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Abstract: The manuscript describes the synthesis of new racemic and chiral linked
paracyclophane assigned as N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)carboxamide. The procedure depends upon the reaction of
5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide with 5-(1,4(1,4)-dibenzenacyclohexaphane-12-
yl)isocyanate. To prepare the homochiral linked paracyclophane of a compound, the enantioselectivity
of 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbaldehyde (enantiomeric purity 60% ee),
was oxidized to the corresponding acid, which on chlorination, gave the corresponding acid
chloride of [2.2]paracyclophane. Following up on the same procedure applied for the preparation
of racemic-carbamoyl and purified by HPLC purification, we succeeded to obtain the target Sp-
Sp-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-
12-yl)carboxamide. Subjecting N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide to various
isothiocyanates, the corresponding paracyclophanyl-acylthiosemicarbazides were obtained.
The latter compounds were then cyclized to a new series of 5-(1,4(1,4)-dibenzenacyclohexaphane-
12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thiones. 5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-1,3,4-
oxadiazol-2-amines were also synthesized in good yields via internal cyclization of the same
paracyclophanyl-acylthiosemicarbazides. NMR, IR, and mass spectra (HRMS) were used to elucidate
the structure of the obtained products. The X-ray structure analysis was also used as an unambiguous
tool to elucidate the structure of the products.

Keywords: HPLC; chiral N-([2.2]-paracyclophanylcarbamoyl)-4-([2.2] paracyclophanylcarboxamide;
hydrazinecarbothioamide-paracyclophanes; paracyclophanyl-1,2,4-triazol-3-thione; paracyclophanyl)-
1,3,4-oxadiazoles
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1. Introduction

Compounds comprising the −NH–NH–C=O moiety are known as acylhydrazide linkers.
More specifically, acylhydrazide-based compounds have shown antioxidant activities [1–4].
Hydrazides and carbohydrazides have been described as useful building blocks for the assembly
of various heterocyclic rings [5]. A large number of aliphatic, alicyclic, aromatic and heterocyclic
carbohydrazides [6–9], their derivatives, and related compounds are reported to present a plethora of
biological activities [10–16].

3,4-Disubstituted-1H-1,2,4-triazole-5(4H)thiones have gained considerable importance in
medicinal chemistry due to their potential anticancer [17–19], antimicrobial [20], antioxidant,
antitumor [21], anti-tuberculosis [22], anticonvulsant [23], fungicidal [24], antiepileptic drugs [25],
and anti-inflammatory activity [26]. Although they have mainly been screened for antibacterial,
antifungal, anti-inflammatory, and antiproliferative activity [27–31], only a few studies describe their
use as metalloenzyme inhibitors such as the dicopper dopamine-β-hydroxylase [32], the TNF-α
converting enzyme [33], ADAMTS-5 [34], and urease [35]. A few triazolthione analogues with no
amino group at the 4-position were reported to be modest inhibitors of the IMP-1 MBL [36,37] or
were shown to be inactive against the CcrA, ImiS, and L1 MBLs at 50 µM [38]. Other triazolthione
compounds with an alkylated sulfur atom have also been published more recently [39,40], and the
structure of the complex formed by one of these compounds with VIM-2 showed that the two zinc
atoms were coordinated by the nitrogen atoms at the 1- and 2-positions of the heterocycle [41,42].
1,2,4-Triazolthione derivatives have been prepared successfully by various methods. The most common
classical method is the dehydrative cyclization of different hydrazinecarbothioamides in the presence of
basic media using various reagents such as sodium hydroxide [43], potassium hydroxide [44], sodium
bicarbonate [45], and besides that, the acidic ionic liquid condition can be used for such cyclization
followed by neutralization [46].

1,3,4-Oxadiazoles are an interesting class widely applied in the development of advanced
electroluminescent and electron-transport materials [47,48]. In other cases, they have exhibited a
variety of biological effects such as antiviral [49], antitumor [50], and anti-inflammatory [51] activities.
As a design element in medicinal chemistry, 1,3,4-oxadiazoles are deployed for several purposes [52,53].
The commonly used synthetic route for 1,3,4-oxadiazoles includes reactions of acid hydrazides
(or hydrazine) with acid chlorides/carboxylic acids and direct cyclization of diacylhydrazines using a
variety of dehydrating agents such as phosphorous oxychloride [54], thionyl chloride [55], phosphorous
pentaoxide [55], triflic anhydride [56], polyphosphoric acid [57], and a direct reaction of the acid with
(N-isocyanimino)triphenylphosphorane [58–61].

More than six decades ago from the discovery of [2.2]paracyclophane, its derivatives have been
the subject of particular interest [62–65]. Most of the unique properties of these cyclophanes are
the result of the rigid framework and the short distance between the two aromatic rings within
the [2.2]paracyclophane unit. The synthesis of [2.2]paracyclophane derivatives has suffered from
multi-step procedures and consequently, poor yields of the desired products have been obtained [66],
therefore, finding out simple methods of moderate to good yields of these compounds have been given
considerable attention [66].

Prompted by the aforesaid properties about acylhydrazide linkers and their biological
activity, in addition to the fact that planar chiral [2.2]paracyclophanes are useful synthons, from a
material perspective, they can be incorporated into conjugated polymeric systems for chiroptical
and optoelectronic properties. These compounds show broad applications in bio- and materials
science, therefore, we decided to investigate the synthesis of homochiral linked paracyclophanes such as
N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)
carboxamide (Figure 1).
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cytotoxic effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at 
the GI50 and total growth inhibition (TGI) levels, respectively [62]. Therefore, we are aiming to 
prepare other classes such as triazolethione and oxadiazole moieties linked to the paracyclophane 
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paracyclophanyl-triazole-3-thiones and -paracyclophanyl-2-substituted amino-1,3,4-oxadiazoles 
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N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-12- 
yl)carboxamide (3) could be obtained from the reaction of 
racemic-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide (rac-1) with 
racemic-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)isothiocyanate (rac-2) (Scheme 1).  

Figure 1. The structure of the diastereomeric and homochiral linked paracyclophanes such
as N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-
12-ylcarboxamide.

We previously reported that some paracyclophane-heterocycles such as methyl 2-(2-(4’-
[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxothiazolidin-5-ylidene)acetates displayed
anticancer activity against a leukemia subpanel, namely, RPMI-8226 and SR cell lines. The cytotoxic
effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at the
GI50 and total growth inhibition (TGI) levels, respectively [62]. Therefore, we are aiming to prepare
other classes such as triazolethione and oxadiazole moieties linked to the paracyclophane molecule.
Figure 2 summarizes some of the routes utilized to prepare paracyclophanyl-triazole-3-thiones and
-paracyclophanyl-2-substituted amino-1,3,4-oxadiazoles from acylhydrazinecarbothioamides [62].
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Figure 2. Different methods of preparation of 1,2,4-triazole-3-thiones and 2-substituted
amino-1,3,4-oxadiazoles.

