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Abstract

This dissertation consists of an introduction and three independent studies in pricing

under asymmetric information. The introduction gives a broad motivation and a brief

literature review for this dissertation.

In the first study, we consider an economy where many sellers sell identical goods

to many buyers. Each seller has a unit supply and each buyer has a unit demand.

The only possible information flow about prices is through costly advertising. We show

that in equilibrium the sellers use mixed strategies in pricing which leads to price and

advertisement distributions. With convex advertising costs, each seller sends only one

advertisement in the market. We also delineate a class of advertising costs which ensures

that sellers may send multiple advertisements in equilibrium. Higher prices are advertised

more than lower prices.

In the second study, we consider a principal-agent model in which the principal can

monitor and punish the agent with a fine if the agent is caught being untruthful. To reduce

the probability of being verified, the agent can engage in costly avoidance. We design

the optimal regulatory policies with and without avoidance. The optimal mechanism

with enforcement allocates the object more often than the optimal mechanism without

enforcement. Moreover, enforcement increases the expected transfers to the principal.

Avoidance has two implications to the optimal regulatory mechanism: (i) the expected

optimal transfers to the principal decrease and (ii) the principal allocates the object to

a smaller share of types. If the latter effect dominates the former, it is possible that the

agent’s capability to engage in avoidance is disadvantageous not only for the principal,

but also for the agent ex ante.

In the third study, we study a market for ’lemons’ from the perspective of mechanism

design in a bilateral trade setup. The closed-form solution for the seller-optimal safe

mechanism under one-sided private information is provided. We show that a seller can

disclose the quality of the goods by controlling the supply of her goods; high-quality

sellers want their goods to be scarce and expensive and low-quality sellers abundant and

cheap. In this way, sellers can differentiate their products from each other and maximize

their payoffs. We extend this model to two-sided private information and give a novel
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characterization of the seller-optimal safe mechanism in this setup. It turns out that if

there is two-sided asymmetric information, then the seller finds it optimal to engage in

price signalling instead of quantity signaling. This is the least-cost way for the seller to

signal her private information to the buyer.
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Chapter 1

Introduction

This dissertation is a collection of three independent studies contributing to the theory of

information economics, which focuses on strategic situations where different agents do not

know each others’ objectives. Each study suggests a simplified, but coherent, perspective

on pricing under asymmetric information.

In principle, studying economic behavior might be extremely complex and nebulous;

there is always an ever-changing human being behind our research subjects. This neces-

sitates that also our understanding about economic behavior must be constantly updated

and in transition with the subject. Therefore, giving unambiguous and comprehensive

explanations for a particular economic phenomenon is, I dare to say, impracticable. This

however does not signify that we could not say or learn anything about the complicated

economic systems.

Economic theory provides analytical tools for processing and understanding the par-

ticular aspects of human behavior such as incentives and mechanisms under asymmetric

information. Nowadays economic theories are presented almost without exception in the

language of mathematics and the interpretations and implications are more philosophical.

This makes economic theory, on the one hand, transparent and consistent (as long as the

calculations are correct), but, on the other hand, limited and illegible for a reader who

is uninitiated with mathematics. Consequently, communicating new findings in economic

theory are always affected by our capability to translate mathematics into the common

language, whereas new ideas and underlying assumptions on our research questions are

squeezed into a mathematical (or statistical) model. The knowledge produced by eco-

nomic theories hence rests on our ability to internalize our models and externalize the

findings of the models. A theory simplifies presumptions not because the world is simple,

but because we, relatively limited and incomplete human beings, want to grasp something

about the nearly unattainable reality. In this matter, economics does not stick out from
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the rest; the necessity of simplifying our ways of thinking runs through all kind of theoriz-

ing in (social) sciences regardless whether the presumptions and analysis are formalized

or presented in the common language.

In this introduction, we provide a broad motivation of this dissertation. We start by

briefly reviewing some central ideas and findings of the economics of pricing. After delving

into the classic theories in pricing, we end this chapter by summarizing the upcoming

studies. Each study provides its own targeted literature survey of the topic which guides

the reader from the trailblazing studies closer to the (current) frontier of research.

1.1 Background

The role of information in pricing decisions has been of great interest in microeconomic

theory for centuries. The literature is vast since there is a great number of variations of

how information is spread around the people in different kinds of environments. People

do not only make decisions based on their prior information but take also into account

what kind of information the others possess and whether their own actions reveal relevant

information to the others. For instance, imagine an entrepreneur who is willing to sell her

company to a buyer. If the entrepreneur has private information about the profitability

of the business, the offering price of a share of the firm may disclose relevant information

about the profitability to the buyer. The revealed information naturally alters the buyer’s

willingness to pay which further affects the entrepreneur’s pricing strategy.

In order to clearly understand the role of asymmetric information in pricing, we need to

briefly review how an allocation is determined under symmetric and perfect information.

1.1.1 Pricing under Symmetric Information

Consider a simple market consisting a single buyer and a single seller who has some goods

for sale. If the seller knows the buyer’s valuation of the goods, she can set the price

and the quantity according to the buyer’s preferences and extract the whole surplus from

the buyer. For instance, if there is a single object for a sale or if the buyer has a unit

demand, then it is optimal for the seller to ask a price equal to the buyer’s valuation

of the object. And if the seller herself does not value the object more than the buyer

or if the production costs are not above this price, then it is optimal for the seller to

trade. This principle generalizes to a case in which there are more objects for sale and

the buyer is willing to buy more than one object or there are more than one potential

buyer interested in the objects. First, if there are more than one buyer with unit demand,

then the monopolist seller finds it optimal to sell a good to each buyer at a different price
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(first-degree price differentiation). Second, if there is a variety of objects for sale, then

the seller can use menu pricing and differentiate the price of the objects according to the

valuations of each object among the buyers (second-degree price differentiation). This is

a classic price differentiation story which ends in favor of the seller (this can be found

from many standard economics textbooks or, e.g., from a more recent book ”Pricing and

Revenue Optimization” by Phillips (2021)),

If the seller cannot engage in the first-degree price differentiation, the optimal price

and quantity are determined by the monopoly profit maximization problem given by

the buyers’ demand and the seller’s supply (see, e.g., Mas-Colell et al. (1995) or Varian

(2014)). As it is well-known, the monopolist sells all the objects for which the marginal

revenue (weakly) exceeds the marginal costs. Naturally, this optimal monopoly pricing

scheme applies to all varieties of objects that the seller can provide (second-degree price

differentiation).

Price differentiation and monopoly pricing are concepts that have been in the core of

economics for centuries. Hence, it is difficult to give credit for some particular author

in these contributions. However, to the best of my knowledge, analyzing the market

equilibrium under competition was first studied by Antoine Cournot in 1838. Cournot

considers a duopoly model in which two companies compete on the amount of output

rather than prices. Cournot finds that if there is competition, the equilibrium prices

are lower and the amount of supply greater than in the monopoly case. A couple of

decades later, in 1883, Joseph Bertrand reviewed Cournot’s book ”Recherches sur les

Principes Mathématiques de la Théorie des Richesses”, in which the theory of competition

was presented, and formulated his competing theory. In contrast to Cournot’s earlier

work, Bertrand assumed that the duopoly firms choose prices and the buyers decide

quantities. Bertrand’s theory suggests that two competitive sellers set equilibrium prices

at the marginal cost level and hence the equilibrium of the market is an outcome equivalent

to that prevails under perfect competition of many sellers.1

Around the time, Leon Walras, Vilfredo Pareto, Francis Edgeworth, and Arthur Bow-

ley continued from and formalized John Stuart Mill’s early ideas on general equilibrium

theory and the theory of an exchange economy. In an exchange economy there are many

agents who possess several divisible goods and are willing to trade the goods with each

other. General equilibrium theory considers a large economy which consists of several

or many interacting (exchange) economies. The theory focus on the behavior of supply,

demand, and prices which result in an equilibrium of each market of the economy. That

is to say, in general equilibrium theory the prices are (exogenously) determined such that

1Francis Edgeworth formalized Bertrand’s model in 1889 in his study ”The pure theory of monopoly”.
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the markets clear so that there is no excess supply or demand. The last completion of

the general equilibrium theory was by Kenneth Arrow and Gerard Debreu in the 1950s.

This branch of economics under perfect information culminated in two fundamental the-

orems of welfare economics: 1) the general equilibrium is Pareto Optimal, and 2) Pareto

efficiency can be achieved with any redistribution of initial wealth (there are prices that

clear the markets).

We end our short journey to the history of pricing under symmetric (and perfect) in-

formation. There are many important concepts and models that were not considered here

such as the Stackelberg leadership model in which one of the duopoly firms is the leader

who decides its pricing strategy first and the follower firm responds to this by setting its

own price. However, since this dissertation is about pricing under asymmetric informa-

tion, this amount of background information on the benchmark literature is sufficient to

highlight the differences.

1.1.2 Pricing under Asymmetric Information

In the 1960s and 1970s two stimulating articles greatly accelerated economists’ interests

towards information asymmetries, namely, ”The Economics of Information” by George

Stigler in 1961 and ”The Market for ’Lemons’: Quality Uncertainty and the Market

Mechanism” by George Akerlof in 1970. We consider the observations of these papers

and their implications next, respectively.

Stigler (1961) begins his study with a paragraph:

”One should hardly have to tell academicians that information is a valuable

resource: knowledge is power. And yet it occupies a slum dwelling in the town

of economics. Mostly it is ignored: the best technology is assumed to be known;

the relationship of commodities to consumer preferences is a datum. And one

of the information-producing industries, advertising, is treated with hostility

that economists normally reserve for tariffs or monopolists.”

Stigler considers a market where there are many buyers and sellers. The distribution of

prices that sellers use is given and known by the buyers. However, the buyers do not

know where the sellers are located and which prices they are asking. Hence, they need to

search the goods. The core of the study is to argue that due to the imperfect information

in the market, there may be many prices for homogeneous goods. This however is only

one side of the story: What rationalizes the sellers’ pricing behavior? This question was

addressed by Butters in 1977.

Butters generalizes Stigler’s analysis and let the sellers to choose the prices in addition

to advertising strategies (Stigler (1961) also analyzes advertising but not together with
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competitive pricing). Butters is the first to show that a price dispersion of homogeneous

goods is rationalizable by the sellers’ equilibrium behavior; the sellers use a mixed strategy

in pricing in equilibrium. The first study of this dissertation continues Butters’s work by

generalizing the advertising costs and assuming capacity constraints for the sellers. We

show that the sellers mix in pricing and with convex advertising costs each seller sends

only one advertisement in equilibrium, whereas if the advertising costs are sufficiently

concave, higher prices are advertised more than lower prices.

In 1970, Akerlof shows how quality heterogeneity together with asymmetric informa-

tion about the quality may result in an equilibrium where only low quality products are

traded. The model consists of many sellers and buyers such that only the sellers are known

whether the good that they are selling is of high (”peach”) or low quality (”lemon”). The

buyers’ willingness to pay then is determined by the average quality of the goods which

in turn drives out all the supply of goods that are above average in quality. Asymmetric

information can thus even lead to a market collapse. This was a striking finding that

shed light on markets with asymmetric information such as markets for used cars or labor

markets. The third paper of this dissertation continues Akerlof’s work and shows that

the market collapse is not inevitable if the seller can credibly signal the quality of the

good, and the signaling is not possible only through prices (as seen in Akerlof (1970)),

but altering the supply of the good. Moreover, we show that this is the optimal strategy

for the seller among all possible selling mechanism. This latter result stands on the wide

shoulders of mechanism design which we consider next.

Let us approach mechanism design by considering a simple setup of a single seller and

a single buyer. The seller has a good for sale and the buyer’s valuation of the good is the

private information of the buyer. That is to say, there is asymmetric information between

the seller and the buyer about the buyer’s willingness to pay. Consequently, the seller

cannot engage in price differentiation and ask the buyer to just pay her valuation. What

is the optimal strategy or mechanism for the seller to sell the good?

In order to have any rationality in pricing strategies, the seller must form beliefs about

the buyer’s valuation. These beliefs give the seller expectation of how likely is that the

buyer accepts a certain price offer. The seller can thus choose a price that maximizes

the probability of sale (the probability that the buyer’s valuation is greater than or equal

to the asked price) multiplied by the price she is asking. This optimization problem

gives the seller the optimal take-it-or-leave-it offer that the seller can propose for the

buyer. In comparison with the symmetric information counterpart in which the seller can

engage in price differentiation, the information asymmetry has the following impacts on

the outcome: (i) the good is not always traded and therefore there is inefficiency in the

market, (ii) if the trade occurs, the seller does not receive the whole surplus, and (iii)
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the buyer is given so-called information rent which refers to as the difference between the

price paid and the valuation of the good. However, is a take-it-or-leave-it offer the optimal

procedure to sell the good? This is not a straightforward question to answer since there

are (infinitely) many potential mechanisms how to sell the good such as bargaining, price

quotes, randomization, auctions (with multiple buyers), and so on.

In the 1970s, economists like Roger Myerson, Bengt Holmström, Allan Gibbard,

Partha Dasgupta, Peter Hammond, and Eric Maskin found that without going through

all possible mechanisms, it is without loss of generality to focus on mechanisms in which

the buyer reports truthfully her valuation to the seller as long as the seller does not give

any incentives for the buyer to be dishonest (the most general form of this result was

given by Myerson (1982)). This result, called the Revelation Principle, revolutionized

many primarily complex allocation problems under asymmetric information. Soon after

this finding Mussa and Rosen (1978) showed that the aforementioned take-it-or-leave-it

offer is, indeed, the optimal mechanism to sell the good in our simple bilateral setup

above. A couple of years later Myerson (1981) generalized this analysis to a multiple

buyer setup and showed that the optimal selling mechanism can be implemented by a

second-price auction with a reserve price. This vaunted result highlighted the importance

of development of mechanism design and auction theory which was earlier pioneered by

Vickrey (1961). In the early 1980s, Maskin and Riley (1984) showed that a monopoly

seller with multiple goods finds it optimal to price the goods with quantity discount (if

the buyer has a decreasing marginal utility from the good).

One notable result that applies and extends many models of mechanism design and

information economics was presented by Harsanyi in 1967 and 1968. Harsanyi shows that

a game with incomplete information can be converted into a standard game of imperfect

information with an initial move by nature if and only if the players share a common prior

over payoffs in some state space. That is to say, if some players (possibly all) lack full

information about the basic (mathematical) structure of the game such as payoff functions,

endowments, resources, or reciprocal information about the other players’ information,

and so on and so forth, this incompleteness of information can be reduced to the case

where the players have less than full information about each other’s payoff functions or

so-called types that determined the utilities of the players (higher order belief types).

This finding highlights the importance of the common prior assumption when we are

considering interactive models with asymmetric information.2

In the 1970s and 1980s, mechanism design was developed and used in a wide range

of closely related topics to this dissertation. These include, for instance, the theory of

2See Morris (1995) for more detailed discussion on the common prior assumption in economic theory.
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optimal income taxation (Mirrlees (1971)), the monopoly pricing of insurance (Stiglitz

(1977)), and the regulation of a monopolist with private information (Baron and Myerson

(1982) and Lewis and Sappington (1988a and 1988b)). The mechanism design approach

provides general tools for many applications and has enabled us to derive the somewhat

robust results of monopoly pricing under asymmetric information. However, much less

is known for the case of a duopoly or a finite number of sellers. There are a couple of

difficulties that the literature of competing mechanisms has faced. First, if there are

two or more competing mechanisms, there is no clear analog of the Revelation Principle

to a standard single seller case; the strategy by buyers select between mechanisms is

determined only in equilibrium. Therefore, a mechanism designer’s revenue depends on

the number of buyers who participate in her mechanisms which results in a fixed point

optimization problem. Second, in general it cannot be ruled out that the competing

mechanisms depend on each other. This leads to an infinite regress and it is not clear

whether an equilibrium (a fixed point) exists in this case. Moreover, even if there is such

a fixed point of mechanisms, it is not evident how to analyze that setup.3

In order to dodge these difficulties, Burguet and Sákovics (1999) study a setup in which

two sellers compete simultaneously setting reserve prices for their second-price sealed bid

auctions. The potential buyers have private information about their valuations of the

homogeneous goods that the sellers are offering. In stark contrast with Bertrand’s earlier

observations, Burguet and Sákovics show that this game has at least one equilibrium and

that all equilibria reserve prices are not driven to zero cost causing inefficiency. This

result supports the earlier finding of Spulber (1995) who shows that in the Bertrand-Nash

equilibrium when sellers’ costs are unknown, the sellers make positive profits by pricing

above marginal costs.

