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Abstract: A new series of methyl 2-(2-(4′-[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxot
hiazolidin-5-ylidene)acetates 3a–f were synthesized from the reaction of paracyclophanyl-acylthiosemi
carbazides 2a–f with dimethyl acetylenedicarboxylate. Based upon nuclear magnetic resonance
(NMR), infrared (IR), and mass spectra (HRMS), the structure of the obtained products was elucidated.
X-ray structure analysis was also used as unambiguous tool to elucidate the structure of the products.
The target compounds 3a–f were screened against 60 cancer cell lines. They displayed anticancer
activity against a leukemia subpanel, namely, RPMI-8226 and SR cell lines. The activity of compound
3a was found as the most cytotoxic potency against 60 cancer cell lines. Consequently, it was selected
for further five doses analysis according to National Cancer Institute (NCI) protocol. The cytotoxic
effect showed selectivity ratios ranging between 0.63 and 1.28 and between 0.58 and 5.89 at the
GI50 and total growth inhibition (TGI) levels, respectively. Accordingly, compound 3a underwent
further mechanistic study against the most sensitive leukemia RPMI-8226 and SR cell lines. It showed
antiproliferation with IC50 = 1.61 ± 0.04 and 1.11 ± 0.03 µM against RPMI-8226 and SR cell lines,
respectively. It also revealed a remarkable tubulin inhibitory activity, compared to colchicine with
IC50 = 4.97 µM/mL. Caspase-3, BAX, and Bcl-2 assays for 3a using annexin V-FITC staining revealed
significant pro-apoptotic activity. Furthermore, multidrug-resistant leukemia SR cells were used
to show better resistance indices (1.285 ng/mL, 1.15-fold) than the reference. Docking studies with
β-tubulin indicate that most of the tested compounds illustrated good binding at the colchicine
binding site of the enzyme, especially for compound 3a, which made several interactions better than
that of the reference colchicine.
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Highlights

- Synthesis of methyl 2-(2-(4′-[2.2]paracyclophanyl)-hydrazine-ylidene)-4-oxothiazolidin-5-ylidene)
acetates was here reported.

- Cytotoxic activity of the synthesized compounds toward the NCI-60 panel of cancer cell lines was
determined, and the cellular mechanism of the most potent inhibitors was further investigated in
leukemia cell lines.

- Compound 3a was found as the most cytotoxic one, and it was selected for further five-dose
analysis according to NCI protocol.

- Compound 3a, in comparison to other derivatives, exhibited high specificity against leukemia
RPMI-8226 and SR cell lines, and it also showed a remarkable tubulin inhibitory activity in relation
to colchicine with IC50 = 4.97 µM/mL.

- Docking studies with β-tubulin revealed that most of the tested compounds showed good binding
at the colchicine binding site of the enzyme, especially for compound 3a, which made several
interactions better than that of the reference colchicine.

1. Introduction

Cyclophane chemistry is rapidly growing in the field of stereoselective synthesis with its
incorporation into heterocyclic and/or polymer chemistry [1–8]. A great deal of attention is focused
on developing new synthetic tools for synthesizing functionalized [2.2]paracyclophanes. Substituted
[2.2]paracyclophanes can also serve as chiral templates and/or as auxiliaries [9]. The synthesis and
application of heterocycles based on [2.2]paracyclophane [10,11] can be organized into five structural
classes (Figure 1): heterocycle derived by paracyclophanyl group (type I), heterocycle derived by
bridge (type II), heterocycle fused to ethano bridge (type III), fused heterocycle to the benzene moiety
(type IV), and heterocycle between the two benzene rings of paracyclophane (type V).
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Figure 1. Five types of heterocycle-substituted [2.2]paracyclophanes.

A [2.2]paracyclophanyl acetic acid enantiomer was tested as anti-inflammatory agent [12].
Recent studies reported that 1,3-thiazoles derivatives showed in vitro α-glucosidase inhibitory
activity [13,14].

Recently, we have an interest in the preparation of heterocycles of similar structural features [15–23].
In addition, we prepared metal complexes of thiosemicarbazones with Cu(I) and Cu(II) and the
tridentate and bidentate structures of the paracyclophanyl–thiosemicarbazone–metal complexes were
elucidated [24].

The thiazole scaffold possesses potent cytotoxic activity in cancer cell lines. For example,
thiazolidine-4-carboxylic acid amides (ATCAA) I showed activity against prostate cancer cells with an
average IC50 in the range from 0.7 to 1.0 µM, while the average IC50 against melanoma cells ranged
from 1.8 to 2.6 µM (Figure 2) [25].
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Figure 2. Structures of biologically active thiazole and paracyclophane derivatives.

Moreover, gold(I) complexes of phosphino [2.2]paracyclophane ligands III exhibited their cytotoxic
activity in the HeLa S3 cell line (LD50 = 22.15 µm) in comparison to cisplatin (LD50 = 7.65 µm).
Their cytotoxicity and their mechanisms of action are different and involve apoptosis, necrosis,
and DNA damage (Figure 2) [26]. Studies reported that methoxylbenzoylaryl-thiazole (SMART) II
compounds showed nanomolar activity in inhibiting melanoma and prostate cancer cell growth [27–29].
Due to the interest in developing new anti-cancer agents, we designed a strategy of gathering both
thiazole and paracyclophane skeletons for designing new anti-tumor agents (Figure 3).
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2. Results and Discussion

2.1. Chemistry Section

Starting with acyl hydrazide 1 [30], the acylthiosemicarbazides 2a–f could be prepared (Scheme 1).
Compounds 2a–f were used as the target compounds for the formation of thiazolidinones, 3a,b,d–f,
and 3c (Scheme 1).



Molecules 2020, 25, 3089 4 of 30
Molecules 2020, 25, x FOR PEER REVIEW 4 of 28 

 

Scheme 1. Strategy of the structure features planned to obtain the following compounds from 

acylhydrazide 1: acylthiosemicarbzides 2a–f, thiazolidin-3-ones 3a,b,d–f, and the regioisomer 3c 

derived from [2.2]paracyclophane. 

 

Scheme 2. The preparation of acylthiosemicarbazide 1 from [2.2]paracyclophane (5): (a) 

(COCl)2/AlCl3, −10 °C to 5 °C, 20 min; (b) PhCl, ∆, 40 h; (c) CH3CH2OH, ∆, 10 h; (d) NH2NH2 as a 

solvent, ∆, 5 h. 

Preparation of 2-(4’-[2.2]Paracyclophanyl-4H-hydrazinecarbothioamides 2a–f 

In the present work, 2-(4’-[2.2]paracyclophanyl-4H-N-substituted-hydrazinecarbothioamides 

2a–f were prepared by refluxing compound 1 with the isothiocyanates in EtOH as a solvent (Scheme 

3). The infrared (IR) spectroscopy of hydrazinecarbothioamides 2a–f showed that the carbonyl–amide 

and its N–H stretching bands were present at ṽ = 1656–1667 and 3360–3210 cm–1, respectively, in 

addition to a band at ṽ = 1390–1360 cm−1 due to the stretching vibration of the C=S groups. This fact 

was confirmed by the appearance of the carbon signal in the 13C-NMR at δ= 181.2–182.9 ppm. 

Spectroscopic details are shown from compound 2d, as an example. The 1H-NMR spectrum of 2d 

showed the two thiourea-NH protons at δ = 9.01 and 8.65 ppm. The paracyclophanyl protons 

resonated at δ = 6.96 as a doublet (J = 2.0 Hz) for 1H, a triplet at δ = 6.72 (J = 7.8, 1.9 Hz) for 2H, and at 

δ = 6.66–6.22 ppm as a multiplet for 4H. The allyl protons resonated as three multiplets at δ = 5.97–

5.87 (CH=), 5.09–5.05 (CH2=), and 4.32–4.24 (CH2N).  

 

Scheme 3. Synthesis of 2-(4’-[2.2]paracyclophanyl-4H-hydrazinecarbothioamides 2a–f. 

In the 13C-NMR spectrum, the C=S carbon appeared at δ = 182.7, whereas the C=O carbon 

appeared at δ = 167.7 (C=O). The allyl carbons resonated at δ = 134.8, 115.0, and 56.0 for the allyl-CH=, 

allyl-CH2=, and allyl-CH2, respectively. The four carbons of the paracyclophanyl CH2 appeared at δ = 

34.8 (1C), 34.7 (1C), and 34.5 (2C) ppm.  

Scheme 1. Strategy of the structure features planned to obtain the following compounds from
acylhydrazide 1: acylthiosemicarbzides 2a–f, thiazolidin-3-ones 3a,b,d–f, and the regioisomer 3c
derived from [2.2]paracyclophane.

Synthesis of compound 1 can be achieved from the reported route starting with the commercial
hydrocarbon 5 (Scheme 2). The procedure consisted firstly of the conversion of 5 into the keto
acid chloride 6 with oxalyl chloride/aluminum trichloride. Heating of 6 in chlorobenzene caused
decarbonylation to give 7, and, when the resulting acid chloride 7 was quenched with ethanol, the ester
8 [31] was obtained (Scheme 2). On refluxing the α-ketoester 8 with hydrazine hydrate in different
solvents, the reaction failed to give the target hydrazide 1 in good yields (Scheme 2). However, heating
8 in an excess of hydrazine hydrate afforded the corresponding compound carbohydrazide 1 in 80%
yield (Scheme 2).
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Scheme 2. The preparation of acylthiosemicarbazide 1 from [2.2]paracyclophane (5): (a) (COCl)2/AlCl3,
−10 ◦C to 5 ◦C, 20 min; (b) PhCl, ∆, 40 h; (c) CH3CH2OH, ∆, 10 h; (d) NH2NH2 as a solvent, ∆, 5 h.

Preparation of 2-(4′-[2.2]Paracyclophanyl-4H-hydrazinecarbothioamides 2a–f

In the present work, 2-(4′-[2.2]paracyclophanyl-4H-N-substituted-hydrazinecarbothioamides 2a–f
were prepared by refluxing compound 1 with the isothiocyanates in EtOH as a solvent (Scheme 3).
The infrared (IR) spectroscopy of hydrazinecarbothioamides 2a–f showed that the carbonyl–amide and
its N–H stretching bands were present at ṽ = 1656–1667 and 3360–3210 cm–1, respectively, in addition
to a band at ṽ = 1390–1360 cm−1 due to the stretching vibration of the C=S groups. This fact was
confirmed by the appearance of the carbon signal in the 13C-NMR at δ= 181.2–182.9 ppm. Spectroscopic
details are shown from compound 2d, as an example. The 1H-NMR spectrum of 2d showed the two
thiourea-NH protons at δ = 9.01 and 8.65 ppm. The paracyclophanyl protons resonated at δ = 6.96 as a
doublet (J = 2.0 Hz) for 1H, a triplet at δ = 6.72 (J = 7.8, 1.9 Hz) for 2H, and at δ = 6.66–6.22 ppm as
a multiplet for 4H. The allyl protons resonated as three multiplets at δ = 5.97–5.87 (CH=), 5.09–5.05
(CH2=), and 4.32–4.24 (CH2N).
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Scheme 3. Synthesis of 2-(4′-[2.2]paracyclophanyl-4H-hydrazinecarbothioamides 2a–f.