2. Results and Discussion

The synthesis of N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)carboxamide (3) could be obtained from the reaction of
racemic-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide (rac-1) with racemic-N-5-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)isothiocyanate (rac-2) (Scheme 1).

The strategy of preparing compounds 1 and 2 was divided into two parts; firstly, starting by the
parent hydrocarbon 4 as a commercial product. Compound 4 was then converted into the acid chloride
derivative 6 [67], by the procedure described in Scheme 2, which consisted first of the conversion
of 4 into 5 with the oxalyl chloride/aluminium trichloride. Heating of 5 in refluxing chlorobenzene
caused decarbonylation to give 6. Subsequently, the resulting acid chloride 6 was subjected toward
esterification using ethanol to give compound 7 [67] (Scheme 2). Finally, the ester 7 was refluxed with a
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hydrazine hydrate in different solvents; however, the reaction failed to give the target α-ketohydrazine
1 in good yields. Whereas, heating 7 directly with an excess of the hydrazine hydrate afforded the
corresponding racemic-carbohydrazide 1 in 80% yield (Scheme 2). Secondly, conversion of 6 into
2, was achieved by the reaction of 6 with sodium azide in acetone/H2O to give the corresponding
carbonylazide 8 [68] in 95% yield (Scheme 3). Whereas heating 8, under Ar, in toluene afforded the
second target molecule 2 [68] in 70% yield (Scheme 3).Molecules 2020, 25, x FOR PEER REVIEW 4 of 18 
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Scheme 1. Synthesis of the racemic and Sp-Sp-N-([2.2]-paracyclophanylcarbamoyl)-4-([2.2]
paracyclophanylcarboxamide (3).
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Scheme 2. Strategy of preparing the racemic-1. Reagents and conditions: (a) (COCl)2/AlCl3, −10 to
5 ◦C, 20 min [68]; (b) PhCl, ∆, 40 h [67]; (c) EtOH, reflux 24 h [67]; (d) NH2NH2 as a solvent, ∆, 14 h.
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Scheme 3. Strategy of preparing racemic-2. Reagents and conditions: (e) NaN3/acetone/water (3:1 by v.),
room temperature 2 h [68]; (f) Toluene, heat, Ar, 80 ◦C, 1 h [68].

The structure of newly prepared compound 1 was proved by NMR spectra. The 1H-NMR
spectrum revealed two singlets at δ = 9.09 and 4.46 assigned to NH and NH2 protons. The 13C-NMR
spectrum showed the carbonyl-carbon at δ = 167.8 (C=O), whereas the four distinctive CH2-bridged
carbons resonated at δ = 34.8 (CH2-1’), 34.7 (CH2-10’), 34.5 (CH2-9’), and 34.2 (CH2-2’). The IR spectrum
revealed the absorption of NH2, NH, and the carbonyl groups at ṽ = 3352–3214 NH2, 3196, and 1632,
respectively. The X-ray structure analysis was used to elucidate the structure feature of compound 1 as
shown in Figure 3.
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2.1. Preparation of Compound 3

As above mentioned in Scheme 1, the diastereomer 3 was obtained via the reaction of
carbohydrazide paracyclophane (1) and paracyclophane isocyanate (2) in a mixture of absolute
EtOH:DMF (i.e., 25:1 by volume in mL). Several trials including different solvents such as EtOH,
EtOH/Et3N, DMF, Toluene/Et3N, and propanol failed to give good yields. However, a mixture of EtOH
to DMF (25:1) gave compound 3 in 70% yield.

The strategy of preparing Sp-Sp-3 was started by preparation of Sp-4-formyl([2.2]paracyclophane
(9) (60% ee) [68]. To prove the enantiomeric purity of 9, a chiral HPLC analysis was conducted,
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Figure 4. Analytical HPLC of 60% ee-8.

The structure of the compounds diastereomer-3 and/or pure chiral Sp-Sp-3 was proved by the
NMR spectroscopic analysis. It is clearly apparent that the same number of protons and carbon signals
was assigned for both aforesaid compounds. The twenty-four paracyclophanyl (PC)-aromatic carbons
and eight PC-CH2-bridged carbons in addition to the two carbonyl carbons appeared in the 13C-NMR
spectrum of pure chiral Sp-Sp-3, since the two paracyclophanyl moieties were electronically different
via attachment with two different functional groups.



Molecules 2020, 25, 3315 6 of 19

Molecules 2020, 25, x FOR PEER REVIEW 5 of 18 

 

 
Figure 3. Molecular structure of compound 1 identified according to the IUPAC nomenclature as 
1,4(1,4)-dibenzenacyclohexaphane-12-carbohydrazide. 

2.1. Preparation of Compound 3 

As above mentioned in Scheme 1, the diastereomer 3 was obtained via the reaction of 
carbohydrazide paracyclophane (1) and paracyclophane isocyanate (2) in a mixture of absolute 
EtOH:DMF (i.e., 25:1 by volume in mL). Several trials including different solvents such as EtOH, 
EtOH/Et3N, DMF, Toluene/Et3N, and propanol failed to give good yields. However, a mixture of 
EtOH to DMF (25:1) gave compound 3 in 70% yield. 

The strategy of preparing Sp-Sp-3 was started by preparation of 
Sp-4-formyl([2.2]paracyclophane (9) (60% ee) [68]. To prove the enantiomeric purity of 9, a chiral 
HPLC analysis was conducted, it was found that 9 has an enantiomeric excess of 60% (Figure 4), 
meaning it is not completely Sp-pure. Oxidation of 9 gave the target acid 10 [68], which on 
chlorination via reaction with thionyl dichloride/DMF gave 6 [67] (Scheme 4). Subsequently, 
repeating the previous steps in Schemes 1–3, compounds 1–3 were prepared in their ralemic forms. 
Applying the HPLC separation on 3, the desired pure chiral 
(Sp-Sp)-N-([2.2]-paracyclophanylcarbamoyl)-4-([2.2]paracyclophanylamide (3) (Figure 5) was 
obtained.  

 
Scheme 4. Preparation of enantiomeric pure Sp-Sp-3. Reagents and conditions: g) aq. KOH, ∆, 22 h, 
then 35% H2O2, 10 °C, 20 min then six days, room temperature [68]; h) SOCl2/DMF, ∆ [68]; c), d), e), 
and f) as mentioned in  Scheme 2;  Scheme 3. 

Scheme 4. Preparation of enantiomeric pure Sp-Sp-3. Reagents and conditions: (g) aq. KOH, ∆, 22 h,
then 35% H2O2, 10 ◦C, 20 min then six days, room temperature [68]; (h) SOCl2/DMF, ∆ [68]; (c,d), (e,f)
as mentioned in Scheme 2, Scheme 3, respectively.
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Figure 5. HPLC separation of Sp-Sp-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)carboxamide (3).

