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Simple Summary: There are currently no effective specific biomarkers for the screening of early gastric
cancer. Recently, metabolomics has been used to profile small endogenous metabolites, demonstrating
significant potential in the diagnosis/screening of cancer, owing to its ability to conduct a noninvasive
sample analysis. Here, we performed a urine metabolomics analysis in the context of an early diagnosis
of gastric cancer. This approach showed very high diagnostic sensitivity and specificity and performed
significantly better than the analysis of serum tumor markers modalities. An additional genomic data
analysis revealed the up-regulation of several genes in gastric cancer. This metabolomics-based early
diagnosis approach may have the potential for mass screening an average-risk population and may
facilitate endoscopic examination through risk stratification.

Abstract: The early detection of gastric cancer (GC) could decrease its incidence and mortality. However,
there are currently no accurate noninvasive markers for GC screening. Therefore, we developed a
noninvasive diagnostic approach, employing urine nuclear magnetic resonance (NMR) metabolomics,
to discover putative metabolic markers associated with GC. Changes in urine metabolite levels during
oncogenesis were evaluated using samples from 103 patients with GC and 100 age- and sex-matched
healthy controls. Approximately 70% of the patients with GC (n = 69) had stage I GC, with the majority
(n = 56) having intramucosal cancer. A multivariate statistical analysis of the urine NMR data well
discriminated between the patient and control groups and revealed nine metabolites, including alanine,
citrate, creatine, creatinine, glycerol, hippurate, phenylalanine, taurine, and 3-hydroxybutyrate, that
contributed to the difference. A diagnostic performance test with a separate validation set exhibited
a sensitivity and specificity of more than 90%, even with the intramucosal cancer samples only. In
conclusion, the NMR-based urine metabolomics approach may have potential as a convenient screening
method for the early detection of GC and may facilitate consequent endoscopic examination through
risk stratification.
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1. Introduction

Gastric cancer (GC) is the sixth most common type of cancer and the second leading cause of
cancer-related mortality worldwide [1]. The overall survival and prognosis greatly depend on the
disease stage, and the mortality from GC is mainly due to late presentation [2,3]. Therefore, early
detection is critically important for reducing GC morbidity and mortality [4]. Further, early diagnosis
is highly associated with a good prognosis [5–7]. Among screening methods for the early detection
of GC, endoscopy is the most common modality [8]. However, endoscopy may be accompanied by
complications, requires adequately qualified facilities, and is time-consuming [9–14].

The development of GC involves multiple genes and other factors, and tumors consist of mixed
tissues and display various degrees of differentiation. There are currently no effective specific biomarkers
for GC. Serum tumor markers are not satisfactory, mainly because of their poor diagnostic sensitivities.
The sensitivities of Cancer embryonic antigen (CEA), CA 19-9, and CA 72-4 are <20% for an early
stage and 20–50% for advanced stages of cancer [15–18]. Several studies have attempted to improve
the diagnostic value of these markers by combining more than two markers or using adjusted cutoff
values [19–22]. However, these markers remain unsatisfactory for GC diagnosis, especially at early stages.
Currently, several biomarkers have been proposed for GC, including GLS/GGCT protein coexpression
levels in tissue samples and circulating miR21 in serum samples [23,24]. Although these invasive methods
have shown very satisfactory results with high sensitivities and specificities, it is still necessary to develop
a reliable screening tool for the early detection of GC that is sensitive, specific, and easy to use; moreover,
a mostly noninvasive approach is highly desired.

Metabolomics is used to profile small endogenous metabolites and has, in particular, demonstrated a
significant potential in the diagnosis or screening of cancer, owing to its ability to noninvasively analyze
samples [25–29]. Urine is arguably the most suitable sample because it is easy to obtain and can reflect
the systemic metabolic status. Recently, urine metabolomics has been applied to the diagnosis of GC,
with promising results [30–34]. A capillary electrophoresis-mass spectrometry (CE-MS)-based feasibility
study by Chen et al. [30] used moving reaction boundary (MRB)-CE-MS for a better sensitivity and stability
with a small number of samples. A nuclear magnetic resonance (NMR)-based metabolomics study [31] for
early-stage GC diagnosis has also been reported; however, the study had multiple purposes, including the
evaluation of curative surgery. Although the data showed great discrimination between groups based on
urine sample analysis, the majority of the patient population had later than stage II GC. In other studies,
the numbers of urine samples from patients with cancer and healthy controls were small (≤50), which
could have limited the reliability of the studies. In addition, these studies included very limited numbers
of cases of early GC, which is critical for GC screening [32–34]. Therefore, the actual diagnostic sensitivity
and specificity for early GC detection by urine metabolomics have not been properly assessed.

