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Abstract: Characterization of urban particle number size distribution (PNSD) has been rarely
reported/performed in the Middle East. Therefore, we aimed at characterizing the PNSD (0.01–10
µm) in Amman as an example for an urban Middle Eastern environment. The daily mean submicron
particle number concentration (PNSub) was 6.5 × 103–7.7 × 104 cm−3 and the monthly mean coarse
mode particle number concentration (PNCoarse) was 0.9–3.8 cm−3 and both had distinguished seasonal
variation. The PNSub also had a clear diurnal and weekly cycle with higher concentrations on
workdays (Sunday–Thursday; over 3.3 × 104 cm−3) than on weekends (below 2.7 × 104 cm−3). The
PNSub constitute of 93% ultrafine fraction (diameter < 100 nm). The mean particle number size
distributions was characterized with four well-separated submicron modes (Dpg,I, Ni): nucleation
(22 nm, 9.4 × 103 cm−3), Aitken (62 nm, 3.9 × 103 cm−3), accumulation (225 nm, 158 cm−3), and
coarse (2.23 µm, 1.2 cm−3) in addition to a mode with small geometric mean diameter (GMD) that
represented the early stage of new particle formation (NPF) events. The wind speed and temperature
had major impacts on the concentrations. The PNCoarse had a U-shape with respect to wind speed and
PNSub decreased with wind speed. The effect of temperature and relative humidity was complex and
require further investigations.

Keywords: submicron; coarse; modal structure; meteorological effect; particle number size
distribution; seasonal; diurnal

1. Introduction

Atmospheric aerosol particles have gained increased attention during recent years due to their
effects on the climate and human health [1,2]. While most health studies related to air pollution focus
on the mass accumulation of particulate matter (PM), advanced studies have shown the importance
of the number size distribution on health. For instance, it has been evident that fine particles are
capable of penetrating through the respiratory system and circulating in the bloodstream causing
serious health effects in different organs in the human body [3]. While the smallest particles do not
contribute significantly to the total measured mass concentration, they constitute the highest fraction of
the number concentration of measured particles in various locations, which can be more than 100,000
particles/cm3. Besides that, governmental policies tend to enforce strategies that eradicate the total
mass in an attempt of improving visibility and saving human health; at the same time ignoring the
effects of the ultrafine particles (UFP, diameter < 0.1 µm), which have rather complex sources and
atmospheric processes. For example, fine and UFP are capable of growing to reach sizes where they
constitute a fraction of cloud condensation nuclei (CCN); and thus, indirectly affecting the climate [4,5].
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The drivers behind aerosol particles vary between natural and anthropogenic as well as primary
and secondary. Primary particles are emitted to the atmosphere as particles while secondary particles
form in the atmosphere via gas-to-particle transformation, which has been known as new particle
formation (NPF) observed in various environments and contributing to a major fraction of the total
particle number budget [6–8]. Indeed, the complexity of urban aerosols lies in the fact that several
sources can contribute in the same particle size range, making it difficult to entangle [9,10]. Although,
some studies focusing on the particle number size distribution have been conducted around the East
Mediterranean region at both urban and remote sites [11–14], very few studies can be found regarding
the Middle East [15–21]. In fact, the Middle East and North Africa (MENA) is of extreme interest as it
serves as a compilation of aerosol particle sources including natural dust, anthropogenic pollution
from petrochemical industry and urbanization, as well as new particle formation.

The aim of this paper is to characterize the aerosol particle number size distribution and explore
the drivers behind diurnal and seasonal variability of the number concentrations in Amman, which is
an example of Middle Eastern urban conditions. Here we utilized a long-term measurement of particle
number size distributions over a wide particle diameter range (0.01–10 µm). We also applied modal
structure analysis for the population of aerosols by using the multi-lognormal distribution function.
We additionally investigated the effect of local meteorology on the aerosol concentrations.

2. Materials and Methods

2.1. Aerosol Measurements

The long-term aerosol measurement was performed during 1 August 2016–31 July 2017 at the
Aerosol Laboratory, which was located on the third floor of the Department of Physics, University
of Jordan. The University of Jordan campus was located at an urban background in the north part
of Amman, Jordan (Supplementary Material Figure S1). The aerosol measurement consisted of
total number concentration and particle number size distribution, described in more detail in the
following section.