2.2. Synthesis of Triazolethiones 12a–f

The synthesis of these nitrogen-containing heterophanes led to the idea that the heterophane
5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-4-substituted-2,4-dihydro-3H-1,2,4-triazol-3-thiones 12a–f
in 72–78% yields could be obtained from the cyclization of 11a–f [62] in an alkaline medium
(Scheme 5). Compounds 11a–f were previously prepared by the reaction of compound 1 with
isothiocyanates (Scheme 5) [62]. All compounds of the series 12a–f provided analytical data in full
agreement with the desired structures (see Experimental and Supplementary Materials). The structures
of compounds 12a and 12d were completely proved by the X-ray structure analyses, as shown
in Figures 6 and 7, respectively.
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Figure 7. Molecular structure of compound 12d identified according to the IUPAC nomenclature
as 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-4-allyl-2,4-dihydro-3H-1,2,4-triazol-3-thione (solvent
omitted for clarity; displacement parameters are drawn at a 50% probability level).
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2.3. Conversion of N-Substituted-5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)Hydrazinecarbothioamides 11a–f
into 5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-N-Substituted-1,3,4-Oxadiazol-2-Amines 13a–e

The one-pot synthesis including gentle heating of 1a–f in tetrahydrofuran
(THF) together with 0.5 mL of Et3N afforded directly the corresponding
5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-N-substituted-1,3,4-oxadiazol-2-amines 13a–f in
63–68% yields (Scheme 6). Compound 13a was identified from spectroscopic data as
5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-1,3,4-oxadiazol-2-amine. As an example, the 1H-NMR
spectrum showed two broad singlets at δ = 10.04 for NH and CH-5-PC. The 13C-NMR spectrum
revealed the oxadiazole-C-2 and oxadiazole carbons at δ = 162.7 for-C-2 and δ = 160.0 for C-5. The four
PC-CH2 carbons appeared at δ = 36.2, 36.1, 36.0, and 35.9. Elemental and mass spectroscopy indicated
the molecular formula of 13a as C24H21N3O. The structure of 13a was proved by the X-ray structure
analysis as shown in Figure 8. The X-ray was used to prove the structure of compounds 13a and 13e,
as shown in Figures 8 and 9, respectively.
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as 5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-N-phenyl-1,3,4-oxadiazol-2-amine (displacement
parameters are drawn at a 30% probability level).
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3. Experimental

3.1. Material and Methods

The IR spectra were recorded by the ATR technique (ATR (Attenuated Total Reflection)) with
an FT device (FT-IR Bruker IFS 88, Bremen, Germany), Institute of Organic Chemistry, Karlsruhe
University, Karlsruhe, Germany. The NMR spectra (Figures S1–S32) were measured in DMSO-d6 on a
Bruker AV-400 spectrometer (Germany), 400 MHz for 1H, and 100 MHz for 13C; and the chemical shifts
are expressed in δ (ppm), versus internal tetramethylsilane (TMS) = 0 for 1H and 13C, and external
liquid ammonia = 0. The description of signals includes: s (singlet), d (doublet), t (triplet), q (quartet),
m (multiplet), dd (doublet of doublet), ddd (doublet of dd), dt (doublet of triplet), td (triplet of doublet),
bs (broad singlet), and m (multiplet). Mass spectra were recorded on a FAB (fast atom bombardment)
Thermo Finnigan Mat 95 (70 eV) (Thermo Electron (Bremen) GmbH, Barkhausenstr. 2 D-28197 Bremen).
For the high-resolution mass, the following abbreviations were used: Calc.: Theoretical calculated mass;
found: Mass found in the analysis, Institute of Organic Chemistry, Karlsruhe Institute of Technology,
Karlsruhe, Germany. The TLC was performed on analytical Merck 9385 silica aluminium sheets
(Kieselgel 60) with a Pf254 indicator; the TLCs were viewed at λmax = 254 nm, crude products were
purified by flash chromatography with Silica gel 60 (0.040 × 0.063 mm, Geduran) (Merck, Germany).

Compounds 2 and 5–10 were prepared according to the literature [67,68]. Compounds 11a–f were
prepared according to the methodology mentioned in reference [62].

3.2. Racemic-N-5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)hydrazide (1)

Under an argon atmosphere, a mixture of ethyl [2.2]paracyclophane-4-carboxylate (8) [39] (5.00 g,
18.0 mmol, 1.00 equiv.) was dissolved in 25 mL of hydrazine monohydrate and heated under reflux for
14 h. The reaction mixture was then cooled to room temperature until a precipitate was formed (24 h).
The precipitate was then filtered and washed with 150 mL of water (three times) followed by 100 mL
of heptane and then dried. The white product of racemic- or Sp-1 was obtained and recrystallized
from ethanol.

Racemic-N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)hydrazide (1). Colorless crystals (EtOH),
yield 3.80 g, (80%), m.p. 230–232 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.09 (s, 1H, NH),
6.66 (d, J = 1.9 Hz, 1H, PC-H), 6.60 (d, J = 7.7 Hz, 1H, PC-H), 6.57 (dd, J = 7.7, 1.9 Hz, 1H, PC-H),
6.53 (d, J = 1.3 Hz, 2H, PC-H), 6.47 (d, J = 7.7 Hz, 1H, PC-H), 6.42 (d, J = 7.8 Hz, 1H, PC-H),
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4.46 (brs, 2H, NH2), 3.08 (dddd, J = 12.7, 9.9, 6.4, 3.1 Hz, 3H, CH2-CH2), 3.04–2.85 (m, 4H, CH2-CH2),
2.81 (ddd, J = 12.5, 9.5, 6.3 Hz, 1H, CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 167.8 (C=O),
139.3 (PC-C-6’), 139.3 (PC-C-11’), 139.0 (PC-C-14’), 138.8 (PC-C-3’), 135.5, 134.5, 133.7, 132.5, 132.4, 131.6,
131.43 (PC-CH), 131.4 (PC-C-4’), 34.8 (PC-CH2-1’), 34.7 (PC-CH2-10’), 34.5 (PC-C CH2-9’), 34.2 (PC-C
CH2-2’). IR (ATR, cm-1) ṽ = 3352–3214 (br, NH2), 3196 (w, NH), 2927 (s, Ar-CH), 2848 (m, aliph-CH),
1632 (s, CO). MS (FAB) m/z (%) = 266.3 [M]+ (100). HRMS (EI, [M]+, C17H18O1N2) calc.: 266.1419,
found: 266.1418.