In this study, we performed a urine metabolomics analysis for GC diagnosis, with a particular
focus on early GC. The diagnostic performance of the metabolomics approach was evaluated with a
rigorous cross-validation using a separate validation set. A relationship between metabolic contributors
and the gene expression profile in cancer tissues was also studied.

2. Results

2.1. Subject Characteristics

The clinical information of the patients with GC and healthy subjects included in this study is detailed
in Table 1. There were no significant differences in the demographic and laboratory findings between the
two groups. The patients with GC were classified according to TNM (TUMOR-NODE-METASTASIS)
staging as follows: stage I, 69 patients; stage II, 10 patients; stage III, 15 patients; stage IV, 9 patients. Thus,
this study population included many more patients with stage I, particularly IA, than later-stage patients.
There were 55 cases with differentiated and 48 cases with undifferentiated cancer. Lymph node metastases
were found in 22 (21.4%) cases. The proportions of abnormal conventional serum tumor markers are also
shown in Table 1.
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Table 1. Clinicopathologic characteristics of the study participants.

Variables Whole Training Set Whole Validation Set

Gastric Cancer (n = 69) Control (n = 67) p-Value Gastric Cancer (n = 34) Control (n = 33) p-Value

Age (years), mean (SD) 53.3 ± 11.1 54.9 ± 11.8 0.447 54.1 ± 9.1 55.4 ± 10.2 0.519
Gender, male (%) 68.1 71.6 0.654 58.8 66.7 0.507
BMI, mean (SD) 22.7 ± 3.2 23.1 ± 4.2 0.528 22.1 ± 3.9 22.8 ± 5.5 0.621

Helicobacter pylori infection, n (%)
Infected 22 (31.9) 22 (32.8) 0.716 13 (38.2) 11 (33.3) 0.897

Uninfected 15 (21.7) 18 (26.9) 7 (20.6) 8 (24.2)
Not examined 32 (46.4) 27 (40.3) 14 (41.2) 14 (42.4)
Smoker, n (%)

Current smoker 16 (23.2) 15 (22.4) 0.956 6 (17.6) 7 (21.2) 0.506
Past smoker 15 (21.7) 16 (23.9) 5 (14.7) 8 (24.2)
Nonsmoker 38 (55.1) 36 (53.7) 23 (67.6) 18 (54.5)

Alcoholics, n (%)
Heavy alcoholics 12 (17.4) 10 (14.9) 0.696 6 (17.6) 5 (15.2) 0.783

Social drinker 57 (82.6) 57 (85.1) 28 (82.4) 28 (84.8)
Laboratory finding

Fasting blood glucose (mg/dL) 102 ± 6 100 ± 11 0.767 103 ± 8 102 ± 2 0.551
Total cholesterol (mg/dL) 161 ± 22 156 ± 32 0.614 162 ± 11 151 ± 17 0.324

AST (U/L) 27 ± 9 26 ± 2 0.522 26 ± 8 28 ± 8 0.483
ALT (U/L) 19 ± 3 20 ± 4 0.559 17 ± 18 21 ± 3 0.427
ALP (U/L) 74 ± 15 70 ± 12 0.311 73 ± 9 72 ± 2 0.652

Total bilirubin (mg/dL) 0.7 ± 0.6 0.5 ± 0.3 0.682 0.8 ± 0.1 0.6 ± 0.4 0.531
BUN (mg/dL) 14.1 ± 3.1 13.5 ± 3.7 0.747 14.3 ± 2.6 13.1 ± 5.9 0.829

Creatinine (mg/dL) 1.07 ± 0.8 0.97 ± 0.4 0.299 1.09 ± 0.5 0.98 ± 0.9 0.185
Uric acid (mg/dL) 5.2 ± 1.6 5.0 ± 1.5 0.688 4.9 ± 1.9 4.9 ± 2.1 0.759

Blood pressure
Systolic 130 ± 16 126 ± 15 0.738 126 ± 19 123 ± 21 0.717
Diastolic 73 ± 12 74 ± 7 0.580 75 ± 18 72 ± 15 0.392

TNM stage a - - - -
I (IA/IB) 46 (37/9) 23 (19/4)

II (IIA/IIB) 7 (5/2) 3 (2/1)
III 10 5
IV 6 3
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Table 1. Cont.

