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Abstract: Dioxins are ubiquitous and persistent environmental contaminants whose background
levels are still reason for concern. There is mounting evidence from both epidemiological
and experimental studies that paternal exposure to the most potent congener of dioxins,
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can lower the male/female ratio of offspring. Moreover,
in laboratory rodents and zebrafish, TCDD exposure of parent animals has been reported to result
in reduced reproductive performance along with other adverse effects in subsequent generations,
foremost through the paternal but also via the maternal germline. These impacts have been
accompanied by epigenetic alterations in placenta and/or sperm cells, including changes in methylation
patterns of imprinted genes. Here, we review recent key studies in this field with an attempt to provide
an up-to-date picture of the present state of knowledge to the reader. These studies provide biological
plausibility for the potential of dioxin exposure at a critical time-window to induce epigenetic
alterations across multiple generations and the significance of aryl hydrocarbon receptor (AHR) in
mediating these effects. Currently available data do not allow to accurately estimate the human
health implications of these findings, although epidemiological evidence on lowered male/female
ratio suggests that this effect may take place at realistic human exposure levels.

Keywords: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); dioxins; aryl hydrocarbon receptor;
epigenetic modifications; transgenerational effects; gender ratio; preterm birth; paternal; maternal

1. Introduction

It is a well-known fact that maternal lifestyle and exposure to environmental factors during
pregnancy are important for the health of the offspring. According to the developmental origins of health
and disease (DOHaD) concept, environmental exposures during critical windows of development may
result in functional impairment, increased risk for diseases, and other long-term health consequences
later in life [1,2]. Much less attention has been paid to the toxicological significance of parental
preconceptional exposures, especially effects mediated via the paternal germline [3,4]. However, there
is increasingly more experimental and epidemiological evidence for potentially adverse outcomes of
paternal exposures, although the current health advisories fail to emphasize the role of future fathers
for the health of their offspring.

In addition to health effects of direct parental exposures on the offspring, more data are
accumulating on health consequences of ancestral exposures in future generations. Understanding
of the biological mechanism underlying non-genetic transgenerational inheritance of toxic effects
have promoted the research of these phenomena. Paternal and transgenerational effects involve
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epigenetic mechanisms, and experimental studies have shown that environmentally induced epigenetic
modifications of gametes may result in alterations in fertility, embryonic development, and health of
the next generations [3–5].

As potent and persistent environmental contaminants, dioxins are still raising concerns on
adverse effects on human health [6]. Due to intensive research, there are data available on the
molecular mechanism of action of dioxins and their toxic effects both in experimental models and in
humans. Essentially, dioxin-induced alterations have been shown be transferred to next generations
predominantly via male germline after exposures during susceptibility windows of epigenetic
reprogramming of primordial germ cells [7]. It is therefore worthwhile to include dioxins in further
attempts to elucidate the characteristics and significance of epigenetically mediated transgenerational
effects. In a recent minireview, Brehm and Flaws [8] summarized the transgenerational effects of a
whole range of different types of endocrine disrupting chemicals on male and female reproduction.
The purpose of this mini review is to focus on available data on paternally and maternally mediated
multi- and transgenerational effects of dioxins.

1.1. Epigenetic Alterations and Environmental Factors

Epigenetics involves a variety of mechanisms that can regulate gene expression without alterations
in the underlying DNA sequence in the genome. These include DNA methylation, histone modifications,
non-coding RNAs, chromatin structure, and RNA methylations [5] (Figure 1). Epigenetic modifications
play a significant role in normal development and they also allow organisms to adapt into a changing
environment. However, altered gene expression and consequently altered phenotype may also
result in toxic effects or disease states. From a toxicological point of view, an important property of
epigenetic alterations in gametes is that when they occur in imprinted genes, they can be transmitted to
subsequent generations. Imprinted genes are methylated in either the female (maternally imprinted) or
the male (paternally imprinted) germline, and they retain this inheritance pattern in the next generation.
In mammals, some 150 imprinted genes have been identified to date [9].
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Previous studies have shown that exposure to different types of environmental and nutritional
factors, such as chemicals, high-fat diet, caloric restriction, and stress during embryogenesis may result
in adult-onset toxic effects or disease states for multiple generations [5,10–12]. These effects are called
multigenerational when there is a direct exposure of the generation to the environmental factor, and in
contrast, if the effects are transmitted in the germ line without continued involvement of direct exposure,
they are transgenerational (also called ancestral exposure). If a pregnant female is exposed, there is a
direct exposure of three generations: The female (F0 generation), the fetuses (F1 generation) and the
germline of the fetuses (prospective F2 generation). Therefore, the F3 generation is the first unexposed
generation, and effects observed in the F3 and subsequent generations are transgenerational. On the
other hand, if a male or preconception female (F0) is exposed, also the germline (F1, eggs or sperm) is
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directly exposed, and in this case F2 generation is the first unexposed generation. Similarly, in fish and
other species with external fertilization and embryonic development, exposure of parent animals (F0)
involves also exposure of the F1 germline, and F2 generation is the first unexposed generation.

Upon fertilization, there is a rapid demethylation of most of the paternal (and slower for maternal)
genome by the blastocyst stage, although e.g., imprinted genes show resistance. Soon after implantation,
a wave of global de novo methylation occurs and is maintained in somatic cells. In primordial germ
cells, however, another demethylation step (more substantial than the first one) follows, reaching its
peak at embryonic days 11.5–12.5 in mice. In the male germline, de novo methylation is then soon
initiated (at embryonic day 13.5 in mice), and the male methylome is completely established prior to
birth. In contrast, de novo methylation does not begin until after birth in the female germline, reaching
completion by postnatal day 21 in mice [13,14].