3.3. Preparation of Compound Diasteromer-3 or Sp-Sp-3

In a 100 mL round-bottomed flask, a mixture of carbohydrazide paracyclophane (1, 160 mg,
601 µmol, 1.00 equiv.) and paracyclophane isocyanate (2, 150 mg, 601 µmol, 1.00 equiv.) in a mixture of
absolute EtOH: DMF (25:1 by volume in mL) was heated in an oil bath at 70 ◦C for 4 h. The formed
precipitate was filtered and washed with heptane several times (3 × 20 mL).

Diastereomeric Mixture of N-5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)carboxamide (3). Colorless crystals (EtOH), yield 0.36 g (70%),
m.p. 310–2 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.72 (d, J = 2.4 Hz, 1H, NH1-hydrazide),
8.39 (dd, 1H, NH2-hydrazide), 7.99 (s, 1H, NH-amide), 6.93–6.87 (m, 2H, PC-H), 6.76–6.71 (m, 2H,
PC-H), 6.65–6.63 (m, 1H, PC-H), 6.55–6.48 (m, 5H, PC-H), 6.44–6.31 (m, 4H, PC-H), 3.79 (ddd, J = 12.6,
9.0, 3.4 Hz, 1H, PC-CH2-CH2), 3.17–3.09 (m, 2H, PC-CH2-CH2), 3.09–2.99 (m, 4H, PC-CH2-CH2),
2.99–2.90 (m, 6H, PC-CH2-CH2), 2.90–2.67 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm)
δ = 168.8 (C=O-hydrazide), 156.3 (C=O-amide), 140.7, 140.3 (PC-C-6’,6”), 140.2, 140.1 (PC-C-11’,11”),
139.9, 139.7 (PC-C-14’,14”), 139.6, 139.4 (PC-C-3’,3”), 139.1, 138.1, 136.4, 135.4, 133.5, 133.3, 133.2,
133.1, 132.9, 132.8, 132.3, 132.2, 131.9 (PC-CH), 128.8, 127.7 (PC-C-4’), 126.2 (PC-CH), 35.5 (PC-CH2),
35.2 (PC-2CH2), 34.9 (PC-2CH2), 34.7, 33.5, 33.2 (PC-CH2). IR (ATR, cm−1) ṽ = 3428–3224 (br, NH),
3104–3087 (w, NH), 2955–2893 (w, NH), 2864 (w, Ar-CH), 2853 (w, aliph-CH), 1642, 1572 (s, CO).
MS (FAB) m/z (%) = 516.3 [M + H]+ (70). HRMS (EI, [M + H]+, C34H34O2N3) calc.: 516.2651,
found: 516.2652.

(Sp-Sp)-N-5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-dibenzenacyclohexaphane-
12-yl)carboxamide (3). Colorless crystals (EtOH), yield 0.26 g (50%), m.p. 310–2 ◦C, [α]D= + 41.8
(c 0.004, CH2Cl2). 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.73, (s, 1H, NH1-hydrazide), 8.40 (s, 1H,
NH2-hydrazide), 8.00 (s, 1H, NH-amide), 7.07–6.85 (m, 2H, PC-H), 6.84–6.74 (m, 2H, PC-H), 6.65
(dd, J = 7.7, 1.8 Hz, 1H, PC-H), 6.58–6.45 (m, 6H, PC-H), 6.40 (d, J = 0.7 Hz, 2H, PC-CH), 6.33 (dd, J = 7.8,
1.8 Hz, 1H, PC-H), 3.84–3.77 (m, 1H, PC-CH2-CH2), 3.16–3.08 (m, 2H, PC-CH2-CH2), 3.06–2.91 (m, 10H,
PC-CH2-CH2), 2.89–2.69 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 168.6
(C=O-hydrazide), 156.2 (C=O-amide), 140.6, 140.2 (PC-C-6’,6”), 139.9 (2C-PC-C-11’,11”), 139.5, 139.4
(PC-C-14’,14”), 139.0, 138.5 (PC-C-3’,3”), 136.2, 135.5, 135.3, 133.6 (PC-CH), 133.5 (PC-2CH), 133.1
(PC-CH), 132.9 (PC-2CH), 132.4, 132.3, 132.1 (PC-CH), 128.8, 127.2 (PC-C-4’,4”), 125.9 (PC-2CH), 35.3,
35.2, 35.1, 35.0, 34.9, 33.5, 33.4, 33.2 (PC-CH2). IR (ATR, cm-1) ṽ = 3342–3275 (br, NH), 3197–3012
(w, NH), 2962–2893 (w, NH), 2856 (w, Ar-CH), 1643, 1572 (s, CO). MS (FAB) m/z (%) = 516.3 [M + H]+

(30). HRMS (EI, [M + H]+, C34H34O2N3) calc.: 516.2651, found: 516.2652.

3.4. High-Performance Liquid Chromatography (HPLC)

Purification of N-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)carbamoyl)-5’-(1,4(1,4)-
dibenzenacyclohexaphane-12-yl)carboxamide (Sp-Sp-3) (60% ee) were conducted using preparative
HPLC setups: The JASCO HPLC System (LC-NetII/ADC) (JASCO, Inc., Pfungstadt, Germany)
equipped with two PU-2087 Plus pumps, a CO-2060 Plus thermostat, an MD-2010 Plus diode array
detector, and a CHF-122SC fraction collector of ADVANTEC (München, Germany). For the purification,
a Daicel Chiralpak (AZ-H 20 × 250 mm, particle size of 5 µm) (Daicel Chiralpak, Tokyo, Japan) was
used with the HPLC-grade acetonitrile as a mobile phase. Detection was conducted at 256 nm.
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Analysis of the enantiomeric excess was conducted using an AGILENT HPLC 1100 series system
with a G1322A degasser, a G1211A pump, a G1313A autosampler, a G1316A column oven, and a G1315B
diode array system (Agilent, Waldbronn, Germany). Chiralpak OD-H (4.6 × 250 mm, 5 µm particle
size) columns (Agilent, Waldbronn, Germany) were used with the HPLC-grade n-hexane/isopropanol
as a mobile phase. The y-axis of the chromatogram is a measure of the intensity of absorbance (in units
of mAU, or milli-Absorbance Units). The x-axis is in units of time (typically minutes), and is used to
determine the retention time (tR) for each peak.