Variables Whole Training Set Whole Validation Set

Gastric Cancer (n = 69) Control (n = 67) p-Value Gastric Cancer (n = 34) Control (n = 33) p-Value

Presence of lymph node metastasis, n (%) 15 (21.7) - - 7 (20.6) - -
Histologic diagnosis, n (%) - - - -

Differentiated 37 (53.6) 18 (52.9)
Undifferentiated 32 (46.4) 16 (47.1)

Epstein–Barr virus positivity, n (%) 8 (11.6) 4 (11.8)
Serum tumor marker (>cutoff value/total) - -

CA 19-9 b 3 (4.3) 1 (1.5) 0.324 1 (2.9) 0 0.321
CEA c 2 (2.9) 1 (1.5) 0.577 0 0 -

CA 72-4 d 6 (8.7) 2 (3.0) 0.157 2 (5.9) 1 (3.0) 0.573
a According to the American Joint Committee on Cancer Staging Manual (7th edition); b Cutoff value of >37 U/mL; c Cutoff value of >7 ng/mL; d Cutoff value of >4 U/mL.
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2.2. Study Design

To evaluate the performance of the diagnostic model, validation was carried out with a separate
validation set, as previously described [35]. Briefly, we randomly selected one-third of the samples
from each group (within the cohorts) as the validation set (34 of 103 for the GC group and 33 of 100 for
the healthy control group). The remaining samples (training set) were used to develop the diagnostic
model. Similarly, in the analysis of the diagnostic performance of the three subgroups—stage IA cohort,
stage I (IA+IB) cohort, and stage I+II cohort—one-third and two-thirds of the samples from each cohort
were selected as the validation and training sets, respectively. These datasets from all cohorts were
balanced for age, sex, Helicobacter infection, and other clinical characteristics (Table 1).

2.3. Discrimination between Urine Samples from Healthy Subjects and Patients with GC Using NMR Spectra

All urine metabolic profiles, from both patients with GC and healthy controls, were obtained using
NMR spectroscopy. Representative spectra from both groups were similar, but there were differences in
specific regions, indicating subtle metabolic differences (Figure 1A). For a more holistic analysis of the
NMR data for a training set, we performed a multivariate statistical analysis and established an orthogonal
projection for a latent structure-discriminant analysis (OPLS-DA) model. The OPLS-DA approach is
a method for the classification of groups with confounding factors, such as multicollinear and noisy
variables [36]. The discrimination model was built with one predictive and two orthogonal components,
and it exhibited an R2(Y) (overall goodness of fit) of 86.5% and Q2(Y) (overall cross-validation coefficient) of
72.8% (Figure 1B). Most of the samples in the prediction set were clustered into the corresponding groups,
and only a few samples overlapped across the groups. In addition, a partial least squares-discriminant
analysis (PLS-DA) score plot showed that there were no significant differences between the healthy subjects
and GC patients at any stage based on Helicobacter pylori infection (Supplementary Materials Figure S1).

Figure 1. Representative 1H nuclear magnetic resonance (NMR) spectra of urine samples and discrimination
between healthy control and gastric cancer groups. (A) Typical 1H NMR spectra with an internal standard
signal (0.025% TSP) at 0 ppm. The left panel shows a representative 1H NMR spectrum for healthy
controls, and the right panel shows a representative 1H NMR spectrum for patients with gastric cancer.
(B) Orthogonal projections to the orthogonal projection for a latent structure-discriminant analysis
(OPLS-DA) score plot of the healthy control and gastric cancer groups. The model was constructed with
one predictive (Pp) and two orthogonal (Po) components. The overall goodness of fit and cross-validation
coefficients are 86.5 and 72.8%, respectively. Black boxes: samples from healthy controls; red triangles:
samples from patients with gastric cancer.
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2.4. Analysis of Contributing Metabolites Using Statistical Total Correlation Spectroscopy (S-TOCSY)

The identities of the metabolites that contributed to the difference between the cancer and healthy
control groups were determined by assigning NMR peaks and performing a statistical analysis (Table 2,
Figure S2).