1.2. Dioxins

“Dioxins” is the common name for a large number of potent and persistent environmental
pollutants that include polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans
(PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs) (Figure 2). PCDDs and PCDFs are
formed as unwanted by-products in waste incineration at low temperatures and in industrial processes,
but PCBs have been intentionally manufactured for a variety of industrial applications between 1929
and 1970s when they were banned. Due to the persistence and ability of dioxins to biomagnify in the
food chain, humans are still exposed to them mainly via food. The most potent congener of dioxins is
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) which therefore serves as the toxicological prototype for
the entire group. Dioxins are presumed to share a common mode of action and to display a purely
additional co-effect (dose additivity). To facilitate the assessment of toxicity of dioxin mixtures, all
dioxin congeners have been assigned a toxic equivalency factor (TEF) relative to TCDD (which has the
TEF of 1). When the concentration of each congener in the mixture is multiplied by its TEF value and
the resultant products are summed up, the result shows the amount of TCDD the mixture equals to in
terms of its toxicity (TEQ).
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Figure 2. Structural formulas of dioxins. There are 75, 135, and 209 possible congeners of polychlorinated
dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls
(PCBs), respectively. For toxic PCDD/Fs (17 congeners), at least the lateral (para-) positions (2, 3, 7, 8)
have chlorine substituents. For dioxin-like polychlorinated biphenyls (DL-PCBs) (12 congeners), there
is maximally one chlorine atom in the ortho-positions (2, 2′, 6, 6′) and at least 4 chlorine atoms in the
meta-(3, 5, 3′, 5′) and para-(4, 4′) positions.
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In laboratory animals, dioxins bring about a wide variety of adaptive responses and toxic effects,
ranging from induction of xenobiotic-metabolizing enzymes and endocrine imbalances to a peculiar
wasting syndrome and carcinogenicity. The developing fetus is an exquisitely sensitive stage to
their toxicity, and exposure to low doses of dioxins at this phase can result in both morphological
and functional alterations that persist to, or only become visible at, adult age. In humans, the best
established effect is chloracne, discovered already in the late 1950s [15]. However, it is a high-dose
effect, usually requiring over 100-fold larger exposure than some of the most sensitive ones, which
typically involve perinatal exposure, such as tooth mineralization defects and a low sperm number [6].

1.3. Aryl Hydrocarbon Receptor (AHR) and the Molecular Mechanism of Action of Dioxins

1.3.1. Canonical Pathway

The AHR is a phylogenetically conserved protein that was found in mid-1970’s as an intracellular
receptor for TCDD [16–18]. Induction of the cytochrome-P450 mono-oxygenase CYP1A1 by TCDD
has subsequently been used as a model in studies elucidating the canonical pathway of AHR
action. These and molecular cloning studies [19,20] have revealed that AHR is a ligand-activated
transcription factor which functionally resembles steroid receptors, foremost glucocorticoid receptors,
but structurally belongs to a fundamentally different protein superfamily, the bHLH/PAS (basic
helix-loop-helix/Periodic-ARNT-Single-minded) proteins. Unliganded AHR resides in the cytosol in a
protein complex also comprising a dimer of HSP90 and the co-chaperones AIP (also known as XAP2)
and p23 [21]. The chaperones stabilize the AHR, maintain it in an optimal conformation for binding
ligand, and inhibit its translocation into the nucleus [21–24]. Binding of TCDD to the AHR causes a
transformation in its conformation [25,26], and the protein complex translocates into the nucleus [27].
There the AHR sheds its cytoplasmic partner proteins and dimerizes with a structurally related nuclear
protein, AHR nuclear transporter (ARNT), to bind to the DNA at specific sites called dioxin response
elements (DREs also known as xenobiotic-responsive elements (XREs) or AHR enhancers (AHREs))
in the promoter region of the Cyp1a1 gene [28]. DRE binding is followed by changes in chromatin
conformation, nucleosomal disruption over the transcribed region of the gene, and launching of mRNA
transcription [29,30]. AHR activity is terminated by nuclear export of the receptor [31,32], and by its
ubiquitin-mediated degradation by the 26S proteasome [32–34].

In addition to Cyp1a1, a number of other Phase I and Phase II biotransformation genes are
consistently upregulated by TCDD-activated AHR, constituting the bulk of the so-called “AHR battery”
of genes. In mammals, these include Cyp1a2, Cyp1b1, Cyp2s1, Cyp2a5, Aldh3a1, Gsta1, Ugt1a6 (in humans,
UGT1A8, UGT1A9, and UGT1A10) and Nqo1 [35–40]. Besides them, TCDD alters the expression of
hundreds of genes in adult mouse or rat liver, with little overlap across species [41–43]. However, the
outcome can also be repression of gene activity. In fact, mere presence of functional AHR appears to
mainly suppress gene activity in mice, whereas AHR activation by TCDD predominantly results in
upregulation of gene expression [44]. The molecular mechanism(s) for transcriptional gene repression
by the AHR are still poorly defined [45]. Moreover, among the genes induced by TCDD are at least
two whose products act as suppressors of AHR activity, thus forming a feedback loop: AHR repressor
(AHRR) and TCDD-inducible poly-ADPribose transferase (TiPARP) [46–48].

1.3.2. Non-Canonical Pathway

Although a great majority of the biological effects of TCDD and other dioxins scrutinized to
date have proven to be mediated through the canonical signaling route, the AHR has also other
modes of action. In cultured cells, TCDD may elicit inflammatory changes by rapidly increasing Ca2+

concentration followed by activation of cytosolic phospholipase A2, c-SRC kinase, and cyclo-oxygenase 2.
These effects require the AHR but not ARNT [49,50]. Alternatively, DRE binding is not involved in
the AHR-mediated repressed expression of acute-phase proteins such as serum amyloid A 3 (Saa3) in
mouse hepatocytes [51], in induction by TCDD of several early markers of inflammation in mouse liver
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and matrix metalloproteinase-1 in human bronchial cells [52,53], or in AHR-mediated suppression of
genes involved in cholesterol synthesis in mouse liver in vivo [54]. A further different non-genomic
action mechanism for TCDD-activated AHR has proven to be its functioning as a nuclear E3 ubiquitin
ligase. Thereby, it directs estrogen and androgen receptors as well as β-catenin to proteasomal
degradation [55,56].

The AHR acts in concert with other signaling systems in the cell having abundant cross-talk
with them. Such interactions have been shown to exist, for example, with mitogen-activated protein
kinases (MAPKs) [57], cyclic AMP/protein kinase A/phosphodiesterase 2A (cAMP/PKA/PDE2A) [58],
transforming growth factor β (TGF-β) [59], tumor necrosis factor-α (TNF-α) [60], retinoblastoma (pRb),
and E2 factor (E2F) [61–63], p53 [64], protein-tyrosine kinases and epidermal growth factor receptor
(EGFR) [65–67], cyclins and cyclin-dependent kinases [68], nuclear factor erythroid 2-related factor 2
(Nrf2) [37,40], nuclear factor-κB (NF-κB) [69], and the Wnt/β-catenin signaling pathway [70].