Another way to tackle the problems of the mechanism design approach is to assume

that there are infinitely many sellers competing on buyers with private information about

their valuations. In this case, a single seller cannot affect the rest of the market and hence

the construction of an equilibrium is accessible. McAfee (1993) shows that in this setup

there exists an equilibrium where sellers arrange identical auctions and buyers randomize

their participation into the auctions. In equilibrium, the sellers set reserve prices equal

to their valuations of the goods resulting in an efficient outcome. However, McAfee finds

that this equilibrium fails in all finite economies where the number of sellers is finite. In

this regard, the results of McAfee (1993) can be viewed as the mechanism design analog

to the theory of perfect competition. Peters and Severinov (1997) endogenize the buyers’

entry strategies in this setup and show that the reason why sellers set reserve prices equal

3See, e.g., Peters (2001) and Pavan and Calzolari (2010) for identifying the full set of feasible mecha-
nisms sellers can offer. These impediments are more carefully addressed by Pai (2010).
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to their valuations is due to the fact that sellers’ profits are discontinuous in the seller’s

reserve price in a way that resembles the discontinuity in a Bertrand pricing game.

Greenwald and Stiglitz (1986) provide a general framework for analyzing externalities

in economies with incomplete markets and imperfect information. They identify the

pecuniary effects of these externalities and show that (general) equilibria under imperfect

information are rarely constrained Pareto optima. This implies that the aforementioned

fundamental welfare theorems do not hold if there are any incomplete markets or imperfect

information among the agents. Moreover, Greenwald and Stiglitz show that the pecuniary

effects are not due to the finite number of agents of the model; imperfect or incomplete

information matters also in large economies.

In this section, we have stressed that information asymmetries might have significant

effects on strategical behavior of agents. Sometimes asymmetric information leads to an

equilibrium which is more disadvantageous to the mechanism designer than that under

perfect information. In this case, the designer would benefit if she was able to disclose the

private information of the agents and implement the perfect information outcome. This

kind of environment, where the private information of the agents is (at least partially)

verifiable, was first studied by Townsend (1979), Diamond (1984), and Gale and Hellwig

(1985). Townsend studies a model in which agents are asymmetrically informed on the

actual state of nature and, at some cost, this information can be transmitted to other

agents. This kind of information structure is present especially in financial contracting

problems where there is an entrepreneur with an investment project and an investor who is

willing to capitalize the project. The entrepreneur has private information about realized

cash flows from the project which can be verified to the investor. Townsend (1979) shows

that the optimal financing mechanism is a standard debt contract such that in case of

default the entrepreneur fully discloses her cash flows and if the debt is honored, there

is no verification. There is a growing literature in mechanism design with verification

pioneered by Green and Laffont (1986). Green and Laffont show that the Revelation

Principle does not hold in general if the information is only partially verifiable by the

designer. Since the literature is somewhat recent, it is covered in the second study of

this dissertation. The paper itself studies monopoly pricing with costly state verification.

We show that if the principal can verify the agent’s private valuation and impose a fine

on the agent if she is caught being non-compliant, the principal can extract some of the

agent’s information rent and get more surplus. In other words, the verification mechanism

eliminates some of the asymmetric information between the seller and the buyer leading

to an equilibrium which lies somewhere between the first-degree price differentiation and

the optimal take-it-or-leave-it offer for a privately informed buyer. These findings throw

some light especially on regulation problems in which the regulator can monitor agents’
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compliance and impose a punishment on non-compliant agents.

For the sake of compactness, we end the literature review at this point. We thus omit

excessively many important topics in information economics such as moral hazard (see,

e.g., Arrow (1978) and Holmström (1979 & 1982)), signaling (see, e.g., Spence (1978) and

Crawford and Sobel (1982)), or mechanism design by an informed principal (see, e.g.,

Myerson (1983) and Maskin and Tirole (1990 & 1992)). Some of the observations of sig-

naling models and the literature of mechanism design by an informed designer are covered

in the third study of this dissertation. The vast and versatile literature of information

economics is an undeniable piece of evidence of the diversity of the topic; the gamut of

information asymmetries and imperfections is extensive.

1.2 Summary of Studies

In this section we summarize the upcoming chapters. As discussed in the previous section,

the studies of this dissertation continue from the distinguished work of Butters (1977) (the

first study), Baron and Myerson (1982) and Lewis and Sappington (1988a and 1988b) (the

second study), and Akerlof (1970) and Myerson (1983) (the third study). The papers offer

new insights into these classic frameworks by relaxing some previous assumptions (the

first study), introducing something new into the model (the second study), or bringing

two models and solution concepts together (the third study). Some of the results of the

studies may appear self-evident once they are stated, but the knowledge is not only in

the compact claims themselves; the proofs are the journey from the assumptions into the

conclusions. The understanding arises from the presumptions via analysis which provides

the machinery to elaborate how different matters are connected with each other.

1.2.1 Equilibrium Pricing and Advertising Distributions

In the first study, we examine a relationship between prices and advertising. We consider

an economy where many sellers sell identical goods to many buyers. Each seller has a

unit supply and each buyer has a unit demand. The only possible information flow about

prices is through costly advertising. Moreover, the sellers do not know which buyers they

capture by sending advertisements and whether they have received other price offers from

the other sellers as well.

The empirical advertising literature suggests that heavily advertised brands are more

expensive than are less-advertised goods within the same class of goods. This phenomenon

has usually been explained by persuasive advertising that alters consumers’ tastes and

brand loyalty. We, however, apply a version of Butters’s (1977) model, and show that
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this positive relationship between prices and advertising is a natural feature of informative

advertising, too. That is to say, the sellers who advertise more aggressively can ask high

prices since with positive probability they capture buyers who lack information about

lower prices in the market.

In equilibrium the sellers use mixed strategies in pricing which leads to price and

advertisement distributions. With convex advertising costs each seller sends only one

advertisement in the market. We delineate a class of advertising costs which ensures that

sellers may send multiple advertisements in equilibrium. That is, if the advertising costs

belong to this class of concave cost functions, higher prices are advertised more than lower

prices.

1.2.2 Optimal Regulation with Costly Verification

In the second study, we consider a regulator who can decide whether to allocate the

right to conduct a business to a firm who has private information about its profitability,

emissions, or some other verifiable and payoff-relevant parameter. This setup can be

modeled as a classical mechanism design problem in which the firm is asked to report

its private information to the regulator who then decides the allocation. The optimal

allocation and regulation in different kinds of environments are pioneered by Mussa and

Rosen (1978), Myerson (1981), Baron and Myerson (1982), and Lewis and Sappington

(1988a and 1988b), with the well-known results. However, these results are founded on

the assumption that misreporting is not a crime. We diverge from this approach. We

assume that the regulator has the power to punish the firm with a fine if the firm is

caught being untruthful (e.g. tax evasion or accounting fraud). In order to verify the

firm’s compliance, the regulator has to invest in costly monitoring. Moreover, following

Malik (1990) we suppose that a firm can weaken the regulator’s monitoring efforts by

covering up its misreporting by engaging in costly ’avoidance’ (e.g. by falsification of

accounts, corruption, or bribing).

We find that the expected optimal transfers are greater than that in the optimal stan-

dard mechanism in which the principal can use only a physical allocation and transfers.

While a take-it-or-leave-it offer is the optimal standard mechanism, non-linear pricing is

the optimal mechanism with enforcement. The rationale for this result is that the prin-

cipal is able to extract a proportion of the agent’s information rent by monitoring and

fines. However, the agent’s ability to engage in avoidance makes this proportion smaller.

Avoidance has no direct effects on the equilibrium transfers since with a truthful report

the fines are zero and hence the agent has no incentive to invest in costly avoidance.

However, avoidance makes the incentive compatibility constraint more rigid (engaging in
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avoidance may be profitable with off-equilibrium reports) and, consequently, it is optimal

for the principal to monitor a smaller proportion of reports than without avoidance. This

has two implications: (i) the expected optimal transfers to the principal decrease and

(ii) the principal allocates the object to a smaller share of types. So, although avoidance

results in greater information rent for the agent, it may also hurt the agent by making

the mechanism to allocate to a smaller share of types. If the latter effect dominates the

former, then it is possible that the agent’s capability to engage in avoidance hurts not

only the principal, but also the agent ex ante.

It turns out that if there is no avoidance and monitoring is costless, then with suffi-

ciently large fines the principal allocates for all types and gets the whole surplus even if

the verification is noisy. However, when the agent can engage in avoidance, the full infor-

mation rent extraction is not possible for all types even if the monitoring was costless.

1.2.3 Bilateral Trade with Interdependent Values

In the third and last study, we derive the seller’s utility maximizing selling safe mechanism

in bilateral trade with interdependent values. In a standard mechanism design problem

it is typically assumed that the mechanism designer (principal) does not possess any

payoff-relevant information for the agents. Relaxing this assumption may, however, be

essential for many applications as dissolving partnerships, agency contracts, trading with

externalities, allocating mineral rights, or other comparable contracting problems in which

the principal’s choice of a mechanism possibly reveals substantive information to the

agents (see Myerson (1983)).

One conventional circumstance in which the contract is designed by an informed prin-

cipal is bilateral trade where the seller, who determines the selling procedure, has private

information about the quality of the object which affects the buyer’s valuation of the

object (market for lemons; see Akerlof (1970)). In this study, the closed-form solution for

the seller-optimal safe mechanism under one-sided private information is provided. We

show that a seller can disclose the quality of the goods by controlling the supply of her

goods; high-quality sellers want their goods to be scarce and expensive and low-quality

sellers abundant and cheap. In this way, sellers can differentiate their products from each

other and maximize their payoffs. We extend this model to two-sided private information

and give a novel characterization of the seller-optimal safe mechanism in this setup. It

turns out that if there is two-sided asymmetric information, then the seller finds it optimal

to engage in price signalling instead of quantity signaling. This is the least-cost way for

the seller to signal her private information to the buyer.
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All three studies open several new doors for further research. For instance, how is the

equilibrium of the first study altered if the sellers are not capacity constrained? Or what

is the optimal allocation procedure for the right to do business for many potential buyers

in the model of the second study? If there are more than a single buyer in the model of

the third study, is it optimal to share the allocation between several buyers? Finding the

solution to the first question would develop the advertising and directed search literature

further. The research considering the last two questions would contribute to the literature

of auctions in which one of the main interests is to know whether one can implement

optimal mechanisms by well-known selling procedures like first or second-price auctions.
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Chapter 2

Equilibrium Price and

Advertisement Distributions

Abstract

We consider an economy where many sellers sell identical goods to many buyers. Each

seller has a unit supply and each buyer has a unit demand. The only possible information

flow about prices is through costly advertising. We show that in equilibrium the sellers use

mixed strategies in pricing which leads to price and advertisement distributions. With

convex advertising costs each seller sends only one advertisement in the market. We

also delineate a class of advertising costs which ensures that sellers may send multiple

advertisements in equilibrium. Higher prices are advertised more than lower prices.1

Keywords : Advertising, Price Distributions.

JEL: D41, D47.

2.1 Introduction

Butters’s (1977) article on informative advertising is seminal in at least two respects.

First, it is an equilibrium analysis of firms that compete both by prices and advertising.

Secondly, the urn-ball meeting technology, which has become widely used in many fields

in economics (in particular directed search models), is introduced. In the model there are

multiple firms that produce a homogeneous good at a constant marginal cost. There are

1This study is written with Klaus Kultti. For helpful comments we would like to thank Daniel
Hauser, Pauli Murto, Juuso Toikka, Geert Van Moer, Juuso Välimäki, Takuro Yamashita, and numerous
seminar audiences at the Helsinki Graduate School of Economics and the Congress of European Economic
Association. Financial support from the Finnish Cultural Foundation and the University of Helsinki is
gratefully acknowledged.
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many consumers each with a unit demand and identical valuations. The consumers do not

know where the goods are available, nor at which prices, unless they receive advertisements

(ads, hereafter) from the firms. The firms send multiple ads at a constant unit cost, and

the ads are randomly allocated amongst the consumers. Consumers who do not receive

any ads cannot consume (there is no search by uninformed consumers). If a consumer

receives multiple ads, she contacts the firm with the lowest price. In equilibrium the firms

mix over prices which leads to price dispersion. All the firms send the same number of

ads.

In the empirical advertising literature there are many papers which suggest that heav-

ily advertised brands are more expensive than are less-advertised goods within the same

class of goods (see Bagwell (2007) for a comprehensive review of the literature). This

phenomenon has been usually explained by persuasive advertising that alters consumers’

tastes and brand loyalty. We apply a version of Butters’s model, and show that this

positive relationship between prices and advertising is a natural feature of informative

advertising, too.2 To achieve this result we deviate from Butters’s model in two respects.

First, we assume that the firms are capacity constrained each firm possessing just one

unit of an indivisible good. In Butters (1977) the firms have unlimited capacity which

is in stark contrast with the more recent directed search literature: sellers have just one

unit for sale (e.g. Burdett, Shi, and Wright, 2001), or firms have just one vacancy (e.g.

Pissarides, 2000 and Shimer, 2005).

Second, we generalise the advertising cost scheme by considering a large class of cost

functions which plays a crucial role in our set-up.

If the cost function is convex, as in Butters (1977), we show that each firm sends

only one ad in equilibrium. Pricing is in mixed strategies, and the equilibrium price

distribution of our model coincides with Butters (1977) once the parametrisation between

the papers is harmonised (the number of consumers and their valuations of the good are

normalised to unity and the cost of production to zero). This is a surprising result as the

capacity constraint seems to play no role in pricing. The explanation hinges on the linear

cost function in Butters (1977): sending k more ads is equivalent to adding k more firms

who send one ad each. Hence, the equilibrium of Butters (1977) can be interpreted as a

case in which each firm sends a single ad and there is a free entry.3

2We point out that interpreting the low prices that result from the mixed pricing strategy as sale-prices
is misleading. The concept of a sale would require a multiperiod model and it does not make sense in
our static model.

3Butters (1977) studies the limit case in which the number of firms is taken to infinity which makes
each firm’s profits zero. This limit case resembles free entry of firms. Moreover, as the number of the
firms goes to infinity, there are some firms who do not send any ads, which can be interpreted as free
exit of firms.
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Our main contribution is to delineate a class of cost functions such that in equilibrium

multiple ads are sent. Pricing is still in mixed strategies. In equilibrium the support of

the mixed strategy is divided into intervals such that in each interval the firms send the

same number of ads, and the number of ads increases with the price. To the best of our

knowledge, this is a somewhat novel equilibrium in the theoretical advertising literature.

In a multiple-ad equilibrium the advertising costs must be sufficiently concave. The

positive relationship between the prices and the number of ads arises as the firms who price

low do not face much competition, while those who price high are likely to be undercut

if they send only one ad. Sending more ads increases the probability of a sale and the

expected revenue. If the increase in revenue is greater than the increase in advertising

costs, then the firm can also ask a higher price (in equilibrium these two effects must be

equal). Since in our model the firms have a limited capacity and there is competition

for the potential consumers, advertising has diminishing marginal revenue. Hence, price-

increasing advertising necessitates, indeed, that the advertising expenditure per ad must

fall as more ads are sent in a multiple-ad equilibrium.

