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Abstract
We investigate temperature uncertainty of Coulomb blockade thermometer (CBT) arising from
inevitable non-uniformities in tunnel junction arrays. The corrections are proportional to the
junction resistance variance in the linear operation regime and this result holds approximately
also beyond this originally studied high temperature range. We present both analytical
and numerical results, and discuss briefly their implications on achievable uniformity based on
state-of-the-art fabrication of sensors.

Keywords: thermometry, Coulomb blockade, non-uniformity errors, low temperature

(Some figures may appear in colour only in the online journal)

1. Introduction

The Coulomb blockade thermometer (CBT) [1] has proven
to provide calibration-free thermometry over a wide range
from sub-mK up to 70 K [2–7] temperatures T, i.e., over five
decades. Its operation is based on bias voltage V dependent
conductance G of an array of tunnel junctions under the com-
petition between single-electron charging effects (energy scale
EC) and thermal energy kBT. The ideal operation range is when
EC � kBT; in this linear regime a universal relation [1]

V1/2 � 5.439NkBT/e (1)

holds, where V1/2 is the full width at half-minimum of the con-
ductance dip around zero bias voltage and N is the number of
junctions in series in the array. One may design the thermome-
ter sensor such that the above relation between EC and kBT
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is favorable in the temperature range of interest by engineer-
ing the parameters in the array accordingly since EC, being
the charging energy, is inversely proportional to the effec-
tive capacitance which is controlled by physical dimensions.
Equation (1) is a basis for primary thermometry (calibration-
free). When the condition EC � kBT is compromised, the CBT
still yields calibration free thermometry down to much lower
temperatures, but with a modified relation between V1/2 and T
to be discussed below.

Equation (1) and its low temperature versions [10] are
strictly valid only for a fully uniform array, where all junction
resistances RT,i are equal through the sensor. Figure 1 (top)
shows schematically an array of junctions whose sizes vary
along the chain. A way of circumventing the issue of non-
uniformity induced uncertainty is to measure a single junction
embedded in a four probe configuration within junction arrays.
This has been analyzed and experimentally demonstrated in
[8], and such a configuration provides a partial solution to
the problem. In fact it yields a fully accurate thermometer in
this respect, but the other side of the coin is that the signal
in terms of voltage V1/2 is small for such a set-up since
N = 1 in equation (1). Fortunately the effect of non-uniformity
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Figure 1. Conceptual illustration of a non-uniform CBT array in the top panel. Two types of CBT are presented in the lower panels where
the ground capacitance Cg of each island is either dominating (gCBT on the left) or negligible (jCBT on the right) with respect to junction
capacitances Ci.

Figure 2. Graphical illustration of how we find correction to
half-width for non-uniform arrays and low T corrections. Blue line
(deeper and narrower) represents the reference curve and the red one
the actual conductance.

is weak in ordinary CBT arrays. However it poses a source
of fundamental uncertainty, which is the topic of this arti-
cle. Some aspects of the problem have been addressed previ-
ously in references [9–11]. An experimental investigation of
uncertainties in a CBT measurement itself was presented in
reference [12].

In this work we present a comprehensive picture of the non-
uniformity induced uncertainty in Coulomb blockade ther-
mometry. We discuss two different device classes, (i) the ones
where junction resistances vary along the array but capaci-
tance variances are negligible, recently coined gCBT [2], and
(ii) those where both resistances and capacitances vary but
such that their product remains constant for each element com-
posed of a junction and island between the junctions, jCBT.
These two types of CBT are shown schematically in figure 1.
Pure capacitance variations with uniform resistances do not
lead to temperature corrections in the linear regime, but only
to renormalization of charging energy. Devices of type (i)
are the ones commonly employed in very low temperature
thermometry [2, 3, 13], where self-capacitance of the islands
between junctions is intentionally increased to bring EC down
in order to satisfy the conditions discussed above down to low
temperatures. On the other hand class (ii) refers to sensors
in higher temperature regimes where junction capacitances
dominate over self-capacitances of the islands. We take the
product of resistance and capacitance to be constant, since
the former one is inversely proportional to the overlap area
of the junction, whereas the latter one is proportional to it.

