal polyp tissue matrix [54].

4. The Role of Antibodies in Airway Diseases

Allergic asthma/AR/allergic conjunctivitis are characterized by a type 2 dominated immune
response associated with increased serum IgE levels in response to inhaled allergen. Specific IgE
for several allergens has been shown to be a risk factor of asthma in children and young adults [55].
There is also evidence that AR is a predisposing factor of adult-onset of asthma [29]. There is no clear
evidence of an association between airway allergy and CRS [5].

4.1. IgE

Specific IgE to allergens and pathogenes (such as S. aureus superantigens) have been demonstrated
in the nasal polyp tissue of CRSwNP patients as well as in the bronchial tissue of asthma patients [56–58].
Local IgE production might play a role in CRSwNP pathogenesis and polyp regrowth after sinus
surgery [59]. The mechanisms by which S. aureus leads to type 2 cytokine signaling in airways
is not fully understood. S. aureus colonization might benefit from type 2 inflammation, as it may
suppress normal immune responses against it. S. aureus secretes superantigenic toxins that modify
host immune responses toward the production of local polyclonal IgE [22]. It has been suggested that
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type 2 inflammation is triggered by S. aureus via Toll-like receptor 2, which is a pattern recognition
receptor [60–62]. Studies have also been shown that the Asian CRSwNP population has more type 2
low inflammation, and CRSwNP tissue of Asian patients present lower superantigen effects [63,64].

4.2. Other Antibodies

Other antibodies have been less studied in asthma/CRS. Primary antibody deficiencies have
been shown to be related to CRS, such as common variable immune deficiency (CVID), selective IgA
deficiency, IgG subclass deficiency, and specific antibody deficiency [65]. Airway infections are very
frequently involved in triggering asthma or CRS exacerbations [5]. The anti-virus effects of monoclonal
antibodies are indirect—for example, improvement of the antiviral capacity of dendritic cells [66].
Antiviral mAb therapy usually directly and rapidly targets the infectious agent, yet evidence has
revealed that antiviral mAbs may be used to recruit the endogenous immune systems of infected
organisms to induce long-lasting vaccine-like effects [67]. A study of French adult asthmatics has
shown that patients hospitalized for asthma exacerbations with a positive virus sample had lower
serum IgG level than did their virus negative counterparts [68]. Moreover, longer hospital stays and
longer duration of oral steroids were linked to lower serum IgG concentrations, suggesting that severe
exacerbations could be related to aberrant antiviral IgG production; however, more studies are needed
to confirm this.

5. Monoclonal Antibodies and Diagnostics of Airway Diseases

Monoclonal antibodies are widely used for research purposes of airway diseases and are in
clinical use in allergy diagnostics. Blood tests remain an important component in asthma diagnostics;
the detection of elevated IgE levels and eosinophils can be used to help identify allergen sensitivity.

5.1. Measurement of Total and Specific IgE in Airway Diseases

Specific IgE (i.e., IgE directed against a specific allergen) and eosinophil counts were confirmed
as the most consistent biomarkers to measure the risk of asthma in children [69]. The measurement
of specific and total serum IgE levels can be useful to distinguish between allergic and non-allergic
asthma, although reports suggest that about 30% of asthmatic patients with a negative skin prick test
results have high total circulating IgE (>150 U/mL) [8]. If specific IgEs are considered for selecting an
appropriate biologic agent, screening for perennial allergens such as dust mite would have the best
rationale [69].

5.2. Potential Biomarkers for Airway Diseases

In order to predict outcomes and therapeutic responses of asthma and/or CRS, there is active
research on biomarkers, such as type 1, 2, and 3-related cytokines. Type 1, 2, and 3 responses are
evoked by natural mucosal immune responses against viruses/bacteria, parasites, and bacteria/fungi
correspondingly, and they are characterized by certain cytokine profiles: IFN-γ and IL-12 in type 1,
IL-4, IL-5, and IL-13 in type 2, and IL-17A and IL-22 in type 3 [5]. In pathogen penetration, single or
combined type 1, 2, and 3 immunological responses are invoked to eliminate the pathogen, whereas in
asthma and CRS, aberrant type 2 responses (and to a lesser extent also type 1 and 3) play a role in
airway disease severity and therapeutic responses [70,71].