In the 13C-NMR spectrum, the C=S carbon appeared at δ = 182.7, whereas the C=O carbon
appeared at δ = 167.7 (C=O). The allyl carbons resonated at δ = 134.8, 115.0, and 56.0 for the allyl-CH=,
allyl-CH2=, and allyl-CH2, respectively. The four carbons of the paracyclophanyl CH2 appeared at
δ = 34.8 (1C), 34.7 (1C), and 34.5 (2C) ppm.

The X-ray structure analysis of compounds 2a,b,d strongly confirmed the proposed structures
as shown in Figures 4–6, respectively. One can note that the dihedral angle of CS–NH–NH–CO was
nearly 90◦, and that angle was also seen in an example reported in reference [32].
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2-(1,4(1,4)-dibenzenacyclohexaphane-12-carbonyl)-N-benzylhydrazine-1-carbothioamide.
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Scheme 4. Reaction of 2a–f with dimethyl acetylenedicarboxylate (9): synthesis of different regioisomers
thiazolidines 3a,b,d–f and 3c.

Mass spectroscopy and elemental analysis identified the molecular formula of 3b as
C30H27N3O4S. Moreover, the 1H-NMR spectrum revealed three singlets at δ = 10.88 (NH), 6.93
(vinyl-CH), and 5.44 (benzylic-CH2). The 13C-NMR spectrum of 3b showed three carbonyl
carbon signals at δ = 166.0 (ester-CO), 165.6 (cyclic-C==O), and 161.5 (hydrazide-CO).
The thiazolidine-4-one moiety showed carbon signals at δ =146.2 for C-2 and 140.2 for
C-5. In addition, the vinyl-CH, OCH3-ester, and benzyl-CH2 resonated at δ =116.6, 52.6,
and 51.3 ppm, respectively. The X-ray structure analysis of 3b identified the structure as methyl
(E)-2-((E)(2′-4-[2.2]paracyclohanyl)-hydrazinylidene)-3-benzyl-4-oxathiazolidin-5-ylidene)acetate
(Figure 7).
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Figure 7. Molecular structure of compound 3b identified according to IUPAC nomenclature as methyl
(E)-2-((E)-2-(2-(1,4(1,4)-dibenzen-cyclohexaphane-12-carbonyl)hydrazinylidene)-3-benzyl-4-oxothiazoli
din-5-ylidene)acetate.

The 1H-NMR spectrum showed two singlets at δ = 10.12 (NH) and 6.57 (vinyl-CH). The CO-ester,
cyclic-CO, hydrazide-CO, thiazolidine-C-,2 and thiazolide-C-4 appeared in the 13C-NMR spectrum of
3c at δ = 167.0, 166.6, 162.5, 151.3, and 141.1, respectively (see Section 3). Finally, the structure of 3c was
ambiguously identified by X-ray structure analysis (Figure 8).
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Figure 8. Molecular structure of compound 3c identified according to IUPAC nomenclature as methyl
(E)-2-((E)-3-(1,4(1,4)-dibenzenacyclohexaphane-12-carboxamido)-4-oxo-2-(pyridin-3-ylimino)thiazolidin
-5-ylidene)acetate.

The abnormal behavior of 2c toward 9 might be attributed to the expected resonance structure
of 2c that would decrease the basicity of the N3-thioamide compared with the N2-hydrazide and,
therefore, the N2-hydrazide would be more reactive toward nucleophilic addition (Scheme 5).
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2.2. Biological Investigation

2.2.1. Anti-Proliferative Investigation against 60 Cancer Cell Lines at the National Cancer Institute
(NCI), USA.

The methodology of the NCI anticancer screening was described in detail elsewhere
(http://www.dtp.nci.nih.gov). Briefly, the primary anticancer assay was performed using approximately
60 human tumor cell lines derived from nine neoplastic diseases, in accordance with the protocol of
the Drug Evaluation Branch, National Cancer Institute, Bethesda. Tested compounds were added to
the culture at a single concentration (10−5 M) and the cultures were incubated for 48 h. End-point
determinations were made with a protein binding dye, SRB. Results for each tested compound were
reported as the percentage growth of the treated cells when compared to the untreated control cells.
The percentage growth was evaluated spectrophotometrically versus controls not treated with test
agents. All experiments were repeated three times (Table 1).

Table 1. Growth inhibition percentage of compounds 3a–f (concentration 10−5 M) against different
cell lines.

Panel/Cell Line 3a 3b 3c 3d 3e 3f

Leukemia

CCRF-CEM 87.04 96.17 31.27 77.08 66.08 41.43
HL-60(TB) 83.60 105.46 48.64 8.16 11.64 26.38

K-562 72.95 81.13 20.72 48.13 45.78 30.52
MOLT-4 96.97 98.91 21.86 64.55 62.85 55.61

RPMI-8226 120.89 147.00 83.01 109.36 114.28 49.83
SR 115.60 114.70 74.18 98.21 113.40 39.13

Non-Small-Cell
Lung Cancer

A549/ATCC 30.92 22.95 2.04 5.20 3.00 11.39
EKVX 41.03 22.30 2.61 9.16 6.44 12.16

HOP-62 97.00 22.76 4.00 0 0 0
HOP-92 24.66 24.50 8.14 18.59 18.43 16.16

NCI-H226 26.22 35.20 7.48 12.45 7.31 9.41
NCI-H23 59.57 22.64 9.18 11.85 0.40 9.32

NCI-H322M 31.54 6.70 1.72 2.94 7.75 4.43
NCI-H460 39.35 6.29 0.75 0 0 1.98
NCI-H522 58.47 84.06 17.74 39.25 40.31 30.01

Colon Cancer

COLO 205 52.26 27.31 0 0 0 4.48
HCC-2998 96.36 20.49 0 0 0 0
HCT-116 95.95 50.48 6.35 46.02 50.54 24.59
HCT-15 99.66 72.16 11.75 33.11 31.60 29.43
HT29 113.13 87.62 7.71 53.99 54.76 23.99
KM12 91.51 34.90 7.32 18.40 15.01 1.32

SW-620 92.61 81.83 10.84 55.46 91.21 12.94

CNS Cancer

SF-268 27.49 14.95 3.08 0 2.18 2.56
SF-295 41.00 10.63 5.63 6.42 3.13 8.80
SF-539 122.50 56.74 11.63 0.33 9.82 0
SNB-19 60.06 43.08 16.64 15.31 14.43 11.26
SNB-75 54.29 48.78 0.25 21.92 21.18 24.73

U251 84.20 45.04 14.66 18.17 15.64 20.27

Melanoma

LOX IMVI 127.77 93.79 9.78 21.22 26.51 9.41
MALME-3M 21.23 11.57 0 7.56 8.06 11.28

M14 46.88 36.59 7.99 21.14 12.85 19.23
MDA-MB-435 10.39 8.44 0 0 0.72 8.06

SK-MEL-2 12.98 14.42 0 2.70 5.78 13.53
SK-MEL-28 17.54 0 0.86 0 0 10.28
SK-MEL-5 30.65 17.72 3.64 7.53 7.50 14.50
UACC-257 30.75 19.02 0.83 8.89 7.26 16.33
UACC-62 74.85 48.11 10.67 22.84 21.39 17.97

http://www.dtp.nci.nih.gov
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Table 1. Cont.

Panel/Cell Line 3a 3b 3c 3d 3e 3f

Ovarian Cancer

IGROV1 94.03 57.72 15.44 10.76 11.62 7.20
OVCAR-3 106.25 79.71 4.51 13.56 7.09 15.87
OVCAR-4 70.61 55.43 7.76 2.93 10.00 10.51
OVCAR-5 51.75 34.65 0.61 3.90 0 0
OVCAR-8 59.27 28.00 1.51 11.78 7.42 13.28

NCI/ADR-RES 68.61 29.61 4.70 10.50 13.46 7.72
SK-OV-3 0 0 0 0 0 0

Renal Cancer

786-0 100.28 50.45 8.52 8.77 9.45 14.62
A498 50.75 53.92 3.59 12.10 6.63 3.39

ACHN 30.67 34.18 11.02 12.21 10.45 17.78
CAKI-1 94.65 84.43 4.78 5.23 0 24.49
SN12C 77.51 38.76 8.87 13.14 4.97 17.07
TK-10 84.83 4.53 0 0 6.50 0
UO-31 41.51 54.96 21.86 24.62 21.03 21.73

Prostate Cancer
PC-3 135.88 82.23 18.19 51.62 43.28 18.95

DU-145 49.13 16.79 0 0 0 6.20

Breast Cancer

MCF7 76.79 67.26 26.75 48.47 56.29 36.38
MDA-MB-231/ATCC 67.47 43.16 10.64 2.27 3.95 3.50

HS 578T 22.06 12.58 0 6.41 1.03 5.01
BT-549 64.50 89.68 18.41 38.28 7.73 26.81
T-47D 138.25 106.25 31.13 25.00 5.77 23.00

MDA-MB-468 100.39 78.91 18.03 23.68 12.74 29.74

Compounds 3a–f revealed that compound 3a achieved complete cell death on the nine tested
cancer cell lines. It is noteworthy that compounds 3a, 3b, 3d, and 3e were the most potent tested
derivatives on the leukemia cell line. They showed growth inhibition percentages greater than 100%,
which means that they were cytotoxic and displayed complete cancer cell death that killed all cells,
including cancer cells. They may stop cancer cells from dividing and growing and may cause tumors
to shrink in size. The complete cell death was against leukemia RRMI-8226 with inhibitions of 120.89%,
147.00%, 109.36%, and 114.28%, respectively, and against SR with inhibitions of 115.60%, 114.70%,
98.21%, and 113.40%, respectively. Compound 3e showed remarkable activity on the other tested cell
lines. Although 3f showed moderate to weak activity on most of tested cancer cell lines, compound 3b
exhibited significant inhibition against non-small-cell lung cancer NCI-H522, colon cancer HT29 and
SW-620, melanoma LOX IMVI, ovarian cancer OVCAR-3, renal cancer CAKI-1, prostate cancer PC-3,
and breast cancer BT-549, T-47D, and MDA-MB-468 with inhibitions of 84.06%, 87.62%, 81.83%, 93.79%,
79.71%, 84.43%, 82.23%, 89.68%, 106.25%, and 78.91%, respectively. Furthermore, compounds 3c and
3d displayed mild to moderate activity on most of the cancer panel cell lines