Naturally analysis is possible also for arrays that are inter-
mediate between these two classes, and their properties can
be addressed at least numerically. The general observation is
that the non-uniformity induced uncertainty is proportional to
the variance of the parameters in all the situations that we
consider. Secondly, we find that the analytical results in the
linear regime EC � kBT for the correction in temperature read-
ing stay approximately valid also far beyond this domain,
based on our numerical results and an analytic calculation to
be presented below. Note that all these results apply also for
a CBT sensor consisting of several parallel arrays, as com-
monly used in the experiments. This is because the uncertainty
depends only on the variance of the parameters of the sensor.
Another point to note here is that we refer to the low and high
temperature regimes meaning either absolute temperature or
alternatively that with respect to EC, depending on the context.

2. Linear regime

We first consider a CBT array of junctions in the linear regime
EC � kBT. The conductance Gi of junction i normalized by its
inverse tunnel resistance GT,i = 1/RT,i can be written as [8, 9]

Gi/GT,i = 1 − δi

kBT
g(vi), (2)

where vi = eVi/kBT is the voltage Vi across junction i in nor-
malized form, δi arises from the capacitance matrix of the sur-
rounding circuit (not dependent on resistances of the junctions)
and g(x) = ex[ex(x − 2) + x + 2]/(ex − 1)3. Based on current
conservation through the array and noting that the bias voltage
across the whole array is V =

∑
i Vi, we find the normalized

conductance of the array, G(V) up to linear order in (kBT)−1 as

G(V)/GT = 1 −
∑

i

RT,i

RΣ

δi

kBT
g

(
RT,i

RΣ

eV
kBT

)
. (3)

Here RΣ =
∑

i RT,i ≡ G−1
T is the total resistance of the

array. According to this expression, only the resistance non-
uniformity affects the absolute temperature reading of the CBT
determined by the half-width of the conductance dip, whereas
capacitance non-uniformity alone is ineffective.

2
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Figure 3. Non-uniformity induced corrections in temperature reading of gCBT. (a) The predicted −δT/T vs 〈ρ2〉 for three different array
lengths N. The solid line is the analytical result of equation (7) valid for all N, and the symbols are calculated numerically with uN = 0.3.
(b) The slope κ(−δT/T ≡ κ〈ρ2〉) of numerically calculated result of (a) as a function of uN indicating that the 〈ρ2〉 dependent correction is
close to that in the linear regime (horizontal line) even up to uN ∼ 1. The dashed line with a negative slope for N = 2 is the result of the
analytical calculation from equation (26). (c) Numerical results for non-uniformity induced −δT/T, based on the universal conductance in
the high temperature (linear) approximation, equation (3).

We expand equation (2) up to second order in the relative
deviations of junction resistances, ρi = RT,i/Rave − 1, where
Rave = RΣ/N. We consider two relevant cases (i, gCBT) and
(ii, jCBT) described above. Below we normalize all the volt-
ages such that v = eV/(NkBT ) and v1/2 = eV1/2/(NkBT ), and
denote by 〈ρ2〉 the variance of ρi.

To obtain the corrections in temperature in general, we
can write the following equations linking the actual halfwidth
v1/2 to v1/2,0 = 2.719 59 . . . , the half-width point of a uni-
form array from equation (3), i.e. that of the reference curve
(see figure 2), as

G(v1/2)
GT

=
G(0)(v1/2,0)

GT
+ γ/2

G(v1/2)
GT

=
G(v1/2,0)

GT
+

G′(v1/2,0)
GT

(v1/2 − v1/2,0). (4)

Here γ is the change of the depth of the conductance
curve with respect to the reference one with superscript (0)
as shown in figure 2. The correction in temperature reading
is then δT/T = δv1/2/v1/2,0 where δ v1/2 ≡ v1/2 − v1/2,0. Here
and below the measured temperatures based on the half-width
of the conductance dip need to be corrected by the factor
(1 + δT/T )−1 to obtain the actual temperature.