Patients selected by biomarkers might obtain a greater benefit from therapy with anti-IL-13
mAbs [72]. Elevated bronchial expression of IL-5 and IL-13 has been shown to be associated with
sputum and blood eosinophilia and moderate-to-severe asthma [72]. IL-13 and IL-4 regulate the
synthesis of IgE and are thus important biomarkers of Th2 cell activation. As a result of IgE binding with
the high-affinity receptor (FcεRI) found in basophils and mast cells, there is a cellular activation that ends
in the liberation of various inflammatory mediators including cytokines such as IL-5, IL-4, and IL-13.
IL-13 and IL-4 also induce periostin. Periostin binds to several integrin molecules on the epithelial cell
surface to support the adhesion and migration of epithelial cells, and elevated airway mucosal periostin
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may be useful in detecting type 2 CRSwNP [73–75] and asthma [76]. Automated immunoassays have
been shown to be a potent test for measuring human serum IL-13 [77] and periostin [78] concentrations
for clinical purposes. De Schryver et al. have shown that methylprednisolone and omalizumab
significantly reduce serum periostin levels and that the periostin expression is in accordance with
clinical outcome [79]. However, serum levels of biomarkers are not specific for asthma or CRS.
Elevated periostin levels have been detected for example in pulmonary fibrosis and lung carcinoma,
and elevated type 2 cytokines or serum IgE in helminth infections and atopic dermatitis [27,80].

6. Monoclonal Antibodies and Treatment of Airway Diseases

Unraveling the pathogenesis of diseases has provided the basis for the pharmaceutical industry
to develop protein drugs, or “biologics”, with higher specificity and mechanism of action than small
molecule drugs. In 2015, monoclonal antibodies were the most important class of biologics approved
by the United States Food and Drug Administration (FDA) [81], and their utilization in therapy has
rapidly increased since. Personalized medicine is addressing the issue of providing targeted treatment
for the right patient [82]. The endotype-driven treatment approach requires careful selection of the
patient population who might benefit from a treatment by advanced therapies [83,84]. In the following
chapter, mAbs used to treat asthma and CRSwNP are introduced; their main mechanisms of actions
are illustrated in Figure 1.

6.1. Commercially Available Monoclonal Antibodies and Their Mechanisms of Action

6.1.1. Omalizumab—Anti-IgE

In the fast phase of allergic reaction, allergen-specific IgE produced by B-cells binds to high affinity
FcR (FceRI) expressed on immune cells such as basophils and mast cells. Then, allergen exposure can
lead to antigen cross-linking IgE molecules on the same mast cell, receptor aggregation, and initiation
of the intracellular signal cascade leading to degranulation and the release of histamine, prostaglandins,
and cytokines that mediate the clinical manifestations of atopy [85]. Omalizumab, a humanized
IgG1/k monoclonal antibody, targets the Fc region of IgE, and by binding to free IgE in blood and
body fluids, it neutralizes the ability of IgE to bind to its receptor (FcεRI, high-affinity receptor and
FcεRII, low-affinity receptor) [86]. On top of inhibiting the cross-linking on mast cells, this induces the
down-regulation of IgE receptor expression on other immune cells such as basophils and dendritic
cells [87,88]. Omalizumab was the first biological therapy developed for asthma, and it has now been
used for 15 years. During these years, the functions of IgE in bronchial asthma have proven to be more
complex than that of the classical role in allergy and anaphylaxis (reviewed in [89]). For example,
smooth muscle cells in lung tissue have receptors for IgE, and it is involved in their proliferation,
independent of the presence of allergens. IgE also plays a role in non-allergic diseases such as chronic
idiopathic urticaria and CRSwNP and is involved in eosinophilic inflammation [89].