Structure Activity Relationship (SAR)

It is notable that the new prepared paracyclophane/thiazole conjugates showed significant
anti-cancer activity with different growth inhibition percentages. This disparity among the different
derivatives may be attributed to the type of substitution on the thiazole ring, whether on nitrogen
(compounds 3a,b,d–f) or at position 2 (compound 3c). It is expected that increasing thiazole flexibility
through inserting a phenyl or benzyl group (compounds 3a and 3b, respectively) into the structure
would improve binding to the target protein and, hence, show higher antiproliferative activity on all
tested cell lines than those containing an aliphatic group, i.e., either compound 3d (allyl) or 3e (ethyl)
of the same series, which provides less flexibility. Interestingly, the other paracyclophane/thiazole
derivative 3c bearing a pyridinyl amine moiety at position 2 of the thiazole ring altered the activity,
showing lower cytotoxicity.
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2.2.2. In Vitro Five-Dose Full NCI 60 Cell Panel Assay

Compound 3a was selected by NCI for five-dose investigation against 60 human tumor cell
lines that were incubated at five different concentrations (0.01, 0.1, 1, 10, and 100 µM) (Figure 9).
The outcomes were used to form log concentration vs. percentage growth inhibition curves and three
response parameters (GI50, total growth inhibition (TGI), and LC50) were calculated for each cell line
(Table 2). The GI50 value (growth inhibitory activity) corresponds to the concentration of the compound
causing 50% decrease in net cell growth, the TGI value (cytostatic activity) is the concentration of the
compound resulting in total growth inhibition (TGI), and the LC50 value (cytotoxic activity) is the
concentration of the compound causing a net 50% loss of initial cells at the end of the incubation period
of 48 h.
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Figure 9. Dose–response curves of compound 3a (log10 of sample concentrations 0.01, 0.1, 1, 10,
and 100 µM) against all nine different cancer cell line panels (leukemia, non-small-cell lung, colon, CNS,
melanoma, ovarian, renal, prostate, and breast cancers).

The criterion for selectivity of a compound depends upon the ratio obtained by dividing the
full-panel MID (the average sensitivity of all cell lines toward the test agent) (µM) by the individual
subpanel MIDs (µM). Ratios between 3 and 6 refer to moderate selectivity, and ratios greater than 6
indicate high selectivity toward the corresponding cell line, while compounds not meeting either of
these criteria are rated non-selective.
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Table 2. Results of five in vitro doses (concentrations 0.01, 0.1, 1, 10, and 100 µM) tested with nine human cancer types and selectivity for compound 3a.

Panel Cell Line
GI50 TGI LC50

Concentration/Cell
Line

Subpanel
MIDb

Selectivity Ratio
(MIDa: MIDb)

Concentration/Cell
Line

Subpanel
MIDd

Selectivity Ratio
(MIDc: MIDd)

Leukemia

CCRF-CEM 2.71

2.72 0.88

-

81.14 3.85

>100
HL-60(TB) 2.70 >100 >100

K-562 3.15 >100 >100
MOLT-4 3.12 >100 >100

RPMI-8226 2.15 5.69 >100
SR 2.46 >100 >100

Non-Small-Cell
Lung Cancer

A549/ATCC 2.83

2.74 0.87

8.00

16.05 1.31

>100
EKVX 1.91 4.23 9.38

HOP-62 2.68 6.97 6.60
HOP-92 1.91 9.14 >100

NCI-H226 4.38 2.55 >100
NCI-H23 1.95 4.15 8.85

NCI-H322M 2.02 4.75 1.32
NCI-H460 2.08 4.29 8.82
NCI-H522 4.89 >100 >100

Colon Cancer

COLO 205 2.13

1.91 1.24

4.61

3.95 5.34

HCC-2998 1.78 3.45 6.68
HCT-116 1.79 3.66 7.51
HCT-15 1.87 4.05 8.76
HT29 1.93 4.07 8.56
KM12 2.03 4.15 8.51

SW-620 1.85 3.66 7.23

CNS Cancer

SF-268 3.09

2.71 0.88

1.12

19.48 1.08

>100
SF-295 2.07 4.19 8.50
SF-539 1.79 3.32 6.18
SNB-19 1.95 4.25 9.26
SNB-75 5.44 >100 >100

U251 1.89 4.00 8.47

Melanoma

LOX IMVI 1.69

3.77 0.63

3.

36.54 0.58

6.75
MALME-3M 3.27 2.14 >100

M14 3.27 1.54 >100
MDA-MB-435 5.44 100 >100

SK-MEL-2 2.65 7.76 >100
SK-MEL-28 2.97 9.87 >100
SK-MEL-5 7.56 >100 >100
UACC-257 5.14 >100 >100
UACC-62 1.96 4.21 9.02
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Table 2. Cont.

Panel Cell Line
GI50 TGI LC50

Concentration/Cell
Line

Subpanel
MIDb

Selectivity Ratio
(MIDa: MIDb)

Concentration/Cell
Line

Subpanel
MIDd

Selectivity Ratio
(MIDc: MIDd)

Ovarian Cancer

IGROV1 1.66

2.59 0.92

3.27

18.46 1.14

6.44
OVCAR-3 1.80 3.61 7.23
OVCAR-4 3.17 9.88 3.69
OVCAR-5 1.92 3.84 7.68
OVCAR-8 3.08 >100 >100

NCI/ADR-RES 2.92 1.06 >100
SK-OV-3 3.55 7.53 >100

Renal Cancer

786-0 2.00

1.86 1.28

4.38

16.64 1.27

9.58
A498 – 8.36 >100

ACHN 1.78 3.29 6.08
RXF393 3.74 3.86 >100
CAKI-1 1.52 3.00 9.78
SN12C 2.27 5.94 >100
TK-10 2.03 5.60 2.92
UO-31 1.53 3.08 6.20

Prostate Cancer
PC-3 1.71

3.41 0.69
3.63

3.58 5.89
7.70

DU-145 5.11 3.53 >100

Breast Cancer

MCF7 1.87

2.27 1.05

4.95

24.28 0.87

2.25
MDA-MB-231/ATCC 2.63 7.46 >100

HS 578T 3.49 >100 >100
BT-549 2.22 5.35 2.47
T-47D 1.54 3.65 8.68

MDA-MB-468 1.84 3.74 7.61

MIDa 2.38 MIDc 21.08

MIDa,c = average sensitivity of all cell lines in mM; MIDb,d = average sensitivity of all cell lines of a particular subpanel in mM.
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Compound 3a under investigation exhibited remarkable anticancer activity against most of the
tested cell lines representing nine different subpanels with GI50 ranging from 1.52–7.56 µM (Table 2).
Results indicate that 3a showed high activity against renal cancer RXF-393, melanoma LOX IMIV, colon
cancer HCC-2998, non-small-cell lung cancer EKVX, and leukemia RPMI-8226 with GI50 values of 1.52,
1.69, 1.78, 1.91, and 2.15 µM, respectively. An obvious sensitivity profile was seen toward the leukemia
subpanel (GI50 values ranging from 2.15 to 3.15 µM), colon cancer subpanel (GI50 values ranging from
1.78 to 2.13 µM), breast cancer subpanel (GI50 values ranging from 1.54 to 1.87 µM), and ovarian cancer
subpanel (GI50 values ranging from 1.66 to 3.55 µM). In this context, compound 3a was found to have
broad-spectrum antitumor activity against the nine tumor subpanels tested with selectivity ratios
ranging from 0.63–1.28 and 0.58–5.89 at the GI50 and TGI levels, respectively; however, it exhibited
noteworthy antiproliferative activity against all cancer cell lines with low selectivity ratios.

2.2.3. Evaluation of In Vitro Antiproliferative Activities against Leukemia RPMI-8226 and SR

Since the antiproliferative investigation results against 60 cell lines at the NCI revealed greater
activity toward leukemia cancer, especially leukemia RPMI-8226 and SR, we were encouraged to
perform further in vitro antiproliferative studies against those two cell lines. Compounds 3a–e were
evaluated for their antiproliferative activity by performing an MTT assay against a panel of two human
tumor cell lines, leukemia RPMI-8226 and SR, compared with colchicine as a reference. As shown
in Table 3, the antiproliferative activities of the tested compounds were generally more pronounced
against the two panels of leukemia cancer cells as compared with the reference. The calculated
results were subjected to statistical analysis using GraphPad Prism 7 with the one-way ANOVA
and non-parametric program. The difference in the results was considered significant when the
p-values were less than 0.05. All the tested compounds were significant, as well as the reference
(*** p < 0.05), in comparison to control. Compound 3a exhibited the highest antiproliferation compared
to reference and the other tested compounds, whereas it showed IC50 values 1.61 and 1.11 µM better
than colchicine (i.e., the reference compound) of 4.05 and 1.81 µM against leukemia RPMI-8226 and SR,
respectively. On the other hand, compound 3e showed a significant antiproliferative activity with an
IC50 value 3.17 µM better than the reference of 4.05 µM against leukemia RPMI-8226 only. This may
be attributed to both compounds 3a and 3b having electron-withdrawing substitution of phenyl and
benzyl, respectively, which positively affected their permeability to cancer cells. Compound 3b showed
comparable IC50 values of 4.62 and 2.02 µM to colchicine.

Table 3. MTT assay for the antiproliferative IC50 ± SD (µM) activity of compounds 3a–e and colchicine.

Compound
Cytotoxicity IC50 (µM) a

RPMI-8226 L.SR

3a 1.61 ± 0.0654 *** 1.11 ± 0.06849 ***
3b 4.62 ± 0.0459 *** 2.02 ± 0.06875 ***
3c 9.96 ± 0.3451 *** 4.84 ± 0.08425 ***
3d 17.81 ± 0.0544 *** 22.06 ± 0.06792 ***
3e 3.17 ± 0.0489 *** 5.04 ± 0.07908 ***

Colchicine 4.05 ± 0.0478 *** 1.81 ± 0.07009 ***
a IC50 = compound concentration required to inhibit tumor cell proliferation by 50%. Data are expressed as the
mean ± SD from the dose–response curves of at least three independent experiments. Results significantly different
from control at *** p < 0.05.

Additionally, compound 3c bearing a pyridinyl amine moiety at position 2 of the thiazole ring
showed weak anti-proliferation activity with IC50 values of 9.69 and 4.84 µM, which explains its
low cytotoxicity. It is interesting to mention that the proliferation inhibitory results were positively
correlated with the anticancer results obtained from NCI.
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2.2.4. Evaluation of In Vitro Tubulin Polymerization Inhibitory Activity

To investigate whether the antiproliferative activities of these target compounds 3a–e were related
to their interaction with tubulin, these compounds were tested for their ability to inhibit tubulin
polymerization at their IC50 concentrations using an ELISA assay for β-tubulin.