All metabolites with statistically meaningful differences were identified by matching their peak
characteristics with those in databases and are shown in Figure 2A and Table S1. Of the identified
metabolites, alanine, taurine, phenylalanine, and creatine have been previously described as urinary
metabolomics markers for GC [31–33,37]. We observed low creatine and high creatinine levels in the
urine from the normal subjects and, conversely, high creatine and low creatinine levels in the urine
from the patients with GC (Figure 2B). The levels of these markers varied rather widely, with those
of citrate showing the widest variation between the healthy control and cancer groups (Figure 2B).
In addition, the fold increases were not very large, and thus it was difficult to find a single representative
marker metabolite. As the (P corr) p-values of each signal in the S-TOCSY plot were also rather small
(maximum value ≤0.7), multiple metabolites, rather than one or two major metabolites, seemed
to intricately contribute to the group separation. Additionally, we performed a receiver operating
characteristic (ROC) curve analysis, and the results showed a broad range of areas under the curves
(AUCs), from 0.632 (citrate) to 0.936 (glycerol), with varying sensitivities and specificities (Figure 2C).
The results of the ROC analysis are summarized in Table 2.

Table 2. Identified metabolites, with changes in their levels in gastric cancer (GC) and receiver operating
characteristic (ROC) analysis results.

No. Metabolites Chemical Shift (ppm) p-Value Changes (GC
over Controls)

ROC Analysis

AUC Sensitivity (%) Specificity (%)

1 Alanine 1.49(d), 1.18 × 10−4 N 0.748 70 80
2 Citrate 2.54(d), 2.68(d) 1.60 × 10−4 N 0.632 50 70
3 Creatine 3.04(s) 1.90 × 10−9 N 0.863 80 90
4 Creatinine 3.05(s), 4.07(s) 3.27 × 10−5 5 0.723 60 80
5 Glycerol 3.57(m), 3.66(m), 3.78(m), 7.51 × 10−19 5 0.936 90 90
6 Hippurate 3.98(d), 7.55(t), 7.64(t), 7.83(m) 1.75 × 10−6 N 0.74 70 70
7 Phenylalanine 7.32(m), 7.38(m), 7.42(m) 1.13 × 10−8 N 0.802 80 70
8 Taurine 3.27(t), 3.43(t) 1.90 × 10−6 N 0.759 80 70
9 3-hydroxybutyrate 1.21(d) 4.61 × 10−4 5 0.706 60 70

N represents up-regulation and 5 represents down-regulation.
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Figure 2. Identification of contributing metabolites by statistical total correlation spectroscopy, their
relative levels in urine samples, and ROC analysis. (A) The color scale P(corr)p on the right represents a
modeled correlation, and Pp represents a modeled covariation. The names are indicated for metabolites
with noticeable signals, whose distribution was different between the healthy control and gastric
cancer groups. (B) Relative concentrations of identified metabolites in urine samples from healthy
controls and patients with gastric cancer and associated p-values. The shown false discovery rate
(FDR)-adjusted p-values were acquired through the online statistical analysis tool Metaboanalyst
(www.metaboanalyst.ca). (C) ROC curves of each identified metabolite, with area under the curve
(AUC), sensitivity, and specificity.
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2.5. Diagnostic Performance: Validation of the Prediction Model

We developed a prediction model that discriminated between cancer and healthy control samples
using a training set. Therefore, we tested whether our model could predict the cancer status of unknown
samples from the validation set, which were set aside during model building.

NMR data of the validation set were obtained using the same experimental parameters as those
used for the training set, and the data were fitted into the prediction model to obtain the cancer status
using an a priori set cutoff value of 0.5 for the predicted dependent variable (Figure 3A).

Figure 3. Prediction of healthy subjects and patients with gastric cancer using unknown samples and
early-stage diagnosis. (A) For validation, 67 unknown samples (33 healthy control and 34 gastric cancer
samples) were fitted into the OPLS-DA model. The class membership of the unknown samples was
predicted using an a priori set cutoff value of 0.5 (dashed line). The Y-values of the black boxes and red
triangles are from the analysis of known samples (67 healthy control and 68 gastric cancer samples),
and gray triangles represent unknown samples. (B) For early-stage diagnosis, the gastric cancer group
only comprised patients with stage IA cancer (n = 37), and the diagnostic model was established using
the same healthy control group (n = 67). Validation was performed with 52 unknown samples (gray
triangles). Black boxes: samples from healthy controls; red triangles: samples from patients with gastric
cancer. In the case of misclassified samples, the predicted Y-values for unknown samples are shown as
gray triangles.