On the other hand, the advertising costs cannot grow too slowly. The construction of

the equilibrium presupposes that the consumers always contact the firm with the lowest

price. This is obvious if there are no capacity constraints (i.e., in Butters (1977)); a

consumer who contacts a firm always gets an object. However, if the firms are capacity

constrained, not every consumer who receives an ad gets an object. This implies that a

consumer who receives multiple ads may find it profitable to choose a higher price offer if

it is more probable that she gets the object. To guarantee that the consumers contact the

firm with the lowest price there is a minimum speed at which the costs have to increase.

It is somewhat surprising that making the lowest priced good the most desirable for the

consumers restricts the possible cost functions of the advertisers; this emphasises that

the logic of the model with capacity constrained firms is different from that of unlimited

capacity.

We delineate a class of cost functions that supports an equilibrium with multiple

ads by using functional equations. The functional equations determine the upper and

lower bounds for the changes in advertising costs. In this class, the equilibrium can be

determined simply by examining the successive differences of the cost function. Moreover,

the cost of the first ad (which can also include the entry or capacity costs) immediately

fixes the highest possible number of ads sent by a single firm in equilibrium. It turns out

that this maximum is decreasing in the cost of the first ad.

The theoretical contribution of our model stems from highlighting the issues that

arise once we give up the assumption of unlimited capacity. In particular, constructing

an equilibrium where the consumers regard low prices as more attractive than high prices
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turns out to restrict the growth of the cost function from below, while, more expectedly,

the firms are willing to send multiple ads only if the growth rate is restricted from above.

One would expect the same issues to arise if capacity were allowed to be at any finite

level.

The positive association between the price and the number of ads requires the capacity

constraint. We elaborate this in Section 5.

This paper is organised as follows: In Section 2 we relate our analysis to the literature.

In Section 3 we list the set of assumptions and build the model. In Section 4 we define

and construct so-called configurations for different amounts of ads sent in the market.

After that we study which conditions are needed for a configuration to be an equilibrium.

In Section 5 we discuss our findings, and in Section 6 we conclude. We relegate all the

proofs to the Appendix to improve readability.

2.2 Related Literature

Our analysis contributes to two different fields. The first consists of directed search models

originated by Peters (1991) and Montgomery (1991). A typical application consists of

buyers and sellers, the latter ones posting prices. These models aim to depict markets

with frictions. The frictions are of coordination type, and they arise as each seller has

only one good but in equilibrium she may be contacted by several buyers, or no buyers at

all. The frictions, however, arise in a symmetric equilibrium; depending on the details of

the model there may be asymmetric equilibria which do not give rise to frictions. Instead

of price posting the sellers in our model send ads, and only those who receive the ads get

informed about the offers in the market. In this set-up there is a unique equilibrium that

gives rise to frictions.

Our results, in particular the price distribution, is reminiscent of what happens in

models of noisy search. In these models there are features of directed search but the

agents have only partial or noisy information about some aspects of the environment. For

instance, in Shi (2018) the buyers enter a submarket based on the maximum price the

sellers commit not to exceed. In the submarket the sellers contact the buyers making

offers without knowing how many other sellers contact the same buyer. The optimal

behaviour in the price offer subgame is mixing, and this results in a price distribution. In

a similar vein Bethune et al. (2020) in a model of money and credit, and Acemoglu and

Shimer (2000) in a model of labour market, assume that the contacting parties choose how

much information they acquire about the deals available. In equilibrium they have only

partial information which leads the parties who offer the deals to use mixed strategies as

the buyers’ partial information gives the offerers some monopoly power but at the same
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time exposes them to some competitive pressures. In our set-up the buyers have only

partial information, albeit endogenously determined, about the available deals, while the

sellers still face some competition as a buyer may get ads from several sellers. It is worth

noticing that unlike in Bethune et al. (2020) and Acemoglu and Shimer (2000) it is the

party that offers the deals, i.e., the sellers, who are responsible for the noisy environment.

The second field naturally deals with the economics of advertising. This is a very large

area covered for instance in Bagwell (2007). We only mention a couple of models that are

directly related to Butters (1977).

Robert and Stahl (1993) allow the consumers who remain uninformed to search. The

model still exhibits price dispersion but a mass of sellers charge the highest price that is

paid only by the searchers. Roberts and Stahl assume strictly convex advertising costs,

and find that firms advertise lower prices more intensively which is just the opposite of our

result. Convex costs and uninformed searchers imply that firms advertise ”sale” prices

more than high prices in equilibrium.4

In McAfee (1994) the firms choose a continuous advertising intensity instead of physical

ads as in Butters (1977). McAfee shows that when the firms first choose the intensity and

only after that the price, there is one high-intensity high-price firm in equilibrium, while

the other firms advertise at lower intensity and mix in prices.

Gomis-Porqueras, Julien, and Wang (2017) study a model which differs from Butters

(1977) in two respects. Firms are capacity constrained, and advertising takes place by

choosing intensity continuously. The cost of intensity is assumed convex and increasing,

while we study a broader class of advertising cost schemes. Moreover, in our model each

firm sends a finite number of ads, and there is a discrete jump in the cost between zero

and one ads. This means that in our set-up it is natural to assume free entry and exit. In

Gomis-Porqueras et al. (2017) the intensity of advertising can be continuously adjusted,

and the market tightness is taken as a parameter. They study trading by both posted

prices and auction, and in both cases find a unique equilibrium in pure strategies. As

the number of firms is fixed the advertising intensity is non-monotonic in the number

of buyers. If there are relatively many buyers there is little competition, and a low

intensity in advertising results in trade with high probability. If there are relatively few

buyers then there is a lot of competition, and the marginal pay-off from advertising is

low. Consequently, the equilibrium advertising intensity is low. Between these extremes

there is some competition and a need to make sure that advertising reaches the buyers.

As a result there is more advertising than at the extremes. If, in our model, the number

4Search makes the marginal benefit of sending an offer with a high price smaller than with a low
price. In equilibrium the marginal benefit must be equal to the marginal cost, and then the convexity of
advertising costs implies that low prices are advertised more than high prices.
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of firms were fixed we would expect same kind of non-monotonicity; with relatively few

buyers some firms would not advertise at all.

2.3 Model

In the spirit of Butters (1977), we assume the following:

(i) There is a large economy with S sellers and B buyers. Denote the ratio of sellers to

buyers by θ = S
B
. Since this ratio is the only relevant magnitude in the sequel, we

normalise B = 1. Then the number of sellers is S = θ.

(ii) All the sellers are risk neutral and have a unit supply of an identical good. They

value the good at zero. Also the buyers are risk neutral and have a unit demand.

The buyers value the good at unity.

(iii) There is free entry and exit of sellers.

(iv) The sellers can sell their goods only via sending ads. An ad contains the location

and price of the good. Buyers who do not receive any ads cannot shop at all.

(v) The price and the number of ads are the choice variables of a seller.

(vi) The cost of sending k ads is given by function c(k) where c : N0 → R+ such that

c(0) = 0 and for all k ∈ N0, ∆c(k + 1) ≡ c(k + 1)− c(k) > 0.

(vii) Buyers receive ads randomly and independently of all other ads and each buyer has

an equal probability of receiving each offer. Receiving an ad and sending orders (i.e.

contacting a seller) are costless for a buyer. Buyers can contact exactly one seller.

The timing of the static game is as follows. First, sellers set prices and send ads.

Second, each buyer who has received an ad (or ads) makes an order. Lastly, the orders

are executed by sellers. If a seller receives many orders, she chooses randomly with equal

probabilities one buyer with whom to trade. There is no discounting between stages.

Since we consider a large economy where there is an infinite number of buyers and

sellers, the random process by which the ads are allocated follows the Poisson distribu-

tion.5

5The idea is basically based on the following argument. Assume that there are N discrete buyers, and
each buyer has an equal probability of getting an ad – that is, 1

N . Then for any total amount of ads θN ,

each buyer receives zero ads with probability
(
1− 1

N

)θN
. This converges to e−θ as N goes to infinity.

This is the Poisson probability with parameter θ > 0.
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In equilibrium, the sellers use mixed strategies in pricing. This can be seen by assuming

the opposite. Suppose that all the sellers ask the same price and send a single ad. Then

lowering the price a little leads to a discrete increase in the selling probability when a

potential buyer receives ads from multiple sellers. This further increases the profits which

is a contradiction. The same logic shows that there are no mass points or gaps which

means that the support of the mixed strategy is some interval [l, U ] ⊂ R. The highest

price is the value of buyers, U = 1, by two reasons. First, it is clear that it is never

profitable to ask price greater than the value of the buyers. Second, if U were less than 1,

then it would be profitable to increase the price since it does not change the probability

of sale (a buyer contacts a seller with the highest price only if she does not receive ads

from any other seller). For the seller who asks the lowest price in the support, l, it is

optimal to send only one ad; an ad always reaches a buyer and the probability of a sale

with the lowest price is 1. The free entry and exit assumption implies that we must have

l = c(1).

A seller who asks the lowest price need not send more than one ad since this always

leads to a sale. If each buyer chooses the lowest price offer she receives, then a seller who

asks the highest price only sells if a buyer who receives his ad does not receive any other

ads. In this light, we construct the equilibrium of the following type. Depending on the

price, sellers send different numbers of ads such that the higher the price, the higher the

number of ads sent. Denote a partition of a unit interval by Pn = {pi}ni=−1 where pi−1 < pi

for all i ∈ {0, 1, . . . , n}, p−1 = 0, and pn = 1. A seller who advertises a price p ∈ [pi−1, pi)

sends i ads, and a seller with the highest price, pn, sends n ads. The partition of the unit

interval with a maximum of n ads is illustrated in Figure 2.1.

. . .

. . .
0 Ads 1 Ad 2 Ads n–1 Ads n Ads

0 p0 p1 p2 pn−2 pn−1 pn = 1

Figure 2.1: The partition of the unit interval with a maximum of n ads.

The equilibrium mixed strategy F is a probability distribution over [p0, pn] defined

piecewise for each subinterval of the partition. The corresponding probability density

function of F is denoted by f and called a price distribution.6 In equilibrium, each seller

makes zero profits (due to free entry). Here we assume that the buyers who receive

multiple ads always contact the seller with the lowest price; we return to this point in

Section 2.4.2

6Note that by a price distribution we refer to a density function, not the distribution function.
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2.4 Results

In this section we define configurations related to the partition of the unit interval; these

are used to construct an equilibrium. In a 1-configuration all the sellers send exactly one

ad, in a 2-configuration some sellers (low pricing ones) send one ad, and the others two

ads, and in an n-configuration the sellers send different numbers of ads between one and

n as depicted in Figure 2.1. In other words, configurations are indexed by their maximum

number of ads that are sent. If no one wants to send more ads in a configuration and each

buyer chooses the lowest price offer that she receives, then the configuration constitutes an

equilibrium. That is why we start the analysis with careful derivation of configurations.

After defining configurations, we determine the conditions on the advertising costs that

guarantee that a configuration constitutes an equilibrium. In particular, we determine a

class of cost functions under which an n-configuration constitutes an equilibrium.

2.4.1 Configurations

For the formal definition of a configuration we need the following components:

1. The partition of the unit interval Pn = {pi}ni=−1 which assigns prices to the number

of ads such that sellers with prices in [pi−1, pi) sends i ads for all i ∈ {0, 1, . . . , n}
and a seller with the highest price pn sends n ads.

2. The mixed strategy Fn over [p0, pn] defined piecewise for each subinterval of the

partition:

Fn(p) =



F
(1)
n (p) for p ∈ [p0, p1)

F
(2)
n (p) for p ∈ [p1, p2)

...

F
(n)
n (p) for p ∈ [pn−1, pn].

Since there are no gaps or mass points in the support, we have F
(i)
n (pi) = F

(i+1)
n (pi)

for all i ∈ {1, 2, . . . , n− 1}.

3. The number of sellers θn.

Since the partition, the mixed strategy, and the number of sellers vary with configurations,

we use the subscripts in each component to refer to the index of a configuration.

20



Using these components we define the expected number of ads with price less than

p ∈ [pi−1, pi] as follows:

λn(p) =
i−1∑
j=1

j ·
(
F (j)
n (pj)− F (j)

n (pj−1

)
· θn + i ·

(
F (i)
n (p)− F (i)

n (pi−1)
)
· θn, (2.1)

where term j ·
(
F

(j)
n (pj)− F

(j)
n (pj−1)

)
·θn is the number of ads times the expected number

of sellers who send j ads. In particular, the total (expected) number of ads is

λn(pn) =
n∑

i=1

i ·
(
F (i)
n (pi)− F (i)

n (pi−1)
)
· θn.

Next, consider a seller who sends k ads with price p ∈ [p0, pn], and a buyer who

receives her ad. Assume that the buyer chooses the lowest price offer that she receives.7

The number of ads with a price lower than p is distributed as Poisson(λn(p)).
8 Hence, the

buyer who receives the seller’s ad contacts the seller with probability e−λn(p), which is the

probability that the buyer receives zero ads from price range of [p0, p). The probability

that the buyer does not contact the seller is 1−e−λn(p). Consequently, the seller’s expected

profit by sending k ads at price p is given by

πn(p, k) =
(
1−

(
1− e−λn(p)

)k)
p− c(k), (2.3)

where
(
1−

(
1− e−λn(p)

)k)
is the probability that a seller who sends k ads at price p is

contacted by at least one buyer.

Using this notation we can give the formal definition of an n-configuration.

Definition 1. An n-configuration is a triplet (Pn, Fn, θn) which solves the following system

of equations for i ∈ {1, 2, . . . , n}:

πn(p, i) = 0 for all p ∈ [pi−1, pi] (ZPi)

πn(pi−1, i− 1) = πn(pi−1, i). (Ii)

7In Section 2.4.2 we determine conditions when this is, indeed, optimal behaviour.
8This is due to the properties of the Poisson distribution. Buyers receive nT ∼ Poisson(λn(1)) ads

in total. The probability of each of these ads has a price less than p ∈ [pi−1, pi] is
λn(p)
λn(1)

. The probability

for a buyer to receive nL ads with price offer less than p therefore equals

∞∑
nT=nL

e−λn(1)
λn(1)

nT

nT !

(
nT
nL

)(
λn(p)

λn(1)

)nL
(
1− λn(p)

λn(1)

)nT−nL

= e−λn(p)
λn(p)

nL

nL!
. (2.2)

That is, nL ∼ Poisson(λn(p)) (see, e.g., Lester et al. (2015)). We thank the referee for suggesting this
clarification.
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Condition (ZPi) is the zero profit condition which says that each seller has to make

zero profits by setting any price p ∈ [pi−1, pi] and sending i ads. Conditions (Ii) for all

i ∈ {1, 2, . . . , n} are indifference conditions which require that a seller who sets price pi−1

must be indifferent between sending i − 1 and i ads for all i ∈ {1, 2, . . . , n}. Note that

a configuration is not necessarily an equilibrium, but an equilibrium is a configuration.

Before we go in more detail to this, we prove that if we find a partition for a configuration,

then it is unique. Then given partition Pn, it is always possible to uniquely determine

mixed strategies Fn and the number of sellers θn.

Proposition 1. If an n-configuration exists, then it is unique.

Proposition 1 is a technical result which shows that if an n-configuration exists, it has

a unique partition Pn, and given that partition, the total number of ads with price less

than p ∈ [pi−1, pi] is given by

λn(p) = − log

(
1− i

√
1− c(i)

p

)
, (2.4)

the mixed strategy over [pi−1, pi] for the ith subinterval of the partition by

F (i)
n (p) =

1

θn

[
λn(p)

i
+

i−1∑
j=1

λn(pj)

j(j + 1)

]
, (2.5)

and the number of sellers by

θn =

[
λn(pn)

n
+

n−1∑
j=1

λn(pj)

j(j + 1)

]
. (2.6)

In words, a configuration is completely pinned down by the maximum number of ads and

advertising costs c(·).
Notice that an (n − 1)-configuration and an n-configuration satisfy the same zero

profit and indifference conditions up until price pn−2. Consequently, the partitions in both

configurations are the same except that the last subinterval is divided in two in the n-

configuration. The number of sellers changes, but for any price p ≤ pn−2 in any subinterval

the number of ads remains the same. The mixed strategy in each subinterval has a

logarithmic form, and the price distribution is decreasing and convex in each subinterval

of the partition.