(i) gCBT: we find by expanding equation (3) for small 〈ρ2〉
that

G(v)/GT = 1 − uNg(v) − uN

[
g′(v)v +

1
2

g′′(v)v2

]
〈ρ2〉, (5)

where uN ≡ δi/kBT is a constant and prime denotes derivative
with respect to v. Using the argument in equation (4) we then

find that for the same value of conductance (γ = 0 here), the
bias voltage shifts due to resistance non-uniformity as

δv1/2 = −
[
v1/2,0 +

1
2

g′′(v1/2,0)
g′(v1/2,0)

v2
1/2,0

]
〈ρ2〉. (6)

The correction in temperature reading is then

δT/T � −
[

1 +
1
2

g′′(v1/2,0)
g′(v1/2,0)

v1/2,0

]
〈ρ2〉 � −0.734 〈ρ2〉,

(7)
where the last form arises from v1/2,0 � 2.7196 in the lin-
ear regime, equation (3). Figure 3 presents by solid line
the analytical result of equation (7) which is valid for all
values of N.

(ii) jCBT: in this case both the width and the depth of the
conductance dip are changing. According to [8, 9], we have
for the capacitive term in equation (2)

δi/e2 = C−1
i−1,i−1 + C−1

i,i − 2C−1
i,i−1. (8)

Ignoring the island capacitance fully, the elements on the right-
hand side of equation (8) read [15]

C−1
k,l = C̃

min(k,l)∑
m=1

1
Cm

N∑
max(k,l)+1

1
Cn

, (9)

where Ci is the capacitance of junction i and C̃−1 =∑N
k=1 Ck

−1. If we define C such that RT,iCi = RaveC, we have
C̃ = C/N and

δi

kBT
=

e2

kBTC

[
RT,i

Rave
−
(

RT,i

Rave

)2

/N

]
. (10)

3
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Figure 4. Non-uniformity induced corrections in temperature reading of jCBT. (a) The predicted −δT/T vs 〈ρ2〉 for three different array
lengths N. The solid lines are the analytical results of equation (13), and the symbols are calculated numerically with uN = 0.3. The dashed
lines are the linear fits to the latter data. (b) The slope κ, where −δT/T = κ〈ρ2〉, of numerically calculated results from (a) as a function of
uN indicating that the 〈ρ2〉 dependent result is close to that in the linear regime (horizontal lines, N = 10, 3, 2 from top to bottom) even up to
uN ∼ 1. The dashed line with a small negative slope for N = 2 is the result of the analytical calculation from equation (26). (c) Numerical
results for non-uniformity induced −δT/T, based on the linear conductance in the high temperature approximation, equation (3).

With similar approximations as above, we find that the zero
bias v = 0 conductance has the value

G(0)/GT = 1 − e2

6kBTC
N − 1

N

[
1 +

N − 3
N − 1

〈ρ2〉
]
. (11)

At finite v we have

G(v)/GT = 1 − e2

kBTC

{
N − 1

N
g(v) +

[
N − 3

N
g(v)

+
2N − 3

N
vg′(v) +

N − 1
2N

v2g′′(v)

]
〈ρ2〉

}
.

(12)

Note that uN = e2〈1/C〉
kBT

N−1
N in this case, where 〈1/C〉 is

the average of inverse junction capacitances Ci. Again using
equation (4) we find

δT/T � −
[

2N − 3
N − 1

+
1
2

g′′(v1/2,0)
g′(v1/2,0)

v1/2,0

]
〈ρ2〉

� −
[

2N − 3
N − 1

− 0.265 945

]
〈ρ2〉. (13)

Here the last step arises since
g′′(v1/2,0)

2g′(v1/2,0)v1/2,0 � −0.265 945.