This validation test correctly predicted the respective status of 31 of 33 healthy control samples and
32 of 34 cancer samples, thus yielding a specificity of 93.9% and a sensitivity of 94.1% for the diagnosis
of GC. Moreover, the sensitivity and specificity of CEA, CA19-9, and CA72-4 were determined (Table 3).
Compared with the serum tumor markers for the same patients, the metabolomics approach performed
significantly better, especially in terms of sensitivity.

For early GC screening, it is desirable to have a diagnostic model that can perform well without
the inclusion of later-stage samples. Therefore, we carried out a diagnostic performance test as above
after excluding later-stage samples (Figure S3 and Table 3). The metabolomics approach showed a
robust performance even with the earliest, stage IA samples (R2 > 0.508 and Q2 > 0.676) and exhibited
a specificity of 97% (32 correct predictions for 33 healthy control samples) and a sensitivity of 94.7% (18
correct predictions for 19 cancer samples) (Figure 3B).
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Table 3. Comparison of sensitivity and specificity of conventional modalities and metabolomics
profiling for early-stage and locally advanced gastric cancer.

Variable
Metabolomics Serum Markers

All Stages Stage I + II Stage I (IA + IB) Stage IA CEA CA 19-9 CA 72-4

Sensitivity (%) 93.9 90.9 97.0 97.0 1.9 3.9 7.8
Specificity (%) 94.1 92.3 95.7 94.7 99.0 99.0 97.0

2.6. Relationship between Urine Metabolites and Gene Expression in Cancer Tissues

After confirming the utility of the proposed model in predicting early GC, we wanted to determine
whether there was a relationship between the metabolic contributors and gene expression profiles in GC.
Although one or two significant marker metabolites did not account for a large part of the metabolic
alterations between the healthy control and cancer groups, a metabolic–genetic relationship might
reveal a weak but significant correlation. To this end, we analyzed microarray data for patients with GC
(n = 103) and normal controls (n = 29) and examined the expression levels of genes known to metabolize
the identified contributing metabolites [38]. We applied the bioinformatics network visualization tool
MetScape to perform a pathway-based network analysis [39]. The software allows the visualization and
interpretation of metabolomics and gene expression datasets in a human metabolic network context.
Using the compound–reaction–enzyme–gene analysis function of MetScape, we could obtain enzymes
potentially related to the metabolites identified by our metabolomics analysis. In brief, we conducted a
pathway analysis based on our metabolomics results to elucidate potentially related genes (Figure S4A).
Subsequently, we analyzed the expression levels of the genes encoding these enzymes using the Chen’s
microarray dataset and found significant changes in the expression of some genes (Figures S5 and
S6; Table S3). We performed a volcano plot analysis for selecting meaningful genes based on a fold
change of 1.5 and a false discovery rate (FDR) of 0.005. As a result, we selected five genes including
ACLY, ACO2, BAAT, CKMT1B, and GGTL4 (Figure S4B). A joint pathway analysis using the identified
metabolites and correlated genes was also performed; overall, the result supports the abovementioned
findings (Figure S4C).

3. Discussion

Metabolomics, which is used to assess the overall metabolic profiles of biological samples, may
help establish the missing link between gene/protein expression profiles and final cellular phenotypes
in normal and diseased states. Metabolomics urine analysis is also attractive for the routine monitoring
of cancer because urine contains high concentrations of many water-soluble metabolites present in
plasma and sampling is noninvasive. Several studies have shown that urine metabolomics analysis
provides a potential diagnostic tool for the early detection of cancer [27,40–42].

To date, several studies have explored the utility of metabolomics in the diagnosis of GC. Early
reports mostly used tissue samples obtained from surgery or endoscopic biopsies [37,43,44], aiming at
directly detecting metabolic alterations in cancer tissues. However, studies that are more recent have
obtained comparable results using more accessible samples such as blood or urine [31,34,45]. Important
drawbacks of these studies were small numbers of cases and a lack of rigorous cross-validation to
assess the actual diagnostic performance of the metabolomics approach. The current study has thus
far employed the largest number of cases. In addition, our validation set corresponded to one-third
of all enrolled cases and was larger than those used in most of the previous studies. Therefore,
the high diagnostic performance of our approach should be considered more reliable than that of
previous studies.