The in vitro kinetics of microtubule assembly was measured using an ELISA kit for TUBb
(Cloud-Clone. Corp.) on the leukemia SR cell line. The compounds tested were 3a–f and colchicine.
Briefly, growing cells from the SR cell line were trypsinized, counted, and seeded at the appropriate
densities into 96-well microtiter plates. Cells were then incubated in a humidified atmosphere at 37 ◦C
for 24 h.

The assay revealed that all the tested compounds 3a–e showed tubulin polymerization inhibitory
activity compared to colchicine as a reference (Table 4). Again, compound 3a showed the highest
ability to inhibit tubulin polymerization with an IC50 value of 4.97 µM compared to the reference with
an IC50 value 3.76 µM and the other tested compounds. On the other hand, compounds 3e and 3c
showed remarkable tubulin polymerization inhibition with IC50 values of 6.61 and 8.38 µM, while 3d
displayed weak inhibition with an IC50 value of 14.79 µM. Results are in agreement with the previous
mentioned anti-proliferative activity

Table 4. Inhibition of tubulin polymerization displaying IC50 ± standard error of the mean (SEM) (µM)
for compounds 3a–e and colchicine as a reference.

Compound Tubulin Polymerization Inhibition
IC50 (µM) a

3a 4.97 ± 0.11
3b 8.38 ± 0.18
3c 8.28 ± 0.18
3d 14.79 ± 0.32
3e 6.61 ± 0.14

Colchicine 3.76 ± 0.08
a Tubulin, colchicine, and the tested compound concentrations were 1, 5, and 5 µM, respectively.

2.2.5. Cell Cycle Analysis

Cell cycle analysis was performed using cytometers from Becton Dickinson Immunocytometry
Systems, Beckman/Coulter Inc., DACO/Cytomation, and PARTEC GmbH. Regulation of cell growth is
mainly controlled through cell-cycle control mechanisms. Proliferation inhibition can be triggered
by cell-cycle arrest in cancer cells. During the cell cycle, the G2/M checkpoint is a potential target for
cancer therapy.

This prevents DNA-damaged cells from entering mitosis and allows for the repair of DNA that
was damaged in late S or G2 phases prior to mitosis (Table 5). Induction of cell-cycle arrest is a common
mechanism proposed for the cytotoxic effects of anticancer drugs containing paracyclophane/thiazole
derivatives. The analysis indicated that leukemia SR cells treated with compound 3a showed significant
growth arrest at the G2/M phase compared to control cells, where the S-phase progression of SR cells
was substantially delayed (Figure 10). The annexin V/PI flow cytometry of SR cells was repeated three
times after treatment with the IC50 value (1.11 µM) of 3a, which showed an increase in percentage of
the necrotic cells in late apoptosis to 19% (upper right quadrant of the cytogram) (Figure 11). Hence,
compound 3a showed a considerable ability to dissipate cell membrane integrity, whereas the lower
right quadrant illustrating the early apoptotic cells which kept their membrane integrity indicated the
ability of 3a to initiate apoptosis.



Molecules 2020, 25, 3089 15 of 30

Table 5. DNA content % using propidium iodide flow cytometry.

Compound
DNA Content %

%G0-G1 %S %G2-M %Pre G1 Comment

3a/SR 31.47 23.79 44.74 ± 0.1747 *** 33.71 cell growth arrest (G2/M)

Colchicine/SR 26.58 25.27 48.15 ± 1.000 *** 36.24 cell growth arrest (G2/M)

cont.SR 57.23 28.66 14.11 ± 0.1050 1.92 —

Results significantly different from control at *** p < 0.05.
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Figure 10. Cell-cycle analysis of SR cells treated with annexin PI at IC50. Concentration representing
growth arrest at the pre-G1 (G0) and G2/M phases. (A) Untreated cells; (B) treated cells with colchicine;
(C) treated cells with 3a. The test was repeated three times, while 3a and the reference were incubated
for 24 h (2 × 105 cells/well) at 37 ◦C.
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Figure 11. Contour diagram of annexin V/PI flow cytometry against SR cancer cell line. (A) Untreated
cells; (B) treated cells with colchicine; (C) treated cells with 3a. The test was repeated three times.
Following incubation for 24 h, cells were analyzed by flow cytometry after double staining with
annexin V/PI.

2.2.6. Compound 3b Induced Mitochondrial Depolarization and ROS Production

Mitochondria play an essential role in the propagation of apoptosis [33]. It is reported that, at an
early stage, apoptotic stimuli are capable of modifying the mitochondrial transmembrane potential
(∆ψmt). ∆ψmt was recorded by the fluorescence of the dye JC-1.20. SR cells treated with 3a displayed
a non-significant shift in fluorescence compared with control cells, explaining the weak depolarization
of the mitochondrial membrane potential. In contrast, colchicine showed significant results (Figure 12).
The disruption of ∆ψmt is associated with the appearance of annexin V positivity in the treated cells
when they are in an early apoptotic stage. It is documented that the dissipation of ∆ψmt is characteristic
of apoptosis, and this was indicated with both microtubule-stabilizing and -destabilizing agents in
different cell types [34]. Induction of cell-cycle arrest is a common mechanism proposed for the cytotoxic
effects of anticancer drugs containing paracyclophane/thiazole derivatives. Mitochondrial membrane
depolarization is associated with mitochondrial production of ROS [35]. Therefore, we investigated
whether ROS production increased after treatment with the test compounds.

The presented results in Figure 13 show that 3a induced the production of significant amounts of
ROS (109.84%) in comparison with control cells and the colchicine reference. This result is compatible
with the dissipation of ∆ψmt described above.
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Figure 12. Contour diagram of annexin V/PI flow cytometry illustrating induction of the loss of
mitochondrial membrane potential (∆ψmt) against SR cancer cell line. (A) Untreated cells; (B) treated
cells with colchicine; (C) treated cells with 3a. (B and C were performed at concentrations of 20, 10, 5,
2.5, 1.2, 0.63, and 0.31 ng/mL). The tests were repeated three times and the substrate was incubated at
37 ◦C in the dark for 15–30 min.
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control. Mean ± standard deviation plotted for three replicates per condition. Results are significantly
different from control at *** p < 0.05. The substrate was incubated for 30 min at 37 ◦C protected
from light.

2.2.7. Effect of Compound 3a on Multidrug-Resistant (MDR) Leukemia SR Cells

A previous study reported that multidrug resistance was observed for numerous chemotherapeutic
agents and could be identified through overexpression of P-glycoprotein (Pgp) [36,37].
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Compound 3a and tubulin-targeting agent colchicine were tested on the MDR-SR Leukemia
cell line. Compound 3a showed Pgp-mediated MDR expression at 1.285 ng/mL (1.15-fold change),
which means that it had much better resistance indices comparable to control at 1.121 ng/mL (1-fold)
than colchicine at 1.726 ng/mL (1.54-fold change). Results of compound 3a (Table 6) showed the ability
of overcoming the assumed glycoprotein overexpression of the cell line; thus, 3a could be considered
as an important substrate candidate against MDR cells.

Table 6. In vitro growth inhibitory effects of 3a in comparison to colchicine on multidrug-resistant
leukemia cell line (MDR cells). Pgp—P-glycoprotein.

Compound Code
IC50 ± SEM (ng/mL) (n = 3)

Pgp-Mediated MDR Fold Change

3a/SR 1.285 ± 0.06 1.15
Colchicine/SR 1.726 ± 0.05 1.54

Control/SR 1.121 ± 0.05 1

2.2.8. Effect of 3a on Caspase-3 Activation

Since caspase-3 is important for spreading the apoptotic signal after exposure to antimitotic
compounds [38], the effect of compound 3a on the caspase-3 activated enzyme was evaluated using
ELISA and replicated three times. The reference compound and 3a were incubated for 30 min at room
temperature in the dark on the leukemia SR cell line. Results revealed that 3a is a potential caspase-3
activator with a slight increase in the level of active caspase-3 at a concentration of 471.2 ng/mL
(8.84-fold) compared to colchicine at a concentration of 428.9 ng/mL (8.05-fold) as shown in Table 7.

Table 7. Caspase-3 conc (pg/mL) ± SD and fold change levels for compounds 3a and colchicine on
leukemia SR cell line.

Compound
Caspase 3

Conc pg/mL Fold Change

3a/SR 471.2 ± 6.11 8.84
Colchicine/SR 428.9 ± 5.47 8.05

Control/SR 53.28 ± 1.09 1

2.2.9. Effect of 3a on BAX and Bcl-2 Proteins

The proteins of the Bcl2 family [39] play a major role in controlling apoptosis through the regulation
of mitochondrial processes and the release of mitochondrial proapoptotic molecules that are important
for the cell death pathway [40]. Compound 3a caused nearly 7.98-fold upregulation (Table 8), while it
showed markedly higher levels of the antiapoptotic Bcl-2 proteins up to 0.59-fold compared to the
control untreated cells (Figure 14).

Table 8. Bax and Bcl-2 conc ± SD and fold change levels for compounds 3a and colchicine on leukemia
SR cell line.

Compound
BAX Bcl2

Concentration
(pg/mL) Fold Change Concentration

(ng/mL) Fold Change

3a/SR 359 ± 3.830 *** 7.98 5.045 ± 0.1918 *** 0.59
Colchicine/SR 341.8 ± 4.310 *** 7.60 4.101 ± 0.1441 *** 0.48

Control/SR 44.96 ± 1.270 1 8.569 ± 0.1565 1

Results significantly different from control at *** p < 0.05.
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Figure 14. Concentrations of (A) Bcl-2 (concentrations 32, 16, 8, 4, 2, 1, 0.5 ng/mL); (B) BAX
(concentrations 2000, 1000, 500, 250, 125, 62.5, 31.25 pg/mL), and (C) caspase-3 expression (2500,
1250, 625, 313, 156, 78, 39 pg/mL) for 3a and colchicine on leukemia SR cell line relative to control.
Results significantly different from control at *** p < 0.05.

2.3. Docking Studies

The molecular modeling of the possible binding modes for the newly synthesized
thiazole/paracyclophane hybrids 3a–e and colchicine as a reference was done to predict the binding
interactions between them and β-tubulin at the colchicine binding site, which was obtained from
the protein data bank (PDB: 3HKC). Docking studies were carried out using Molecular Operating
Environment (MOE®) version 2014.09 (Chemical Computing Group Inc., Montreal, QC, Canada)
using colchicine as a reference for validation of the method. The theoretical predictions from the
molecular docking study agreed for some highly active derivatives such as 3a, 3b, 3d, and 3e with the
experimentally observed tubulin polymerization inhibition. All derivatives were successfully docked
into the colchicine binding site of β-tubulin. The binding free energies from the major docked poses
are listed in Table 9, and the most favorable poses of the tested compounds are shown in Figures 15–20.
Most of the tested compounds had high binding affinity to the enzyme as the binding free energy (∆G)
values of them ranged from −0.5 to −3.4 kcal/mol, which was comparable to the reference colchicine
(∆G = −0.6 to −2.3 kcal/mol). The docking result of the reference compound colchicine was completely
consistent with the mode of action of thiazole/paracyclophane derivatives (Figure 15).