Functional interactions of the AHR have also been demonstrated with a wide variety of
other nuclear receptors including glucocorticoid, androgen, progesterone, constitutively active
(CAR), pregnane X (PXR), thyroid hormone, liver X (LXR), retinoid acid/retinoid X (RAR/RXR),
hypoxia-inducible factor-1α (HIF-1α), and peroxisome proliferator-activated receptors (PPARs) [71–73],
reviewed in [74]. The most extensive cross-talk has been reported to occur with estrogen receptors (ER),
including transcriptional repression of ER [75], disruption of the levels of the hormonal ligand [76],
interference with ER signaling through inhibitory DREs [77], recruitment of ER to AHR-regulated
genes thus diverting it from its own target genes [78], competition with ER for ARNT as a partner or
coactivator [79], and targeting of ER to proteasomal destruction as described above. However, they
may depend on cell type, promoter context, estrogen level, and receptor expression patterns [80].

Epigenetic Modifications

There is accumulating evidence of epigenetic modifications related to AHR signaling and TCDD
toxicity [81]. For example, the AHR itself is a target of epigenetic regulation, as histone acetylation
appears to be critical for the transcriptional activation of the Ahr promoter [82,83]. Epigenetic
mechanisms also largely determine the induction ratios of CYP1A1 and CYP1B1 in various human and
mouse cell lines upon TCDD treatment [84–86], and histone H3 phosphorylation at serine-10 in the
DRE of Cyp1a1 was demonstrated to be a prerequisite for the induction of Cyp1a1, Aldh3a1, and Nqo1
in TCDD-treated mouse hepatoma cells, presumably via chromatin remodeling [87].

In nuclear extracts from Hepa 1c1c7 mouse hepatoma cells, methylation of Cyp1a1 enhancer
inhibited AHR binding to this site [88]. Exposure of preimplantation embryos to TCDD tended to
decrease the expression levels of the imprinted genes H19 and Igf2; this was associated with elevated
methylation level of the H19/Igf2 imprint control region [89]. In utero exposure to TCDD on gestation
day (GD) 10 or 10.5 augmented global DNA methylation, histone acetyltransferase activity, and
acetylated H3 level compared with the control 3 days later in palatal tissue of fetal mice, possibly being
causally related to TCDD-induced cleft palate [90,91]. DNA methylation seems to play a role in other
effects of TCDD too. TCDD enhanced promoter methylation of the tumor suppressors p16(INK4a)
and p53, thereby repressing their transcription. This inhibited the senescence of primary human
keratinocytes and immortalized them [92], a finding which may bear on dioxin carcinogenicity. TCDD
also attenuated experimental colitis in mice by affecting the methylation status of CpG islands of
Foxp3 and IL-17 promoters in T cells, thereby influencing reciprocal differentiation of Tregs and Th17
cells [93].

In addition to histone modifications and DNA methylation changes, TCDD may modulate the
expression of non-coding RNAs. TCDD treatment of pregnant mice on GD 10 diminished expression
of the lncRNA H19 in fetal palate on GD 13.5 but substantially augmented it a day later in comparison
with the control. Concurrently, the expression pattern of a gene from the same imprinted locus, Igf2,
displayed a mirror image [94]. Regarding micro-RNAs, although TCDD treatment of adult rodents
affected the hepatic expression levels of only few micro-RNAs, prenatal exposure of mice to TCDD
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altered the expression levels of 78 micro-RNAs in fetal thymocytes by more than 1.5-fold [95,96].
Moreover, micro-RNA induction appears to be critical for attenuation of experimental autoimmune
encephalomyelitis by TCDD [97].

Hence, TCDD (and most likely other dioxins), acting through the AHR, is capable of bringing
about a wide variety of epigenetic changes in vivo and in vitro. When these occur in gametes, they
have the potential to adversely affect the next and even subsequent future generations. Although
the environmental emissions of dioxins, and consequently their concentrations in humans and biota,
have declined markedly since 1970s, their current levels in foodstuffs still result in exceedance of
their tolerable weekly intake level in the whole of Europe [6]. Especially sensitive targets to dioxins
have proven to be the developing fetus and the reproductive system [6]. Therefore, we review here
the data available at present on multi- and transgenerational effects of dioxins, focusing mainly on
developmental and reproductive impacts and using TCDD as a prototype of dioxins.

2. Paternally or Maternally Mediated Effects on the Next Generation

Toxicological consequences of paternal (in contrast to maternal) exposures to offspring are still
poorly characterized, and there are no comprehensive studies addressing the whole spectrum of
potential adverse effects. With regard to dioxins, findings of the currently available observational
human studies are limited to lower male/female sex ratio of offspring observed in the next generation.
In both humans and experimental animals, this effect appears to require paternal exposure. However,
in mice also reduced fertility, preterm birth, and skeletal effects have been reported after either paternal
or maternal exposure to dioxins. Human and experimental studies focusing on paternally versus
maternally mediated effects of dioxins on the next generation offspring are summarized in Table 1.
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Table 1. Summary of human and experimental studies with a focus on paternally (versus maternally) mediated effects of dioxins on the next generation offspring.
Reported changes statistically significant unless indicated nonsignificant (ns).

A. Human Studies

Population Dioxin Exposure
Effects Mediated via Paternal or Maternal Germline

Reference
Paternal Germline Maternal Germline Maternal and

Paternal Germline

Seveso population

Serum TCDD concentrations
Unexposed: ≤15 pg/g fat
Exposed: >15 pg/g fat
Fathers: median 96.5, range 2.8–26,400 pg/g fat
Mothers: median 62.8, range 6.45–12,500 pg/g fat

Male/female ratio ↓: Unexposed
55.7%, exposed 43.6%
Fathers <19 years at exposure:
Male/female ratio ↓: Unexposed
53.5%, exposed 38.2%

Male/female ratio not
changed: 54.5% (ns)

Male/female ratio ↓:
44.2% Mocarelli et al., 2000 [98]

Russian pesticide
producers

Serum TEQ concentration (mainly TCDD):
Unexposed: not reported
Exposed: median 243 pg/g fat, range 17–8520 pg/g fat

Male/female ratio ↓:
Unexposed 51%, exposed 38%;
higher exposed cohort with
median 715 pg/g fat: 23%

Male/female ratio not
changed (51%, ns)

Male/female ratio ↓:
Unexposed 51%,
exposed 40%

Ryan et al., 2002 [99]

New-Zealand
phenoxy herbicide
producers

Serum TCDD concentration back-calculated to time of offspring’s birth
(4 categories): <4, 4–20, 20–100 and ≥100 pg/g fat

Male/female ratio ↓:
TCDD <20 pg/g fat: 60%
TCDD ≥20 pg/g fat: 47%

Male/female ratio not
changed:
TCDD <20 pg/g fat:
53%
TCDD ≥20 pg/g fat:
68%, ns

No data Mannetje et al., 2017 [100]

B. Experimental Studies

Species, Strain
Dosing of TCDD Effects Mediated via Paternal or Maternal Germline

Reference
Dose Timing Paternal Germline Maternal Germline Maternal and

Paternal Germline

Rat, Sprague Dawley 0.1 µg/kg bw/day, in diet

12 months starting 90 days
prior to mating, TCDD
exposed F0 males and
females mated with
unexposed partners

Cross-mating study:
No harmful effects on pregnancy
or resorptions.