Unlike for gCBT in (i), here the correction depends on N. We
note that the results of (i) and (ii) are equal for N = 2 as they
should.

Figure 4 presents by solid lines the analytical results on non-
uniformity induced corrections in jCBT for different values of
N. Equations (7) and (13) are the main results of the paper in
the linear regime.

3. Beyond the linear regime

To obtain the linear in uN results above, the actual charge dis-
tribution on the islands plays no role. This, however, is not the
case at low relative temperatures, kBT � EC. To see how the
conductance given by equation (3) gets modified in this case,
in particular to find the corresponding expression up to u2

N , we
take the simple two-junction device. In the following we write
u ≡ u2 for brevity. First we find the charge distribution, i.e.
the occupation probability σ(n) for different electron numbers
on the island, which is governed by the solution of the master
equation

σ̇(n) =
[
Γ+

1 (n − 1) + Γ−
2 (n − 1)

]
σ(n − 1) (14)

+
[
Γ−

1 (n + 1) + Γ+
2 (n + 1)

]
σ(n + 1)

−
[
Γ+

1 (n) + Γ−
1 (n) + Γ+

2 (n) + Γ−
2 (n)

]
σ(n)

in steady state σ̇(n) = 0. Here Γ±
i (m) is the tunneling rate in

junction i = 1, 2 in either forward (+) or backward (−) direc-
tion with m extra electrons on the island. The key idea here
is to assume that the distribution in the thermometer is broad
such that the occupationσ(n) is a smooth function of n, extend-
ing over many possible values of n such that it can be taken
as a continuous variable [10]. In fact the variance of the elec-
tron number (at zero bias voltage) is simply 〈δn2〉 = 1/u thus
becoming very wide for EC � kBT. Expanding equation (14)
in n yields

[(Γ+
2 (n) − Γ−

2 (n)) − (Γ+
1 (n) − Γ−

1 (n))]σ(n) (15)

+
∂

∂n

{
[Γ+

1 (n) + Γ−
1 (n) + Γ+

2 (n) + Γ−
2 (n)]σ(n)

}
= 0.

4
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To obtain the ratesΓ±
i (n) we write the energy cost of each event

for the system biased at voltage V as δF±
i = ±eVi + δE±

i (n),
where Vi = (Ri/RΣ)V is the voltage drop across each junction
with resistance Ri, and RΣ = R1 + R2. δE±

i (n) is the change
of the charging energy EC = (ne)2/(2CΣ) ignoring the offset
charges (validated by the broad distribution in n). Here CΣ ≡
C1 + C2. Normalizing the energies as δ f ±i ≡ δF±

i /(kBT), we
can write for each event then δ f +1 (n) = v1 + δε+1 , δ f −1 (n) =
−v1 + δε−1 , δ f +2 (n) = v2 + δε+2 , δ f −2 (n) = −v2 + δε−2 , where
vi = eVi/(kBT), δε+1 = δε−2 = (1/2 + n)u and δε−1 = δε+2 =
(1/2 − n)u. The rates themselves are given by the standard
expression for normal metal junctions [15] as

Γ±
i (n) =

1
e2Ri

δF±
i (n)

1 − e−δF±
i (n)/(kBT)

. (16)

Our strategy is to expand the rates in powers of u to obtain the
results for the thermometer in its working regime u � 1. In the
leading order in u we then obtain

[Γ+
2 (n) − Γ−

2 (n)] − [Γ+
1 (n) − Γ−

1 (n)] =
kBT
e2

[(
1

R1
+

1
R2

)
n

− 1
2

(
1

R1
− 1

R2

)
+

(
q(v1)

R1
− q(v2)

R2

)]
u, (17)

where q(x) = [1 − (1 + x)e−x]/(1 − e−x)2. Similarly we
obtain

Γ+
1 (n) + Γ−

1 (n) + Γ+
2 (n) + Γ−

2 (n)