Clinically, another equally important aspect of our study was the inclusion of a large number of
patients with stage I GC. Among the enrolled cases with cancer, more than half had stage I GC, including
56 cases with intramucosal cancer, which can be treated by endoscopic resection. In addition, we
achieved a comparably high diagnostic performance using only intramucosal lesions. In comparison,
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a previous study that reported the diagnostic performance of metabolomics included no stage IA cases
in the training set, although it included 13 stage IA cases in the validation set [31]. It should be also
noted that conventional tumor markers performed very poorly, with a low sensitivity. The current
study is the first noninvasive metabolomics diagnosis study that focused on early GC.

Despite the high diagnostic performance, our approach could not establish a firm mechanistic link
between metabolite changes and GC, nor could it identify a single marker metabolite that explained
the metabolic difference between healthy controls and cases with GC. Nevertheless, this analysis can
be performed quickly and affordably, provided a diagnostic facility is available, at a low cost and
without the need for medically trained personnel. Therefore, the urine metabolomics approach should
be suitable for early GC screening, rather than the confirmation of GC, which should be performed by
expert pathologists. Combined with the convenience and noninvasive nature of urine analysis, this
method should be applicable to the general population.

Although we found several metabolites that contributed to the metabolic difference between
patients with cancer and healthy controls, the correlations of these metabolites with differences between
the groups were rather small. Interestingly, we found that the creatine and creatinine levels showed
opposite trends in the normal controls and in patients with GC. Up to 94% of creatine is found in
muscle tissues, and it is nonenzymatically converted to creatinine and excreted into urine through
the kidney [46]. A significant correlation has been reported between creatine metabolism and muscle
mass [47], which is helpful in interpreting the inverse relationship between the measured concentrations
of these two metabolites in our study. Compared with that in normal controls, muscle mass is likely
to be relatively deteriorated in patients with GC, which may lead to abnormal creatine metabolism.
Based on these effects, the high levels of creatinine were interpreted to be due to the conversion of
creatine to creatinine in the normal controls, while relatively low levels of creatinine were measured in
the patients with GC. Creatine conversion to creatinine is a nonenzymatic reaction, which is potentially
due to the failure to find specific enzymes associated with this reaction.

Unfortunately, with insufficient metabolic data, a direct mechanistic investigation of GC was
not possible in the current study. However, the diagnostic performance was evaluated using all the
metabolite signals as a whole and was found to be much higher than that of conventional markers or a
radiological approach. In fact, one advantage of the metabolomics approach is that no identification of
a single significant marker is necessary for disease diagnosis, as noted previously [48]. In addition,
it has been noted that the measured metabolite profile is a reflection of the convergence of tumor,
microenvironment, and global metabolic alterations [49]. Therefore, finding one or two significant
metabolites whose levels can account for a large part of metabolic differences between patients with
cancer and normal cases seems to be very difficult, if possible. Actually, there are noticeable variations
in the levels of contributing metabolites. These variations may reflect the well-known heterogeneity of
solid tumors. In a large-scale sequencing analysis of major human cancers, it was estimated that 3000
to 10,000 mutations could be found in one of the cancer genomes [50]. This heterogeneity may account
for the difficulties in finding a single significant metabolite marker.

Citrate, a metabolic intermediate of the tricarboxylic acid (TCA) cycle, has been previously identified
as a GC biomarker [51], but there remain inconsistencies regarding its levels, with some studies reporting
increases and others reporting decreases in citrate levels in GC [51,52]. These differences may indicate
that the distribution range of citrate levels is quite large in GC, as was observed in our study. However,
further qualified studies, including a controlled trial or a cohort study, should be conducted to validate
the screening programs using urine metabolomics profiles.

Although our metabolomics results showed different total metabolic profiles between healthy and
GC patients, these results cannot stand alone. The complementation for functional linkage via the
incorporation of other “omics” datasets in the context of system biology is always required. For this
purpose, we conducted a pathway analysis using microarray data to disclose any potential correlation
with our metabolomics results. Importantly, we found several metabolite-gene expression correlations.
For instance, the expression of ACO2, an enzyme that plays a critical role in the catalysis of citrate



Cancers 2020, 12, 2904 11 of 16

to isocitratewas down-regulated in GC patients, supporting the increased citrate levels observed
through our metabolomics analysis. Moreover, GGTL4, a member of gamma-glutamyltransferase
that plays a key role in the transfer of gamma-glutamyl functional groups to amino acids, expression
levels were down-regulated in GC patients. Although a direct correlation between the GGTL4 levels
and the production of alanine and taurine may be questionable, GGTL4 is located in a metabolic
pathway close to those essential for the production of these metabolites. Another gene responsible
for the catalysis of acyl-CoA thioester into either glycine or taurine, BAAT, was up-regulated in GC
patients; again, this could be the reason for the elevated taurine levels in GC patients. We also found
that mitochondrial creatine kinase (CKMT1B) was differentially expressed in GC patients. CKMT1B
is responsible for the transfer of high-energy phosphate groups from the mitochondria to creatine.
However, this gene is not directly involved in creatine production, making it difficult to determine the
correlation between the expression of CKMT1B and the creatine levels in GC patients. Importantly,
overall, we confirmed that the suggested metabolite-gene correlation was supported by the results of
additional joint pathway analysis.