Cross-mating study:
No harmful effects on
pregnancy,
resorptions ↑

Cross-mating study:
Not examined Murray et al., 1979 [101]

Rat, Holzman

Loading dose 400 ng/kg bw +
maintenance doses 80 ng/kg bw/week
Adipose tissue TCDD conc.: F0 dams
GD 20: 1810, weaning: 840; F1 pups
PND 28: ~480 pg/g wet weight

F0 females exposed 2
weeks before mating until
end of lactation. TCDD
exposed F1 males mated
with unexposed females

F2: Male/female ratio ↓ (Ctr 52.2%,
TCDD 38%). Not examined Not examined Ikeda et al., 2005 [102]

Mouse, ICR

Loading dose 2 ng/kg bw + maintenance
doses 5 × 0.4 ng/kg/bw/week or 2000
ng/kg bw + 5 × 400 ng/kg bw/week, oral
gavage in sesame oil

5 weeks before mating,
TCDD exposed males
mated with unexposed
females

F1: Male/female ratio ↓: Ctr 53.1%,
TCDD 2/0.4: 48.8% (ns), TCDD
2000/400: 46.2%

Not examined Not examined Ishihara et al., 2007 [103]
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Table 1. Cont.

B. Experimental Studies

Species, Strain
Dosing of TCDD Effects Mediated via Paternal or Maternal Germline

Reference
Dose Timing Paternal Germline Maternal Germline Maternal and

Paternal Germline

Mouse, ICR
Loading dose 2000 ng/kg bw +
maintenance doses 5 × 400 ng/kg
bw/week, oral gavage in sesame oil

5 weeks before mating,
TCDD exposed males
mated with nonexposed
females

Y-bearing/X-bearing sperm ratio ↓
(ns, Ctr: 2.68, TCDD: 2.36), sperm
Sry DNA concentration ↓ (ns, Ctr
28.12, TCDD 25.80), male/female
ratio of 2-cell embryos ↓ (Ctr:
53.95%, TCDD 47.92%)

Not examined Not examined Ishihara et al., 2010 [104]

Mouse, C57Bl/6 10 µg/kg bw, single dose, oral gavage in
corn oil

GD 15.5
TCDD exposed F1 males
mated with unexposed
females and TCDD
exposed F1 females mated
with unexposed males

F: fertility ↓ (47% pregnant),
premature births ↑ (Ctr 20 days,
TCDD 18.5 days); placental weight
↓, pup weight ↓, placental
progesterone receptor A and B ↓
and toll-like receptor-4 mRNA
expression ↑, sensitivity to
inflammation ↑

F: fertility ↓ (39%
pregnant); premature
births ↑, pup weight
↓, placental
progesterone receptor
A and B ↓ and
toll-like receptor-4
mRNA expression ↑,
sensitivity to
inflammation ↑

F: fertility ↓ (0%
pregnant) Ding et al., 2011 [105]

Mouse, ICR Epididymal sperm exposed to 0, 0.25, 25,
or 2500 ng/mL in vitro Incubation time 1 h

Sperm motility and viability
concentration dependently ↓,
acrosome-reacted spermatozoa ↑ at
25 and 2500 ng/mL, Y-spermatozoa
survival concentration
dependently ↓ at 25 and
2500 ng/mL, fertilization and early
embryonic development in vitro ↓
at 25 and 2500 ng/mL, male/female
ratio of 2-cell embryos
dose-dependently ↓ at 0.25, 25, and
2500 ng/mL, male/female ratio of
blastocysts concentration
dependently ↓ at 25 and
2500 ng/mL

Not examined Not examined You et al., 2018 [106]
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2.1. Effects on Male/Female Sex Ratio

2.1.1. Humans

The male/female sex ratio at birth has been shown to be relatively stable in different human
populations, about 0.515 (proportion of males about 51.5% of total births) [107]. The sex ratio has
therefore been proposed to be suitable to be used as a simple and non-invasive parameter for monitoring
reproductive health of human populations [108]. Findings on male/female sex ratio in dioxin exposed
populations have raised also general interest in paternally mediated effects. The observation of
Mocarelli et al. [98] on lowered male/female sex ratio in the offspring of fathers exposed to TCDD
during the Seveso accident in 1976 was the first to emphasize the toxicological significance of paternally
mediated effects. The sex ratio [100 × boys/(boys + girls)] was lower (43.6%) if only the father was
exposed and if both father and mother were exposed (serum TCDD concentration >15 pg/g lipid), but
if only the mother was exposed, the sex ratio of offspring did not differ from the expected (Table 1A).
The lowest sex ratio was observed in the offspring of fathers who were exposed at the age of less than
19 years (38.2%) even though the time of conception had been more than 15 years after the exposure. It
seems therefore that the time before and during puberty is very sensitive to this effect and that the
effect persists several years in spite of decreasing TCDD concentrations.

A similar decrease in male/female sex ratio was also observed among children of Russian pesticide
workers who had been exposed to dioxins (mainly TCDD) during manufacture of trichlorophenol
and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) [99]. Serum dioxin concentrations analyzed several
years after occupational exposure were very similar in fathers and mothers and indicated median
concentrations of 177 pg TEQ/g lipid (range 17–1930) for the 2,4,5-T cohort and 672 pg TEQ/g lipid
(range 87–8520) for the trichlorophenol cohort. In both cohorts, the male/female sex ratio was decreased
if father alone was exposed to dioxins (sex ratios 40 and 35%, respectively) or if both father and mother
were exposed (sex ratios 41 and 39%, respectively). However, only maternal exposure resulted in the
expected sex ratio of the offspring.

More recently, lower male/female sex ratio was reported in phenoxy herbicide workers exposed
to TCDD in New Zealand [100]. In accordance with the earlier findings, lower sex ratio was associated
with paternal (47%), but not maternal exposure to TCDD, and the probability of a male birth decreased
with higher paternal serum TCDD concentration. Lower sex ratio was observed at exposure levels of
≥20 pg TCDD/g lipid.