The particle number size distribution was measured with a scanning mobility particle sizer
(NanoScan SMPS 3910, TSI, Minnesota, U.S.) and an optical particle sizer (OPS 3330, TSI, Minnesota,
U.S.). Using the NanoScan SMPS (electrical equivalent mobility diameter: 0.01–0.42 µm, 13 channels
at dry conditions) and the OPS (optical diameter: 0.3–10 µm, 13 channels at dry conditions) can
provide a useful setup to monitor a wide particle diameter range 0.01–10 µm. However, combining the
measurement results of these two instruments is challenging as will be pointed out in the next section.

The NanoScan SMPS consists of four main built-in components: (1) a cyclone inlet to remove
large particles, (2) unipolar particle charger, (3) a radial differential mobility analyzer (RDMA), and (4)
an isopropanol-based condensation particle counter (CPC). The particle number size distribution scan
was 60 s (45 s upscan and 15 s downscan). The inlet flow rate was 0.75 lpm (±20%) whereas the sample
flow rate was 0.25 lpm (±10%).

The OPS measured the particle number size distribution using the TSI default particle size bins,
which consisted of 13 equally sized bins based on a lognormal scale. The dead-time correction was
applied in the OPS operation. Sampling time-resolution was 5 min with a flow rate ~1 lpm.

The total number concentration of submicron aerosols was measured with a portable condensation
particle counter (CPC 3007-2, TSI, Minnesota, U.S.). The cutoff size of this CPC was 10 nm and it was
capable of measuring submicron particle number concentration of aerosols with diameters up to 2 µm.
According to the specifications provided by the manufacturer, the maximum detectable concentration
was 105 cm−3 with 20% accuracy. The sampling flow rate was 0.1 lpm (inlet flow rate 0.7 lpm).

Each instrument had its own aerosol sampling inlet (~1-m-long and 8 mm inner diameter) which
was led through the wall to sample the outdoor aerosols. Each inlet consisted of short Tygon tubes (4
mm inner diameter) connected to a diffusion drier (TSI model 3062-NC). The diffusion drier was used
to remove the excess moisture from the aerosol sample.
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The aerosol transport efficiency through the aerosol inlet assembly was determined experimentally:
ambient aerosol sampling alternatively with and without inlet. The aerosol data was corrected
accordingly (Figure S2). The penetration efficiency was ~47% for 10 nm, ~93% for 0.3 µm, and ~40%
for 10 µm particles. Accordingly, the particle number size distributions were corrected for losses in the
tubing and the diffusion drier.

Based on the hourly mean total number concentrations, the ratio between SMPS (10–420 nm)
and the CPC was approximately 0.86 and the relationship between them was linear with an R2 =

0.78 (Figure S3a). The differences can arise from the fact that the CPC measured the full range of the
submicron particles (from 10 nm up to a couple of micrometers) whereas the SMPS measurement
range was nominally within the diameter range 10–420 nm. In practice, the NanoScan was not able
to measure aerosols with diameters larger than 250 nm, which makes it an ultrafine (Dp < 0.1 µm)
particle sizer. On the other hand, considering the number concentration within the diameter range
10–1000 nm, which can be obtained by the combined distributions measured with the SMPS and the
OPS, revealed that its mean ratio compared to that measured with the CPC was about 1.14 and the
relationship between them was linear with an R2 = 0.78 (Figure S3b). This is expected because the CPC
data was not corrected for sampling line losses.

2.2. Data Handling

The measurement time-resolution of the SMPS and the CPC was 1 min and of the OPS was 5 min.
In order to construct a wide range of the measured particle number size distribution, we performed the
following steps: (1) calculated the 5-min average of the SMPS data, (2) omitted the last two channels in
the SMPS (i.e., remaining diameter range was 0.01–0.25 µm), (3) omitted the first channel in the OPS
(i.e., remaining diameter range was 0.32–10 µm), and (4) merged the two distributions. As such, we
obtained a combined particle number size distribution covering the diameter range 0.01–10 µm.