Table 9. Energy scores for the complexes formed by the tested compounds 3a–e and the reference
colchicine in the active site of β-tubulin enzyme (PDB: 3HKC).

Compound S Score ∆G (kcal/mol)a
Ligand–Receptor Interaction

Residue Type Length (Å)

Colchicine −5.62
−3.4
−0.5

Glu 71
Mg 601

H–donor
metal

3.16
2.61

3a −7.05
−2.2
−0.6

Mg 601
Ala 247

metal
pi–H

2.00
4.17

3b −7.16
−0.9
−2.3
−0.9

Asp 245
Arg 2
Glu 71

H–donor
H–acceptor

pi–H

3.27
3.41
3.98

3c −6.29
−1.8
−0.7
−0.7

Mg 601
Tyr 224
Ala 247

metal
pi–H
pi–H

2.40
3.79
4.50

3d −6.94
−1.0
−2.1
−0.7

Glu 71
Mg 601
Arg 2

H–donor
metal
pi–H

3.90
2.51
4.69

3e −6.43
−2.0
−2.2

Gln 11
Mg 601

H–acceptor
metal

3.09
2.33

∆G (kcal/mol)a: the binding free energies.
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Figure 20. The 2D and 3D diagrams illustrate the binding mode of 3e interacting with colchicine
binding site of β-tubulin.

The two-dimensional (2D) diagram showed crucial binding involving Ala 247, Tyr 224, and
Mg 601 through the [2.2]paracyclophane ring, thiazole ring, and ester C=O functionality. Moreover,
stabilization of the reference colchicine within the active site occurred through one strong hydrogen
bond interaction with amino-acid residue Glu 71 and metal intercalation with Mg 601. Docking results
with the colchicine binding site revealed that most of the tested compounds showed good binding with
the enzyme and made several interactions comparable to that of the reference colchicine (Figure 15).

Compounds 3a, 3c, 3d, and 3e exhibited the same interaction as the reference with Mg 601;
however, both 3d and 3b showed hydrogen bonding interactions with Glu 71 (Figures 16–20). On the
other hand, compound 3d possessed greater interactions than the reference with the same amino acids
with additional one H–pi bond with Arg 2 (Figure 20); however, compounds 3a and 3c displayed an
extra H–pi interaction with Ala 247 (Figures 16 and 18). Compound 3c (Figure 18) did not feature
hydrogen binding interactions with the amino acid residue Glu 71, but kept an H–Pi interaction with
Tyr 224.

3. Experimental

3.1. Chemistry Part

3.1.1. Materials and Methods

Melting points were taken in open capillaries on a Gallenkamp melting point apparatus
(Weiss-Gallenkamp, Loughborough, UK) and are uncorrected. The IR spectra were recorded using
the attenuated total reflection (ATR) technique with a FT device (FT-IR Bruker IFS 88, Bruker,
Leiderdorp, The Netherlands), Institute of Organic Chemistry, Karlsruhe Institute of Technology,
Karlsruhe, Germany. The NMR spectra were measured in DMSO-d6 and acetone-d6 on a Bruker
AV-400 spectrometer at 400 MHz for 1H and 100 MHz for 13C; the chemical shifts are expressed in δ
(ppm) versus internal tetramethylsilane (TMS) = 0 for 1H and 13C, and external liquid ammonia = 0.
The description of signals includes s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
dd = doublet of doublet, ddd = doublet of dd, dt = doublet of triplet, td = triplet of doublet,
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bs = broad singlet, and m = multiplet. Mass spectra were recorded on a FAB (fast atom bombardment)
Thermo Finnigan Mat 95 (70 eV). For the high-resolution mass, the following abbreviations were
used: calc.= theoretical calculated mass; found = mass found in analysis at the Institute of Organic
Chemistry, Karlsruhe University, Karlsruhe, Germany. Thin Layer Chromatography (TLC) was
performed on analytical Merck 9385 silica aluminum sheets (Kieselgel 60) with Pf254 indicator; TLCs
were viewed at λmax = 254 nm. Crude products were purified by flash chromatography with silica
gel 60 (0.040 × 0.063 mm, Geduran®) (Merck, Darmstadt, Germany). Compounds 2 and 5–8 were
prepared according to the methodology mentioned in References [30] and [31], respectively.

3.1.2. Preparation of Paracyclophanyl-N-substituted Hydrazinecarbothioamides 2a–f

A mixture of carbohydrazide paracyclophane (1) (1.00 g, 3.7 mmol) in 60 mL of ethanol and
different derivatives of isothiocyanate (3.7 mmol) was refluxed for 4–8 h. The reaction mixture was
poured into a beaker and was allowed to stand until a precipitate was formed. Then, the precipitate
was filtered and washed with heptane several times (3 × 100 mL).

2-(4′-[2.2]Paracyclophanyl)-N-phenylhydrazinecarbothioamide (2a). Colorless crystals (ethanol), 1.33 g
(88%), melting point (m.p.) 190–92 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 9.86 (s, 1H, NHNHCS),
9.63 (s, 1H, NH-CO), 7.55 (d, J = 7.8 Hz, 1H, Ph-H), 7.50 (s, 1H, NHCS), 7.33 (t, J = 7.9 Hz, 2H, Ph-H),
7.14 (t, J = 7.6 Hz, 2H, Ph-H), 6.95 (s, 1H, PC-H), 6.63 (dd, J = 7.8, 1.8 Hz, 2H, PC-H), 6.52 (d, J
= 8.0 Hz, 3H, PC-H), 6.47 (d, J = 7.8 Hz, 1H, PC-H), 3.76 (s, 1H, PC-CH2-2′), 3.33–2.79 (m, 7H,
PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm): δ = 181.2 (C=S), 171.8 (C=O), 140.1 (Ph-CH),
140.0 (PC-C-6′), 139.5 (PC-C-11′), 139.4 (PC-C-14′), 139.3 (PC-C-3′), 139.0 (PC-2CH), 135.7 (PC-2CH),
135.1, 132.6 (PC-CH), 132.5 (Ph-2CH), 132.4 (Ph-2CH), 131.6 (PC-CH),129.0 (Ph-C), 128.2 (PC-C-4′), 34.8
(PC-CH2-1′), 34.7 (PC-CH2-10′), 34.5 (PC-CH2-9′), 34.4 (PC-CH2-2′). IR (ATR, cm−1) ṽ = 3250–3210 (br,
m, NH), 3009 (m, Ar-CH), 2890 (w, Aliph-CH), 1656 (s, CO), 1390 (s, C=S), 980 (s, C-N str). MS (FAB)
m/z (%) = 402.2 ([M + H]+ (85). HRMS ([M + H]+, C24H24O1N3

32S1) Calcd.: 402.1635, Found: 402.1633.

2-(4′-[2.2]Paracyclophanyl)-N-benzylhydrazine-1-carbothioamide (2b). Colorless crystal (ethanol), 1.33 g
(85%), m.p. 172–174 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.76 (s, 1H, NHNHCS), 9.41 (s,
1H, NH-CO), 8.34 (s, 1H, NHCS), 7.34–7.32 (m, 2H, Ph-H), 7.31–7.28 (m, 2H, Ph-H), 7.22-7.20 (m,
1H, Ph-H), 6.93 (s, 1H, PC-H), 6.64–6.61 (m, 2H, PC-H), 6.53–6.40 (m, 4H, PC-H), 4.81–4.74 (m, 2H,
Benzyl-CH2), 3.70–3.68 (m, 1H, PC-CH2-2′), 3.14–2.78(m, 7H, PC-CH2-CH2). 13C-NMR (100 MHz,
DMSO-d6, ppm) δ = 182.9 (C=S), 168.3 (C=O), 140.6 (Ph-H), 140.0 (PC-C-6′), 139.9 (PC-C-11′), 139.7
(PC-C-14′), 139.4 (PC-C-3′), 136.2 (PC-2CH), 135.7 (PC-CH), 133.1 (Ph-C), 133.0, 132.9 (PC-2CH), 131.9
(PC-C-4′), 128.5 (Ph-2CH), 127.5, 127.1 (Ph-CH), 47.2 (Benzyl-CH2), 35.3 (PC-CH2-1′), 35.2 (PC-CH2-10′),
35.0 (PC-2CH2-9′,2′). IR (ATR, cm−1) ṽ = 3346 (s, NH), 3199 (s, Ar-CH), 2980 (w, Aliph-CH), 1653
(s, CO), 1365 (s, C=S), 978 (C-N str). MS (FAB) m/z (%) = 416.2 ([M + H]+ (70)]. HRMS ([M + H]+,
C25H26O1N3

32S1) Calcd.: 416.1797, Found: 416.1799.

2-(4′-[2.2]Paracyclophanyl)-N-(pyridin-3-yl)hydrazine-1-carbothioamide (2c). Colorless crystal (methanol),
1.24 g (82%), 152–154 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.93 (s, 1H, NHNHCS), 9.72 (s,
1H, NHCO), 8.57 (s, 1H, NHCS), 8.34 (dd, J = 4.8, 1.5 Hz, 1H, Pyr-H), 7.90–7.40 (m, 2H, Pyr-H), 7.38
(dd, J = 8.2, 4.7 Hz, 1H, Pyr-H), 7.12–6.87 (m, 2H, PC-H), 6.84–6.57 (m, 2H, PC-H), 6.58–6.48 (m, 2H,
PC-H), 6.46 (d, J = 7.8 Hz, 1H, PC-H), 3.75–3.34 (m, 1H, PC-CH2-2′), 3.27–3.05 (m, 3H, PC-CH2-CH2),
3.05–2.90 (m, 3H, PC-CH2-CH2), 2.90–2.77 (m, 1H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6,
ppm) δ = 181.5 (C=S), 167.7 (C=O), 147.0, 145.7 (Pyr-CH), 140.2 (PC-C-6′), 139.4 (PC-C-11′), 139.2
(PC-C-14′), 138.9 (PC-C-3′), 136.1 (Pyr-C), 135.7 (PC-2CH), 135.2 (PC-CH), 133.4, 132.5 (PC-CH), 132.4
(Pyr-CH), 132.3 (PC-2CH), 131.4 (PC-C-4′), 122.9 (Pyr-CH), 38.8 (PC-CH2-1′), 34.7 (PC-CH2-10′), 34.6
(PC-CH2-9′), 34.4 (PC-CH2-4′). IR (ATR, cm−1) ṽ = 3206 (m, NH), 3091 (w, Ar-CH), 2925 (w, aliph-CH),
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1645 (m, CO), 1376 (s, C=S), 980 (s, C-N str). MS (FAB) m/z (%) = 403.2 [M + H]+ (55). HRMS ([M +

H]+, C23H23O1N4
32S1) Calcd.: 403.1593, Found: 403.1591.