3.5. Preparation of 5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thiones 12a–f

A stirring mixture of hydrazinecarbothioamide derivatives 11a–f (1 mmol) and 100 mL of sodium
hydroxide (1 mmol, as a 2N solution) was refluxed for 2–4 h. After cooling, the solution was acidified
with 100 mL of hydrochloric acid (6M) and the formed precipitate was filtered. The precipitate was
then recrystallized from ethanol.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-thione (12a).
Colorless crystals (DMSO), 300 mg (78%), m.p. 150–2 ◦C, Rf = 0.5 (Hexane: Ethyl acetate; 10:1).
1H-NMR (400 MHz, DMSO-d6, ppm) δ = 14.20 (s, 1H, NH), 7.31–7.27 (m, 3H, Ph-H), 7.07–7.03 (m, 2H,
Ph-H), 673–6.69 (m, 1H, PC-H), 6.63 (d, J = 2.0 Hz, 1H, PC-H), 6.58–6.49 (m, 3H, PC-H), 6.36–6.30
(m, 2H, PC-H), 3.10–2.89 (m, 6H, PC-CH2), 2.86–2.77 (m, 2H, PC-CH2). 13C-NMR (100 MHz, DMSO-d6,
ppm) δ = 167.8 (C=S), 151.7 (triazole-C5), 139.7 (PC-C-6’), 139.2 (PC-C-11’), 139.1 (PC-C-14’), 139.0
(PC-C-3’), 135.7 (Ph-C), 135.0, 134.1, 133.5 (PC-CH), 132.9 (PC-2CH), 132.0, 131.0 (PC-CH), 128.8
(PC-C-4’), 128.6, 128.4 (Ph-2CH), 125.3 (Ph-CH), 34.8 (PC-CH2-1’), 34.7 (PC-CH2-10’), 34.4 (PC-C H2-9’),
33.6 (PC-CH2-2’). IR (ATR, cm−1) ṽ = 3099 (m, Ar-CH), 2924 (s, aliph-CH), 1499 (s, C-S), 1333 (s, C-N).
MS (FAB) m/z (%) = 384.1 [M + H]+ (100). HRMS (FAB, [M + H]+, C24H22N3

32S1) calc.: 384.1534,
found: 384.1526.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-4-(pyridine-3-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thione
(12b). Colorless crystals (DMSO), 290 mg (76%), m.p. 170–2 ◦C, Rf = 0.4 (Hexane: Ethyl acetate;
10:1). 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 14.16 (s, 1H, NH), 8.55–8.28 (m, 2H, Pyr-H), 7.71–7.17
(m, 2H, Pyr-H), 6.96–6.94 (m, 1H, PC-H), 6.74–6.65 (m, 2H, PC-H), 6.59–6.33 (m, 4H, PC-H), 3.16–2.91
(m, 6H, PC-CH2), 2.88–2.78 (m, 2H, PC-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 167.9
(C=S), 151.4 (triazole-C5), 149.3, 148.7 (Pyr-CH), 140.0 (PC-C-6’), 139.5 (PC-C-11’), 139.2 (PC-C-14’),
139.1 (PC-C-3’), 136.5 (Pyr-C), 135.9, 135.1, 133.6, 133.1, 132.5, 132.0, 131.1 (PC-CH), 130.9 (PC-C-4’),
124.9, 123.6 (Pyr-CH), 34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.4 (PC-CH2-9’), 33.4 (PC-CH2-2’).
IR (ATR, cm−1) ṽ = 2924 (s, Ar-CH), 2850 (m, aliph-CH), 1483 (s, C-S), 1313 (s, C-N). MS (FAB)
m/z (%) = 385.2 [M + H]+ (60). HRMS (FAB, [M + H]+, C23H21N4

32S1) calc.: 385.1487, found: 385.1488.
4-Allyl-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thione (12c). Colorless

crystals (DMSO), 270 mg (78%), m.p. 142–4 ◦C, Rf = 0.6 (Hexane: Ethyl acetate; 10:1). 1H-NMR
(400 MHz, DMSO-d6, ppm) δ = 14.05 (s, 1H, NH), 6.75 (dd, J = 7.8, 1.9 Hz, 1H, PC-H), 6.69–6.58 (m, 5H,
PC-H), 6.38 (dd, J = 7.9, 1.8 Hz, 1H, PC-H), 5.55–5.48 (m, 1H, allyl-CH=), 4.90–4.52 (m, 2H, allyl-CH2=),
4.51–4.20 (m, 2H, allyl-CH2), 3.13–2.90 (m, 7H, PC-CH2), 2.82–2.77 (m, 1H, PC-CH2). 13C-NMR
(100 MHz, DMSO-d6, ppm) δ = 166.9 (C=S), 151.6 (triazole-C5), 140.4 (PC-C-6’), 139.4 (PC-C-11’),
139.0 (PC-C-14’), 138.9 (PC-C-3’), 135.9 (allyl-CH=), 135.5 (PC-C-4’), 133.5, 133.1, 133.0, 132.3, 131.5,
131.2, 125.3 (PC-CH), 117.5 (allyl-CH2=), 45.4 (allyl-CH2), 34.9 (PC-CH2-1’), 34.8 (PC-CH2-10’), 34.5
(PC-CH2-9’), 33.5 (PC-CH2-2’). IR (ATR, cm−1) ṽ = 3187 (m, Ar-CH), 2929 (s, aliph-CH), 1435 (s, C-S),
1268 (s, C-N). MS (FAB) m/z (%) = 348.2 [M + H]+ (65). HRMS (FAB, [M + H]+, C21H22N3

32S1) calc.:
347,1456, found: 347,1457.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-4-ethyl-2,4-dihydro-3H-1,2,4-triazol-3-thione (12d). Colorless
crystals (DMSO), 240 mg (72%), m.p. 138–40 ◦C, Rf = 0.65 (Hexane: Ethyl acetate; 10:1). 1H-NMR
(400 MHz, DMSO-d6, ppm) δ = 13.98 (s, 1H, NH), 6.74 (dd, J = 7.8, 1.8 Hz, 1H, PC-H), 6.71–6.57 (m, 5H,
PC-H), 6.38 (dd, J = 7.9, 1.8 Hz, 1H, PC-H), 3.86–3.58 (m, 2H, ethyl-CH2), 3.12–2.97 (m, 5H, PC-CH2),
2.96–2.91 (m, 2H, PC-CH2), 2.79–2.72 (m, 1H, PC-CH2), 0.81 (t, J = 7.1 Hz, 3H, ethyl-CH3). 13C-NMR
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(100 MHz, DMSO-d6, ppm) δ = 166.1 (C=S), 151.1 (triazole-C5), 140.4 (PC-C-6’), 139.2 (PC-C-11’),
138.7 (PC-C-14’), 138.6 (PC-C-3’), 135.8, 135.3, 133.2 (PC-CH), 132.8 (PC-2CH), 132.1 (PC-CH), 131.3
(PC-CH), 125.0 (PC-C-4’), 38.4 (ethyl-CH2), 34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.3 (PC-CH2-9’), 33.1
(PC-CH2-2’), 13.0 (ethyl-CH3). IR (ATR, cm−1) ṽ = 3122 (m, Ar-CH), 2932 (s, aliph-CH), 1500 (s, C-S),
1283 (s, C-N). MS (FAB) m/z (%) = 336.2 [M + H]+ (95). HRMS (FAB, [M + H]+, C20H22N3

32S1) calc.:
336.1534, found: 336.1534.