We calculated the particle number concentration (cm−3) within four particle diameter ranges
(size-fractionated number concentration): 0.01–0.025 µm (nucleation), 0.025–0.1 µm (Aitken), 0.1–1 µm
(accumulation), and 1–10 µm (coarse). Consequently, the total number concentration was obtained
as the sum of all these fractions. The size-fractionated number concentrations were obtained by
integrating (practically summation) the measured particle number size distribution over the specified
particle diameter range

PNDP2−DP1 =

DP2∫
DP1

n0
Nd log10(Dp), (1)

where nN
0 = dN/dlog10(Dp) is the measured particle number size distribution and Dp is the particle

diameter.
The processed aerosol data (including all size-fractionated data) was then converted to hourly

statistical analysis. This hourly averaged data was then used to calculate the daily and monthly
statistical values. The statistical analysis included average, standard deviation, median, minimum,
maximum, and percentiles (5%, 25%, 75%, and 95%) of valid number of data points, and percentage of
valid data points.

2.3. Multi-Lognormal Distribution

A particle number size distribution can be characterized with a multi-lognormal distribution
function [22]

n∑
i=1

Ni
√

2π log(σg,i)
exp

−
(
log(Dp) − log(Dpg,i)

)2

2 log2(σg,i)

, (2)
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where n is the number of individual log-normal modes and Dp is the aerosol particle diameter, and the
three log-normal parameters that characterize an individual log-normal mode i are the mode number
concentration Ni, the geometric variance σ2

g,i, and the geometric mean diameter Dpg,i.
Here we used the DO-FIT algorithm to fit the particle number size distribution. The original

DO-FIT algorithm was developed for the submicron particle size fraction [22]; here it was modified
to include the coarse mode fraction. We ran the DO-FIT algorithm to fit the particle number size
distributions (0.01–10 µm, 5-min resolution) by using a fixed number of modes, which was four.

2.4. Weather Conditions

The weather conditions were obtained from the continuous measurement performed on the
rooftop of the Department of Physics. In this study, we selected weather data for the same time period
as the aerosol measurement (i.e., 1 August 2016–31 July 2017; Figure 1).
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Figure 1. Time series of weather conditions during the measurement period (1 August 2016–31 July
2017) presented as hourly, daily, and monthly means for (a) ambient temperature, (b) relative humidity,
(c) absolute pressure, and (d) wind speed. (e) The rainfall is presented as hourly cumulative precipitation.

The weather measurement was performed with a weather station (WH-1080, Clas Ohlson: Art.no.
36-3242). The time resolution of the measurement was 5 min. The weather data consisted of ambient
temperature (−40–65 ◦C, resolution 0.1 ◦C), absolute pressure (918.7–1079.9 hPa, resolution 0.3 hPa),
relative humidity (10%–99%, resolution 1%), wind speed (1–160 km/h) and direction (divided into
16 wind sectors), and precipitation (0–9999 mm, resolution 0.3 mm below 1000 mm and 1 mm over
1000 mm).

According to the daily mean (Figure 1), the temperature was 1–32 ◦C (overall mean 18 ± 8 ◦C)
and the absolute pressure was 670–682 mmHg (overall mean 675 ± 3 mmHg). The overall average



Atmosphere 2019, 10, 710 5 of 21

relative humidity was 53 ± 21% and the mean wind speed was 5 ± 3 km/h. The cumulative rain was
about 550 mm.

3. Results and Discussion

3.1. Temporal Variation of the Particle Number Concentrations

The submicron particle number concentration (PNSub) was higher during the winter than during the
summer (Figure 2a), suggesting a seasonal variation of fine aerosol number concentrations. Based on the
monthly means, PNSub was in the range 3.3× 104–3.7× 104 cm−3 during the winter (December–February)
and 1.2 × 104–1.6 × 104 cm−3 during the summer and early autumn (June–September) (Table S1).
According to the 24-h mean number concentrations, PNSub was as high as 6.5 × 104 cm−3 and as low
as 7.7 × 103 cm−3. According to the hourly means, it was in the range 2.2 × 103–2.1 × 105 cm−3. This
seasonal variation was also confirmed by the CPC observations (Figure 2b).
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Figure 2. Time series of the (a) submicron particle number concentration, (b) comparison between the
condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) + optical particle
sizer (OPS) particle number concentrations, and (c,d) the main particle size fraction concentrations of
ultrafine particles (Dp < 0.1 µm) and accumulation mode particles (Dp 0.1–1 µm).