=
kBT
e2

[
h(v1)

R1
+

h(v2)
R2

+

{
2n

(
q(v2)

R2
− q(v1)

R1

)

+ n

(
1

R1
− 1

R2

)
− 1

2

(
1

R1
+

1
R2

)}
u

]
, (18)

where h(x) ≡ x coth(x/2). Inserting equations (17) and (18)
into (15) we obtain

u(1/R1 + 1/R2)nσ(n) +
1
2

(h(v1)/R1 + h(v2)/R2)σ′(n) = 0.

(19)
Here we have ignored contributions proportional to uδR as
small, where δR ≡ (R1 − R2)/2. Equation (19) yields a Gaus-
sian distribution, which by normalization

∫∞
−∞σ(n)dn = 1

reads

σ(n) =

√√√√√
(

1
R1

+ 1
R2

)
u

π
(

h(v1)
R1

+ h(v2)
R2

) exp

⎛
⎝−

(
1

R1
+ 1

R2

)
u

h(v1)
R1

+ h(v2)
R2

n2

⎞
⎠ . (20)

The procedure to obtain the conductance G of the thermometer
is to write the current through each junction as

Ii(vi) = e
∫

[Γ+
i (n) − Γ−

i (n)]σ(n)dn. (21)

The conductance of junction i, Gi, yields the conductance of
the thermometer as G = dI/dV = G1G2/(G1 + G2). Taking
terms up to u2 we find for junction 1

G1 =
R2

R1 + R2

{
1 − ug(v1) − u2

4

[
g′′(v1)

(
h(v1)

R1
+

h(v2)
R2

)

+ g′(v1)

(
h′(v1) + h′(v2)

R1

)]}
, (22)

and G2 can be obtained by permuting the indices 1 and 2. We
then finally have up to u2

G(v)/GT = 1 − ug(v) − u2

4
[g′(v)h′(v) + g′′(v)h(v)]

−
{

u

[
vg′(v) +

1
2
v2g′′(v)

]
+

u2

4

[
4v2g′(v)2

− g′(v)h′(v) + vg′′′(v)h(v) − vg′′(v)h′(v)

+
1
2
v2g′′′′(v)h(v) +

1
2
v2g′′′(v)h′(v)

+
1
2
v2g′′(v)h′′(v) +

1
2
v2g′(v)h′′′(v)

]}
〈ρ2〉.

(23)

In the next sections we use the result of equation (23) with
two different aims: to evaluate the second order corrections to
the conductance curve and its width for both uniform [10] and
non-uniform CBT.

3.1. Correction to halfwidth in a uniform array due to
non-vanishing u

Here we investigate the uniform array within the second order
approximation of equation (23). Then the lengthy contribution
proportional to 〈ρ2〉 vanishes, and we have

G(v)/GT = G(0)(v)/GT − u2

4
[g′(v)h′(v) + g′′(v)h(v)], (24)

where G(0)(v)/GT ≡ 1 − ug(v) yields the standard halfwidth
v1/2,0 for a vanishingly small u. Equation (24) is valid for
general N when replacing u by uN [10].

The known [10] lowest order correction to v1/2,0 of a uni-
form CBT due to non-vanishing u can again be obtained
with the help of equation (4) and figure 2. Including the sec-
ond order correction to G in equation (24) suppresses partly
the depth of the dip ΔG/GT from u/6 to u/6 − u2/60, i.e.
γ = u2/60. Up to linear order in u we can then write the
solution as

δT
T

=
v1/2

v1/2,0
− 1

= −1 + 30[g′(v1/2,0)h′(v1/2,0) + g′′(v1/2,0)h(v1/2,0)]
20g′(v1/2,0)v1/2,0

× ΔG
GT

� 0.3921
ΔG
GT

, (25)

where ΔG/GT is the measured depth of the dip.