Next we give an example of a 1-configuration where each seller sends a single ad.

In the Appendix we derive 2- and 3-configurations (Examples 2 and 3). Solving the 1-

and 2-configurations is pretty simple, but determining the partition of the unit interval
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for the 3-configuration requires solving of a cubic equation and gets somewhat arduous.

Constructing higher-indexed configurations is probably possible only numerically.

Example 1. Consider a market in which each seller sends only one ad at maximum. A

seller who sets the lowest price, p0, sells her good for sure and earns p0 − c(1). Since free

entry implies zero profits, we must have p0 = c(1), and the partition of the unit interval

becomes P1 = {0, c(1), 1}.
Since in the 1-configuration each seller sends a single ad, the total number of ads is

the same as the number of sellers θ. A seller who asks the highest price, 1, sells only if

the buyer who receives her ad does not get any other ads; this happens with probability

e−θ. The zero profit condition requires e−θ − c(1) = 0, which implies that the number of

sellers in the market is θ = − log c(1).

We know that all the sellers have to get the same revenue from sending a single ad

and setting a price according to the mixed strategy, F . Consider a seller who sends an

ad with price p ∈ (c(1), 1). Her expected revenue is e−F (p)θp − c(1), where e−F (p)θ is the

probability that a buyer who receives the seller’s ad does not receive any other ads with

price less than p. Then we can use the zero profit condition and substitute θ = − log c(1)

into this and obtain

F (p) = 1− log p

log c(1)
.

We have thus found a unique 1-configuration that consists of the following three el-

ements: (i) partition of the unit interval P1 = {0, c(1), 1}, (ii) mixed strategy F (p) =

1− log p
log c(1)

, for p ∈ [c(1), 1], and (iii) number of sellers θ = − log c(1).

The partition of the unit interval and an example of a price distribution with c(1) = 1
2

are given in Figures 2.2 and 2.3.

0 Ads 1 Ad

0 p0 =
1
2

p1 = 1

Figure 2.2: The partition of the unit interval in a 1-configuration.
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F (p)
f(p)

Figure 2.3: The price distribution, f(p), and the mixed strategy, F (p), of the 1-
configuration with c(1) = 1

2
.

The 1-configuration constitutes an equilibrium if no seller finds it profitable to send

more than 1 ad. It turns out that if the advertising cost function is convex, then each

seller sends exactly one ad in equilibrium. This is the case in Butters (1977) where the

advertising costs are linear. We postpone the proof of this for later analysis where we

have the sufficient tools and notation.

2.4.2 Equilibrium

In this section we construct an equilibrium. There are two things that could go wrong with

an n-configuration to be an equilibrium. The first one is that some of the sellers might

want to deviate and send more than n ads. The second one is that we have implicitly

assumed so far that each buyer always chooses the lowest price offer that she receives.

Basically, these two problems occur if the advertising costs are not increasing fast enough.

On the other hand, if the costs are increasing too fast, then it is not possible to construct

an n-configuration. To tackle these issues we need to determine a class of cost functions

under which no seller wants to deviate and all the buyers choose the lowest price offer

that they receive.

We start by proving two lemmas. In the first lemma we derive a class of advertising

costs under which an optimal behaviour for buyers is to choose the lowest price offer.

In the second lemma we show that a seller who asks the highest price, has the highest

incentive to send more ads. This result eases the construction of an equilibrium; once we

have found a configuration, we only need to check that a seller with the highest price does

not find it profitable to send more ads.
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First, let us define the following class of advertising cost functions.

Definition 2. For n ∈ N\{1} and γ ∈ (0, 1), let Cn(γ) be the set of advertising costs

defined on N0 with the following two properties:

1. Any c ∈ Cn(γ) is strictly increasing on N0 such that c(0) = 0 and c(1) = γ.

2. Let c(k) = kγ
1+(k−1)γ

. Any c ∈ Cn(γ) satisfies ∆c(k) < ∆c(k) for all k ∈ {2, 3, . . . , n}.9

In equilibrium the buyers know the sellers’ pricing and advertising strategies, and they

must best-respond to them. In particular, choosing the lowest price offer received has to

be optimal. It turns out that this is the case when the advertising costs belong to the

class Cn(γ) given in Definition 2, and the construction of an n-configuration is correct.

Lemma 1. If c ∈ Cn(γ) for any γ ∈ (0, 1), then in an n-configuration a buyer always

chooses the lowest price offer that she receives.

The intuition of Lemma 1 is the following. If the advertising costs do not increase fast

enough, the proportions of sellers who send multiple ads are relatively large. This means

that a buyer who receives an ad with a low price from a seller who has sent many ads

is in competition with the other buyers who have received this seller’s ads. For all these

buyers, the seller’s offer is likely to be the lowest one. But then contacting the lowest

price compromises the probability of getting a good.

Next consider the ith subinterval of the unit partition and the sellers who send i ads

and ask prices between pi−1 and pi. By construction, any seller with price p < pi makes

negative profit by sending i + 1 ads, while a seller with price p = pi is just indifferent;

both i and i+ 1 ads generate zero profits.

Lemma 2. Assume c ∈ Cn(γ). In an n-configuration for any i ∈ {1, 2, . . . , n} a seller

who asks the highest price pi ∈ [pi−1, pi] has the highest incentive to send more than i ads.

Furthermore, a seller who asks the lowest price pi−1 ∈ [pi−1, pi] has the highest incentive

to send fewer than i ads.

Using Lemma 1 and 2 we get the following proposition.

Proposition 2. Assume c ∈ Cn(γ). In an n-configuration, a seller who sets price p ∈
[pi−1, pi] cannot increase her profits by sending k ∈ {1, . . . , i− 1, i+ 1, . . . , n}.

9Recall that ∆c(k + 1) ≡ c(k + 1)− c(k) > 0.
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Although Proposition 2 is not surprising, it provides an easy test for an equilibrium:

if in an n-configuration a seller with the highest price does not want to deviate and send

more than n ads, then the n-configuration constitutes an equilibrium.10

Corollary 1. Assume c ∈ Cn(γ). An n-configuration constitutes an equilibrium if the

seller who asks the highest price does not find it profitable to send more than n ads.

By these results, the Butters’s (1977) model with capacity constrained sellers features

each seller sending just one ad in equilibrium as the cost function is linear. This follows

because the marginal return of the second ad is always lower than that of the first ad;

the second ad is useless if the first ad leads to a sale. Therefore, for linear advertising

costs, if a seller finds it profitable to send a second ad, it gets surplus from the first one,

which violates the zero profit condition. Consequently, if the second ad is sufficiently

more expensive than the first ad, sellers send only one ad in a free entry equilibrium. We

state the result as follows.

Proposition 3. If the advertising cost function is convex, then each seller sends exactly

one ad in equilibrium.

The characterisation of the single-ad equilibrium is given in Example 1. The equilib-

rium price distribution coincides with Butters (1977) by setting the cost of production to

zero, normalising the number of buyers to unity, and assuming that each buyer values the

good at unity in the Butters’s model.11 This is due to the free entry and exit assumption

and convex advertising costs.

2.4.3 Multi-Advertisement Equilibria

In this section we study a class of advertising costs under which an n-configuration con-

stitutes an equilibrium. It turns out that even the concavity of advertising costs is not

enough to guarantee that some sellers send more than 1 ad in equilibrium. Next we

construct a class of cost functions that allows an n-configuration to constitute an equi-

librium for some n > 1. The idea is to determine an upper bound for advertising costs

such that if the advertising costs increase faster than the upper bound after k + n ads

10We impose that each seller sends all the ads with the same price in equilibrium. Butters (1977) does
not use this premise. However, as the proof of Lemma 2 indicates, we can relax the assumption and allow
sellers to post different prices in each ad. In equilibrium, sellers who choose a price in interval [pi−1, pi]

use a mixed strategy F
(i)
n and send i ads. They could equally well choose i different prices by making

i independent draws from F
(i)
n ; they would still make zero profits. If a seller deviates and chooses a

price p′ /∈ [pi−1, pi] and sends i ads, she makes losses. Assuming that each seller advertises just one price
simplifies the analysis; otherwise there would be buyers with different price offers approaching the seller.

11Note that Butters’s advertising price density a(p) equals f1(p)θ1 in our case.
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(k ∈ {1, 2, . . . }), then a seller with the highest price does not find it profitable to send

more than n ads. Then, if the advertising costs belong to the intersection of the class of

costs given in Definition 2 and the class defined by the upper bound, an n-configuration

constitutes an equilibrium.

Consider an n-configuration and a seller who sets price at 1. She does not want to

send more than n ads if πn(1, n+ k) ≤ πn(1, n) for all k > 1 – that is,(
1−

(
1− e−λn(1)

)n+k
)
− c(n+ k) ≤

(
1−

(
1− e−λn(1)

)n)− c(n). (2.7)

From the zero profit condition ZPn we get that 1 − e−λn(1) = (1− c(n))
1
n and so (2.7)

becomes

c(n) ≤ 1− (1− c(n+ k))
n

n+k , (2.8)

which gives us the upper bound for the advertising costs. As with the proof of Lemma

1, let us treat the upper bound in (2.8) as a functional equation and denote it as c̄(x) =

1 − (1− c̄(x+ k))
x

x+k such that c̄ : R+ → R. This functional equation has a solution of

c̄(x) = 1 − ϕ(x)x such that ϕ(x) = ϕ(x + 1) for all x ∈ R. Since the advertising costs

are assumed to be increasing, we must have ϕ(x) = ϕ ∈ (0, 1) for all x, which makes c̄

an increasing concave function. Furthermore, from Example 1 we know that the upper

bound for ∆c(2) is c(1)(1−c(1)). This is the initial value for the upper bound from which

we can solve ϕ = 1− c(1). The upper bound becomes

c̄(x) = 1− ϕx for all x ∈ R+,

where ϕ = 1− c(1). Simple algebra shows that the upper bound is greater than the lower

bound in Definition 2 – that is, c̄(x) > c(x) for all x > 1.12 If the costs increase as fast as

the upper bound, i.e. if ∆c(n+ k) = ∆c̄(n+ k), then a seller who asks the highest price

is indifferent between sending n and n+ k > n ads.

Using the upper bound we define the following class of advertising costs.

Definition 3. For n ∈ N\{1} and γ ∈ (0, 1), let C̄n(γ) be the set of advertising costs

defined on N0 with the following two properties:

1. Any c ∈ C̄n(γ) is strictly increasing on N0 such that c(0) = 0 and c(1) = γ.

2. Let c̄(k) = 1 − (1 − γ)k. Any c ∈ C̄n(γ) satisfies ∆c(k) < ∆c̄(k) for all k ∈
{2, 3, . . . , n− 1} and ∆c(k) ≥ ∆c̄(k) for all k ∈ {n, n+ 1, . . . }.

12See the proof of Lemma 4.
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Our aim is to determine when an n-configuration constitutes an equilibrium. To that

end, let the intersection of the classes of advertising costs in Definition 2 and Definition

3 be denoted by Cn(γ) = Cn(γ) ∩ C̄n(γ). The class of advertising costs we study is then

defined as C(γ) =
⋃∞

i=2 Ci(γ).13 Then let the advertising costs be c(k) = c(k) + ak =
kγ

1+(k−1)γ
+ ak for all k ≥ 1.

We still need to check under which conditions Cn(γ) is not an empty set to guarantee

than an n-configuration exists and is a equilibrium for c ∈ Cn(γ). This result is given by

the following proposition.

Proposition 4. There exists a unique n(γ) ∈ N which gives the highest possible config-

uration under costs c ∈ C(γ). Moreover, n(γ) is decreasing in γ and Cn(γ) ̸= ∅ for all

n ≤ n(γ).

In Figure 2.4 we illustrate the relationship between n, n(γ), and x∗(γ), which are used

in the proof of Proposition 4.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
n x∗(1

2
)n(1

2
)

k

∆c̄(x)
∆c(x)
∆c(k)

Figure 2.4: An example of advertising costs c ∈ C3(12).

Next we give our last result which is a direct implication of the construction of C(γ),
Proposition 1, Corollary 1, and Proposition 4.

Proposition 5. Assume that c ∈ Cn(γ) such that n ≤ n(γ). Then there exists a unique

n-configuration which constitutes an equilibrium.

If the advertising costs coincide with the upper bound, then a 1-configuration is an

equilibrium. This can be easily seen by considering p1 =
c(1)2

2c(1)−c(2)
derived in Example 1.

If we substitute c̄(k) into this formula we get that p1 = 1 for all γ ∈ (0, 1).

13An example of an advertising cost function that belongs to class Cn(γ) can be constructed by using
the lower bound. Consider a sequence (ak) that increases up to an sufficiently slowly, and after that
sufficiently fast with a1 = 0.
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Proposition 5 gives us a simple test to find an equilibrium: if the advertising costs

belong to class C(γ), find an n ≤ n(γ) such that c ∈ Cn(γ). Then the n-configuration is

an equilibrium.

2.5 Discussion

In this section we point out, on the one hand, some limitations of our analysis, and, on

the other hand, possible applications and interpretations of the model.

Comparative statics in a multiple-ad equilibrium is complicated. For instance, chang-

ing advertising costs affects not only the equilibrium strategies, but also the number of

sellers (free entry and exit). It is just hard to keep track of both effects.

Nevertheless, some comparative statics can still be conducted. First, the equilibrium

configuration with the highest index is determined by the cost of the first ad. The higher

it is, the smaller the maximum index (Proposition 4). This has the following economic

intuition. Let us interpret the cost of the first ad as the sum of an entry cost and the

marginal cost of the first ad. Then the higher the entry cost, the less there can be potential

entrants. This implies that the probability of a sale is greater or competition is less severe.

Therefore fewer ads are sent with a higher entry cost in equilibrium.

Furthermore, comparative statics can be done within the equilibrium configuration.

Suppose that an n-configuration forms the equilibrium. If we decrease the advertisements

costs such that the same configuration is still an equilibrium, we have the following effects:

(i) the total number of ads sent is greater (see equation (2.4)), and (ii) the number of

sellers is higher (a consequence of the first effect).

Capacity constrained sellers is a crucial feature of our model. It guarantees the positive

association of prices and the number of ads.

A simple example demonstrates this. Assume that the sellers have unlimited capacity,

and assume a cost function such that each seller sends a finite number of ads. By the

standard arguments pricing is in mixed strategies on some interval [p0, 1].

Consider a seller with price p0, and assume that she sends k ads. Her pay-off is given

by kp0 − c(k). Then consider a seller with price unity, and assume provisionally that she

sends k ads, too. The number of buyers she attracts is given by a binomial distribution

with success probability e−θk, where θ is the number of sellers and θk the total number

of ads sent assuming that each seller sends k ads. Consequently, the seller’s pay-off is

given by ke−θk − c(k). Under mixed strategy the pay-offs have to be equal, and this

condition allows solving p0 = e−θk. This implies that the pay-offs of these two sellers are

identical, and hence the optimality condition for the sellers is c(k + h) − c(k) > hp0 for

h ∈ {−k,−(k − 1), . . . ,−1, 0, 1, . . . } (no profitable deviations to send k + h ads). This
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shows that in equilibrium all the sellers send the same number of ads.