In a systematic review published in 2011 addressing the influence of environmental and
occupational hazards on the sex ratio at birth, Terrell et al. [108] analyzed the available studies
on dioxin and PCB exposed populations. They concluded that paternal dioxin exposure is associated
with a decreased proportion of male births, but PCB exposure (including both non-dioxin-like and
dioxin-like PCBs) with a higher proportion of male births. However, in a more recent systematic review
Nieminen et al. [109] did not find evidence that parental PCB exposure would alter the sex ratio of
the offspring.

2.1.2. Laboratory Animals

In earlier experimental studies in which both parents were exposed, the sex ratio of the offspring
was not reported. In 2006, Rowlands et al. [110] re-examined the original data of the three-generation
reproduction toxicity study in rats published by Murray et al. in 1979 [101]. They did not find altered
sex ratio in any of the three generations of rats exposed continuously to TCDD (Table 2A). Contrary to
these findings, in all later studies paternal only or both paternal and maternal exposure to TCDD was
shown to lead to reduced male/female sex ratio, whereas maternal only exposure did not alter the sex
ratio (Table 1B).
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Table 2. Summary of experimental studies on multigenerational and transgenerational (F1–F3) effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on male (M) and
female (F) offspring. Reported changes statistically significant unless indicated nonsignificant (ns).

A. Rodent Studies: Both Paternal and Maternal Exposure

Species, Strain
Exposure to TCDD Effects

ReferenceDose Timing F1 Generation F2 Generation F3 Generation

Rat, Sprague Dawley 0.001, 0.01 or 0.1
µg/kg bw/day, in diet

90 days prior to
mating throughout 3
generations
(continuous exposure)

0.001 µg/kg: slightly dilated renal
pelvis ↑,
0.01 µg/kg: time from cohabitation
to delivery ↑, fertility ↓, postnatal
survival ↓,
0.1 µg/kg: fertility ↓, litter size ↓,
gestation survival index ↓
(discontinued)

0.001 µg/kg: no effects,
0.01 µg/kg: body weight ↓,
time from cohabitation to
delivery ↑, fertility ↓, litter
size ↓, gestation survival
index ↓, postnatal survival ↓

0.001 µg/kg: no effects,
0.01 µg/kg: body weight ↓, litter size ↓,
gestation survival index ↓

Murray et al., 1979 [101]

Rat, Sprague Dawley 0.001, 0.01, or 0.1
µg/kg bw/day, in diet

90 days prior to
mating throughout 3
generations

Male/female ratio not changed Male/female ratio not
changed Male/female ratio not changed

Rowlands et al., 2006
[110] (re-examination of
the Murray et al. 1979
data 99])

Rat, Sprague Dawley

100 ng/kg/day ip in
DMSO
Total dose:
700 ng/kg/day

GD 8-14

M: delayed puberty onset; testis
weight ↑, prostate and kidney
weight ↓
F: pubertal abnormalities; body
weight ↓, ovarian primordial
follicles ↓, polycystic ovary disease

Not examined

M: delayed puberty onset; kidney:
weight ↓, fluid filled cysts, glomerular
size ↓, thickening of Bowman’s capsule;
serum testosterone ↑, 50 differentially
methylated regions in sperm DNA,
atrophic prostate duct epithelium
F: early onset of puberty, kidney weight
↓, ovarian primordial follicles ↓,
polycystic ovary disease

Manikkam et al., 2012a,b
[111,112];
Nilsson et al., 2012 [113]

Rat, Sprague Dawley

100 ng/kg/day ip in
DMSO
Total dose:
700 ng/kg/day

GD 8-14

F: ovarian primordial follicles ↓,
polycystic ovary disease: small
ovarian cysts ↑ (ns), large ovarian
cysts ↑ (ns)

Not examined
F: ovarian primordial follicles ↓,
polycystic ovary disease: small ovarian
cysts ↑, large ovarian cysts ↑ (ns)

Nilsson et al., 2012 [113]

B. Rodent Studies: Paternal or Maternal Exposure

Mouse, C57Bl/6 10 µg/kg, single dose,
oral gavage in corn oil

GD 15.5
TCDD exposed F1
and F2 females mated
with unexposed
males

F: fertility ↓, premature births ↑,
progesterone receptor
immunostaining in uterus of
infertile mice ↓, sensitivity to
inflammation ↓

F: fertility ↓, premature births
↑

F: fertility ↓, premature births ↑
(in F4: progesterone receptor
immunostaining in uterus of infertile
mice ↓)

Bruner-Tran and Osteen,
2011 [114]

Mouse, C57Bl/6 10 µg/kg, single dose,
oral gavage in corn oil

GD 15.5
TCDD exposed F1
and F2 males mated
with unexposed
females

M: fertility ↓ (47% pregnant),
premature births in unexposed
partners ↑, sperm concentration ↓,
normal sperm morphology ↓,
sperm AHR expression ↑, testicular
inflammation and apoptosis ↑

M: fertility ↓ (48% pregnant),
premature births in
unexposed partners ↑, normal
sperm morphology ↓, sperm
AHR expression ↑, testicular
inflammation and apoptosis ↑

M: fertility ↓ (50% pregnant), premature
births in unexposed partners ↑, normal
sperm morphology ↓, sperm AHR
expression ↑, testicular inflammation
and apoptosis ↑

Bruner-Tran et al., 2014
[115]
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Table 2. Cont.

B. Rodent Studies: Paternal or Maternal Exposure

Mouse, C57Bl/6 10 µg/kg, single dose,
oral gavage in corn oil

GD 15.5
TCDD exposed F1
and F2 males mated
with unexposed
females

Placental weight ↓, pup weight ↓
F: 15% of genes in placenta
differentially methylated,
hypermethylation of progesterone
receptor (Pgr), hypomethylation of
insulin-like growth factor-2 (Igf2,
ns), mRNA of Pgr-b, Pgr-a/b, Igf-2,
and H19 ↓, IGR2 protein ↓, mRNA
of DNA methyltransfereases ↑
Dnmt1, Dnmt3a (ns), Dnmt3b (ns)
M: in sperm hypermethylation of
Pgr, hypomethylation of Igf2

Not examined

Placental weight ↓, pup weight ↓
F: 15% of genes in placenta differentially
methylated, hypermethylation of Pgr,
hypomethylation of Igf2 (ns).
M: in sperm hypermethylation of Pgr
(ns) and hypomethylation of Igf2 (ns),
mRNA of Pgr-b, Pgr-a/b (ns), Igf-2 (ns)
and H19 ↓, IGR2 protein ↓, mRNA of
DNA methyltransfereases ↑ Dnmt1,
Dnmt3a (ns), Dnmt3b (ns)