In addition, the pepsinogen I/II ratio, which is recently coming into the spotlight, for identifying a
high-risk GC group was not examined in this study. However, this biomarker is known to be a useful
serologic marker for chronic atrophic gastritis, which is a precancerous lesion. Hence, the purpose of
this marker is not consistent with this study as this study demonstrated the diagnostic performance
of a metabolomics profile in the detection of GC regardless of accompanying atrophic or metaplastic
change. Furthermore, as the sensitivity and specificity of the pepsinogen test differ from country to
country, further research is required to increase the efficacy of pepsinogen as a GC biomarker [53].
Another issue is about change of metabolomics profile after treatment. In our study, we only compared
active cancer patients and healthy subjects. The evaluation of the urine metabolomics profile of gastric
cancer patients, after curative resection, should also be considered, even though there could be a
confounding bias due to the dietary life change after surgical gastrectomy. This said, further studies
are warranted to elucidate the metabolomics change in gastric cancer subjects, before and after surgery.

For the NMR spectra normalization, we applied the “total area normalization approach”, a numerical
normalization method rather than a physiological method using, e.g., the osmolality or creatinine levels.
Indeed, the normalization against creatinine should be used when the creatinine clearance is constant
under stable metabolic regulation. Of note, such an approach is not suitable for our study, because gastric
cancer is one of the many diseases causing metabolic dysregulation. Even though the urinary specific
gravity and osmolality measurements are currently recommended as normalization methods for the
analysis of urine samples, these approaches require an additional measurement, a critical limitation in
the context of high-throughput screening research. While various numerical normalization methods
are proposed, each approach has its own advantages and limitations [54]. Therefore, the standardized
normalization method for NMR-based urine metabolomics has not been established. However, for large
sample size-based studies (over 50 samples), the quantile normalization has been suggested with better
results, which we will consider as an additional option in further research.

4. Materials and Methods

4.1. Patients

The study design was approved by the Institutional Review Board at the Samsung Medical Center
(IRB No. 2012-08-045), and written informed consent was obtained from all subjects enrolled in this
study. We collected urine samples from patients with GC (n = 103) and age- and sex-matched healthy
subjects (n = 100) at the Samsung Medical Center. Patients with prior treatment, including chemotherapy
or surgery, serious complications such as active bleeding or an obstruction, abnormal liver function or
renal function test results, severe cardiopulmonary disease, collagen disease, uncontrolled diabetes
mellitus, and active carcinoma at other sites were excluded. All patients were diagnosed using biopsy or
surgical resection. Healthy controls were age- and sex-matched subjects with no declared history of any
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gastrointestinal or chronic diseases, and no gastrointestinal symptoms. Furthermore, healthy controls
showed normal endoscopic findings, as per the endoscopic examination results. Subjects diagnosed
with benign gastric diseases including gastritis, gastroesophageal reflux disease, ulcer, or benign
tumors (as per the endoscopic examination results) were not included in this study. Control samples
were obtained from healthy subjects who underwent a routine health check-up at the Samsung Medical
Center in the same period. The selection criteria required individuals to not meet the above-listed
exclusion criteria, including neoplasms. All subjects were instructed to fast for 8 h before the collection
of urine samples. Participants provided a midstream urine sample. No dietary restriction or activity
modification was required before the urine collection.

4.2. Serum Assays of CEA, CA 19-9, and CA 72-4

Blood samples were obtained from all patients in the morning during the week before surgery.
The blood sample was centrifuged at 1000× g for 10 min to separate the plasma from blood cells. Serum
CEA, CA 19-9, and CA 72-4 were measured using a radioimmunoassay. The normal values of CEA,
CA 19-9, and CA 72-4 were set at less than 7 ng/mL, 35 U/mL, and 4 U/mL, respectively.