This leaves open the possibility that there are equilibria where the sellers send different

numbers of ads. Let us consider this next. Assume temporarily that low pricing sellers

with p ∈ [p0, p1) send k ads, and high pricing sellers with p ∈ [p1, 1] send k + 1 ads. The

pay-off of the lowest pricing seller is given by kp0 − c(k) = 0 by free entry. We can thus

solve p0 = c(k)
k
. Denote the total number of ads with price lower than p by λ(p). The

pay-off of the highest pricing seller is given by (k + 1)e−λ(1) − c(k + 1) = 0, and we can

solve e−λ(1) = c(k+1)
k+1

.

In equilibrium the lowest pricing seller does not find it profitable to send k + 1 ads,

and the highest pricing seller does not find it profitable to send k ads, or

kp0 − c(k) > (k + 1)p0 − c(k + 1) (2.9)

(k + 1)e−λ(1) − c(k + 1) > ke−λ(1) − c(k). (2.10)

Substituting p0 = c(k)
k

in the first condition, and e−λ(1) = c(k+1)
k+1

in the latter condition,

and manipulating a little yields

c(k + 1) >
k + 1

k
c(k) (2.11)

and

c(k + 1) <
k + 1

k
c(k) (2.12)

which is a contradiction. This demonstrates that we lose the positive association with

prices and the number of ads in general, if we allow unlimited capacity.

We assume unit capacity, but relaxing this to some finite capacity k > 1 does not

affect the basic message of our model. In equilibrium pricing is still in mixed strategies,

and the seller with the lowest price sends k ads, while higher pricing sellers send more

than k ads if the cost function is concave enough.

Although our model is highly stylised in the sense that the capacity constrained sellers

are assumed to possess just one unit of a good, it may be applicable to some settings where

capacity constraints are salient. For instance, suppose that each seller has a room for rent,

and the rooms are more or less equal in quality (distance, ratings, etc.). The sellers use

internet platforms to advertise their items. Posting the offer onto a platform is costly,

but it is reasonable to argue that the costs are marginally decreasing in the number of

platforms chosen since the first offer involves costs, such as taking pictures and composing

the ad, that are not incurred for the succeeding offers. Based on this, our model suggests
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that the sellers that use multiple platforms should ask higher prices.

An alternative interpretation of our theoretical framework is as follows. There is a

large number of agents divided into two different types. To produce a unit surplus a

member of both types has to form a pair. One party can commit to the division of the

surplus in the sense that it sends take-it-or-leave-it offers to the other party. The senders

are, however, subject to competition by other senders as the receiving party accepts the

best offer. Sending offers is costly, and in equilibrium the senders mix over the offers and

number of offers sent. This is the typical setting of a decentralised model of a job market.

Low wage offers would then be advertised more as they correspond to high prices of goods

offered for sale.

2.6 Conclusion

We study a version of Butters’s seminal model of informative advertising with a large

number of buyers and sellers, assuming that the sellers are capacity constrained each

with one unit of a good. In order to trade a buyer has to receive an ad. Pricing is in

mixed strategies, and we establish an equilibrium where high pricing sellers send more

ads than low pricing sellers, i.e., a positive relationship between prices and the number of

ads. In equilibrium, the buyers who received multiple ads contact the seller with lowest

price.

The key ingredient in our analysis is the cost of advertising. If the cost function is

convex, then each seller sends exactly one ad in equilibrium. The reason is diminishing

marginal returns of advertising that stem from the capacity constraint. If the marginal

cost of advertising is decreasing there may be equilibria where multiple ads are sent.

We delineate a class of advertising costs which permits an equilibrium where sellers

send multiple ads, and each buyer contacts the seller who offers the lowest price. The first

property requires that the marginal cost of advertising is decreasing, and we determine

an upper bound for the advertising costs. The second property requires that the cost

is increasing sufficiently fast; otherwise there could be too many sellers who price high,

and send many ads, such that the buyers could profitably trade-off low price and the

probability of getting a good. We determine a lower bound for the advertising costs.
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Appendix

Proof of Proposition 1

Proof. We start by showing that an n-configuration has a unique partition. Assume that

there is an n-configuration with two different partitions Pn and P ′
n such that the elements

of the partitions are denoted by pi ∈ Pn and p′i ∈ P ′
n. Let index k be the first one where

pk ̸= p′k and let pk < p′k. The numbers of ads less than pk and p′k with different partitions

are denoted by λn(pk) and λ′n(p
′
k), respectively. Up until price pk we necessarily have

λn(pk) = λ′n(pk) since in both cases the sellers make zero profits.

Now we have the following two equalities(
1−

(
1− e−λn(pk)

)k)
pk − c(k) =

(
1−

(
1− e−λ′

n(p
′
k)
)k)

p′k − c(k)(
1−

(
1− e−λn(pk)

)k−1
)
pk − c(k − 1) =

(
1−

(
1− e−λ′

n(p
′
k)
)k−1

)
p′k − c(k − 1).

This system of equations can be rewritten as

1−
(
1− e−λ′

n(p
′
k)
)k−1

1−
(
1− e−λ′

n(p
′
k)
)k =

1−
(
1− e−λn(pk)

)k−1

1− (1− e−λn(pk))
k
. (2.13)

Both sides have the same functional form of f(z) = 1−zk−1

1−zk
such that

∂

∂z
f(z) =

zk−2(1− z)
(
k − 1−zk

1−z

)
(1− zk)2

> 0 (2.14)

since z ∈ (0, 1) and k − 1−zk

1−z
= k −

∑k
i=1 z

i−1 > 0 by the sum of a geometric progression

where each element zi−1 ∈ (0, 1). In other words, f is a strictly increasing function and

so f(x) = f(y) only if x = y. Hence, the system of equations in (2.13) has a solution of

λn(pk) = λ′n(p
′
k). This is a contradiction and therefore the partition must be unique.

Next we show that given partition Pn, there is a unique mixed strategy Fn that solves

the zero profit conditions. Consider a seller who sets price p ∈ [pi−1, pi] and sends i ads.

From zero profit condition (ZPi) we get

λn(p) = − log

(
1− i

√
1− c(i)

p

)
. (2.15)

On the other hand, from expression (2.1) we know the total number of ads with a price
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less than p is

λn(p) = λn(pi−1) + i
[
F (i)
n (p)− F (i−1)

n (pi−1)
]
θn.

Combining these two we have the following expression for mixed strategy F
(i)
n (p) for prices

p ∈ [pi−1, pi]:

F (i)
n (p) = F (i−1)

n (pi−1) +
1

iθn
[λn(p)− λn(pi−1)] .

This recursive formula can be rewritten as follows by substituting in the mixed strategies

from the earlier subintervals:

F (i)
n (p) =

1

θn

[
λn(p)

i
+

i−1∑
j=1

λn(pj)

j(j + 1)

]
, (2.16)

where λn(·) is given in Equation (2.15).

Finally, using the fact that F
(n)
n (1) = 1 we can solve the number of sellers:

θn =

[
λn(pn)

n
+

n−1∑
j=1

λn(pj)

j(j + 1)

]
. (2.17)

Equations (2.4), (2.5), and (2.6) uniquely determine the mixed strategies Fn and the

number of the sellers in the market θn.

Proof of Lemma 1

Proof. Let us state the obvious case first: if a buyer receives an ad at price p ∈ [p0, p1),

she knows that the seller has sent only a single ad and therefore by contacting the seller

she always gets the good.

Then, consider a buyer who receives an ad at price p ∈ [pi−1, pi) for some i > 1. She

knows that the seller who has sent this offer has sent i ads. If the buyer contacts this

seller, the probability that she gets the object is

Qi(p) ≡
i−1∑
k=0

1

k + 1

(
i− 1

k

)(
e−λn(p)

)k (
1− e−λn(p)

)i−1−k
. (2.18)

This can be written as

eλn(p)

i

i∑
k=1

(
i

k

)(
e−λn(p)

)k (
1− e−λn(p)

)i−k
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and using the binomial theorem it becomes

Qi(p) =
eλn(p)

i

(
1−

(
1− e−λn(p)

)i)
.

Further, from zero profit condition (ZPi) we get

e−λn(p) = 1−
(
1− c(i)

p

) 1
i

.

Substituting this into the formula of Qi(p) we get

Qi(p) =
c(i)

ip
(
1− i

√
1− c(i)

p

) . (2.19)

A buyer’s utility of getting an object at price p is 1−p. Then, the expected utility of a

buyer who contacts a seller with price p ∈ [pi−1, pi) is U(p) = Qi(p)(1−p). The derivative
of this with respect to p is

U ′(p) = −1

p

c(i)

ip
(
1− i

√
1− c(i)

p

) +
1− p

p

c(i)2
(
1− c(i)

p

) 1
i
−1

(
ip
(
1− i

√
1− c(i)

p

))2 . (2.20)

After some multiplications and rearrangements that retain the sign, this expression be-

comes

−1 + U(p)

(
1− c(i)

p

) 1
i
−1

. (2.21)

First we prove that (2.21) is strictly negative at p = pi−1. After that we show that U(p)

is an inverted-U-shaped function (∩-shaped) and thus if U ′(pi−1) < 0, then also U ′(p) < 0

for all p ∈ [pi−1, pi).

Expression (2.21) is strictly negative at p = pi−1 if

(1− pi−1)
c(i)

ipi−1

<

(
1− c(i)

pi−1

)1− 1
i

− 1 +
c(i)

pi−1

. (2.22)

We know that a seller who asks price pi−1 is indifferent between sending i and i− 1 ads.

We hence get from indifference condition (Ii) and zero profit condition (ZPi) that(
1− c(i)

pi−1

)1− 1
i

= 1− c(i− 1)

pi−1

.
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By substituting this into (2.22) and rearranging the terms we get

pi−1 > 1− i
∆c(i)

c(i)
. (2.23)

We know that pi−1 > c(i − 1). So, if c(i − 1) > 1 − i∆c(i)
c(i)

, then also (2.23) is satisfied.

This is equivalent to

c(i) ≥ ic(i− 1)

i− 1 + c(i− 1)
. (2.24)

From this we get lower bound c : R+ → R+ for the differences of advertising costs under

which each buyer chooses the lowest price offer she receives. The lower bound c must

satisfy

c(x− 1) = 1− x
∆c(x)

c(x)
, (2.25)

for all x ∈ R+. This is a functional equation which has the following increasing solution:

c(x) =
x

x+ a

for some a > 0. The initial value for advertising costs is given by c(1) = c(1) from where

we can solve a = 1−c(1)
c(1)

. The lower bound for the advertising cost function thus is

c(x) =
x

x+ 1−c(1)
c(1)

=
xc(1)

1 + (x− 1)c(1)
,

which is exactly the function given in Definition (2) with γ = c(1). So we know that if

∆c(i) ≥ ∆c(i) then U ′(pi−1) < 0.

Let us consider the left-hand side and the right-hand side of expression (2.22) as

functions of p instead of pi−1. The left-hand side is a strictly convex strictly decreasing

function of p for all p ∈ [pi−1, pi). The right-hand side is a strictly concave and strictly

increasing function of p for all p ∈ [pi−1, pi). Moreover, the left-hand side is strictly

positive at p = c(i), whereas the right-hand side is 0. If p = 1, then the left-hand side is

0 and the right-hand side is strictly positive. Hence, there is a unique intersection which

implies that U(p) is a ∩-shaped function of p. Since U ′(pi−1) < 0, then also U ′(p) < 0 for

all p ∈ [pi−1, pi].

Finally, we need to show that a buyer wants to contact a seller who has sent an ad

at price p ∈ [pi−1, pi) rather than a seller who has sent an ad at price p′ ∈ [pk−1, pk) for
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some k > i. We know that Qi(p)(1 − p) ≥ Qi(pi)(1 − pi). By the similar arguments, we

know that Qi+1(pi)(1−pi) ≥ Qi+1(p
′)(1−p′) for all p′ ∈ [pi−1, pi). It is easy to verify that

Qi(pi) ≥ Qi+1(pi), and hence we have Qi(p)(1−p) ≥ Qi+1(p
′)(1−p′) for all p′ ∈ [pi, pi+1).

This implies that Qi(p)(1− p) ≥ Qk(p
′)(1− p′) for all k ≥ i and p′ ≥ p.

Proof of Lemma 2

Proof. The derivative of πn(p, k) with respect to p ∈ [pi−1, pi] and for any k ∈ N0 is

π′
n(p, k) = 1−

(
1− c(i)

p

)k/i

− k

i

(
1− c(i)

p

) k
i
−1
c(i)

p
. (2.26)

Let us simplify the notation and denote x = c(i)
p

∈ (0, 1) and z = k
i
. By rearranging terms

we get

π′
n(x, z) = 1− (1− x)z−1 (1− (1− z)x) . (2.27)

This is non-negative if

(1− x)1−z ≥ 1− (1− z)x. (2.28)

and negative if

(1− x)1−z < 1− (1− z)x. (2.29)

The derivative in (2.27) is zero if z = 0 or z = 1. Moreover, since (1 − x)1−z is a strictly

increasing convex function of z and 1−(1−z)x is a strictly increasing linear function of z,

we have that π′
n(p, k) ≥ 0 for all z ≥ 1 and π′

n(x, z) ≤ 0 for all z ∈ [0, 1]. In other words,

we have that for all p ∈ [pi−1, pi], π
′
n(p, k) = 0 if k = i, π′

n(p, k) < 0 if k ∈ {1, 2, . . . , i−1},
and π′

n(p, k) > 0 if k > i.

Proof of Proposition 2

Proof. Lemma 2 shows that πn(p, k) ≤ πn(p
′, k) for some p ≤ p′ and k ∈ {i + 1, . . . , n}.

So, if a seller sends k ∈ {i+ 1, . . . , n} ads at price p ∈ [pi−1, pi], her profits are πn(p, k) ≤
πn(pk, k) = 0 for pk ≥ p.

Analogously, if a seller sets price at p ∈ [pi−1, pi] and sends k ∈ {1, . . . , i− 1} ads her

profits are πn(p, k) ≤ πn(pk, k) = 0 for pk ≤ p by Lemma 2.
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Proof of Corollary 1

Proof. Assume that the cost function is linear c(k) = kα, for some α ∈ (0, 1). Then

consider a 1-configuration and a seller who asks price 1, but deviates and sends k ads.

Then her expected profits π1(k, 1) are(
1−

(
1− e−λ1(1)

)k)− c(k) =
(
1− (1− c(1))k

)
− c(k) (2.30)

since λ1(1) = − log c(1). This is decreasing for all k ≥ 0 or(
1− (1− α)k

)
− kα ≥

(
1− (1− α)k+1

)
− (k + 1)α,

which can be simplified to

1 ≥ (1− α)k . (2.31)

So, in a 1-configuration it is not profitable to send more than one ad if the advertising

costs are linear. This clearly holds good also for costs that increase faster, i.e. for convex

cost functions.

Proof of Proposition 4

Proof. The goal of this proof is to show that there exists a unique and decreasing n(γ) ∈ N
such that ∆c̄(k) > ∆c(k) for all k = 2, 3, . . . , n(γ) and ∆c̄(k) ≤ ∆c(k) for all k > n(γ).

Then the set Cn(γ) = Cn(γ)∩C̄n(γ) is non-empty for all n ≤ n(γ). In order to do that, we

first prove that there exists a unique x∗(γ) ∈ (1,∞) such that c′(x∗(γ)) = c̄′(x∗(γ)) and
∂
∂γ
x∗(γ) < 0. Once we have shown this, we can show that this applies to integer values

as well.