Ding et al., 2018 [116]

Rat, Wistar
0.1, 0.5 or 1.0 µg/kg
bw, single dose, oral
gavage in corn oil

GD15
TCDD exposed F1
and F2 males mated
with unexposed
females

M: serum testosterone ↓
(dose-dependent, only 1.0
significant), sperm transit time ↓
(ns), normal sperm morphology ↓
(0.5 and 1.0)
F: implants per corpora lutea ↓ in
unexposed partners at 0.5 and 1.0
µg/kg bw: Ctr 75.2%, 0.5 62.0%, 1.0
58.7%

F: implants per corpora lutea
↓ in unexposed partners at 0.1,
and 1.0 µg/kg bw: Ctr 61.9%,
0.1 41.1%, 0.5 50.5% (ns), 1.0
43.6%

F: implants per corpora lutea ↓ in
unexposed partners at 0.1, 0.5 and 1.0
µg/kg bw: Ctr 82.4%, 0.1 50.7%, 0.5
56.6%, 1.0 31.8%

Sanabria et al., 2016 [117]

C. Zebrafish Studies

F0 Generation F1 Generation F2 Generation

Zebrafish 20 µg/kg in diet Parental exposure
47 days

No effect on global DNA
methylation in liver, CYP 1A1
↑

No effect on global DNA methylation in
liver Olsvik et al., 2014 [118]

Zebrafish
AB strain

50 pg/mL in water
(dissolved in DMSO)

1 h at week 3 and
week 7 post
fertilization

Male/female ratio ↓ (Ctr 71.1%,
TCDD 55.5%)
F: atretic ovarian follicles (65.5%),
egg release ↓, fertilization success ↓
Skeletal abnormalities (82.4%)
axial kinks (54.5%)
cranial malformations (46.9%)
jaw malformations (34.5%)

Male/female ratio ↓ (Ctr
70.8%, TCDD 59.3%)
F: atretic ovarian follicles
(46.1%), egg release ↓
M: elicitation of egg release ↓,
fertilization success ↓
Skeletal abnormalities (34.9%)
axial kinks (28.1%)
cranial malformations (11.7%)
jaw malformations (3.7%, ns)

Male/female ratio ↓ (Ctr 78.7%, TCDD
61.4%)
F: atretic ovarian follicles (7.7%, ns)
M: elicitation of egg release ↓,
fertilization success ↓
Skeletal abnormalities (22.1%)
axial kinks (17.3%)
cranial malformations (7.8%, ns)
jaw malformations (0.9%, ns)

Baker et al., 2014 [119]

Zebrafish
AB strain

50 pg/mL in water
(dissolved in DMSO)

1 h at week 3 and
week 7 post
fertilization

M: in testis 722 differentially
expressed genes

M: in seminiferous tubules
spermatogonia ↑,
spermatozoa ↓, in testis 634
differentially expressed genes

M: in seminiferous tubules spermatozoa
↓ (ns), in testis 1105 differentially
expressed genes

Meyer et al., 2018 [120]
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Significantly reduced male/female sex ratio (38%) was reported in the offspring (F2 generation)
of male rats exposed to TCDD in utero and lactationally (F1 generation) and mated with unexposed
females [102]. Maternal TCDD exposure from 2 weeks prior to mating until weaning (total dose
~1050 ng/kg) did not affect F1 generation mortality, litter size, sex ratio, or sperm numbers, but body
weight at weaning and the ventral prostate weight were decreased. In F2 generation of paternal
germline, no other effects except decreased sex ratio were reported (maternal germline was not studied).

In another study, male mice were exposed to TCDD for 5 weeks using a loading dose/maintenance
dose regimen (total doses 0, 4, or 4000 ng/kg bw) prior to mating with unexposed females [103].
Male/female ratio of the offspring (F1 generation) was dose-dependently decreased (48.8 and 46.2%,
respectively). With the exception of increased liver weight in some high dose animals, no effects
on body or organ weights, testicular histopathology, or epididymal sperm numbers were observed.
Further studies from the same laboratory showed that at the higher dose-level, the epididymal sperm
concentration, sperm motility, and the ratio of Y-bearing/X-bearing epididymal sperm were only slightly
but nonsignificantly decreased [104]. However, the sex ratio of the 2-cell embryos was significantly
decreased (Ctr: 53.95%, TCDD 47.92%), but the litter size was not affected. The magnitude of decrease
was very similar with that observed at birth in the previous study at the same dose-level and without
altered litter size. This suggests that the sex ratio of the offspring is decreased at fertilization resulting in
a decreased sex ratio at birth, and that this decrease is mediated by reduced fertility of Y-bearing sperm.

When epididymal mouse sperm was exposed to TCDD for 1 h in vitro, sperm motility and viability
were decreased concentration-dependently at 25 and 2500 ng/mL [106]. Interestingly, compared to
the X-spermatozoa, the life-span of Y-spermatozoa was also decreased at the same concentrations.
In an in vitro fertilization experiment, fertilization and embryonic development were decreased at the
same concentrations. Although the proportion Y-spermatozoa was not affected at the lowest TCDD
concentration of 0.25 ng/mL, the sex ratio of 2-cell embryos was significantly decreased already at
this concentration and the decrease was concentration dependent. Based on these studies, it can be
concluded that TCDD treatment of sperm in vitro results in decreased viability of Y-spermatozoa
leading to decreased proportion of Y-spermatozoa. In addition, Y-spermatozoa have further a lower
capability to fertilize oocytes than X-spermatozoa, and these changes are likely to contribute to the
decreased male/female sex ratio after paternal dioxin exposure.

In addition to mammals, the effect of TCDD on sex ratio of offspring has also been studied in
zebrafish (Table 2B). Baker et al. [119] exposed immature juvenile zebrafish to 50 pg/mL TCDD in
water for 1 h at the age of 3 and 7 weeks post fertilization (F0 generation, both males and females were
exposed). Male/female ratio was decreased in all studied generations (F0, F1 and F2), but the effect
attenuated with time: F0 55.5%, F1 59.3% and F2 61.4% (normal male/female ratio in zebrafish is 67%).