5
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Table 1. Summary of the main results governing CBT in different regimes.

Conductance Temperature

Uniform array,

linear regime (EC � kBT ) G/GT = 1 − uNg(v) T = 0.183 85
eV1/2
NkB

Non-uniform array,
linear regime G/GT = 1 −

∑
i

RT,i
RΣ

δi
kBT g(

RT,i
RΣ

eV
kBT )

δT/T � −0.734〈ρ2〉 (gCBT)
δT/T � −

[
2N−3
N−1 − 0.265 945

]
〈ρ2〉 ( jCBT)

Uniform array,

beyond linear regime G/GT = 1 − uNg(v) − u2
N
4 [g′(v)h′(v) + g′′(v)h(v)] δT/T � 0.3921 ΔG

GT

Non-uniform array,
beyond linear regime N = 2 Equation (23) δT

T = 0.3921ΔG
GT

− (0.734 − 0.205ΔG
GT

) 〈ρ2〉

3.2. Correction to halfwidth from non-uniformities for
non-vanishing u

We consider for simplicity the case N = 2 and use again
equation (4) to obtain the uncertainty in temperature read-
ing via deformation of the G/GT vs v analytically. If we
write equation (23) in the form G/GT = 1 − ug(v) + u2L(v) +
[uJ(v) + u2B(v)]〈ρ2〉 with obvious notations for L, J and B
we find the temperature uncertainty arising from the non-
uniformity in this case as

δT/T = − J(v1/2) + uB(v1/2)
v1/2[g′(v1/2) + uL′(v1/2)]

〈ρ2〉. (26)

Up to linear order in u, the non-uniformity induced uncertainty
is δT/T = −(0.734 − 0.0341u)〈ρ2〉.

4. Summary of the analytic temperature
corrections of CBT

Equations (25) and (26) yield the analytical expression of how
the temperature depends on both 〈ρ2〉 and u up to linear order
in ΔG/GT � u/6 given by

δT
T

= 0.3921
ΔG
GT

−
(

0.734 − 0.205
ΔG
GT

)
〈ρ2〉. (27)

The two contributions have naturally a fully different posi-
tion as corrections [16]. The first part of this, 0.3921ΔG/GT,
given by equation (25) is common for both gCBT and jCBT.
One can naturally take into account and correct by measuring
the ΔG/GT. On the contrary, the second part proportional to
〈ρ2〉 remains as uncertainty that is difficult to correct for, and
it depends on the fabrication uniformity of the CBT sensors.
Measurements of this type of sensors [17] show that resistance
uniformities below 5% are achievable, which corresponds to
〈ρ2〉 � 0.0025. Equation (27) is fully valid for N = 2 only,
whereas the coefficients 0.3921 and 0.734 apply for general
N in gCBT.

It is worth noting that the non-uniformity of gCBT does
not lead to corrections in the depth of the zero bias peak. This
is seen for instance by setting v = 0 in equation (23): all the
corrections ∝ 〈ρ2〉 vanish then; this may be a helpful result

when using the secondary mode of CBT, i.e. when measuring
the depth ΔG/GT for thermometry.

The main expressions for corrections and uncertainties in
different regimes are summarized in table 1.

5. Validation of the analytical results with
numerical simulations

The main features of numerical Monte Carlo simulation for
single-electron tunneling are described in [18–20]. Solving
island potentials and potential differences between islands is
done somewhat differently from what is presented in refer-
ence [19]. We assume that one end of the N-junction array
is at the ground potential and the other one at potential V.
Let ϕ =

[
ϕ1 ϕ2 . . . ϕn−1

]T
denote the potential of each

island and ϕ̃ =
[
ϕ̃1 ϕ̃2 . . . ϕ̃n

]T
is the vector of the volt-

age across each junction. We have then V =
∑n

i=1 ϕ̃i and ϕ̃i =
ϕi − ϕi+1. Ignoring the offset charges, which is validated in
the range uN < 1.5 [14], these relations can be expressed as a

matrix equation C ·
[
ϕ̃
ϕ

]
=
[
V q 0 . . . 0

]T
, where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . . . . 1
C1 −C2 0 Cg

. . .
. . .