One can show by induction that c(x) < c̄(x) holds for all x ∈ N\{1}, and since the

functions are concave and continuous it holds for all real numbers x > 1. Moreover, we

have that c(1) = c̄(1) = γ and limx→∞ c(x) = limx→∞ c̄(x) = 1. The derivatives of the

upper and lower bounds are c̄′(x) = −(1 − γ)x log(1− γ) and c′(x) = γ(1−γ)
(1+γ(x−1))2

. These

are equal if

(1− γ)x−1 =
−γ

log(1− γ)(1 + γ(x− 1))2
. (2.32)

From here we can see that the left-hand side equals 1 when x = 1 and the right-hand side

is less unity since − log(1− γ) = γ+ γ2

2
+ · · · > γ for all γ ∈ (0, 1). Both sides are strictly

decreasing functions of x and they both converge to zero as x goes to infinity. However,
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since the left-hand side decreases exponentially and the right-hand slower, there exists

a unique x∗(γ) ∈ (0,∞) such that c′(x∗(γ)) = c̄′(x∗(γ)). In other words, (1 − γ)x−1 ≥
−γ

log(1−γ)(1+γ(x−1))2
for all x ≤ x∗(γ) and (1 − γ)x−1 < −γ

log(1−γ)(1+γ(x−1))2
for all x > x∗(γ).

This is depicted in Figure 2.5.

1 x∗
0

1

x

(1− γ∗)x−1

−γ∗

log(1−γ∗)(1+γ∗(x−1))2

Figure 2.5: Determination of x∗.

Next we show that ∂
∂γ
x∗(γ) < 0. However, it turns out that the proof is not straight-

forward and we must do it inversely. We show that γ∗(x) which solves (2.32) is strictly

decreasing in x. Then its inverse x∗(γ) is decreasing in γ.

Let us denote h(x, γ) = (1 − γ)x−1(1 + γ(x − 1))2 and g(γ) = γ
− log(1−γ)

. Clearly,

h(x, 0) = 1 and h(x, 1) = 0, whereas limγ→0 g(γ) = 1 and limγ→1 g(γ) = 0. One can show

that g is strictly decreasing in γ while

∂

∂γ
h(x, γ) = (x− 1)(1− γ)x−2(1 + γ(x− 1))(1− γ(x+ 1)), (2.33)

which is non-negative for all γ ≤ 1
x+1

and negative for all γ < 1
x+1

. Moreover, when γ

goes to 0, the derivative in (2.33) approaches x− 1 ≥ 0. Thus, h(x, γ) is a single-peaked

function of γ with a global maximum at 1
x+1

. We know that g(γ) and h(x, γ) intersect

once at some γ∗ ∈ (0, 1), and hence the intersection must be on the decreasing part of

h(x, γ). This is depicted in Figure 2.6. Next we show that increasing x shifts h(x, γ) to

the left and, consequently, γ under which h(x, γ) = g(γ) decreases.

Let us fix arbitrary γ∗ and x∗ such that equation (2.32) is satisfied or h(x∗, γ∗) = g(γ∗).

By the uniqueness of x∗ we know that for all x > x∗ the expression in (2.32) holds as
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inequality:

(1− γ∗)x−1 <
−γ∗

log(1− γ∗)(1 + γ∗(x− 1))2
. (2.34)

This is equivalent to

(1− γ∗)x−1(1 + γ∗(x− 1))2 <
γ∗

− log(1− γ∗)
. (2.35)

On the left-hand side we have now h(x, γ∗) and on the right-hand side g(γ∗). However,

since g(γ∗) = h(x∗, γ∗) we have that h(x, γ∗) < h(x∗, γ∗) for all x > x∗. This implies that

if h(x, γ) = g(γ) and x > x∗ then γ < γ∗. This is depicted in Figure 2.6.

0 γ∗ 1
0

h(x, γ∗)

h(x∗, γ∗)

1

γ

g(γ)
h(x∗, γ)
h(x, γ)

Figure 2.6: Determination of γ∗.

We have thus shown that γ∗ which solves (2.32) exists and is unique for all x > 1. It

is also strictly decreasing in x and therefore its inverse x∗(γ) is strictly decreasing in γ

for all γ ∈ (0, 1).

Finally, let n(γ) = ⌈x∗(γ)⌉ − 1 (where ⌈·⌉ is the ceiling function). By the properties

of x∗(γ) it directly implies that ∆c̄(k) > ∆c(k) for all k ∈ {2, 3, . . . , n(γ)} and ∆c̄(k) ≤
∆c(k) for all k > n(γ). We have thus shown that n(γ) gives us the highest possible

configuration under costs c ∈ C(γ) such that Cn(γ) ̸= ∅ for all n ≤ n(γ), and n(γ) is

decreasing in γ.

Example 2. (2-configuration) From the example of a 1-configuration we get that p0 = c(0)

and thus the partition in a 2-configuration is P2 = {0, c(0), p1, 1}. So we are left with

solving p1.
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Consider a seller who sets a price at p1. She must make zero profits, and she must be

indifferent between sending 1 and 2 ads. More precisely, it means that the following two

conditions must holde−λ2(p1)p1 − c(1) = 0

e−λ2(p1)p1 − c(1) =
(
1−

(
1− e−λ2(p1)

)2)
p1 − c(2).

From this set of equations we solve that p1 =
c(1)

1−∆c(2)
c(1)

. Since we must have p1 ∈ (p0, 1), it

requires that ∆c(2) < c(1)(1− c(1)) which necessitates the strict concavity of advertising

costs.

The mixed strategies are solved by using Equation (2.5). For p ∈ [p0, p1] we have

F
(1)
2 (p) =

log p− log c(1)

θ2
,

and for p ∈ [p1, 1]

F
(2)
2 (p) =

1

2θ2
[λ2(p1) + λ2(p)] ,

where λ2(p1) = log p1
c(1)

and

λ2(p) = − log

(
1− 2

√
1− c(2)

p

)
.

The number of sellers in the market is given by Equation (2.6):

θ2 =
1

2
log

 c(1)

(2c(1)− c(2))
(
1−

√
1− c(2)

)
 .

We have thus solved the unique 2-configuration (P2, F2, θ2), where P2 = {0, c(1), c(1)

1−∆c(2)
c(1)

, 1},

F2(p) =


1
θ2
[log p− log c(1)] p ∈ [p0, p1)

1
2θ2

log

[
c(1)

(2c(1)−c(2))

(
1−

√
1− c(2)

p

)
]

p ∈ [p1, 1]

and

θ2 =
1

2
log

 c(1)

(2c(1)− c(2))
(
1−

√
1− c(2)

)
 .

40



With c(1) = 1
2
and c(2) = 5

8
we have θ2 ≈ 0.617, which is less than the number of

sellers in the 1-configuration θ1 = − log(2) ≈ 0.69 with the same c(1) = 1
2
. The partition

is P2 = {0, 1
2
, 2
3
, 1}. This and the price distribution are given in Figures 2.7 and 2.8.

0 Ads 1 Ad 2 Ads

0 1
2

2
3

1

Figure 2.7: The partition of the unit interval in the 2-configuration with c(1) = 1
2
and

c(2) = 5
8
.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

1 Ad 2 Ads

p

F
(1)
2 (p)

F
(2)
2 (p)

f
(1)
2 (p)

f
(2)
2 (p)

Figure 2.8: The price distribution of the 2-configuration with c(1) = 1
2
and c(2) = 5

8
.

Example 3. (3-configuration) From the 2-configuration we know that p0 = c(1) and

p1 =
c(1)

1−∆c(2)
c(1)

. Combining indifference condition I2 and zero profit condition (ZP2) we get

(
1− c(3)

p2

)2

=

(
1− c(2)

p2

)3

.

There is a unique solution to this cubic equation which satisfies p2 > c(3) and the adver-

tising costs remain concave:

p2 =
c(3)2 − 3c(2)2 + (c(3)− c(2))

3
2

√
c(3) + 3c(2)

2(2c(3)− 3c(2))
.
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The mixed strategies are derived by the similar steps as in the 2-configuration:

F3(p) =


1
θ3
λ3(p), p ∈ [p0, p1)

1
2θ3

(λ3(p1) + λ3(p)) , p ∈ [p1, p2)

1
θ3

(
1
2
λ3(p1) +

1
6
λ3(p2) +

1
3
λ3(p)

)
, p ∈ [p2, 1]

where λ3(·) is given in (2.4). θ3 is given by (2.6):

θ3 =
1

2
λ3(p1) +

1

6
λ3(p2) +

1

3
λ3(1)

With c(1) = 1
2
, c(2) = 5

8
, and c(3) = 3

4
we have θ3 ≈ 0.611 which is less than the

number of sellers in the 2-configuration with the same advertising costs (θ2 ≈ 0.617). The

unit partition is P3 = {0, 1
2
, 2
3
, 39+

√
21

48
, 1}. This and the price distribution are given in

Figures 2.9 and 2.10.

0 Ads 1 Ad 2 Ads 3 Ads

0 1
2

2
3

39+
√
21

48
1

Figure 2.9: The partition of the unit interval in the 3-configuration with c(1) = 1
2
, c(2) = 5

8
,

and c(3) = 3
4
.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

1 Ad 2 Ads 3 Ads

p

F
(1)
3 (p)

F
(2)
3 (p)

F
(3)
3 (p)

f
(1)
3 (p)

f
(2)
3 (p)

f
(3)
3 (p)

Figure 2.10: The price distribution of the 3-configuration with p2 =
39+

√
21

48
and c(1) = 1

2
,

c(2) = 5
8
, and c(3) = 6

8
.
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Chapter 3

Optimal Regulation with Costly

Verification

Abstract

We consider a principal-agent model in which the principal can monitor and punish the

agent with a fine if the agent is caught being untruthful. To reduce the probability of

being verified, the agent can engage in costly avoidance. We design the optimal regu-

latory policies with and without avoidance. The optimal mechanism with enforcement

allocates the object more often than the optimal mechanism without enforcement. More-

over, enforcement increases the expected transfers to the principal. Avoidance has two

implications to the optimal regulatory mechanism: (i) the expected optimal transfers to

the principal decrease and (ii) the principal allocates the object to a smaller share of

types. If the latter effect dominates the former, it is possible that the agent’s capability

to engage in avoidance is disadvantageous not only for the principal, but also for the agent

ex ante.1

Keywords : Mechanism Design, Verification, Enforcement, Monitoring, Avoidance, Fines.

JEL: D82, D86, L51.

1This study is written with Petteri Palonen. We are grateful to our advisors, Juuso Välimäki and
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Daniel Hauser, Topi Hokkanen, Deniz Kattwinkel, Jan Knoepfle, Klaus Kultti, Pauli Murto, Juuso Toikka,
and Takuro Yamashita, and participants of the Helsinki GSE Microeconomics seminars and workshops.
Financial support from the Yrjö Jahnsson Foundation and the OP Group Research Foundation is grate-
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3.1 Introduction

Imagine a regulator who can decide whether to allocate the right to conduct a business to a

firm who has private information about its profitability, emissions, or some other verifiable

and payoff-relevant parameter. The optimal allocation and regulation in different kind

of environments are pioneered by Mussa and Rosen (1978), Myerson (1981), Baron and

Myerson (1982), and Lewis and Sappington (1988a and 1988b), with the well-known

results. However, these results are founded on the assumption that the regulator does

not have (law) enforcement in her tool box. We diverge from this approach. We assume

that the regulator has the power to punish the firm with a fine if the firm is caught

choosing a contract that was not designed to her (e.g. tax evasion). In order to verify

the firm’s compliance, the regulator has to invest in costly monitoring. That is to say,

in addition to a physical allocation and transfers, the regulator has also the tools of

enforcement (monitoring and punishments) at her disposal to achieve desirable outcomes.

How does the principal’s enforcement affect the firm’s information rent? What is the

optimal regulatory policy?

Consider next the firm’s perspective. We have deviated from the classical allocation

narrative by introducing enforcement. Now we must ask: how does enforcement change

the firm’s behavior? Following Malik (1990) we suppose that a firm can weaken the

regulator’s monitoring efforts by covering up its non-compliance by engaging in costly

’avoidance’ (e.g. by falsification of accounts, corruption, or bribing). Now the firm has

not only private information, but can also make a private action, both unobservable to

the regulator. If the regulator confronts a firm who can decrease the probability of being

caught from non-compliance, how does this affect the optimal regulation mechanism?

We approach these questions by considering a principal-agent model with costly veri-

fication. We focus on direct mechanisms, where the agent is asked to report her private

information (type) to the principal. We show that it is without loss of optimality to focus

on truthful equilibria among all direct mechanisms (Proposition 6).2

The principal (regulator) has an exogenous verification technology for the agent’s

(firm’s) private information. The principal can improve the accuracy of the verification by

investing in costly monitoring, whereas the agent can decrease the verification probability

by engaging in costly avoidance. This battle between avoidance and monitoring makes

2In the taxation literature a truthful equilibrium is often referred as horizontal equity (see, e.g.,
Stiglitz (1982) and Mookherjee and Png (1989)). It means that agents with identical expected incomes
and identical reports face the same ex-post taxation scheme. Two popular surveys on optimal taxation
and tax evasion are by Andreoni et al. (1998) and Slemrod and Yitzhaki (2002). To the best of our
knowledge, our model has the closest connection to the tax evasion models by Border and Sobel (1987)
and Mookherjee and Png (1989). See Mookherjee and Png (1990) how the Revelation Principle (for
indirect mechanisms) applies in this context.
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the verification imperfect.

Once the agent is successfully verified, the principal learns the agent’s private infor-

mation and can fine or rebate the agent. The punishments are determined by the agent’s

true type and the reported type such that the punishments are zero with the truthful re-

port.3 If the verification is unsuccessful, the principal learns that the agent’s type was the

reported one which also leads to zero punishments. The punishment function is bounded

and exogenously given to the principal. In this context avoidance can be interpreted as

bribing the person who is conducting the monitoring.4

The equilibrium payoffs and transfers are derived by using the Envelope Theorem

(Propositions 7 and 8). Theorems 1 and 2 give the optimal regulatory policies without

and with avoidance, respectively. We find that the principal allocates the object to a

larger share of agents and the expected optimal transfers are greater than in the optimal

standard mechanism in which the principal can design only an allocation consisting of a

physical allocation and transfers (e.g. in Mussa and Rosen (1978) and Myerson (1981)).

While a take-it-or-leave-it offer is the optimal standard mechanism, non-linear pricing is

the optimal mechanism with enforcement. The rationale for this result is that the principal

is able to extract a proportion of the agent’s information rent by monitoring and fines.

The agent’s ability to engage in avoidance makes this proportion smaller. Avoidance

has no direct effects on the equilibrium transfers since with a truthful report the fines

are zero and hence the agent has no incentive to invest in costly avoidance. However,

avoidance makes the incentive compatibility constraint more rigid (engaging in avoidance

may be profitable with off-equilibrium reports) and, consequently, it is optimal for the

principal to monitor a smaller proportion of reports than without avoidance. This has

two implications: (i) the expected optimal transfers to the principal decrease and (ii) the

principal allocates the object to a smaller share of types. So, although avoidance results

in greater information rent for the agent, it also hurts the agent by making the optimal

mechanism to allocate to a smaller share of types. If the latter effect dominates the former,

then it is possible that the agent’s capability to engage in avoidance is disadvantageous

not only for the principal, but also for the agent ex ante (Proposition 9).

3For instance, fines may be positively dependent on the offender’s revenue or income.
4This setup is closely related to Mylovanov and Zapechelnyuk (2017) and Li (2020) who also consider

limited punishments. Using limited punishments has several reasons. For instance, in the real life,
enforcement mechanisms are not perfectly implemented and therefore there exists a risk that compliant
agents are erroneously sentenced. Consequently, societies do not impose maximal punishments in order
to prevent severe consequences of false positive errors. Moreover, even if the enforcement mechanisms
were perfect, societies do not want to discipline amoral agents too harshly. And lastly, if the regulator
was able to design the whole punishment function, the enforcement would be trivial: infinite punishments
for a non-compliant agent and zero punishments for a compliant agent. This would guarantee that any
outcome is incentive compatible.

45



It turns out that if there is no avoidance and monitoring is costless, then with suf-

ficiently large (bounded) fines, the principal allocates for all types and gets the whole

surplus even if the verification is noisy, i.e. the verification probability is less than unity

(Corollary 2). However, if monitoring is costly, enforcement weak, or the agent can en-

gage in avoidance, the full information rent extraction is too costly or impossible for the

principal.