6.1.2. Mepolizumab and Reslizumab—Anti-IL-5

Type 2 inflammation present in asthma and CRSwNP is featured with airway eosinophilic
infiltration, particularly in nasal polyps. Eosinophils are also frequently elevated in peripheral blood in
type 2 asthma. High eosinophil levels are associated with exacerbations and bronchial obstruction [90].
The key mediator of eosinophils is interleukin-5 (IL5), being responsible for their differentiation, growth,
activation, and survival as well as recruitment to airways [91,92]. Mepolizumab is a humanized
IgG1/k monoclonal antibody toward IL-5, binding to it with high affinity and preventing its linkage to
IL-5Rα [93,94]. Reslizumab is a humanized IgG4/κmonoclonal antibody specifically interacting with
the epitope IL-5 uses to bind its receptor IL-5Ra, thereby blocking its bioactivity [95].
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6.1.3. Benralizumab—Anti-IL-5Ralpha

Different from mepolizumab and reslizumab, benralizumab binds to IL-5-receptor instead of its ligand.
Benralizumab is an afucosylated humanized IgG1/κ monoclonal antibody, selectively recognizing the
IL-5Rα subunit [96]. The interaction of benralizumab with IL-5Rα prevents IL-5 binding to target cells and
impedes the heterodimerization of IL-5Rα and βc subunits, thus inhibiting the activation of IL-5-dependent
signaling cascades. In addition, benralizumab binds to the FcγRIIIa membrane receptor expressed
by natural killer cells through the constant Fc region. FcγRIIIa activation induces the eosinophil
apoptosis mechanism called antibody-dependent cell-mediated cytotoxicity, which is amplified by
afucosylation [97], resulting in depletion of the blood eosinophils. A recent study describes also
reduction in the number of basophiles after treatment with benralizumab [98].

6.1.4. Dupilumab—Anti IL-4Ralpha

Dupilumab is a fully human monoclonal antibody to the interleukin-4 receptor α subunit,
IL-4Ralpha, which is utilized by two cytokines IL-4 and IL-13 [99]. IL-4 mediates its biological effects
by binding to IL-4Rα, which is followed by the recruitment of either gamma c or IL-13 receptor alpha
1 (IL-13Rα1) to form a signaling complex [100]. IL-13 binds to IL-13Rα1 and then forms a signaling
complex by recruiting IL-4Rα [100]. Altogether, IL-4Ralpha is involved in three different combinations
of receptor complexes, and the intracellular response potencies are varied between the binding ligand,
IL-4 vs. IL-13 [100,101].

Due to the shared receptor, IL-4 and IL-13 also have overlapping functions, and these
sister cytokines act both cooperatively as well as independently in type 2 inflammation cascades.
Both interleukins promote B-cell proliferation and class switch to IgG4 and IgE [102]. IL-13 is a
cytokine secreted by activated Th2 cells, and it acts as an important mediator of allergic inflammation
pathogenesis. Distinct functions for IL-13 include tissue remodeling, goblet cell mucus hypersecretion,
subepithelial fibrosis, and emphysematous changes [103]. IL-4 and IL-13 can both induce Th2 cells
and epithelial cells to produce eosinophil-promoting factors (i.e., IL-5 and eotaxins) and stimulate
eosinophils to migrate to sites of inflammation from blood [104]. However, a recent murine model
study shows that only dual IL-4/IL-13 blockade prevented type 2 inflammation broadly enough to
prevent lung-function impairment—blocking only IL-4 or IL-13 alone was not enough to provide
major clinical benefits [105]. This has been seen also in clinical experiments with IL-4 and IL-13
blockers for the treatment of type 2 diseases [106]. Dual blockade of IL-4/IL-13 with dupilumab
halted eosinophil infiltration into lung tissue in mouse model without affecting circulating eosinophils,
demonstrating that tissue, but not circulating eosinophils, contribute to disease pathology [105].