Looking closely at the hourly mean PNSub concentrations, we can clearly see a diurnal pattern
that was more pronounced during the winter than during the summer (Figure 3). Basically, during
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the wintertime, the boundary layer is typically shallower and the aerosol emissions will be more
concentrated in the lower atmosphere and their diurnal pattern becomes more pronounced. The main
differences between the winter and summer diurnal patterns of the PNSub concentration were observed
in the morning and late night, where the concentrations were high due to increased emissions from
traffic during commuting hours. Similar to many other urban environments, the diurnal pattern
observed in this study reflects the combustion emissions from traffic activity, which is more during
the workdays [23,24]. These two peaks are relevant for the morning and afternoon traffic rush hours,
which are similar to those noticed in most cities in the other countries [24–27].
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Further analysis on the hourly mean PNSub concentration revealed a clear weekly cycle in the
diurnal patterns with higher concentrations during the workdays (Sunday–Thursday) and lower
concentrations during the weekend (Friday–Saturday); see Figure 3a. For example, during the
weekends, the peak hourly mean PNSub concentration was below 2.7 × 104 cm−3 while during the
workdays it was higher than 3.3 × 104 cm−3. On workdays, PNSub diurnal pattern was characterized
by a high concentration peak (as high as 4.1 × 104 cm−3) during the morning traffic rush hours and
another peak (as high as 2.9 × 104 cm−3) during the afternoon. Regardless of the weekday, the lowest
PNSub was below 1.5 × 104 cm−3 (on average as low as 1 × 104 cm−3) and it was observed before the
morning, when the traffic activity was at minimum in the city.

3.2. Concentrations of Different Particle Size-Fractions

The ultrafine particle number concentration (PNUFP, diameter < 0.1 µm) fraction was about 93%
of PNSub concentration. The accumulation mode particle number concentration (PNACCU, diameter
0.1–1 µm) was about 7% of PNSub. Table S1 lists the monthly statistical values for the main particle
size fractions. Typically, the urban/suburban number concentration of fine particles is dominated by
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ultrafine particles [22,24]. This fact has been confirmed in several studies, both experimentally and
theoretically [24–35].

In general, the temporal variation of PNUFP concentration (Figures 2c, 4a and 5a) was very close to
that of PNSub concentration; this is true for the seasonal variation, diurnal pattern, and the weekly cycle
(Figures 2a and 3a,b). As for the PNACCU concentrations, the weekly cycle also showed distinguished
diurnal patterns (Figures 2d and 4b). On workdays, the diurnal pattern was characterized by two
main peaks, which had rather similar concentrations as high as 1.8 × 104 cm−3. During the weekends
(Friday–Saturday) and Thursday, the PNACCU concentration was exceptionally high during the late
evening, possibly due to increased traffic activities during leisure time in the city.
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the first channel (diameter 10–15 nm) measured with SMPS; the vertical dashed lines are aligned with
the noon time.
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The coarse mode particle number (PNCoarse) concentration had a different seasonal pattern than
that of PNSub (Figure 6). According to the monthly average, the PNCoarse was the highest during
the autumn and spring (Table S1). For instance, the monthly PNCoarse was about 2.5 and 3.8 cm−3,
respectively, in October and November. During March and April, the monthly PNCoarse was about 3.3
cm−3. As previously reported about this particle size fraction in Amman [19], it had a clear seasonal
pattern linked to the sand and dust storms, which are often occurring in the spring season, and local
dust resuspension, which are usually dominant in the autumn season. In general, the dust episodes
lasted from a few hours to several days. Based on the daily average PNCoarse, it was noticed that dust
episodes occurred with concentrations that often exceeded 2 cm−3 and concentrations as high as 14.5
cm−3. Based on the hourly average, the dust episodes increased PNCoarse to values as high as 46 cm−3.
It is already well known that the black carbon has a well-defined size distribution in the submicron
fraction. For instance, the distribution of black carbon in the ambient atmosphere, at road side, and
from diesel emissions was found to span over the particle diameter range from around 30 nm up to
a couple of hundred nanometers [36,37]. Here, we calculated the number concentrations within the
particle diameter range 30–250 nm, which is an indicator of temporal variation of atmospheric black
carbon (PNBC). As expected, this size fraction had temporal variations (Figure 4c) very close to those of
the total number concentrations but with lower concentrations (Figure 3a). It is important to mention
here that what we presented here as PNBC should not be understood as the concentration of black
carbon; we only wanted to have an insight into the temporal variation of the black carbon fraction.
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Except for Amman [17–21,38–40], particle number concentrations and size distributions has never
been reported before in urban areas in the Middle East. The previous studies were mainly about
some gaseous pollutants; PM mass concentrations, and chemical composition [41–56]. However, the
submicron particle number concentrations in Amman are less than what was reported in megacities
but still higher (sometimes comparable) than what was reported in Europe, US, and other parts in the
world as will be shown in the next paragraph.