2.2. Effects on Pregnancy Outcome

Toxicological significance of paternal and maternal exposure on pregnancy outcomes was
compared in mice exposed in utero and lactationally to TCDD [105]. Pregnant female mice
(F0 generation) were given a single oral dose of 10 µg TCDD /kg bw on GD 15.5 (organogenesis
completed) and the in utero and lactationally exposed F1 generation animals were mated with untreated
mice of the opposite sex. The length of pregnancy of the F0 generation was not affected by TCDD
treatment. In utero and lactationally exposed F1 males had reduced fertility (only 47% of their partners
became pregnant) and, interestingly, gestational length of their unexposed partners was reduced (Ctr
20 days, TCDD 18.5 days). Also placental weights and pup weights were decreased and the mRNA
expression of progesterone receptor (PGR) A and B was decreased and that of toll-like receptor 4
(TLR4) increased. Quite similarly, TCDD exposed F1 generation females mated with unexposed males
had also reduced fertility (39% pregnant), preterm births (gestational length 18.5 days), reduced pup
weight (but only nonsignificantly decreased placental weight), and the mRNA expression of PGR A
and B decreased and that of TLR4 increased. None of the TCDD exposed F1 females mated with TCDD
exposed F1 males became pregnant. At the end of pregnancy, decreased progesterone action promotes
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parturition and has been linked to preterm birth both in humans and in mice [121]. TCDD-induced
preterm births are the likely consequence of decreased placental expression of PGRs together with
TLR4 mediated increase in inflammatory cytokine production. The outcome of this study emphasizes
the significant role of preconception paternal exposure in pregnancy outcomes of unexposed partners.
This is in accordance with the fact that paternally derived genes play a significant role in placental
development [122].

3. Paternally or Maternally Mediated Multigenerational and Transgenerational Effects

Experimental studies reporting paternally or maternally mediated effects on multiple generations
(F1–F3) are summarized in Table 2. In a subsequent study from the same laboratory, Bruner-Tran and
Osteen [114] also reported decreased fertility and increased incidence of preterm births in in utero
and lactationally exposed F1 female mice mated with unexposed males. Interestingly, without further
TCDD exposure reduced fertility (44, 43, and 55% pregnant in F1, F2, and F3 generations, respectively)
and preterm births (and consequently increased neonatal mortality) were also observed in F2 and F3
generations (gestation length typically 17–18 days in F1, F2, and F3 generations; 20 days in controls).
In accordance with earlier findings, immunostaining of PGR A and B isoforms was greatly reduced in
uteri of infertile F1 and F4 females. For comparison, paternally mediated transgenerational effects on
pregnancy outcome were demonstrated in a further study in which TCDD lineage F1 and F2 male mice
were mated with unexposed females and the pregnancy outcome monitored in F1–F3 generations [115].
Fertility was decreased in F1–F3 generations (47, 48, and 50% pregnant in F1, F2, and F3 generations,
respectively). Sperm morphology was within normal limits in all generations, but sperm concentration
was decreased by about 35% in F1 generation. Preterm births were increased in all generations
(average gestation length 18.6, 18.8, and 19 days in F1, F2, and F3 generations, respectively; 20 days in
controls). AHR expression in spermatocytes was increased in all three generations. Accordingly, its
increased expression has been associated with infertility in humans [123] and with toxic exposures
in mice [124]. In addition, males of all three generations exhibited a hyper-inflammatory testicular
phenotype characterized by loss of prostaglandin dehydrogenase, a trend for increased testicular
prostaglandin E2, increased apoptosis of developing spermatocytes, and increased number of resident
macrophages. There was also a trend towards decreased serum free testosterone levels.

The changes observed in the reproductive system of F3 males strongly suggest that epigenetic
modifications are mediating the effects observed within paternal germline. In order to study further
the effects on sperm and placental epigenome, a global methylation focused microarray analysis
was carried out on the paternal germline F1 and F3 generations [116]. The analysis identified
altogether 2171 differentially methylated regions. In F1 and F3 generation placentae, 15% of genes were
differentially methylated, and the promoter region of Pgr was hypermethylated and that of insulin-like
growth factor-2 (Igf2) hypomethylated. The mRNA expression of Pgr and Igf2 was decreased, and
expression of IGF2 protein was also decreased. Expression of PGR protein was decreased in junctional
and labyrinth zones of placentae. Igf2 is a paternally expressed imprinted gene that promotes fetal
growth. Hypomethylation of Igf2 is usually linked with decreased mRNA expression of this gene. It is
noteworthy that both placental weight and pup weight were decreased in both F1 and F3 generations
demonstrating intrauterine growth restriction. This study showed that in utero and lactational dioxin
exposure of male mice may modify placental epigenome resulting in placental dysfunction and adverse
pregnancy outcomes in unexposed mating partners. Importantly, these adverse outcomes may be
inherited transgenerationally to unexposed generations. Since gestation length was shortened even
more if females were exposed, placental dysfunction plausibly contributes to the transgenerational
preterm births recorded after either ancestor or ancestress exposure in mice.

Effects of a single oral dose of 0.1, 0.5, or 1.0 µg TCDD/kg bw given to pregnant rats on GD 15 were
studied in the paternal germline offspring in F1–F3 generations by Sanabria et al. [117]. F1 generation
males exposed in utero and lactationally to TCDD were mated with unexposed females to obtain the
F2 and further the F3 generation. Serum testosterone levels and the transit time of sperm through
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the epididymis were dose-dependently decreased in F1 males (significant only at 1.0 µg/kg bw; for
sperm transit time p = 0.07). Also, the proportion of morphologically normal sperm was decreased
dose-dependently in F1 males at 0.5 and 1.0 µg/kg bw. The most significant finding manifest in all three
generations was a decreased proportion of implantations per corpus luteum (significant decreases: F1
at 0.5 and 1.0 µg/kg bw, F2 at 0.1 µg/kg bw, F3 at 0.1, 0.5, and 1.0 µg/kg bw; Table 2B).

Effects of paternal and maternal TCDD exposure on egg release and egg fertilization in F1
and F2 zebrafish generations were compared in the above mentioned (see Section 2.1.2) study by
Baker et al. [119]. When TCDD lineage F1 males were mated with unexposed females, the elicitation of
egg release and egg fertilization success were decreased both in F1 and, slightly less, in F2 generation.
When TCDD lineage F1 females were mated with untreated males, egg release was also decreased,
but less than after paternal exposure, and the decrease did not achieve statistical significance in
F2 generation. Maternal exposure did not affect the egg fertilization. Based on these findings,
alterations in TCDD lineage males are largely responsible for decreased egg release and fertilization.
In a subsequent study from the same laboratory, Meyer et al. [120] identified numerous differentially
methylated genes in the testis of males of all three generations. In seminiferous tubules of F1 males,
the number of spermatogonia was increased, but the number of spermatozoa decreased. In addition,
Baker et al. [119] reported that exposure of F0 generation resulted in atretic ovarian follicles in females
of F0, F1, and F2 generation with decreasing frequency (nonsignificant in F2 generation). Similarly,
skeletal abnormalities including axial kinks, cranial malformations, and jaw malformations, were also
observed in all three generations with decreasing frequency. This study showed that TCDD induces
paternally mediated and transgenerational effects that include lowered male/female sex ratio (see
Section 2.1), reproductive dysfunction, reduced fertility, and skeletal malformations. These effects
seem to be phenotypically at least partly similar in fish and mammals.