3.1.1 Related Literature

Our paper contributes to two strands of literature: (i) enforcement and regulation, and (ii)

mechanism design with verification. The confluence of these two literature is rewarding.

On the one hand, mechanism design offers a useful approach to lay out enforcement tools

and regulatory policies, and on the other hand, the enforcement environment introduces

new tools, monitoring and fines, for the principal when designing contracts. Since both

branches of literature are vast, we comment only a few closest papers to our research

leaving out many papers that would have deserved to be mentioned.

The economic literature on enforcement originates from Becker’s (1968) seminal arti-

cle. One can interpret Becker’s analysis loosely such that it is optimal for the regulator

to increase fines as high as possible and decrease monitoring as low as possible: moni-

toring has a cost to the society, whereas imposing a fine is costless. Malik (1990) is the

first to argue that the optimal fine might not be as high as possible when risk-neutral

agents can engage in avoidance activities. However, our comparative statics on fines do

not coincide with Malik’s. In our model, the principal can increase the information rent

extraction by investing more in monitoring. However, the higher the exogenously given

marginal fine, the less monitoring the principal needs for achieving incentive compatibil-

ity. Consequently, increasing the marginal fine parameter eventually drives the optimal

monitoring closer and closer to zero. Our model thus provides unsurprising results on

fines, and hence the focus of our analysis of enforcement is on monitoring and avoidance.

For further readings on avoidance and punishments see, for instance, Langlais (2008) and

Tabbach (2010).5

One of the applications of our model is a monopoly regulation setup. The pioneer-

ing papers on this branch of economic theory literature are Baron and Myerson (1982),

and Lewis and Sappington (1988a and 1988b). Baron and Myerson assume that the pro-

5Siegel and Strulovici (2018) study judicial mechanism design. Perez-Richet and Skreta (2018) study
optimal test design in a sender-receiver game. The sender and the receiver can both manipulate the
accuracy of a signal, which can be interpreted as a duel of monitoring and avoidance. Finkle and Shin
(2020) consider a principal-agent model in which the principal’s monitoring can be obstructive to the
agent.
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duction costs of the monopoly are private information of the monopolist, while Lewis

and Sappington (1988a) assume that the demand is private information. Lewis and Sap-

pington (1988b) extend private information on both parameters, production costs and

demand.

There are roughly three branches of literature on verification: (i) costly, (ii) partial,

and (iii) probabilistic verification.

Costly verification was pioneered by Townsend (1979), Diamond (1984), and Gale

and Hellwig (1985). In their models, the verification technology is perfect and it reveals

the hidden information once implemented. Border and Sobel (1987) and Mookherjee and

Png (1989) study costly verification with noisy verification technology. Costly verification

without transfers are studied by Ben-Porath et al. (2014), Mylovanov and Zapechelnyuk

(2017), Erlanson and Kleiner (2019), Halac and Yared (2020), Li (2020), and Kattwinkel

and Knoepfle (2022).6

In partial verification models the principal can restrict the message space of each type

and so partially verify the agents’ private information. This topic was first explored by

Green and Laffont (1986), who show that the Revelation Principle does not hold in this

setup.7 Lipman and Seppi (1995) and Bull and Watson (2004) study (partial) verification

as hard evidence. Partial verification precludes the use of the envelope theorem in design-

ing equilibrium transfers because the verification probability jumps discontinuously from

0 to 1 at the truthful report.

In probabilistic verification models the authentication probability is conditional on the

agent’s report and type. Whenever the agent reports truthfully, her true type is revealed

with probability 1, otherwise the authentication rate can be anything between 0 and 1.

This is not either amenable to the first-order approach if there is a non-differentiability at

the truthful report. Ball and Kattwinkel (2019) solve this problem and are the first to use

the first-order approach in mechanism design with verification. Moreover, by separating

communication from testing, they recover a version of the Revelation Principle.8 Ball and

Kattwinkel set the fine such that it normalizes the utility of the agent to zero when getting

caught in a misreport (maximal punishments). In contrast to Ball and Kattwinkel (2019),

we use an exogenous and limited punishment function. Our approach has two advantages.

6Holmström (1979) considers a principal-agent relationship subject to moral hazard in which the
principal can acquire imperfect information about the agent’s actions by monitoring. Halac and Yared
(2019) study a fiscal policy model with limited enforcement.

7About implementation without the revelation principle see Nisan and Ronen (2001), Singh and
Wittman (2001), Fotakis and Zampetakis (2015), Auletta et al. (2011), Yu (2011), Rochet (1987), and
Vohra (2011).

8In computer science, Caragiannis et al. (2012) and Ferraioli and Ventre (2018) consider direct prob-
abilistic verification mechanisms. Dziuda and Salas (2018) and Balbuzanov (2019) study binary proba-
bilistic verification models (authentication rate is either 1 or p ∈ (0, 1)) without commitment.
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First, we can make simple assumptions in order to utilize the Envelope Theorem. Second,

the verification probability can be modeled as a function of monitoring and avoidance;

an exogenous punishment function allows mechanisms to be independent of the agent’s

true type, which is not the case in probabilistic verification models. These assumptions

in our setting provide an accessible environment which can be used to study the effects

of avoidance on the optimal enforcement policies.

3.1.2 Roadmap

This paper is organized as follows. In Section 3.2 we lay out the preliminaries for the

analysis. In Section 3.3 we study the requirements for incentive and avoidance compat-

ibility and derive the optimal mechanisms without and with avoidance, respectively. In

Section 3.4 we discuss the findings. All the results given in the analysis are proved in

Appendix 3.4 to improve readability.

3.2 Preliminaries

Consider a standard principal-agent model where the principal is a regulator and the agent

is a firm. The agent has private information about her profitability or the valuation of

getting the right to do business θ ∈ Θ :=
[
θ, θ̄
]
⊂ R+ for some θ < θ̄. Let the principal’s

beliefs about the agent’s type θ be given by the distribution function F on Θ with the

density function f with full support on Θ. We assume that F is regular, i.e. 1−F (θ)
f(θ)

is

decreasing in θ.

The principal designs a direct mechanism Γ = (Θ, (x,m)) which consists of a message

space Θ, an allocation rule x = (r, t) : Θ → [0, 1]×R, where r : Θ → [0, 1] is the probability

that the principal permits the agent to do business, t : Θ → R is the transfer from the

agent to the principal (a tax or a price of the right), and monitoring m : Θ → M := [0, 1].

Next we introduce how these mechanisms determine the outcomes of the game.

Let the agent’s type be θ ∈ Θ and let θ′ ∈ Θ be an arbitrary report in a mechanism

Γ = (Θ, (x,m)). The payoff of the agent from reporting θ′ and getting an allocation

x(θ′) = (r(θ′), t(θ′)) is given by a function u : X × Θ → R, where X := [0, 1] × R+. For

simplicity, we abstract ourselves from the regulation of the price or quantity of output

which is allowed in Baron and Myerson (1982) and Lewis and Sappington (1988a and

1988b) and assume that u(x(θ′), θ) = v(r(θ′), θ)− t(θ′) = θ · r(θ′)− t(θ′).

We assume that the agent’s private information θ is verifiable. The verification prob-

ability is given by a function p : M×A → R such that p(m, a) = m(1− a) ∈ [0, 1] for all

(m, a) on M×A, where m is the monitoring designed by the principal and a ∈ A := [0, 1]
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is a private action taken by the firm. We call this action avoidance (following Malik

(1990)). To be more precise with the terminology, by verification we refer to the proba-

bility p that the principal learns the agent’s true type θ ∈ Θ and to the probability 1− p

that the principal learns that the agent’s type is the reported one, θ′ ∈ Θ. This simple

verification model is similar to that used in the costly verification literature, except now

there is avoidance as a counter-force.9

We use linear monitoring costs which are given by a function κ : M → R+ such that

κ(m′) = K ·m for K > 0 and m on M. The agent’s avoidance costs are also given by a

linear function c : A → R+ such that c(a) = C · a for some C > 0.

If the agent is verified, the regulator can punish or reward the agent with a fine or

rebate. The punishments are given by a function Φ : Θ × Θ → R such that the amount

of fine, Φ(θ′, θ), is given by the agent’s type θ ∈ Θ and report θ′ ∈ Θ. To keep the

model tractable, we use a simple linear punishment function Φ(θ′, θ) = φ (θ − θ′) for

some constant φ > 0. This is a standard punishment function in tax evasion literature

where θ − θ′ is interpreted as the difference between a taxpayer’s income and report, i.e.

the amount of tax evasion (see, e.g., Allingham and Sandmo (1972) and Kleven et al.

(2011)). With a report θ′ > θ it can be considered as a tax refund. We assume that the

agent has linear preferences in fines and avoidance costs.

The game proceeds as follows. First, the type θ is drawn for the agent from distribution

F . Second, the principal posts and commits to a mechanism Γ. Third, the agent decides

whether to participate or not the mechanism. If the agent does not participate, the game

ends, whereas if she participates, the game proceeds and the agent sends a message θ′ ∈ Θ.

After receiving the message, the principal makes decision x(θ′). Then the agent chooses

avoidance a and the verification is successfully executed with probability p(m(θ′), a). If

the agent is verified, the true type θ is revealed and punishment Φ(θ′, θ) is imposed. If

the principal’s verification fails, fines Φ(θ′, θ′) = 0 are imposed. After that the game ends.

The timeline is illustrated in Figure 3.1.10

9Avoidance can be interpreted, for instance, as falsification of accounts or corruption in monitoring
(bribing). If A was {0, 1}, then avoidance could be thought as the agent’s action to evade the verification
mechanism (go into tax exile). In this case avoidance costs could be interpreted as transition or removal
expenses.

10In many applications it is natural to assume that verification follows the allocation decision, which
could be due to monitoring being a slow process. For instance, if the messages are firms’ tax reports,
auditing is usually enforced after the payment of taxes and it necessitates going through the firms’ books.
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with probability
1− p(m(θ′), a)

Figure 3.1: Timeline of the game.

Since the principal is fully committed to the mechanism and cannot observe avoid-

ance, the game is static and equivalent to one in which the agent chooses her report and

avoidance simultaneously. Hence, given direct mechanism Γ, an agent with type θ ∈ Θ

chooses (θ′, a) ∈ Θ×A to maximize her expected utility11

UA(x(θ
′),m(θ′), a, θ)

= p (m(θ′), a) [u(x(θ′), θ)− Φ(θ′, θ)]

+ (1− p (m(θ′), a)) [u(x(θ′), θ)− Φ(θ′, θ′)︸ ︷︷ ︸
=0

]− c(a) (3.1)

= θr(θ′)− t(θ′)−m (θ′) (1− a)φ(θ − θ′)− C · a. (3.2)

The principal’s ex-post payoff (before verification) is

UP (x(θ
′),m(θ, ), a, θ)

= t(θ′) + p(m(θ′), a)Φ(θ′, θ) + (1− p(m(θ′), a)) Φ(θ′, θ′)︸ ︷︷ ︸
=0

− κ (m(θ′)) + αUA(x(θ
′),m(θ′), a, θ) (3.3)

= t(θ′) +m(θ′)(1− a)φ(θ − θ′)−Km(θ′)

+ αUA(x(θ
′),m(θ′), a, θ) (3.4)

11Ball and Kattwinkel (2019) use a model in which u(x(θ′), θ)−Φ(θ′, θ) = 0 whenever the verification
is successful. This requires that the punishments are given by an endogenous function of a report and
a type. In our model the functional form of the punishments is exogenous. Moreover, instead of taking
the verification probability function as given, Ball and Kattwinkel (2019) design an authentication rate
α : Θ × Θ → [0, 1] and allocation x : Θ → X such that α(θ|θ) = 1 for all θ ∈ Θ. The agent’s payoff is
given by α(θ′|θ)u(x(θ′), θ) which is u(x(θ), θ) at the truthful report.
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for some weight parameter α ∈ [0, 1].12 That is, the principal designs a direct mechanism

Γ to maximize weighted sum of the expected transfers and fines net of monitoring costs

and the agent’s payoff, i.e. Eθ [UP (x(θ
′),m(θ, ), a, θ)].

We say that a direct mechanism is incentive and avoidance compatible if the agent

finds it optimal to report truthfully not to engage in avoidance.

Definition 4. A direct mechanism Γ = (Θ, (x,m)) is incentive and avoidance compatible

if and only if for all (θ, θ′) ∈ Θ2 and all a ∈ A

UA(x(θ),m(θ), 0, θ) ≥ UA(x(θ
′),m(θ′), a, θ).

We assume that the agent’s outside option from not participating the mechanism is

zero. Consequently, a mechanism is individually rational if and only if the agent receives

non-negative payoff in equilibrium when participating into an incentive and avoidance

compatible direct mechanism.

Definition 5. An incentive and avoidance compatible direct mechanism Γ is individually

rational if and only if UA(x(θ),m(θ), 0, θ) ≥ 0.

Lastly, by the following proposition we can restrict our attention to equilibria where

the agent truthfully reports her type to the principal and does not engage in avoidance.

Proposition 6. It is without loss of optimality to focus on incentive and avoidance com-

patible mechanisms among all possible direct mechanisms.

This result has the following intuitive interpretation and reasoning. Consider an arbi-

trary direct mechanism. If there is avoidance in equilibrium, the principal’s information

rent extraction is weaker than in equilibrium, where avoidance is zero. Hence, the prin-

cipal prefers the outcomes where there is no avoidance. By the linearities of the players’

utilities, the principal can reassign the expected punishments into the equilibrium trans-

fers. Moreover, the punishments are assumed to be additively separable and thus the

agent’s report does not affect the marginal fines that determines the effectiveness of the

principal’s information rent extraction. Consequently, the principal’s maximum payoff

over direct mechanisms is attained by some incentive and avoidance compatible mecha-

nism.

12The weight parameter does not play a crucial role in our analysis but takes our model slightly closer
to the models of Baron and Myerson (1982) and Lewis and Sappington (1988a and 1988b).
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3.3 Optimal Regulatory Policy

In this section we design the regulator’s payoff maximizing mechanisms. We first de-

rive the optimal mechanism without avoidance and then compare it with the optimal

mechanism with avoidance.

3.3.1 Optimal Mechanism without Avoidance

Assume that the agent cannot engage in avoidance and the verification probability is

simply given by monitoring m(θ′) ∈ [0, 1] for any report θ′ ∈ Θ. Given direct mechanism

Γ, we can write the agent’s value function as follows:

V (θ) = max
θ′∈Θ

(
θr(θ′)− t(θ′)−m(θ′)φ(θ − θ′)

)
= max

θ′∈Θ

(
θI(θ′)− τ(θ′)

)
, (3.5)

where I(θ′) := r(θ′) − m(θ′)φ and τ(θ′) := t(θ′) − m(θ′)φθ′. These both, I and τ , are

functions of report θ′ and independent of true type θ. In other words, the mechanism

designer’s problem without avoidance reduces to a standard mechanism design problem

where the ’physical allocation’ is I(θ′) and ’transfers’ are τ(θ′). We thus know from the

well-known results of Myerson (1981) that the mechanism Γ is incentive compatible if and

only if I(·) is non-decreasing and τ is given by the Envelope Theorem:

τ(θ) = θI(θ)− V (θ)−
∫ θ

θ

I(s)ds (3.6)

which can be rewritten as

t(θ) = θr(θ)− V (θ)−
∫ θ

θ

(r(s)−m(s)φ) ds. (3.7)

Based on this we get the following result.

Proposition 7. Assume an environment without avoidance. A direct mechanism Γ =

(Θ, (x,m)) is incentive compatible if and only if

t(θ) = θr(θ)− V (θ)−
∫ θ

θ

I(s)ds, (3.8)

and I(·) := r(·)−m(·)φ is non-decreasing.