N-Allyl-2-(4′-[2.2]paracyclophanyl)hydrazine-1-carbothioamide (2d). Colorless crystal (methanol), 1.18 g
(86%), m.p. 162–164 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.01 (s, 1H, NHNHCS), 8.65 (s, 1H,
NHCO), 7.74 (s, 1H, NHCS), 6.96 (d, J = 2.0 Hz, 1H, PC-H), 6.72 (t, J = 7.8, 1.9 Hz, 2H, PC-H), 6.66–6.22
(m, 4H, PC-H), 5.97–5.87 (m, 1H, allyl-CH=), 5.09–5.05 (m, 1H, allyl-CH2=), 4.32–4.24 (m, 2H, allyl-CH2)
3.84–3.74 (m, 1H, PC-CH2-2′), 3.28–2.78 (m, 7H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm)
δ = 182.7 (C=S), 167.7 (C=O), 140.1 (PC-C-6′), 139.5 (PC-C-11′), 139.3 (PC-C-14′), 139.0 (PC-C-3′), 135.7,
135.2, 135.1 (PC-CH), 134.8 (allyl-CH=), 132.6, 132.5, 132.3 (PC-CH), 131.5 (PC-CH), 128.9 (PC-C-4′)
115.0 (allyl-CH2=), 56.0 (allyl-CH2), 34.8 (PC-CH2-1′), 34.7 (PC-CH2-10′), 34.5 (PC-2CH2-9′,2′). IR
(ATR, cm−1) ṽ = 3360 (s, NH), 3132 (m, Ar-CH), 2970 (w, Aliph-CH), 1660 (s, CO), 1380 (s, C=S), 982
(s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (100). HRMS ([M + H]+, C21H24O1N3

32S1) Calcd.:
366.1640, Found: 366.1638.

2-(4′-[2.2]Paracyclophanyl)-N-ethylhydrazine-1-carbothioamide (2e). Colorless crystal (ethanol/cyclohexa
ne), 1.08 g (81%), m.p. 130–132 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.65 (s, 1H, NHNHCS),
9.22 (s, 1H, NH-CO), 7.81 (s, 1H, NHCS), 6.91 (d, J = 1.8 Hz, 1H, PC-H), 6.63 (dd, J = 7.7 Hz, J = 1.9
Hz, 2H, PC-H), 6.51 (d, J = 9.6 Hz, 3H, PC-H), 6.44 (d, J = 7.8 Hz, 1H, PC-H), 3.69 (m, 1H, PC-CH2-2′),
3.60–3.26 (m, 2H, ethyl-CH2), 3.26–2.68 (m, 7H, PC-CH2-CH2), 1.06 (t, J = 10.1 Hz, J = 7.0 Hz, 3H,
ethyl-CH3). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 181.7 (C=S), 167.6 (C=O), 140.1 (PC-C-6′), 139.5
(PC-C-11′), 139.2 (PC-C-14′), 139.0 (PC-C-3′), 135.7 (PC-2CH), 135.1 (PC-CH), 132.7, 132.6, 132.5, 132.4
(PC-CH), 131.5 (PC-C-4′), 56.0 (ethyl-CH2), 35.0 (PC-CH2-1′), 34.9 (PC-CH2-10′), 34.6 (PC-2CH2-9′,2′),
14.7 (ethyl-CH3). IR (ATR, cm−1) ṽ = 3357 (m, NH), 3190 (m, Ar-CH), 2870 (w, Aliph-CH), 1667 (s,
CO), 1365 (s, C=S), 980 (s, C-N str). MS (FAB) m/z (%) = 354.2 ([M + H]+ (100). HRMS ([M + H]+,
C21H24O1N3

32S1) Calcd.: 354.1640, Found: 354.1640.

2-(4′-[2.2]Paracyclophanyl)-N-cyclopropylhydrazine-1-carbothioamide (2f). Colorless crystal (ethanol), 1.10
g (80%), m.p. 158–160 ◦C, 1H-NMR (400 MHz, DMSO-d6, ppm) δ = 9.66 (s, 1H, NHNHCS), 9.34 (s, 1H,
NHCO), 6.90 (s, 1H, NHCS), 6.61 (dd, J = 7.7, 1.8 Hz, 2H, PC-H), 6.55–6.46 (m, 4H, PC-H), 6.43 (d, J =

7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–2.95
(m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–1.03
(m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6′), 139.4 (PC-C-11′), 139.2
(PC-C-14′), 138.9 (PC-C-3′), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4′),
34.7 (PC-CH2-1′), 34.6 (PC-CH2-10′), 34.5 (PC-CH2-9′), 34.4 (PC-CH2-2′), 27.1 (cyclopropyl-CH), 6.7
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s,
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS
([M + H]+, C21H24O1N3

32S1) Calcd.: 366.1640, Found: 366.1639.

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 3a–f

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 mL
of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer chromatography).
After removal of the solvent on vacuum, the crude residue was purified by column chromatography
(cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.

Methyl (E)-2-((E)-2-(2-(4′-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)aceta
te (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 ◦C, 1H-NMR (400 MHz, DMSO-d6,
ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 (m,
1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m,
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2),
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2.93–2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5
(cyclic-CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6′),
139.3 (PC-C-11′), 139.0 (PC-C-14′), 138.9 (PC-C-3′), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6,
132.4, 132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4′), 117.5
(vinyl-CH), 52.8 (OCH3), 34.7 (PC-CH2-1′), 34.5 (PC-CH2-10′), 34.3 (PC-CH2-9′), 34.1 (PC-CH2-2′). IR
(ATR, cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s,
C
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2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1587 (m, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M +

H]+, C29H26O4N3
32S1) Calcd.: 512.1644, Found: 512.1645.

Methyl (E)-2-((E)-2-(2-(4′-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-ylidene)acetate
(3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 ◦C, 1H-NMR (400 MHz,
DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 6.99 (d, J =

4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-H), 6.45 (d,
J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, OCH3),
3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-CH2).
13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-CO),
146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6′), 139.3 (PC-C-11′), 139.2 (PC-C-14′),
139.1 (PC-C-3′), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 132.3,
132.2, 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4′), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 (benzyl-CH2),
34.8 (PC-CH2-1′), 34.6 (PC-CH2-10′), 34.5 (PC-CH2-9′), 34.4 (PC-CH2-2′). IR (ATR, cm−1) ṽ = 3390 (m,
NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1595 (m, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C),
980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, C30H28N3O4

32S1) Calcd.:
526.1801, Found: 526.1799.

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate (3c).
Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) ◦C, 1H-NMR (400 MHz, Acetone-d6,
ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H,
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H,
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6′), 140.2
(PC-C-14′), 138.9 (PC-C-11′), 137.1 (PC-C-3′), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH),
132.6 (PC-C-4′), 128.8 (Pyr-CH), 125.0 (Pyr-CH), 118.6 (vinyl-CH), 53.3 (OCH3), 35.8 (PC-CH2-1′), 35.7
(PC-CH2-10′), 35.6 (PC-CH2-9′), 35.5 (PC-CH2-2′). IR (ATR, cm−1) ṽ = 3187 (w, NH), 2924 (m, Ar-CH),
2852 (w, aliph-CH), 1727, 1693, 1649 (s, CO), 1602 (s, C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1480 (s, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C), 980 (s, C-N str). MS (FAB)
m/z (%) = 513.2 ([M + H]+ (50). HRMS ([M + H]+, C28H25O4N4

32S1) Calcd.: 513.1597, Found: 513.1597.

Methyl (E)-2-((E)-3-allyl-2-(2-(4′-[2.2]paracyclophanyl)hydrazinylidene)-4-oxothiazolidin-5-ylidene)acetate
(3d). Colorless crystal (ethanol), 0.17 g (79%), m.p. 241–243 ◦C, 1H-NMR (400 MHz, Acetone-d6,
ppm) δ = 9.78 (s, 1H, NH), 7.08–6.88 (m, 2H, PC-H), 6.82 (s, 1H, Vinyl-CH), 6.79–6.68 (m, 2H, PC-H),
6.63–6.57 (m, 2H, PC-CH), 6.50 (d, J = 8.1 Hz, 1H, PC-H), 6.03–5.94 (m, 1H, allyl-CH=), 5.38–5.13 (m,
2H, allyl-CH2=), 4.55–4.43 (m, 2H, allyl-CH2), 4.28–4015 (m, 1H, PC-CH2-CH2), 3.87 (s, 3H, OCH3),
3.26–3.10 (m, 3H, PC-CH2-CH2), 3.09–2.99 (m, 3H, PC-CH2-CH2), 2.96–2.87 (m, 1H, PC-CH2-CH2).
13C-NMR (101 MHz, Acetone-d6, ppm) δ = 166.5 (ester-CO), 166.2 (cyclic-CO), 162.0 (hydrazide-CO),
141.6 (thiazolidine-C-2), 140.6 (thiazolidine-C-5), 140.2 (PC-C-6′), 139.8 (PC-C-11′), 139.1 (PC-C-14′),
136.6 (PC-C-3′), 136.4, 135.9, 133.3, 133.2, 133.1, 133.0, 132.8 (PC-CH), 132.2 (allyl-CH=), 131.3 (PC-C-4′),
118.0 (allyl-CH2=), 116.7 (vinyl-CH), 54.2 (OCH3), 52.5 (allyl-CH2), 35.6 (PC-CH2-1′), 35.3 (PC-CH2-10′),
35.2 (PC-CH2-9′), 35.1 (PC-CH2-2′). IR (ATR, cm−1) ṽ = 30 (w, NH), 3009 (m, Ar-CH), 2892 (w, aliph-CH),
1703, 1697, 1655 (s, CO), 1601 (s, C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1583 (m, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C), 980 (s, C-N str). MS (FAB) m/z (%) = 476.2
[M + H]+ (55). HRMS ([M + H]+, C26H26N3O4