6.2. Monoclonal Antibodies in Asthma Treatment

Monoclonal antibodies are considered as a treatment option for severe asthma [107]. First, the patient’s
symptoms are carefully assessed in order to estimate if the patient truly has asthma, if the current symptoms
are associated with asthma, if the current asthma drug therapy is adequate, if the patient is adherent
for the drug therapy, and that there are no environmental factors that should be considered [17,107].
Poor symptom control, frequent yearly exacerbations or serious exacerbations, and diminished lung
function are signs of uncontrolled asthma and an indication for biologicals if the situation is not
controlled with other maximal medication [107]. Controlled asthma that deteriorates if high-dose
inhaled corticosteroids or systemic corticosteroids are tapered is another indication for biologicals [107].
The selection of a suitable drug is based both on allergy (whether the patient has allergic asthma to
perennial allergens) but also on eosinophils (whether the patient has high or low blood eosinophils) [108].
Contradictory to biologicals in rheumatic diseases, the biologicals targeting IgE or Th2 cytokines
have been well tolerated and safe to use [109,110]. The commercially available antibodies and their
therapeutic use is summarized in Table 1.
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Table 1. Monoclonal antibodies in the treatment of different airway diseases.

Therapy (Target) Asthma CRSwNP Dose Response

Omalizumab (anti-IgE) Severe allergic asthma with
perennial allergy

Approved as add-on therapy for
adults with severe CRSwNP by

EMA in August 2020
According to weight and total S-IgE

value, every 2–4 weeks s.c.

Asthma: Reduction in exacerbations,
improvement in symptoms, asthma

related QoL↑, FEV1↑

Pending FDA approval [41] CRSwNP: Reduction in symptom score
and nasal polyp score

Mepolizumab (anti-IL5) Severe eosinophilic asthma with
B-eos>300cells/ul

Ongoing studies for use in
CRSwNP [41] 100 or 300 mg s.c. every four weeks

Asthma: Reduction in exacerbations,
improvement in symptoms, B-eos ↓,

asthma related QoL↑, FEV1↑

Reslizumab (anti-IL5) Severe eosinophilic asthma with
B-eos>400cells/ul Ongoing studies According to weight every four weeks i.v.

Asthma: Reduction in exacerbations,
improvement in symptoms, B-eos↓,

Asthma related QoL↑, FEV1↑

Benralizumab (anti-IL5R) Severe eosinophilic asthma with
B-eos>300cells/ul

Ongoing studies for use in
CRSwNP [41]

30 mg every 4 weeks s.c. three times and
then 30 mg every 8 weeks s.c.

Asthma: Reduction in exacerbations,
improvement in symptoms, B-eos↓

Dupilumab (anti-IL4Ralpha) Severe eosinophilic asthma with
B-eos>300cells/ul

Severe CRSwNP (approved by
EMA and FDA)

First dose of 400 mg/600 mg s.c.
according to weight, then 200 mg/300 mg

every 2 weeks s.c.

Asthma: Reduction in exacerbations,
improvement in symptoms, B-eos ↓,

Asthma related QoL↑, FEV1↑
CRSwNP: polyp size reduction,
reduction in OCS and surgeries,
improvement in symptom score

Abbreviations: B-eos = blood eosinophils, CRSwNP = chronic rhinosinusitis with nasal polyps, EMA = European Medicines Agency, FDA = U.S. Food and Drug Administration, FEV1 =
forced expiratory volume in one second, i.v. = intravenous, NO = nitric oxide, OCS = oral corticosteroids, s.c. = subcutaneous, QoL = Quality of Life.
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The first monoclonal antibody treatment for lower airway diseases was anti-IgE therapy with
omalizumab. After that, anti-IL5-, anti-IL-5Ralpha- and anti-IL-4R-treatment have been introduced for
the treatment of asthma. These monoclonal antibodies are humanized IgG antibodies and selective for
their binding capacity. Both anti-IL-5 and anti-IL-5Ralpha-antibody treatment may be associated with
anti-drug-antibody development [12].