4-Cyclopropyl-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thione (12e).
Colorless crystals (DMSO), 250 mg (72%), m.p. 167–9 ◦C, Rf = 0.65 (Hexane: Ethyl acetate; 10:1).
1H-NMR (400 MHz, DMSO-d6, ppm) δ = 14.27 (s, 1H, NH), 6.75–6.70 (m, 1H, PC-H), 6.67 (d, J = 1.8 Hz,
1H, PC-H), 6.62–6.55 (m, 4H, PC-H), 6.36 (dd, J = 7.8, 1.7 Hz, 1H, PC-H), 3.13–2.98 (m, 8H,
PC-CH2), 2.91–2.86 (m, 1H, cyclopropyl-CH), 0.79–0.52 (m, 2H, cyclopropyl-CH2), 0.45–0.05 (m, 2H,
cyclopropyl-CH2). 13C-NMR (100 MHZ, DMSO-d6, ppm) δ = 167.6 (C=S), 152.6 (triazole-C5), 139.3
(PC-C-6’), 139.2 (PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 134.7, 134.6, 133.0, 132.9, 132.8, 132.0, 131.0
(PC-CH), 126.8 (PC-C-4’), 34.8 (PC-CH2-1’), 34.7 (PC-CH2-10’), 34.5 (PC-CH2-9’), 33.4 (PC-CH2-2’), 25.9
(cyclopropyl-CH), 8.3 (cyclopropyl-CH2), 8.2 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3091 (m, Ar-CH),
2922 (s, aliph-CH), 1429 (s, C-S), 1362 (s, C-N). MS (FAB) m/z (%) = 348.2 [M + H]+ (100). HRMS (FAB,
[M + H]+, C22H22N3

32S1) calc.: 348.1534, found: 348.1599.
4-Benzyl-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-2,4-dihydro-3H-1,2,4-triazol-3-thione (12f). Colorless

crystals (DMSO), 310 mg (78%), m.p. 185–7 ◦C, Rf = 0.4 (Hexane: Ethyl acetate; 10:1). 1H-NMR
(400 MHz, DMSO-d6, ppm) δ = 14.13 (s, 1H, NH), 7.12–7.07 (m, 3H, Ph-H), 6.78–6.76 (m, 2H, Ph-H),
6.74–6.65 (m, 2H, PC-H), 6.61–6.54 (m, 3H, PC-H), 6.30–6.36 (m, 2H, PC-H), 4.98 (s, 2H, Benzyl-CH2),
3.06–2.89 (m, 6H, PC-CH2), 2.73–2.66 (m, 2H, PC-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 167.4
(C=S), 151.8 (triazole-C5), 140.4 (PC-C-6’), 140.2 (PC-C-11’), 139.4 (PC-C-14’), 139.1 (PC-C-3’), 137.2
(Ph-C), 136.1 (PC-2CH), 135.7, 135.5 (PC-CH), 133.5 (PC-2CH), 133.1 (PC-CH), 133.0, 128.8 (Ph-CH),
128.6 (Ph-2CH), 128.4 (PC-C-4’), 125.3 (Ph-CH), 46.4 (Benzyl-CH2), 35.5 (PC-CH2-1’), 34.9 (PC-CH2-10’),
34.6 (PC-C H2-9’), 33.3 (PC-C H2-2’). IR (ATR, cm−1) ṽ = 3054 (w, Ar-CH), 2925 (w, aliph-CH), 1510
(w, C-S), 1183 (w, C-N). MS (FAB) m/z (%) = 398.2 [M + H]+ (100). HRMS (FAB, [M + H]+, C25H24N3

32S1)
calc.: 398.1691, found: 398.1692.

3.6. Preparation of N-Substituted 5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-1,3,4-Oxadiazol-2-Amines 13a–e

A stirring mixture of hydrazinecarbothioamide derivatives 11a–f (1 mmol) in 100 ml
tetrahydrofuran (THF) together with 0.5 mL of Et3N was refluxed for 12–24 h (the reaction was
monitored by thin-layer chromatography). After removal of the solvent on vacuum, the crude residue
was purified by column chromatography (cyclohexane/ethyl acetate 10:5) as an eluent to afford
compounds 3a–e.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-N-phenyl-1,3,4-oxadiazol-2-amine (13a). Yellow crystals
(Acetonitrile), 250 mg (68%), m.p. 192–4 ◦C, Rf = 0.5 (Hexane: Ethyl acetate; 5:1). 1H-NMR (400 MHz,
Acetone-d6, ppm) δ = 10.03 (s, 1H, NH), 7.80–7.77 (m, 1H, Ph-H), 7.48–7.38 (m, 2H, Ph-H), 7.10–7.03
(m, 2H, Ph-H), 6.99–6.96 (m, 1H, PC-H), 6.92–6.73 (m, 2H, PC-H), 6.70–6.45 (m, 4H, PC-H), 3.23–3.13
(m, 3H, PC-CH2), 3.12–3.01 (m, 4H, PC-CH2), 3.00–2.94 (m, 1H, PC-CH2). 13C-NMR (100 MHz,
Acetone-d6, ppm) δ = 162.7 (oxadiazole-C2), 160.0 (oxadiazole-C5), 141.3 (PC-C-6’), 141.1 (PC-C-11’),
140.5 (PC-C-14’), 140.2 (PC-C-3’), 139.6 (Ph-C), 137.1, 135.4, 134.0, 133.9, 133.6, 133.0, 132.9 (PC-CH),
131.3, 130.3, 129.9 (Ph-CH), 125.8 (PC-C-4’), 122.8, 121.6, (Ph-CH), 35.9 (PC-CH2-1’), 35.7 (PC-CH2-10’),
35.5 (PC-CH2-9’), 34.7 (PC-CH2-2’). IR (ATR, cm−1) ṽ = 3378 (m, NH), 2927 (m, Ar-CH), 2850
(s, aliph-CH), 1587 (C=N), 1482 (Ar-C=C), 1044 (C-O-C). MS (FAB) m/z (%) = 368.3 [M + H]+ (75).
HRMS (FAB, [M + H]+, C24H22O1N3) calc.: 368.1763, found: 368.1761.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-N-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine (13b). Yellow
crystals (Acetonitrile), 240 mg (66%), m.p. 212–4 ◦C, Rf = 0.3 (Hexane: Ethyl acetate; 5:1). 1H-NMR
(400 MHz, CDCl3-d, ppm) δ = 9.06 (br, 1H, NH), 8.68 (d, J = 6.1 Hz, 2H, Pyr-H), 7.75–7.72 (m, 1H,
Pyr-H), 7.28–7.26 (m, 1H, Pyr-H), 6.99–6.93 (m, 2H, PC-H), 6.90–6.73 (m, 5H, PC-H), 3.21–3.12 (m, 4H,
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PC-CH2), 3.10–3.01 (m, 3H, PC-CH2), 2.99–2.93 (m, 1H, PC-CH2). 13C-NMR (100 MHz, CDCl3-d, ppm)
δ = 167.1 (oxadiazole-C2), 159.9 (oxadiazole-C5), 140.4 (pyr-2CH), 139.9 (PC-C-6’), 139.8 (PC-C-11’),
139.3 (PC-C-14’), 138.7 (PC-C-3’), 137.2 (Pyr-C), 136.3, 135.1, 133.1 (PC-CH), 132.5, 132.2, 130.9 (PC-CH),
130.6 (Pyr-CH), 130.0 (PC-CH), 125.0 (PC-C-4’), 124.2 (Pyr-CH), 35.5 (PC-CH2-1’), 35.3 (PC-CH2-10’), 35.1
(PC-CH2-9’), 34.3 (PC-CH2-2’). IR (ATR, cm−1) ṽ = 3017 (m, NH), 2922 (s, Ar-CH), 2850 (s, aliph-CH),
1581 (s, C=N), 1548 (s, Ar-C=C), 1043 (s, C-O-C). MS (FAB) m/z (%) = 369.2 [M + H]+ (100). HRMS
(FAB, [M + H]+, C23H21O1N4) calc.: 369.1715, found: 369.1714.