32S1) Calcd.: 476,1644, Found: 476.1646.
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Methyl (E)-2-((E)-2-(2-(4′-[2.2]paracyclophanyl)hydrazinylidene)-3-ethyl-4-oxothiazolidin-5-ylidene)acetate
(3e). Colorless crystal (methanol), m.p. 220–222 ◦C, 0.16 g (69%), 1H-NMR (400 MHz, DMSO-d6, ppm)
δ = 10.83 (s, 1H, NH), 6.80 (s, 1H, vinyl-CH), 6.67 (d, J = 7.8 Hz, 3H, PC-H), 6.57 (s, 2H, PC-H), 6.45 (d, J
= 7.8 Hz, 2H, PC-H), 3.95–2.89 (m, 2H, ethyl-CH2), 3.78 (s, 3H, OCH3), 3.67–3.59 (m, 1H, PC-CH2-CH2),
3.16–3.05 (m, 4H, PC-CH2-CH2), 3.02–2.96 (m, 2H, PC-CH2-CH2), 2.94–2.87 (m, 1H, PC-CH2-CH2),
1.26 (t, J = 7.1 Hz, 3H, ethyl-CH3). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.9 (ester-CO), 164.8
(cyclic-CO), 163.4 (hydrazide-CO), 155.0 (thiazolidine-C-2), 141.0 (thiazolidine-C-5), 139.6 (PC-C-6′),
139.5 (PC-C-11′), 139.2 (PC-C-14′), 139.1 (PC-C-3′), 135.8 (PC-2CH), 135.2 (PC-C-4′), 132.6 (PC-2CH),
132.4, 132.3, 131.4 (PC-CH), 114.9 (vinyl-CH), 52.7 (OCH3), 38.1 (ethyl-CH2), 34.9 (PC-CH2-1′), 34.7
(PC-CH2-10′), 34.5 (PC-CH2-9′), 34.4 (PC-CH2-2′), 12.5 (ethyl-CH3). IR (ATR, cm−1) ṽ = 32 (w, NH),
2931 (m, Ar-CH), 2880 (w, aliph-CH), 1698, 1694, 1648 (s, CO), 1606 (s, C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1545 (s, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C), 976
(s, C-N str). MS (FAB) m/z (%) = 464.2 ([M + H]+ (100). HRMS ([M + H]+, C25H26N3O4

32S1) Calcd.:
464.1644, Found: 464.1643.

Methyl-(E)-2-((E)-2-(2-(4′-[2.2]paracyclophanyl)hydrazinylidene)-3-cyclopropyl-4-oxothiazolidin-5-ylidene)ace
tate (3f). Colorless crystal (ethanol), m.p. 180–182 ◦C, 0.16 g (67%), 1H-NMR (400 MHz, DMSO-d6, ppm)
δ = 10.80 (s, 1H, NH), 6.85 (s, 1H, vinyl-CH), 6.75 (s, 1H, PC-H), 6.70–6.65 (m, 2H, PC-H), 6.63–6.52
(m, 3H, PC-H), 6.46 (d, J = 7.8 Hz, 1H, PC-H), 3.76 (s, 3H, OCH3), 3.74–3.34 (m, 1H, PC-CH2-CH2),
3.22–3.05 (m, 3H, PC-CH2-CH2), 3.03–2.96 (m, 2H, PC-CH2-CH2), 2.98–2.84 (m, 2H, PC-CH2-CH2),
1.08–1.04 (m, 1H, cyclopropyl-CH), 1.03–0.98 (m, 4H, cyclopropyl-CH2). 13C-NMR (100 MHz,
DMSO-d6, ppm) δ = 165.9 (ester-CO), 164.9 (cyclic-CO), 164.1 (hydrazide-CO), 157.3 (thiazolidine-C-2),
141.3 (thiazolidine-C-5), 139.6 (PC-C-6′), 139.2 (PC-C-11′), 139.1 (PC-C-14′), 135.8 (PC-C-3′), 135.1,
133.0 (PC-CH), 132.6, 132.4 (PC-2CH), 132.3(PC-C-4′), 131.4 (PC-CH), 114.5 (vinyl-CH), 52.6 (OCH3),
34.9 (PC-CH2-1′), 34.7 (PC-CH2-10′), 34.5 (PC-CH2-9′), 34.4 (PC-CH2-2′), 25.7 (cyclopropyl-CH), 6.7
(cyclopropyl-2CH2). IR (ATR, cm−1) ṽ = 3223 (w, NH), 3010 (m, Ar-CH), 2891 (w, aliph-CH), 1700,
1697, 1652 (s, CO), 1605 (s, C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

N), 1560 (s, Ar-C
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J = 7.8 Hz, 1H, PC-H), 3.74–3.43 (m, 1H, PC-CH2-CH2), 3.38 (d, J = 38.4 Hz, 2H, PC-CH2-CH2), 3.09–
2.95 (m, 2H, PC-CH2-CH2), 2.94–2.80 (m, 3H, PC-CH2-CH2), 1.23–1.06 (m, 1H, cyclopropyl-CH), 1.05–
1.03 (m, J = 7.0 Hz, 2H, cyclopropyl-CH2), 0.63–0.56 (m, J = 52.5 Hz, 2H, cyclopropyl-CH2). 13C-NMR 
(100 MHz, DMSO-d6, ppm) δ = 190.6 (C=S), 167.2 (C=O), 140.0 (PC-C-6’), 139.4 (PC-C-11’), 139.2 (PC-
C-14’), 138.9 (PC-C-3’), 135.6 (PC-2CH), 135.0, 132.5, 132.4 (PC-CH), 132.3 (PC-2CH), 131.6 (PC-C-4’), 
34.7 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’), 27.1 (cyclopropyl-CH), 6.7 
(cyclopropyl-CH2), 6.5 (cyclopropyl-CH2). IR (ATR, cm−1) ṽ = 3208 (s, NH), 3008 (w, Ar-CH), 2919 (s, 
aliph-CH), 1672 (s, CO), 10 (s, C=S), 978 (s, C-N str). MS (FAB) m/z (%) = 366.2 ([M + H]+ (85). HRMS 
([M + H]+, C21H24O1N332S1) Calcd.: 366.1640, Found: 366.1639. 

3.1.3. Reactions of Hydrazinecarbothioamide Derivatives 2a–f with 9: Preparation of Compounds 
3a–f 

A mixture of hydrazinecarbothioamide derivatives (2a–f, 1 mmol) and 9 (0.142 g, 1 mmol) in 40 
mL of absolute methanol was refluxed for 3–4 h (the reaction was monitored by thin-layer 
chromatography). After removal of the solvent on vacuum, the crude residue was purified by column 
chromatography (cyclohexane/ethyl acetate 10:6) as eluent to afford 3a–f.  

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-4-oxo-3-phenylthiazolidin-5-
ylidene)acetate (3a). Colorless crystal (ethanol), 0.20 g (78%), m.p. 202–204 °C, 1H-NMR (400 MHz, 
DMSO-d6, ppm) δ = 10.77 (s, 1H, NH), 7.57 (d, J = 7.5 Hz, 2H, Ph-H), 7.5–7.41 (m, 2H, Ph-H), 7.16–7.00 
(m, 1H, Ph-H), 7.05–6.97 (m, 1H,PC-H), 6.86 (s, 1H, vinyl-CH), 6.80–6.67 (m, 2H, PC-H), 6.65–6.41 (m, 
4H, PC-H), 3.87 (s, 3H, OCH3), 3.14–3.09 (m, 3H, PC-CH2-CH2), 3.05–2.94 (m, 2H, PC-CH2-CH2), 2.93–
2.81 (m, 3H, PC-CH2-CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 165.8 (ester-CO), 165.5 (cyclic-
CO), 165.4 (hydrazide-CO), 140.9 (thiazolidine-C-2), 139.6 (thiazolidine-C-5), 139.5 (PC-C-6’), 139.3 
(PC-C-11’), 139.0 (PC-C-14’), 138.9 (PC-C-3’), 137.6 (Ph-C), 135.8, 135.6, 134.0 (PC-CH), 132.6, 132.4, 
132.2, 132.1 (PC-CH), 131.2, 129.6, 129.5, 129.0 (Ph-CH), 128.1 (Ph-CH), 125.3 (PC-C-4’), 117.5 (vinyl-
CH), 52.8 (OCH3), 34.7 (PC-CH2-1’), 34.5 (PC-CH2-10’), 34.3 (PC-CH2-9’), 34.1 (PC-CH2-2’). IR (ATR, 
cm−1) ṽ = 38 (s, NH), 3190 (w, Ar-CH), 2927 (m, aliph-CH), 1724, 1704, 1649 (s, CO), 1613 (s, C   ═   N), 
1587 (m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 512.2 ([M + H]+ (100). HRMS ([M + H]+, 
C29H26O4N332S1) Calcd.: 512.1644, Found: 512.1645. 

Methyl (E)-2-((E)-2-(2-(4'-[2.2]paracyclophanyl)hydrazinylidene)-3-benzyl-4-oxothiazolidin-5-
ylidene)acetate (3b). Colorless crystal (ethanol/cyclohexane), 0.20 g (76%), m.p. 175–177 °C, 1H-NMR 
(400 MHz, DMSO-d6, ppm) δ = 10.88 (s, 1H, NH), 7.43–7.31 (m, 3H, Ph-H), 7.28–7.23 (m, 1H, Ph-H), 
6.99 (d, J = 4.8 Hz, 1H, Ph-H), 6.93 (s, 1H, vinyl-CH), 6.88–6.82 (m, 1H, PC-H), 6.71–6.55 (m, 2H, PC-
H), 6.45 (d, J = 10.3 Hz, 2H, PC-H), 6.28 (d, J = 2.5 Hz, 2H, PC-H), 5.44 (s, 2H, benzyl-CH2), 3.83 (s, 3H, 
OCH3), 3.68–3.62 (m, 2H, PC-CH2-CH2), 3.18–3.05 (m, 2H, PC-CH2-CH2), 3.02–2.82 (m, 4H, PC-CH2-
CH2). 13C-NMR (100 MHz, DMSO-d6, ppm) δ = 166.0 (ester-CO), 165.6 (cyclic-CO), 161.5 (hydrazide-
CO), 146.2 (thiazolidine-C-2), 140.2 (thiazolidine-C-5), 139.6 (PC-C-6’), 139.3 (PC-C-11’), 139.2 (PC-C-
14’), 139.1 (PC-C-3’), 139.0 (Ph-C), 138.9, 138.6, 138.4, 137.8 (PC-CH), 136.0, 135.9, 135.8 (PC-CH), 132.5, 
132.3, 132.2 , 131.4 (Ph-CH), 128.5 (Ph-CH), 127.3 (PC-C-4’), 116.6 (vinyl-CH), 52.6 (OCH3), 51.3 
(benzyl-CH2), 34.8 (PC-CH2-1’), 34.6 (PC-CH2-10’), 34.5 (PC-CH2-9’), 34.4 (PC-CH2-2’). IR (ATR, cm−1) 
ṽ = 3390 (m, NH), 3091 (m, Ar-CH), 2927 (m, aliph-CH), 1749, 1695, 1659 (s, CO), 1626 (s, C═N), 1595 
(m, Ar-C═C), 980 (s, C-N str). MS (FAB) m/z (%) = 526.2 ([M + H]+ (60). HRMS ([M + H]+, 
C30H28N3O432S1) Calcd.: 526.1801, Found: 526.1799. 