. . .
. . .

Cn−1 −Cn 0 Cg

1 0 −1 1
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)
The vector of island charges is q =

[
q1 q2 . . . qn−1

]T
.

This procedure allows one to find the island potentials ϕi. The
rest of the simulation is similar to that in [19], determining
conductance from current.

Figures 3 and 4 present in (a) and (b) results on Monte-Carlo
simulations addressing 〈ρ2〉 and uN (i.e. ΔG/GT) dependence
of−δT/T, together with analytic results. In general one can say
that the lowest order results presented in equations (7) and (13)
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are in practise sufficient to address the corrections of gCBT
and jCBT, respectively, up to uN ∼ 1. The (c) panels in these
figures are from the linear approximation of equation (3) but
with randomly generated ensemble of junction non-uniformity
with given variation.

Since we are looking for small deviations in the conduc-
tance curves, one needs to average the simulated measure-
ment of current versus voltage over a sufficiently long time.
This is particularly important for small values of EC/kBT,
where the zero-bias drop of conductance is small. Typically
this means that one needs to simulate n = 109–1010 tunneling
events to obtain sufficiently low statistical uncertainty in the
data of figures 3 and 4. If one wants to convert this to what
it would mean in real measurement time in experiment, one
first observes that in the CBT regime each tunneling occurs
in an average time of ∼e2Ri/kBT; therefore the total time that
such a simulation corresponds to is t ∼ ne2Ri/kBT. One can
see that for Ri ∼ 10 kΩ and T ∼ 0.1 K, this would then corre-
spond to seconds of measuring time. Yet even with fast hard-
ware the simulation of such a large number of tunneling events
takes tens of hours. Therefore, these calculations are not fea-
sible without sufficient parallelization. In our case the simu-
lations were realized by Aalto University School of Science
‘Science-IT’ computer resources, allowing for approximately
1000 simulations running in parallel. Still the scatter of the
numerical data in figures 3 and 4 is due to the finite computing
resource.

6. Discussion

The results presented in this paper are useful for assessing
uncertainty in Coulomb blockade thermometry both at very
low temperatures, down to sub-mK regime as well as at high
temperatures approaching the ambient. In the first case, low
T, we observe that the concept of gCBT works generally, and
the corrections arise only from the resistance non-uniformity.
Furthermore, since the structures are physically large for low
temperature CBTs (lower EC), the variance 〈ρ2〉 is also quite
small due to smaller relative variations in junction sizes. It is
in place to observe that 1% rms-variation in Ri leads to <10−4

uncertainty only. On the other hand, the sensors in higher
temperature range belong rather to jCBT category where the
dominant capacitance is that of the junctions. The higher the
temperature, the smaller the junctions are in pursuit of max-
imum EC. This is because for practical purposes the depth
of the conductance dip ΔG/GT ∝ EC/kBT needs to be of the
order of 10−2 or greater, otherwise the signal-to-noise ratio
would be compromised. Small average junction size leads to
inevitable variation in these sizes and thus to increased 〈ρ2〉.
Yet for practical purposes it is good to keep in mind that a
rms-variation of

√
〈ρ2〉 = 10% of junctions leads to uncer-

tainty of only less than 2% for any length of the array. Finally
this paper extended the nonuniformity analysis beyond the lin-
ear EC � kBT regime. In particular we made the observation
that the temperature uncertainty does not change significantly
when leaving this regime; this conclusion was based on both
numerical Monte-Carlo simulations for arbitrary arrays and on

analytical results for N = 2. We presented a systematic anal-
ysis of corrections in both gCBT and jCBT configurations.
Moreover, we analyzed corrections beyond the linear regime
for the first time.
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