Omalizumab is indicated as an add-on therapy in adults and children over six years for
inadequately controlled severe asthma. Omalizumab reduces asthma exacerbations by OR 0.55
(95% CI 0.42–0.60) and hospitalizations by OR 0.16 (95% CI 0.06–0.42) [111,112]. Furthermore, it is
beneficial in the reduction of inhaled corticosteroids [111].

Mepolizumab, reslizumab (anti-IL-5), and benralizumab (anti-IL-5Ra) are used for severe
eosinophilic asthma. Mepolizumab reduces exacerbations by approximately 50% in patients with
eosinophils at least 150 cells/uL at screening or at least 300 cells/uL in the previous year and
high-dose inhaled corticosteroids and at least one additional controller medication [113]. In addition,
improvement in QOL, asthma control measures with asthma control questionnaire, and lung function
(FEV1) have been reported [113]. Furthermore, mepolizumab has been shown to reduce oral
corticosteroid need [113]. Reslizumab reduces asthma exacerbations by OR0.50 (95% CI 0.37–0.67) in
patients with medium-to-high dose inhaled corticosteroids and blood eosinophils at least 400 cells per
uL and one or more exacerbations in the previous year [114,115].

Benralizumab reduces exacerbations and the need of per oral glucocorticosteroids, and it
improves QOL and lung function not only in clinical trials but also in real-world studies [110,116,117].
Benralizumab has been reported to reduce asthma exacerbations from 4.9 to 1.3 per year and to reduce
daily prednisolone dose from a median 10 to 0 mg [117].

Dupilumab (anti IL-4Ralpha) reduces asthma exacerbations and improves lung function in patients
with moderate to severe asthma [118]. Furthermore, with dupilumab treatment dose of maintenance,
oral glucocorticoids can be reduced. Reduction in the oral glucocorticoid dose and elimination of
per oral glucocorticoids is more likely in the asthma patients with the baseline level of eosinophils at
least 300 cells/mm3 [118]. A transient rise in eosinophils is seen more often in the dupilumab-treated
patients when compared to placebo-treated patients [118]. In addition, injection-site reactions were
more common in the dupilumab-treated patients.

6.3. Monoclonal Antibodies in CRS Treatment

Targeted monoclonal antibody therapies have shown encouraging results in the management
of severe CRSwNP. As type 2 CRSwNP and asthma largely overlap, also therapeutics are in some
cases targeted to both severe asthma and severe CRSwNP. According to the European Position Paper
on Rhinosinusitis and Nasal polyps 2020 (EPOS 2020) guidelines, the indications for using biological
treatment for CRSwNP include bilateral polyps and at least one previous endoscopic sinus surgery,
together with at least three of the following criteria: evidence of type 2 inflammation, need for systemic
corticosteroids (or contraindication for it), significantly impaired quality of life, significant loss of smell,
or diagnosis of comorbid asthma. The effect of the treatment should be evaluated after 4 months and 1
year, and in case there is no response, treatment should be discontinued [5].

Anti-IgE therapy (omalizumab) is the second and latest biologic therapy approved for CRSwNP
by the European Medicines Agency (EMA) in August 2020, and it is pending FDA approval for
CRSwNP [41]. A study by Gevaert et al. has shown a decrease of symptom score for nasal
congestion, anterior rhinorrhoea, loss of sense of smell, wheeze and dyspnea, and a significant
reduction of endoscopic nasal polyp score, radiologic Lund–MacKay score, and asthma symptoms [119].
Another randomized controlled trial (RCT) by Pinto et al. showed improvement in symptoms, but no
significant improvement in Lund–Mackay score or other endpoints [120]. In a recent study on patients
with N-ERD, both nasal and lung symptoms improved significantly with omalizumab treatment [121].
However, these studies were small, with only around 20 patients in each group. Recent results
from two bigger phase 3 RCTs of 265 patients has shown that omalizumab significantly reduced
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endoscopic nasal polyp score, nasal congestion score, and SNOT-22 score compared to placebo at week
24 [122]. Patients with comorbid asthma reported significant improvement in Asthma Quality of Life
Questionnaire scores [122].