Comparison to observations in other urban locations is not straightforward. However, we can
summarize the concentrations levels reported worldwide. Many studies reported number concentration
in many urban and suburban environments in the EU, America, Asia, and Oceania [34,57–73]. The
concentrations varied between cities, locations within the city, and time of observation reflecting the
complex behavior of urban aerosols. The observed concentrations in this study (range 6.5 × 103–7.7 ×
104 cm−3) were comparable to other urban locations in the EU, the US, and Oceania where the reported
concentrations were in the range 1 × 103–6 × 104 cm−3 [34,57–59,67–78]. We should keep in in mind
that concentrations on roads are expected to be significantly higher than what can be observed in the
ambient conditions [60–66]. Megacities exhibit the highest concentrations of air pollution. Here, we
recall the results reported for Indian, Chinese, and Colombian cities [79–83]. Apte et al. [80] reported
mean UFP concentrations in New Delhi (India) of 2.8 × 105 cm−3, which was about eight times higher
than that observed in ambient conditions in India. In Beijing and Xi’an (China), the concentrations
are comparable to what can be observed in Delhi [81,82]. In Bogota (Colombia), Betancourt et al. [83]
showed that the average fine particle number concentrations was about 2 × 105 cm−3.
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Secondary particle formation, which is often referred to as new particle formation (NPF),
is an important process affecting particle number concentrations in both remote and urban
environments [6–8,84]. The secondary particles can have a role in haze formation and influence
the urban boundary layer and heat island. The NPF process starts from oxidation of precursor vapors
and their clustering in sub-3 nm size range [84], which is outside the size range of the instrumentation
used in this study. Therefore, it was not possible to make a constructive conclusion about the
characteristics of these secondary aerosols in Amman. However, the first particle channel (diameter
10–15 nm) in the SMPS can be used as an indicator for the concentrations during NPF events, here
denoted as PNNPF.

The average diurnal pattern of PNNPF was characterized by high concentrations (0.7 × 103–1.1 ×
103 cm−3) during the daytime and a sharp peak around midday (Figure 4d). The lowest concentration
of this particle size fraction was ~320 cm−3 and it was observed between midnight and morning;
specifically, between 3 a.m. and 4 a.m.

The most interesting part of the diurnal pattern in this size fraction is the sharp peak around
midday. This peak was observed on ~34% of the measurement days (in total 110 days out of 326 days
of valid data) and its alternating occurrence can be seen in Figure 5d. The peak was often observed
around 11 a.m. with a concentration in the range 1.5 × 103–1.8 × 103 cm−3 on workdays and ~1.1 ×
103 cm−3 on weekend days. The concentration at the edge of the size distribution started to increase
around 8 a.m. and the increase was over around 1 p.m. New particle formation characterization
requires deep analysis, which is beyond the scope of this study; therefore, we will not explain this
phenomenon any further here.