4.3. Urine Sample Collection and Preparation

First morning urine samples (3–5 mL) were collected and centrifuged at 3000 rpm for 15 min at 4 ◦C.
The supernatants were transferred to frozen tubes and stored at −80 ◦C until processing. The frozen
urine samples were gently thawed and centrifuged at 15,000 rpm for 20 min at 4 ◦C. A 500-µL aliquot
of the supernatant was mixed with 50 µL of phosphate buffer (1.5 M K2HPO4, 1.5 M Na2HPO4, and pH
7.4), centrifuged at 15,000 rpm for 20 min at 4 ◦C, and then incubated at room temperature for 10 min.
For the internal standard, 50 µL of a 0.25% trimethylsilylpropanoic acid (TSP) solution in D2O was
added to 450 µL of a centrifuged supernatant, and the mixture was transferred into a 5-mm NMR tube.

4.4. NMR Data Acquisition and Determination of Metabolic Profiles

All 1H NMR spectra were obtained using a 500-MHz NMR spectrometer (BioSpin Avance 500;
Bruker, Billerica, MA, USA), which was operated at a 500.13-MHz proton frequency at 25 ◦C using
the Carr–Purell–Meiboom–Gill pulse sequence (cpmgpr1d) with 400 ms of the total spin echo delay.
The acquisition parameters and data processing steps were as reported previously [35,55]. In brief,
a proton spectral FID was collected within a 14-ppm spectral width during 128 scans. A Fourier
transformation and phase correction were applied to proton NMR signals using the MNova software
(Mestrelab Research S.L., Escondido, CA, USA). The water signal region (4.62–5.15 ppm) was excluded,
and the data were normalized and referenced to the total area integration values and the 0.025% TSP
value, respectively. All the processed data were compared against the Chenomx NMR database version
8.2 (Spectral Database, Edmonton, AB, Canada) to identify representative metabolites by shifting in
appropriate pH ranges. To distinguish between the healthy controls and patients with GC, OPLS-DA
was performed using SIMCA-P version 11.0 (Umetrics, Umeå, Sweden) by applying spectral binning
data by using an in-house Perl script with a 0.0073-ppm width. To evaluate the performance of the
OPLS-DA model, validation was carried out using a separate validation set. Briefly, one-third of the
samples from each cohort were randomly selected and used as the validation set using the k-fold
cross-validation method. The diagnostic performance of the OPLS-DA model was evaluated based on
the Y-variable values of the validation set, obtained using the training set model with an a priori set
cutoff value of 0.5. The sensitivity and specificity values were obtained based on the correct prediction of
the 33 healthy control and 34 GC patient samples during the validation step. All statistical analyses were
performed using statistical software and an online data analysis tool, including SIMCA-P version 11.0
(Umetrics, Umeå, Sweden), OriginPro 8 (OriginLab Corporation, Northampton, MA, USA), R (The R
Foundation for Statistical Computing, Vienna, Austria), and Metaboanalyst (www.metaboanalyst.ca).

www.metaboanalyst.ca
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4.5. Microarray Data Analysis

The variation of gene expression in human GC was investigated using the microarray results
by Chen et al. [38] Genes involved in the metabolism of the contributing metabolites, identified
by S-TOCSY, and were investigated for their differential expression in cancer and normal samples.
In detail, we performed pathway-based network analysis using MetScape to visualize and interpret
metabolomics and gene expression data in the human metabolic network [39]. We used metabolites
identified by our metabolomics analysis, and the pathway-based network was built using the
compound–reaction–enzyme–gene method. Subsequently, we obtained the names of the genes
potentially associated with the input metabolites and analyzed the gene expression levels from Chen’s
microarray dataset [38]. From Chen’s research dataset, we downloaded all individual microarray
data from normal control and patients, and generated a new summarized gene list consisting of “R/G
Normalized (Mean)” value to determine the fold changes and adjusted p-values of each gene.

5. Conclusions

In conclusion, we report here a metabolomics approach for GC screening using urine samples
from patients who were mostly diagnosed with early GC and healthy subjects. This approach showed
very high diagnostic sensitivity and specificity using a validation set and performed significantly
better than did serum tumor markers modalities. An additional genomic data analysis revealed an
up-regulation of the expression of several genes in GC. As this was the largest metabolomics study
and the first that mostly focused on early GC, the approach developed may have the potential for
a mass screening of an average-risk population and may facilitate endoscopic examination through
risk stratification.
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