N-Allyl-5-(1,4(1,4)-dibenzenacyclohexaphane-12-yl)-1,3,4-oxadiazol-2-amine (13c). Yellow crystals
(Acetonitrile), 220 mg (66%), m.p. 206–8 ◦C, Rf = 0.7 (Hexane: Ethyl acetate; 5:1). 1H-NMR (400 MHz,
Acetone-d6, ppm) δ = 6.91 (s, 1H, NH), 6.70–6.55 (m, 5H, PC-H), 6.44–6.37 (m, 2H, PC-H), 6.10–6.02
(m, 1H, allyl-CH=), 5.38–5.17 (m, 2H, allyl-CH2=), 4.07–4.05 (m, 2H, allyl-CH2), 3.18–3.10 (m, 3H,
PC-CH2), 3.08–2.96 (m, 4H, PC-CH2), 2.95–2.89 (m, 1H, PC-CH2). 13C-NMR (100 MHz, Acetone-d6, ppm)
δ = 164.3 (oxadiazole-C2), 160.0 (oxadiazole-C5), 141.3 (PC-C-6’), 140.6 (PC-C-11’), 140.3 (PC-C-14’),
139.8 (PC-C-3’), 137.1, 135.7, 135.1, 134.2 (PC-CH), 134.1 (allyl-CH=), 133.1, 132.9, 131.3 (PC-CH), 126.5
(PC-C-4’), 116.5 (allyl-CH2=), 46.4 (allyl-CH2), 36.1 (PC-CH2-1’), 35.8 (PC-CH2-10’), 35.6 (PC-CH2-9’),
34.8 (PC-CH2-2’). IR (ATR, cm−1) ṽ = 3165 (w, NH), 2929 (s, Ar-CH), 2861 (m, aliph-CH), 1557 (s, C=N),
1442 (s, Ar-C=C), 1035 (s, C-O-C). MS (FAB) m/z (%) = 332.2 [M + H]+ (100). HRMS (FAB, [M + H]+,
C21H22O1N3) calc.: 332.1763, found: 332.1764.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-N-ethyl-1,3,4-oxadiazol-2-amine (13d). Yellow crystals
(Acetonitrile), 190 mg (60%), m.p. 211–4 ◦C, Rf = 0.7 (Hexane: Ethyl acetate; 5:1). 1H-NMR (400 MHz,
DMSO-d6, ppm) δ = 6.83 (s, 1H, NH), 6.69–6.63 (m, 2H, PC-H), 6.59–6.54 (m, 3H, PC-H), 6.41 (d, J = 8.1,
1.4 Hz, 1H, PC-H), 6.31 (d, J = 7.9 Hz, 1H, PC-H), 4.03–3.82 (m, 2H, ethyl-CH2), 3.14–2.89 (m, 6H, PC-CH2),
2.94–2.89 (m, 2H, PC-CH2), 1.23 (t, J = 7.2 Hz, 3H, ethyl-CH3). 13C-NMR (100 MHz, DMSO-d6, ppm)
δ = 163.1 (oxadiazole-C2), 158.1 (oxadiazole-C5), 140.1 (PC-C-6’), 139.2 (PC-C-11’), 139.1 (PC-C-14’),
138.3 (PC-C-3’), 136.1, 134.1, 133.2, 133.0, 131.9, 131.6, 130.1 (PC-CH), 125.0 (PC-C-4’), 37.5 (ethyl-CH2),
34.8 (PC-CH2-1’), 34.7 (PC-CH2-10’), 34.5 (PC-CH2-9’), 33.8 (PC-CH2-2’), 14.6 (ethyl-CH3). IR (ATR,
cm−1) ṽ = 3196 (w, NH), 2928 (s, Ar-CH), 2853 (m, aliph-CH), 1553 (s, C=N), 1435 (s, Ar-C=C), 1034
(s, C-O-C). MS (FAB) m/z (%) = 320.2 [M + H]+ (95). HRMS (FAB, [M + H]+, C20H22O1N3) calc.:
320.1763, found: 320.1762.

5-(1,4(1,4)-Dibenzenacyclohexaphane-12-yl)-N-cyclopropyl-1,3,4-oxadiazol-2-amine (13e). Violet crystals
(Acetonitrile), 210 mg (63%), m.p. 222–4 ◦C, Rf = 0.3 (Hexane: Ethyl acetate; 5:1). 1H-NMR
(400 MHz, Methanol-d4, ppm) δ = 6.91 (s, 1H, NH), 6.67–6.59 (m, 2H, PC-H), 6.58–6.51 (m, 3H,
PC-H), 6.45–6.35 (m, 2H, PC-H), 3.18–3.11 (m, 3H PC-CH2), 3.09–3.01 (m, 3H, PC-CH2), 2.98–2.91
(m, 2H, PC-CH2-CH2), 2.75–2.69 (m, 1H, cyclopropyl-CH), 0.84–0.79 (m, 2H, cyclopropyl-CH2),
0.67–0.63 (m, 2H, cyclopropyl-CH2). 13C-NMR (100 MHz, Methanol-d4, ppm) δ = 165.6 (oxadiazole-C2),
160.9 (oxadiazole-C5), 141.9 (PC-C-6’), 140.09 (PC-C-11’), 140.8 (PC-C-14’), 140.5 (PC-C-3’), 137.5, 136.0,
134.4, 134.3, 133.3, 133.2, 131.6 (PC-CH), 126.0 (PC-C-4’), 36.3 (PC-CH2-1’), 36.1 (PC-CH2-10’), 36.0
(PC-CH2-9’), 35.4 (PC-CH2-2’), 25.2 (cyclopropyl-CH), 7.4 (cyclopropyl-2CH2). IR (ATR, cm−1) ṽ = 3197
(w, NH), 2927 (s, Ar-CH), 2853 (m, aliph-CH), 1555 (s, C=N), 1435 (s, Ar-C=C), 1074 (s, C-O-C). MS (FAB)
m/z (%) = 332.2 [M + H]+ (100). HRMS (FAB, [M + H]+, C21H22O1N3) calc.: 332.1763, found: 332.1762.