4. Paternally and Maternally Mediated Multigenerational and Transgenerational Effects

Studies of Manikkam et al. [111] described TCDD-induced epigenetically inherited transgenerational
adult-onset adverse effects together with differentially methylated regions in sperm DNA. Pregnant
female rats were exposed to 100 ng TCDD/kg bw/day i.p. (total dose 700 ng/kg bw) on GDs 8–14
covering the erasure and de novo methylation of male primordial germ cells. In subsequent generations
(F1 and F2), animals were mated with the opposite sex of the same treatment group (control or TCDD).
Studies on F1 and F3 generations showed delayed onset of puberty in males, pubertal anomalies in F1
females and early onset of puberty in F3 females. Prostate and kidney weights were decreased in F1
males and kidney changes characterized by fluid filled cysts, decreased glomerular size, and thickening
of Bowman’s capsule in F3 males. In addition, F3 males had atrophic prostate duct epithelium as a
sign of prostate disease. Sperm number or motility were not affected by the treatment. The occurrence
of testis abnormalities did also not differ in a statistically significant manner in F1 or F3 generations.
In females, polycystic ovary disease was more frequent in the F1 and F3 progeny of dioxin-treated
F0 rats than in their control counterparts. Moreover, total disease incidence was elevated in the
TCDD-lineage in both F1 and F3 generations in females but only in F1 males. An additional analysis of
F3 generation sperm epigenome revealed 50 differentially methylated regions between TCDD and
control lineages, but these were not predominant in specific cellular pathways [112]. Thus, exposure
of rat dams to a relatively high dosage of TCDD during a critical time-window of development may
bring about adverse transgenerational adult-onset health effects in both female and male descendants.
These are accompanied by sperm epimutations, but the nature of the relationship is not clear.

TCDD-induced epigenetic transgenerational ovarian disease was further studied by
Nilsson et al. [113]. The phenotype of polycystic ovary disease observed in F1 and F3 females
was characterized by an increased number of small and large ovarian cysts (statistically significant
only for small cysts in F3 females). Furthermore, the number of primordial follicles was significantly
reduced in both F1 and F3 generation in the TCDD lineage, whereas developing preantral or antral
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follicles were not affected. Thus, the resting pool of oocytes was transgenerationally diminished and
the normal follicle development disturbed by TCDD exposure.

5. Conclusions and Future Prospects

In humans, rodents and zebrafish, paternal (or paternal and maternal) exposure to TCDD has
been reported to result in a lowered male/female ratio in offspring. Additional in vitro studies on
mouse sperm suggest that this could be at least partly due to TCDD-induced reduction in survival and
fertilization capability of spermatozoa carrying the Y chromosome. Male mice exposed perinatally to
TCDD and mated with unexposed females have diminished fertility and the gestational length of their
partners is shortened, possibly because of lowered PGR but elevated TLR4 abundance (shown for their
mRNAs) in placenta. Similarly, in utero and lactational exposure to TCDD of either male or female F1
mice can reduce fertility and the length of gestation at least up to F3 generation. These phenomena are
associated with a decreased abundance of PGR isoforms A and B in uterus in the case of maternal
germline and increased AHR expression in spermatocytes for paternal germline. In the latter case,
a hyper-inflammatory testicular phenotype has also been recorded. Moreover, paternally mediated
effects have been found to be accompanied by a large number of differentially methylated regions in
the DNA of sperm and placenta.

In rats, paternal germline has exhibited a decreased proportion of implantations per corpus
luteum after TCDD exposure. In an experimental setting where descendants of dioxin exposed F0 rat
dams are mated with one another, a number of abnormalities have been noticed in the F3 generation,
including elevated total disease incidence and a reduced number of ovarian primordial follicles.

In zebrafish, egg release and egg fertilization have proven to be transgenerationally impaired
after TCDD exposure. These studies also reported skeletal effects of TCDD up to the F2 generation.

Most of the studies assessing the mode of inheritance of TCDD-induced transgenerational impacts
have so far assessed paternal germline effects alone. In those cases where these have been contrasted
with maternal effects (in mice and zebrafish), the outcomes have proven to be qualitatively similar.
However, at least in zebrafish, the magnitude of the effects was larger in the case of paternal germline.

The available data provide the proof of principle on the potential of dioxins to induce epigenetic
alterations and related toxic effects across multiple generations. On the other hand, the significance
of these findings for human health is difficult to assess as there is too little information at present on
the dose-responses of the multi- and transgenerational effects of TCDD. At present, it appears that
these phenomena require fairly high exposures (close to the doses causing teratogenic manifestations).
The available rodent studies have been carried out at dose levels between 0.1 and 10 µg/kg bw that
are associated with dioxin body burdens clearly above the current human background exposure
levels [6,125]. The most sensitive effect reported so far was the decreased proportion of implantations
per corpus luteum in the rat offspring of F2 and F3 generations at 0.1 µg/kg bw [117]. However, it
is important to note that the human studies on lowered male/female ratio in the offspring of TCDD
exposed fathers suggest that this effect may take place at relatively low exposure level, starting at
serum TCDD concentrations >15 pg/g fat [98] or ≥20 pg/g fat [100].

Transgenerational impacts of TCDD have emerged in conjunction with cellular epigenetic
modifications, including altered methylation patterns of imprinted genes. Verifying whether this
is causal relationship and pinpointing the key genes thus affected require further studies in the
future. Likewise, the indispensable role of the AHR in these phenomena awaits formal verification
using AHR-deficient animals. The molecular mechanisms upon AHR binding that lead to epigenetic
alterations and the capability of other AHR agonists to cause them and transgenerational health effects
will be further important research topics. Finally, with regard to the DoHaD concept the human health
significance of the dioxin-induced preconceptional paternally mediated and transgenerational effects
should be addressed in future studies.
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