Methyl (E)-2-((E)-3-[2.2]paracyclophanyl)amido-4-oxo-2-(pyridin-3-ylimino)-thiazolidin-5-ylidene)acetate 
(3c). Colorless crystal (ethanol), 0.17 g (65%), m.p. 262–264 (decomp) °C, 1H-NMR (400 MHz, Acetone-
d6, ppm) δ = 10.12 (s, 1H, NH), 8.43–8.28 (m, 2H, Pyr-H), 7.48–7.44 (m, 2H, Pyr-H), 7.05–6.98 (m, 2H, 
PC-H), 6.86–6.74 (m, 2H, PC-H), 6.65–6.62 (m, 1H, PC-H), 6.57 (s, 1H, vinyl-CH), 6.54–6.43 (m, 2H, 
PC-H), 4.00–3.90 (m, 1H, PC-CH2-CH2), 3.82 (s, 3H, OCH3), 3.20–2.91 (m, 7H, PC-CH2-CH2). 13C-NMR 
(100 MHz, Acetone-d6, ppm) δ = 167.0 (ester-CO), 166.6 (cyclic-CO), 162.5 (hydrazide-CO), 151.3 
(thiazolidine-C-2), 147.5, 144.3 (Pyr-CH), 143.1 (Pyr-C), 141.1 (thiazolidine-C-5), 140.7 (PC-C-6’), 140.2 
(PC-C-14’), 138.9 (PC-C-11’), 137.1 (PC-C-3’), 137.0 (PC-3CH), 133.7 (PC-2CH), 133.4, 133.2 (PC-CH), 

C), 980 (s, C-N str). MS (FAB) m/z (%) = 476.2 ([M +

H]+ (100). HRMS ([M + H]+, C26H26N3O4
32S1) Calcd.: 476.1644, Found: 476.1643.

3.2. Biology Part

NCI Screening Assay

As mentioned previously, the methodology of the NCI procedure for the primary anticancer assay
is detailed on their site (http://www.dtp.nci.nih.gov). Briefly, the protocol was performed on 60 human
tumor cell lines derived from different nine neoplastic diseases. NCI-60 testing was performed either
as a single concentration, which was tested on all 60 cell lines at a single dose of 10−5 M, or with a
concentration of 5 µg/mL. All of the assays were in accordance with the protocol of the Drug Evaluation
Branch, National Cancer Institute, Bethesda, USA. If the results obtained met selection criteria, then the
compound was tested again on all 60 cell lines in 5× 10-fold dilutions with the top dose being 10−4 M
or 150 µg/mL. Detailed methods are described in the Supplementary Materials related to this article.

Other methods of biology items were reported such as the MTT cytotoxicity assay method [41],
analysis of cell cycle by flow cytometry [42], caspase assay [43], BAX assay [44], Bcl-2 assay [45],
assessment of mitochondrial changes [46], tubulin polymerization inhibitory activity [47], methods
of detection of ROS in suspension, and adherent cells by microplate assay [48]. In addition,
the methodology dealing with the multidrug resistance assay was reported in Reference [48].

3.3. Docking Studies

A docking simulation study is performed using Molecular Operating Environment (MOE®)
version 2014.09, Chemical Computing Group Inc., Montreal, Canada. The computational software was
operated under “Windows XP” installed on an Intel Pentium IV personal computer (PC) with a 1.6-GHz

http://www.dtp.nci.nih.gov
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processor and 512 MB of memory. The target compounds were constructed into a three-dimensional
(3D) model using the builder interface of the MOE program [49].

3.4. Crystallographic Structure Analyses

Crystal Structure Determinations of 2a, 2b, 2d, 3b, and 3c

The single-crystal X-ray diffraction studies were carried out on a Bruker D8 Venture diffractometer
with PhotonII detector at 123(2) K using Cu-Kα radiation (λ = 1.54178 Å). Dual space methods
(SHELXT) [50] were used for structure solution, and refinement was carried out using SHELXL-2014
(full-matrix least-squares on F2) [51]. Hydrogen atoms were localized by difference electron density
determination and refined using a riding model (H(N) free). Semi-empirical absorption corrections
were applied.

1: Colorless crystals, C17H18N2O, Mr = 266.33, crystal size 0.16 × 0.06 × 0.02 mm, monoclinic,
space group C2/c (No. 15), a = 11.8196(4) Å, b = 7.9087(3) Å, c = 28.20(10) Å, β = 92.708(2)◦, V =

2636.58(16) Å3, Z = 8, ρ = 1.342 Mg/m−3, µ(Cu-Kα) = 0.67 mm−1, F(000) = 1136, 2θmax = 144.6◦, 10,645
measured reflections (2589 independent reflection in the HKLF 5 file, Rint = 0.000), 191 parameters,
3 restraints R1 = 0.071 (for 2452 I > 2σ(I)), wR2 = 0.174 (all data), S = 1.16, largest diff. peak/hole
= 0.33/−0. e Å−3. Refined as a 2-component twin (BASF 0.139(4)). The option TwinRotMat of the
program package PLATON [52] was used to create a HKLF 5 file, which was used for the refinement.
Therefore, only unique reflections were used for the refinement (Rint = 0.00) (see cif-file for details).

2a: Colorless crystals, C24H23N3OS, Mr = 401.51, crystal size 0.16 × 0.12 × 0.04 mm, monoclinic,
space group P21/c (No. 14), a = 12.2835(4) Å, b = 10.5257(3) Å, c = 15.5777(5) Å, β = 104.805(2)◦, V =

1947.21(11) Å3, Z = 4, ρ = 1.0 Mg/m−3, µ(Cu-Kα) = 1.64 mm−1, F(000) = 848, 2θmax = 144.8◦, 17,562
reflections, of which 3830 were independent (Rint = 0.032), 271 parameters, 3 restraints, R1 = 0.039 (for
3480 I > 2σ(I)), wR2 = 0.107 (all data), S = 1.04, largest diff. peak/hole = 0.34/−0.20 e Å−3.

2b: Colorless crystals, C25H25N3OS, Mr = 415.54, crystal size 0.28 × 0.06 × 0.03 mm, orthorhombic,
space group Pccn (No. 56), a = 19.4444(6) Å, b = 25.2548(7) Å, c = 8.7599(2) Å, V = 4301.7(2) Å3, Z = 8, ρ
= 1.283 Mg/m−3, µ(Cu-Kα) = 1.50 mm−1, F(000) = 1760, 2θmax = 144.4◦, 48,155 reflections, of which
4241 were independent (Rint = 0.049), 283 parameters, 3 restraints, R1 = 0.038 (for 3846 I > 2σ(I)), wR2

= 0.096 (all data), S = 1.05, largest diff. peak/hole = 0.27/−0.19 e Å−3.
2d: Colorless crystals, C21H23N3OS, Mr = 365.48, crystal size 0.18 × 0.04 × 0.02 mm, orthorhombic,

space group Pbca (No. 61), a = 19.5761(14) Å, b = 8.2709(7) Å, c = 24.0176(17) Å, V = 3888.7(5) Å3, Z = 8,
ρ = 1.249 Mg/m−3, µ(Cu-Kα) = 1.58 mm−1, F(000) = 1552, 2θmax = 144.4◦, 24,493 reflections, of which
3815 were independent (Rint = 0.087), 244 parameters, 198 restraints (a general RIGU restraint was
applied, see cif.file for details), R1 = 0.059 (for 2913 I > 2σ(I)), wR2 = 0.141 (all data), S = 1.043, largest
diff. peak/hole = 0.35/−0.27 e Å−3.

3b: Yellow crystals, C30H27N3O4S, Mr = 525.60, crystal size 0.14 × 0.12 × 0.04 mm, monoclinic,
space group P21/c (No. 14), a = 13.0205(4) Å, b = 12.40(4) Å, c = 15.9584(5) Å, β = 92.8(1)◦, V = 2574.16(14)
Å3, Z = 4, ρ = 1.356 Mg/m−3, µ(Cu-Kα) = 1.46 mm−1, F(000) = 1104, 2θmax = 144.6◦, 41,983 reflections,
of which 5074 were independent (Rint = 0.038), 347 parameters, 1 restraint, R1 = 0.070 (for 4800 I >

2σ(I)), wR2 = 0.187 (all data), S = 1.06, largest diff. peak/hole = 1.13 (due to possible disorder in the
[2.2]paracyclophane moiety)/−0.35 e Å−3.

3c: Colorless crystals, C28H24N4O4S · 0.5 CH3OH · 0.5 H2O, Mr = 5.60, crystal size 0.15 × 0.09 ×
0.03 mm, monoclinic, space group C2/c (No. 15), a = 19.3130(6) Å, b = 12.4233(6) Å, c = 21.8993(8) Å, β
= 90.008(2)◦, V = 5254.3(4) Å3, Z = 8, ρ = 1.359 Mg/m−3, µ(Cu-Kα) = 1.49 mm−1, F(000) = 2256, 2θmax =

144.4◦, 28,186 reflections, of which 5170 were independent (Rint = 0.041), 338 parameters, 1 restraint, R1

= 0.043 (for 4649 I > 2σ(I)), wR2 = 0.110 (all data), S = 1.04, largest diff. peak/hole = 0.42/−0.21 e Å−3.
Refinement with the listed atoms show residual electron density due to a heavily disordered

methanol and water in four voids around a center of symmetry, which could not be refined with split
atoms. Therefore, the option "SQUEEZE" of the program package PLATON [52] was used to create
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an hkl file taking into account the residual electron density in the void areas. Therefore, the atom list
and unit card do not agree (see cif-file for details). CCDC 1,971,268 (1), 1,971,269 (2a), 1,971,270 (2b),
1,971,271 (2d), 1,971,272 (3b), and 1,971,273 (3c) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data
Center via www.ccdc.cam.ac.uk/data_request/cif.

4. Conclusions

Herein, methyl 2-(2-(4′-[2.2]paracyclophanyl)-hydrazinylidene)-3-substituted-4-oxothiazolidin-5-
ylidene)acetates were synthesized and screened against 60 cancer cell lines. Since the designed
compounds showed moderate to high activity as anticancer agents, much work was done with the
synthesis and biology of paracyclophane heterocyclic compounds in terms of proving the hypothesis
that paracyclophane/thiazole conjugates may work through tubulin polymerization inhibition. Results
indicated that compound 3a could be considered a good pharmacophore for further medicinal study.

Supplementary Materials: Supplementary data for this article can be found online.
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