3.3. Modal Structure of the Particle Number Size Distribution

For the purposes of investigating the temporal variation of the particle number concentrations, we
focused on two periods representing cold (December–February) and warm (May–August) conditions
separately (Figures S4 and S5). During the cold period, the weekly cycle of the diurnal pattern was
very distinguished with high mean concentrations on workdays and low mean concentrations on
weekends (Figure S4 and Figure 7a–f). On all weekdays, the diurnal pattern was characterized by two
peaks: morning and afternoon. The afternoon peak (highest concentration was in the range 3 × 104–3.5
× 104 cm−3) was rather similar on all weekdays; however, the first peak was higher on workdays than
on weekend days. Furthermore, the first peak tended to have higher concentrations from Monday
(~4.5 × 104 cm−3) through Thursday (~6.5 × 104 cm−3). During this cold period and on all weekdays,
the mean particle number size distributions during daytime hours had their peak diameter below 40
nm whereas during the evening it was over 40 nm (Figure S6a,b).

During the warm period, the diurnal pattern was rather similar on all weekdays (Figure S5). The
daytime mean total concentration (1 × 104–2 × 104 cm−3) during this warm period was lower than that
during the cold period (often higher than 3 × 104 cm−3). The differences are possibly explained by the
ambient conditions such as enhanced wind speed, higher temperature, and higher boundary layer
during the warm period. The secondary particle formation (i.e., NPF events) was very pronounced
during the warm period. NPF events were observed almost every day and, consequently, they can be
seen to dominate the mean particle number size distribution (Figure 7g–l). The newly formed aerosols
were clearly observed with their distinguished nucleation mode with high concentrations before the
noon (specifically between 9 a.m. and noon; Figure 7i,j). These newly formed aerosols displayed
growth until 6 p.m., when their geometric mean diameter (GMD) reached ~40 nm.
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Figure 7. Mean diurnal patterns during (a–f) a cold period (i.e., December–February) and (g–l) warm
period (i.e., May–August). Here the color subfigures (a,b,g,h) show the mean particle number size
distribution spectra (color bar represents dN/dlog(Dp) (cm−3)) and below them are plots for different
particle size fractions.

Contrary to the case during the cold period, the mean particle number size distributions at different
times of the day during the warm period had three well-separated submicron modes: nucleation,
Aitken, and accumulation, in addition to a mode with small GMD that represented the early stage of
NPF events (Figure S6c,d).
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Further analysis of the particle number size distributions with respect to the lognormal fitting
(i.e., modal structure) revealed that the mode geometric mean diameter (Dpg,i) was about 22 nm, 62
nm, 225 nm, and 2.23 µm for the nucleation mode, Aitken mode, accumulation mode, and coarse
mode, respectively (Figure 8a,b). The corresponding geometric mean values of the mode number
concentrations (Ni) were about 9.4 × 103, 3.9 × 103, 158, and 1.2 cm−3, respectively (Figure 8c–f).
The mode number concentrations of the nucleation, Aitken, and coarse modes were lognormally
distributed around their geometric mean values: 22 nm, 62 nm, and 2.3 µm; respectively. However,
the accumulation mode number concentration had two distinguished modes with concentrations
centered around 50 cm−3 (centered around Dpg = 390 nm) and 790 cm−3 (centered around Dpg = 165
nm); see also Figure 8a. As for the mode geometric variance (σpg,i), the geometric mean value was
about 1.73, 1.67, 1.54, and 1.62, respectively for the nucleation mode, Aitken mode, accumulation mode,
and coarse mode (Figure 8g–j). Interestingly, and as can be seen from Figure 8a, Dpg of the nucleation
mode reached values close to 2 nm, which is well below the cut-off diameter of the SMPS (10 nm). That
was basically due to the occurrence of NPF events when a part of the nucleation mode was below the
cut-off diameter of the SMPS, which was 10 nm. Furthermore, the smaller the Dpg, the higher the Ni
was for the nucleation mode when it occurred below 10 nm.
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3.4. Effect of Local Weather Conditions

The meteorological conditions affected the aerosol concentrations in different ways. For example,
the submicron particles were affected in a different way than coarse mode particles. Understanding
the relationship between urban aerosol concentrations and local meteorological conditions makes it
possible to develop predictive models for air pollution [85–88].

In general, the wind speed had a major influence on the particle number concentration (Figure 9).
The PNSub had a decreasing trend with respect to the wind speed (Figure 9a). For instance, the mean
PNSub was about 2.8 × 104 cm−3 at stagnant conditions and it reached below 1.2 × 104 cm−3 when the
wind speed was above 20 km/h. This indicates that most of the submicron fraction originated from
local sources such as combustion processes (e.g., traffic tailpipe emissions). However, during wind
speed 10–15 km/h, the PNSub slightly increased to about 1.2 × 104 cm−3 and then decreased again with
increasing wind speed.