Anti-IL-5 treatment with reslizumab was found to decrease nasal polyp scores in an RCT, in
which patients received a single injection of reslizumab (n = 16) or placebo (n = 8) [123]. Studies with
mepolizumab have shown a significant reduction in patients’ need for surgery and an improvement
in symptoms [5,124,125]. A Cochrane review summarized that mepolizumab may improve both
disease-specific and generic health-related quality of life (HRQL), yet its effect to reduce surgery
or improve nasal polyp score is uncertain [126]. At the moment, phase 3 RCTs are ongoing for
both benralizumab and mepolizumab, altogether with over 800 patients with severe CRSwNP [41].
More information about the efficacy of anti-IL-5-treatments will be available after they are finished.
However, preliminary results of RCT of 407 patients has shown that mepolizumab significantly reduced
endoscopic nasal polyp score, nasal obstruction VAS score, VAS (overall, composite, loss of smell),
SNOT22 score, and the need for surgery [127]. Nasopharyngitis was the most common adverse event
in this study (23–25%) [127].

An anti-IL-4/IL-13 drug, dupilumab, is the first monoclonal antibody approved for the treatment
of CRSwNP in 2019 [5]. Before that, it has been used for the treatment of asthma since 2018 and atopic
dermatitis since 2017. In a double-blind RCT (DBRCT) with 276 patients with severe CRSwNP using
regular topical nasal steroids, dupilumab reduced polyp size, sinus opacification, and severity of
symptoms (nasal congestion and obstruction, sense of smell) compared with placebo. It also diminished
the need for rescue treatment with systemic corticosteroids and sinus surgery [128]. A Cochrane review
summarizes that dupilumab has been shown to improve disease-specific HRQL compared to placebo,
and it might improve symptoms and generic HRQL and reduce the need for further surgery [126].
Moreover, there is no evidence of an increased risk of serious adverse events; however, there may be
little or no difference in the risk of nasopharyngitis [126]. Among dupilumab-treated atopic dermatitis
patients, conjunctivitis is the most common side effect [129]. However, in patients with asthma and
CRSwNP, the incidence of conjunctivitis was very low, similar as for placebo [129].

6.4. Future Monoclonal Antibody Treatments for Airway Diseases

6.4.1. Anti-TSLP

Thymic stromal lymphopoietin (TSLP) is produced by fibroblasts and epithelium and plays a
role in T cell maturation. TSLP enhances IL type2 cytokine production in mast cells and activates
ILC2s together with IL-33 or IL-25. TSLP has shown to associate with asthma and CRSwNP after virus
challenge [130]. Tezepelumab (AMG-157/MEDI9929) is a human anti-TSLP antibody. A DBRCT of
31 mild asthmatics has shown that AMG-157 attenuated allergen-induced early and late asthmatic
responses, and it decreased blood and sputum eosinophils [131]. Anti-OX40L promotes regulatory T
(Treg) cells and suppresses T-cell mediated inflammation, and hence, it might be a potential therapeutic
target for severe asthma [132]. Yet, in a study that used a combination of anti-OX40L and anti-TSLP,
the expected effects on Treg-mediated inflammation was not observed [133]. Tezepelumab (anti-TSLP)
decreases exacerbations and improves lung function measured by FEV1 (forced expiratory volume
in one second) statistically significantly compared to placebo in patients with medium-to-high dose
inhaled corticosteroids and long-acting beta-2-agonist [134]. The exacerbation rates were 61–71% lower
than in the placebo group depending on the dose of the tezepelumab [134]. A reduction in asthma
exacerbations was found irrespective of eosinophil level.