3.7. Crystal Structure Determinations of 1, 12a, 12d, 13a, and 13c

The single-crystal X-ray diffraction studies were carried out on a Bruker D8 Venture diffractometer
with the PhotonII detector at 123(2) K using a Cu-Kα radiation (λ = 1.54178 Å). Dual space methods
(SHELXT) [69] were used for the structure solution and refinement was carried out using SHELXL-2014
(full-matrix least-squares on F2) [70]. Hydrogen atoms were localized by the difference electron density
determination and refined using a riding model (H(N) free, except 13a). Semi-empirical absorption
corrections were applied. Due to the bad quality of the data of 13a the data were not deposited with
The Cambridge Crystallographic Data Centre.
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1: Colorless crystals, C17H18N2O, Mr = 266.33, crystal size 0.16× 0.06× 0.02 mm, monoclinic, space
group C2/c (No. 15), a = 11.8196(4) Å, b = 7.9087(3) Å, c = 28.2370(10) Å, β= 92.708(2)◦, V = 2636.58(16) Å3,
Z = 8, ρ = 1.342 Mg/m-3, µ(Cu-Kα) = 0.67 mm-1, F(000) = 1136, 2θmax = 144.6◦, 10645 measured
reflections (2589 independent reflection in the HKLF 5 file, Rint = 0.000), 191 parameters, three restraints,
R1 = 0.071 (for 2452 I > 2σ(I)), wR2 = 0.174 (all data), S = 1.16, largest diff. peak/hole = 0.33/−0.37 e Å-3.
Refined as a two-component twin (BASF 0.139(4)). The option TwinRotMat of the program package
PLATON [71] was used to create a HKLF 5 file, which was used for the refinement. Therefore, only
unique reflections were used for the refinement (Rint = 0.00) (see cif-file for details).

12a: Colorless crystals, C24H21N3S, Mr = 383.50, crystal size 0.24 × 0.04 × 0.02 mm, orthorhombic,
space group Pccn (No. 56), a = 19.8459(4) Å, b = 25.4981(5) Å, c = 7.5772(2) Å, V = 3834.31(15)) Å3, Z = 8,
ρ = 1.329 Mg/m-3, µ(Cu-Kα) = 1.60 mm-1, F(000) = 1616, 2θmax = 144.2◦, 28166 reflections, of which
3777 were independent (Rint = 0.039), 256 parameters, one restraint, R1 = 0.040 (for 3376 I > 2σ(I)),
wR2 = 0.106 (all data), S = 1.04, largest diff. peak/hole = 0.46/−0.36 e Å−3.

12d: Colorless crystals, C21H21N3S·C2H6OS, Mr = 425.59, crystal size 0.24 × 0.06 × 0.02 mm,
monoclinic, space group P21/c (No. 14), a = 24.8195(8) Å, b = 7.6344(2) Å, c = 11.6051 (4) Å, β= 101.468(1)◦,
V = 2155.06(12) Å3, Z = 4, ρ = 1.312 Mg/m-3, µ(Cu-Kα) = 2.38 mm−1, F(000) = 904, 2θmax = 144.6◦,
28028 reflections, of which 4256 were independent (Rint = 0.030), 267 parameters, one restraint,
R1 = 0.050 (for 4009 I > 2σ(I)), wR2 = 0.134(all data), S = 1.07, largest diff. peak/hole = 0.89/−0.63 e Å-3.

13a: Yellow crystals, C24H21N3O, Mr = 367.44, crystal size 0.20 × 0.12 × 0.03 mm, monoclinic,
space group P21/c (No. 14), a = 13.0346(7) Å, b = 14.2304(8) Å, c = 10.0713(6) Å, β = 94.353(3)◦,
V = 1862.71(18) Å3, Z = 4, ρ = 1.310 Mg/m-3, µ(Cu-Kα) = 0.64 mm−1, F(000) = 776, 2θmax = 144.4◦,
16984 reflections, of which 3674 were independent (Rint = 0.032).

13c: Violet crystals, C20H21N3O, Mr = 319.40, crystal size 0.16 × 0.08 × 0.02 mm, monoclinic, space
group P21/c (No. 14), a = 17.2016(7) Å, b = 8.9605(4) Å, c = 10.6470(4) Å,β= 104.112(2)◦, V = 1591.55 (11)Å3,
Z = 4, ρ= 1.333 Mg/m-3, µ(Cu-Kα) = 0.66 mm-1, F(000) = 680, 2θmax = 145.4◦, 26077 measured reflections
(3119 independent reflection in the HKLF 5 file, Rint = 0.000), 221 parameters, one restraint R1 = 0.066
(for 2906 I > 2σ(I)), wR2 = 0.167 (all data), S = 1.17, largest diff. peak/hole = 0.29/−0.32 e Å−3. Refined as
a two-component twin (BASF 0.194(5)). The option TwinRotMat of the program package PLATON [71]
was used to create a HKLF 5 file, which was used for the refinement. Therefore, only unique reflections
were used for the refinement (Rint = 0.00) (see cif-file for details).

CCDC 1971268 (1), 1998187 (12a), 1998188 (12d), and 1998189 (13c) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Due to the bad quality of the
data of 13a, the data were not deposited with The Cambridge Crystallographic Data Centre.

4. Conclusions

In this paper, enantiomerically pure Sp-Sp-N-([2.2]paracyclophanylcarbamoyl)-4-([2.2]
paracyclophanylamide was synthesized from of 4-formyl-[2.2]paracyclophane (60% ee) and separated
by preparative HPLC with chiral columns. We also synthesized two different classes of
paracyclophanyl-heterocycles; named as 4’-[2.2]paracyclophanyl)-2,4-dihydro-3H-1,2,4-triazol-3-thiones
and 2-amino-5-(4-[2.2]paracyclophanyl)-1,3,4-oxadiazoles. We would extend that work to include
various classes of heterocyclic-paracyclophane derivatives, aiming to investigate the prospective
biological and/or optical activity of these compounds.
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