The PNCoarse concentrations had a U-shaped (centered around 7.5 km/h at about 1.5 cm−3) with
respect the wind speed (Figure 9b). Below 7.5 km/h, the PNCoarse concentrations were increasing
(reaching about 2.1 cm−3 at stagnant conditions) with decreasing wind speed and above that wind
speed the PNCoarse were increasing (reaching about 5.5 cm−3 at wind speed 20 km/h) with increasing
wind speed. The left-hand side of the U-shape curve is related to local sources of dust not induced by
the wind; i.e., road dust resuspension due to traffic activities. The right-hand side of the U-shape curve
is related to local dust resuspension induced by the wind. Another reason for the increased PNCoarse
concentration at high wind speed is the sand and dust storm (SDS) via long-range transport. The
observed influence of wind speed on PNSub and PNCoarse concentrations in this study is consistent with
previous observations in other urban environments [26,87–95].

The investigation of the effect of temperature on the aerosol concentrations is very complex as
illustrated in Figure 9c,d. The mean PNSub had the highest concentrations (~3 × 104 cm−3) during
cold conditions (T < 10 ◦C) and the lowest concentrations (~1.5 × 104 cm−3) during moderate
temperature conditions (T in the range 15–25 ◦C). The mean PNSub concentrations was proportional to
the temperature, when it increased from 25 to 40 ◦C. The PNCoarse concentrations were proportional to
the temperature in the range −5–10 ◦C and it was rather constant (1–2 cm−3) when the temperature
was higher than 10 ◦C. Our results seem to be in consistent with [96], who found that aerosol
concentrations increased with relative humidity during the winter season and decreased with
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temperature. Additionally, Olivares et al. [26] reported that the increase in particle number concentration
with decreasing temperature is different for different particle size, and they also showed a distinct
correlation between number concentration and (temperature and relative humidity) with higher
concentrations during periods with low temperatures or high relative humidity.
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Figure 9. Particle number concentration dependence on the local weather conditions: (a) submicron
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4. Conclusions

In this study we aimed at characterizing the aerosol particle number size distribution. We explored
the temporal variability (diurnal, weekly, and seasonal) of the number concentrations in Amman,
Jordan. Amman can be considered as an example for Middle Eastern urban conditions. Here we
utilized a long-term measurement of particle number size distributions over a wide particle diameter
range (0.01–10 µm), which was combined from a Nano-Scanning Mobility Particle Sizer (Nano SMPS)
and an Optical Particle Sizer (OPS). We also investigated the modal structure of the aerosol population
by using the multi-lognormal distribution function (DO-FIT).

The submicron particle number concentrations (PNSub) and the coarse mode particle number
concentration (PNCoarse) had distinguished seasonal variations. Based on the monthly average, PNSub
was higher in the winter (3.3 × 104–3.7 × 104 cm−3, December–February) than in the summer and early
autumn (1.2 × 104–1.6 × 104 cm−3, June–September). The 24-h mean PNSub was in the range 6.5 ×
103–7.7 × 104 cm−3 and the hourly means was in the range 2.2 × 103–2.1 × 105 cm−3. According to the
monthly average, the PNCoarse was the highest during the autumn (3.8 cm−3, November) and spring
(3.3 cm−3, April). The PNCoarse seasonal pattern is most likely linked to the sand and dust storms (often
occurring in spring) and local dust resuspension (dominant autumn). It was clear within this study
that there is a clear influence of new particle formation (NPF) on the submicron aerosols and Sand
and Dust Storm (SDS) on coarse mode aerosols. However, these phenomena require further detailed
analysis that will be made in upcoming studies.
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The PNSub concentrations was characterized by a diurnal pattern, which was more pronounced
during the winter than during the summer. The diurnal pattern was also different between
workdays and weekends reflecting a clear weekly cycle: higher concentrations during the
workdays (Sunday–Thursday; over 3.3 × 104 cm−3) and lower concentrations during the weekend
(Friday–Saturday; below 2.7 × 104 cm−3). On workdays, PNSub diurnal pattern was characterized with
a high concentration peak (as high as 4.1 × 104 cm−3) during the morning traffic rush hours and another
peak (as high as 2.9 × 104 cm−3) during the afternoon. In general, the seasonal, weekly, and diurnal
variation of PNSub is clearly depicting the traffic activities suggesting that traffic emissions are a major
contributor to submicron aerosols. The ultrafine particle number concentration (PNUFP, diameter < 0.1
µm) fraction was about 93% of PNSub concentration whereas that of the accumulation mode particle
number concentration (PNACCU, diameter 0.1–1 µm) was about 7% of PNSub. The temporal variation of
PNUFP and PNACCU concentration was very close to that of PNSub concentration.