6.4.2. Anti-TNF

Type 2 low pathways might also comprise future targets for monoclonal antibody therapy [135].
Anti-TNF could have potential in patients with neutrophilic non-infectious COPD [136] and in severe
asthma with mixed type 1/type2 [137,138]. ILC3s secrete IL-17, which leads to airway mucosal
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neutrophilia in some forms of asthma and CRS. A randomized, placebo-controlled double-blind trial
was performed in 300 patients with moderate to severe asthma by using anti-IL-17, brodalumab, and it
did not show a remarkable effect [139].

6.4.3. Anti-IL-8

Neutrophils have surface IL-8 receptors and are the main target cells for IL-8 responses. Anti-IL-8R,
CXCR2, has been shown to reduce airway neutrophilia [140]. Two placebo-controlled studies with
CXCR2 antagonists have been performed in severe (neutrophilic) asthma patients [141,142]. The results
did not show clinical effectiveness; however, in one of the studies, a reduction in sputum and blood
neutrophils was observed [141].

6.4.4. CRTH2 Antagonists

In addition to monoclonal antibodies, other molecules are also under investigation for future
therapeutics of airway diseases. An example of these are chemoattractant receptor-homologous
molecule (CRTH2) antagonists. Prostaglandin D2 (PGD2) is an arachidonic acid metabolite of the
cyclooxygenase (COX) pathway. It plays a role in the pathophysiology of allergic rhinitis, CRS,
and asthma [143]. PGD2 acts via DP1 and DP2 receptors, and CRTH2. PGD2 links adaptive and
innate immune pathways via DP2 receptors located on Th2 cells, ILC2s, and eosinophils. Hence,
PGD2 might be a good target for type 2 disorders [144,145]. CRTH2 antagonists represent a category
of small molecules that have been discovered to have therapeutic potential for asthma [146,147].
CRTH2 antagonists have decreased the allergen-mediated airway responses of the upper [148] and lower
airways [149,150]. CRTH2 antagonist has been given as monotherapy or in combination with standard
therapy to patients with mild to moderate asthma, and it has shown a modest effectiveness on symptom
scores, disease control, lung function, and inflammatory markers [151–154]. CRTH2 antagonists are
proposed to have therapeutic effectiveness similar to antihistamines [148] and leukotriene receptor
antagonists [5,154]. Dual DP/CRTH2 antagonist (AMG853) treatment for 12 weeks failed to show
clinical effectiveness in patients with moderate to severe asthma [155]. Another CRTH2 receptor
antagonist, fevipiprant, for 12 weeks, has shown to improve clinical and physiological parameters
and to reduce airway eosinophils in patients with moderate-severe asthma [154], and it reduced
asthma exacerbations moderately, but not significantly, in 52-week phase 3 trials in patients with severe
asthma [156].

7. Conclusions

Taken together, monoclonal antibodies have several physiological and pathomechanistic roles in
asthma, allergic rhinitis, and chronic rhinosinusitis. Local IgE production has been mostly studied.
Future studies of other antibodies and their role in the pathomechanisms of inflammatory airway
diseases are needed. Several monoclonal antibody treatments have indication for severe type 2
asthma; these are anti-IgE omalizumab, anti-IL-5 mepolizumab/reslizumab, anti-IL-5R benralizumab
and anti-IL-4Ralpha dupilumab. Studies show that these treatments have an effect in patients with
co-morbid severe type 2 asthma and CRS. For the treatment of severe CRSwNP, dupilumab and
omalizumab are currently approved, and more are probably to come in the future. In addition to
ongoing trials of the above-mentioned monoclonal antibodies, several other monoclonal antibodies are
under active investigation. In addition to type 2 diseases, there is a high need to investigate therapeutic
targets also for type 2 low asthma and CRS.
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