We investigated the modal structure of the measured aerosols (0.01–10 mm). During cold
conditions (December–February), the mean particle number size distributions during daytime hours
had peak diameters smaller than 40 nm whereas during the evening it was larger than 40 nm. During
warm conditions (May–August), the mean particle number size distributions at different times of the
day had three well-separated submicron modes: nucleation, Aitken, and accumulation in addition to a
mode with small GMD that represented the early stage of NPF events. The mode geometric mean
diameter (Dpg,i) was about 22 nm, 62 nm, 225 nm, and 2.23 µm for the nucleation mode, Aitken mode,
accumulation mode, and coarse mode, respectively. The corresponding mode number concentrations
(Ni) were about 9.4 × 103, 3.9 × 103, 158, and 1.2 cm−3, respectively. In fact, the accumulation mode
number concentration had two distinguished groups with concentrations centered around 50 cm−3

(centered around Dpg = 165 nm) and 790 cm−3 (centered around Dpg = 390 nm). Interestingly, Dpg of
the nucleation mode reached values close to 2 nm, which is well below the cut-off diameter of the
SMPS (10 nm) but still can be depicted by the DO-FIT algorithm of the multi-lognormal fitting. That
was basically due to the occurrence of NPF events.

The local meteorological conditions affected the aerosol concentrations in different ways. The
wind speed and temperature had a major impact on the aerosol concentrations. During stagnant
conditions, the mean PNSub concentration was ~2.8 × 104 cm−3 and PNCoarse concentration was ~2.1
cm−3. In general, the PNCoarse concentration had a U-shape with respect to wind speed whereas the
PNSub concentrations decreased with wind speed. The mean PNSub had the highest concentrations (~3
× 104 cm−3) during cold conditions and the lowest concentrations (~1.5 × 104 cm−3) during moderate
temperature conditions. The PNCoarse concentrations were proportional to the temperature in the range
−5–10 ◦C and they were rather constant (1–2 cm−3) when the temperature was higher than 10 ◦C.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/11/710/s1,
Figure S1: (a) A Map of Jordan showing the geographical location of Amman. (b) A Map of Amman showing the
campus of the University of Jordan (shaded area) and (c) a detailed map of the campus of the University of Jordan,
showing the sampling location (shaded area) in the middle of the campus., Figure S2: Experimental penetration
efficiency through the sampling lines (tubing and diffusion drier), Figure S3: Regression between the number
concentrations measured with the CPC versus (a) number concentration measured with the SMPS (Dp 0.01–0.42
µm) and (b) number concentration derived from the combined particle number size distribution measurements
(SMPS and OPS, Dp 0.01–1 µm), Figure S4: Weekly cycle and the diurnal pattern during a cold period (i.e., winter:
December–February): (a) mean particle number size distribution spectra and (b–c) concentrations of different
particle size fractions. The color bar represents dN/dlog (Dp) (cm−3), Figure S5: Weekly cycle and the diurnal
pattern during a cold period (i.e., summer: May–August): (a) mean particle number size distribution spectra and
(b–c) concentrations of different particle size fractions. The color bar represents dN/dlog (Dp) (cm−3), Figure S6:
Mean particle number size distributions during (a,b) cold period (i.e., winter: December–February) and (c,d) warm
period (i.e., summer: May–August). The mean distributions are shown for different times of the day on workdays
(a,c) and weekend days (b,d), Table S1: Monthly statistics for the main particle size fractions (concentrations in
units of cm−3).
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