The equilibrium transfers given in Proposition 7 can be interpreted as follows. The
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integral in (3.8) has two components: (i) the agent’s information rent
∫ θ

θ
r(s)ds and (ii)

the amount that the principal can extract the agent’s information rent
∫ θ

θ
m(s)φds. The

higher the monitoring or the marginal fines, the greater the principal’s rent extraction.

We call the difference between these two components, I, the agent’s net information rent.

The higher the net information rent, the more the agent gets payoff in equilibrium.

In comparison with the standard monotonicity results, we observe from Proposition

7 that in an incentive compatible mechanism we do not necessarily have non-decreasing

physical allocation r. It is possible that the monitoring guarantees that the net infor-

mation rent I(·) is non-decreasing even though the physical allocation is non-monotonic.

The following short example illustrates this phenomenon.

Example 4. (Emission Trading System.) Consider a firm which production causes

θ ∈ [0, θ̄] amount of emissions. The pollution level is privately known by the firm. The

regulator asks the firm to report its emissions in order to allocate the emissions allowance

r at price t. The regulator can verify the firm’s report by monitoring and punish or re-

bate the firm if the report is not accurate. For simplicity, let monitoring be costless and

the marginal fine satisfy φ ≥ 1. Suppose that the emissions cause harm for the envi-

ronment. Let the harm be a function H : Θ × [0, 1] → R such that H(θ, r(θ)) = 0 if

r(θ) = 0. The regulator maximizes Eθ [t(θ)−H(θ, r(θ))] subject to incentive compatibility

and participation constraints.

Since monitoring is costless, it is optimal for the regulator to set m(θ) = r(θ)φ−1 ∈
[0, 1] in order to maximize the information rent extraction (see Proposition 7). This im-

plies that the net information rent I(θ) = r(θ) −m(θ)φ = 0 for all θ ∈ Θ. That is, the

agent does not receive any information rent and the regulator’s problem reduces to design-

ing r(·) such that it maximizes E [θr(θ)− V (θ)−H(θ, r(θ))]. This has no requirements

for the monotonicity of r. For instance, we can assume that a firm with large emissions

causes more harm to the society than it yields tax revenue. In this case θ < H(θ, 1) for

large θ and the optimal r is decreasing in θ.

Recall that the principal maximizes the expected weighted sum of the agent’s payoff

and the transfers net of monitoring costs subject to the incentive compatibility and the

participation constraints. By the similar arguments as in a standard mechanism design

problem, we know that if a mechanism Γ maximizes the principal’s transfers net of mon-

itoring costs, then at the optimum we have V (θ) = 0. This further implies that in the

mechanism Γ the individual rationality is satisfied if and only if I(θ) ≥ 0 for all θ ∈ Θ.

Thus, there is a natural bound for the information rent extraction: the net information

rent must be non-negative and so the principal cannot extract more information rent than

there is available (see also Lemma 3 in Section 3.3.2). By Proposition 7 we know that
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I(·) is non-decreasing and hence the principal solves

max
(x;m)

E [t(θ)−K ·m(θ) + αV (θ)] (MAX)

subject to

t(θ) = θr(θ)−
∫ θ

θ

I(s)ds (TAX)

I(·) is non-decreasing (IC)

I(θ) ≥ 0 (IR)

for all θ ∈ Θ.

By substituting the equilibrium transfers (TAX) into the principal’s objective function

in (MAX) and using Fubini’s theorem for interchanging the order of integration, the

principal’s objective function becomes

E [ψr(θ)r(θ) + ψm(θ)m(θ)] , (3.9)

where

ψr(θ) := θ − (1− α)
1− F (θ)

f(θ)
and ψm(θ) := (1− α)φ

1− F (θ)

f(θ)
−K.

From (3.9) we observe that the principal’s objective function is linear in r and m

and consequently the optimum is achieved at some extremes of (r,m). By the agent’s

individual rationality constraint we know that the net information rent must be non-

negative and hence all the feasible extreme values are {0, r̄, 1} and {0, m̄} for r and m,

respectively, where r̄ := min{1, φ} and m̄ := min{1, φ−1} (see Figure 3.6 in Appendix

3.4).

By regularity of F we know that ψr(θ) is increasing and ψm(θ) is decreasing in θ. This

implies that also ψr(θ)r̄ + ψm(θ)m̄ is increasing in θ since 1 ≥ φm̄. In other words, the

regulator’s objective function (3.9) is non-decreasing in θ for all possible combinations of

feasible extremes of (r,m) and consequently the optimal mechanism is given by the upper

envelope of these combinations (see Figure 3.7 in Appendix 3.4). This reasoning is the

core of the proof of our first theorem. The complete proof is given in Appendix 3.4.

Before giving our first theorem, let us introduce the following cutoff types:

θr = inf {θ ∈ Θ : ψr(θ) ≥ 0} (3.10)

θm = inf {θ ∈ Θ : ψr(θ)r̄ + ψm(θ)m̄ ≥ 0} (3.11)
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θm = sup {θ ∈ Θ : ψm(θ) ≥ 0} . (3.12)

By the regularity of F , the cutoff types θr, θm, and θm are uniquely determined. The

cutoff θr is the lowest type for whom the principal would allocate without verification (i.e.

θr is the standard take-it-or-leave-it offer). As we show in the proof of Theorem 1, the

interval [θm, θ
m) with θm < θm gives us the types that the principal finds it optimal to

monitor.

Theorem 1. Assume an environment without avoidance. If the monitoring is relatively

costly (θm ≥ θm), then the optimal mechanism is a standard take-it-or-leave-it offer θr

with no monitoring.

If the monitoring is relatively inexpensive (θm < θm), then the optimal mechanism is

given by the physical allocation

r(θ) =


0, θ ∈ [θ, θm)

r̄, θ ∈ [θm, θr)

1, θ ∈ [θr, θ̄],

(3.13)

the monitoring

m(θ) =

m̄, θ ∈ [θm, θ
m)

0, otherwise,
(3.14)

and the transfers

t(θ) =



0, θ ∈ [θ, θm)

θφm̄, θ ∈ [θm, θr)

θr + m̄φ(θ − θr), θ ∈ [θr, θ
m)

θr + m̄φ(θm − θr), θ ∈ [θm, θ̄].

(3.15)

Let us compare this mechanism with a take-it-or-leave-it offer θr, i.e. with the optimal

mechanism without enforcement (see Mussa and Rosen (1978) or Myerson (1981)). From

Theorem 1 we can observe that, whenever the monitoring is relatively cheap (θm < θm),

then the principal benefits from enforcement tools: (i) the principal allocates the object

more often than the optimal standard mechanism: θm ≤ θr, and (ii) the principal expects

to receive a higher transfers net of monitoring costs with enforcement than without en-

forcement: E[t(θ) − Km(θ)] ≥ E[θr1{θ ≥ θr}], where 1 is the indicator function. That

is to say, agents with type θ ∈ [θm, θr] who did not receive the allocation without en-
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forcement, are allocated the object with enforcement with probability r̄. However, even

thought agents with type θ ∈ [θm, θr] get the object in the optimal enforcement mech-

anism, they do not receive any surplus from the allocation. This result holds for any

marginal fines φ. If the fines were low, φ < 1, then the regulator boosts the information

extraction by decreasing the allocation probability to φ for types θ ∈ [θm, θr].
13 And if the

marginal fine is large, φ ≥ 1, the regulator’s enforcement is so effective that the principal

allocates for certainty but extract all the information rent not only from all agents with

type θ ∈ [θm, θr), but also from all types in [θr, θ
m).

The principal’s expected payoffs with the take-it-or-leave-offer θr and with the optimal

enforcement mechanism without avoidance are illustrated in Figure 3.2. The dark blue

areas in the figures depict the principal’s expected payoff in the standard mechanism

without monitoring and punishments. The red area illustrates the payoff that the principal

can get by extracting extra information rent from the agent by enforcement. The light

blue area is the loss that the principal receives from allocating to low types. From these

figures we observe that it would be optimal for the principal to allocate the object for all

types in [θr, θ] and monitor all types in [θ, θm]. However, this mechanism is not incentive

compatible or individually rational for the agent because there cannot be monitoring

without allocation and the net information rent must be non-decreasing. Hence, if the

principal wants to monitor some types in [θ, θr], she faces the loss from allocation of the

monitored types in the light blue area. In order to maximize the red area net of the light

blue subject to the incentive constraints, the principal finds it optimal to decrease the

allocation probability for types [θm, θr].

13An alternative interpretation for decreasing r is the following. Suppose the regulator is selling a
share r of assets she is possessing, which can be related to for instance an ownership of the business or
emission allowances. Then offering a low r can be interpreted as a joint ownership of the business or
limited supply of emission allowances. See more discussion from Chapter 4, where the optimal decreased
allocation probability is due to the informed principal.
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Figure 3.2: The principal’s expected revenue.

Due to the enforcement the regulator’s optimal pricing is now non-linear for types

θ ∈ [θm, θ
m]. The regulator can incentivize the agent to be truthful even thought the

regulator is asking greater transfers with enforcement than in a standard mechanism. By

the linearity of the agent’s payoff (risk neutrality), the regulator can shift the punishments

into the transfers and hence give all the uncertainty of the verification to the agent. The

optimal transfers without avoidance are depicted in Figure 3.3. The jumps in the transfers

at θm and θr are due to the jumps in the allocation probability from 0 to r̄ and from r̄ to

1, respectively. The linearly increasing parts of transfers are due to the linear punishment

function. The slope is given by product of the maximal monitoring and marginal fines,

i.e. min{1, φ}. Since the marginal benefits from monitoring are less than the costs of

monitoring for the high types, the principal does not monitor types greater than θm and

consequently the transfers become flat.

θm θr θm θ̄

θr

θ̄

θ θ

45°
t(θ)
θr

Figure 3.3: Optimal take-it-or-leave-it-offer (blue dashed line) and optimal transfers with
enforcement mechanism when φ < 1 (red solid line).
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From Theorem 1 we observe that the more the principal values the agent’s utility

— that is, the greater α, the more the principal values the allocation and the less the

monitoring; θr and θm are both decreasing in α. If α = 1, the principal always allocates

the object to the agent for free and does not invest in monitoring. At the other extreme,

α = 0, the principal wants to extract as much information rent as possible from the agent

by monitoring aggressively. One can verify that there exists α∗ ∈ (0, 1) such that θm ≥ θm

for α ≥ α∗. That is, for a relatively high α, the principal give up on monitoring and leave

the agent more information rent; investing in costly enforcement is no longer profitable if

the principal receives high utility from the agent’s utility.

If the fines are large and there are no monitoring costs, then the optimal mechanism

always allocates the object and extracts the whole information rent from all types. To

be more precise, with K = 0, the bounds become θm = θ and θm = θ̄, and consequently

r(θ) = 1, m(θ) = φ−1, and t(θ) = θ with φ ≥ 1 for all θ ∈ Θ.

Corollary 2. Assume an environment without avoidance. Then with zero monitoring

costs and large marginal fines, φ ≥ 1, the principal extracts the whole surplus from the

agent.

That is, even with limited punishments (φ ≥ 1) and noisy verification (m = φ−1),

the regulator can leave the agent without information rent. However, if the marginal

punishment is small, φ < 1, the full surplus extraction is not possible.

There is a couple of reasons to assume that the marginal fines are small. First,

with φ ∈ (0, 1) it is without loss of generality to assume m : Θ → [0, 1] instead of

m̂ : Θ → [0, M̄ ] for some M̄ < 1. To see this, we can always write the marginal fine such

that φ = φ̂M̄ for some constant φ̂. This would exactly represent the case in which the

monitoring is imperfect and bounded from above by M̄ . In this case we have m(θ′)φ(θ−
θ′) = m(θ′)M̄φ̂(θ − θ′) = m̂(θ′)φ̂(θ − θ′) with φ̂ ≥ 1 even though φ = φ̂M̄ < 1. Another

reason arises if we assume that the monitoring is slow and the fines are realized later than

the allocation. Then the punishments are discounted. Letting the discount factor to be

δ ≤ 1 we can write the marginal fine as φ := δφ̄. In this case we can have φ = δφ̂ < 1

even though φ̂ ≥ 1.

If the agent can engage in avoidance the result in Corollary 2 does not hold anymore.

Next we show this by deriving the optimal mechanism with avoidance.

3.3.2 Optimal Mechanism with Avoidance

Let us now suppose that the agent can engage in costly avoidance. Recall that the

verification probability is then given by p(m, a) = m(1− a) for (m, a) ∈ [0, 1]2.
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Given mechanism Γ, let the agent’s value function be

V a(θ) = sup
θ′∈Θ,a∈A

(
θ · r(θ′)− t(θ′)−m(θ′)(1− a)φ(θ − θ′)− C · a

)
. (3.16)

For any (θ′, θ) ∈ Θ2, the agent’s optimal avoidance is given by

a∗(θ′|θ) ∈ argmax
a∈A

(
θr(θ′)− t(θ′)−m(θ′)(1− a)φ(θ − θ′)− C · a

)
, (3.17)

which has the following solution

a∗(θ′|θ) =

1, m(θ′)φ(θ − θ′) > C

0, otherwise.
(3.18)

In other words, under positive monitoring the agent engages in costly avoidance only with

a sufficient under report. For over reports the agent does not engage in costly avoidance

since it would decrease the probability of getting the refund.

If monitoring is decreasing in report, then the more the agent under reports her type,

the more she invests in avoidance since under reporting leads to increased monitoring and

fines. The agent’s reaction to enforcement is thus aggressive which makes it harder for

the principal to achieve truthful reports.

From (3.18) we get two immediate results. First, if the optimal monitoring is zero,

then also the optimal avoidance is zero and we end up in the first part of Theorem 1

(θm ≥ θm). Second, if the marginal cost of avoidance is large, C ≥ φ(θ̄ − θ), then the

agent never engages in avoidance. In this case the mechanism is avoidance free, and the

results in Theorem 1 and Corollary 2 follow

The following lemma shows that the agent’s net information rent is non-decreasing in the

agent’s type also in an incentive and avoidance compatible mechanism.

Lemma 3. In any incentive and avoidance compatible direct mechanism Γ, the net in-

formation rent I(θ|θ) := r(θ)−m(θ)φ is non-decreasing in θ.

Based on the agent’s optimal choice of avoidance (3.18) we also know that in the

truthful equilibrium there is no avoidance. This implies that the equilibrium transfers in

an incentive and avoidance compatible mechanism are the same as given in Proposition 7.

However, avoidance can be positive with off-equilibrium reports which affects the incentive

and avoidance compatibility constraints (recall Definition 4).

Proposition 8. A direct mechanism Γ = (Θ, (x,m)) is incentive and avoidance compat-
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ible if and only if for all θ ∈ Θ

t(θ) = θr(θ)− V (θ)−
∫ θ

θ

I(s|s)ds (3.19)

and for all θ, θ′ ∈ Θ

(θ − θ′) [I(θ|θ)− I(θ′|θ)] ≥ −c(a∗(θ′|θ)), (3.20)

or

(θ − θ′) [I(θ|θ)− I(θ′|θ′)] ≥ a∗(θ′|θ) [m(θ′)φ(θ − θ′)− C] , (3.21)

where I(θ′|θ) := r(θ′) − m(θ′)(1 − a∗(θ′|θ))φ and the optimal avoidance a∗ is given by

(3.18).

The inequality in (3.21) states that the net information rent must increase sufficiently

fast relative to the gains from avoidance. Or, conversely from the inequality in (3.20),

the avoidance costs must be greater than the information rent benefits from misreporting.

In comparison with an environment without avoidance (Proposition 7), the monotonic-

ity of I(·|·) is a necessary but not sufficient condition for the incentive and avoidance

compatibility.

By Proposition 8 and Lemma 3, the principal’s expected revenue is maximized by

setting V (θ) = θ ·r(θ)−t(θ) = 0. If this was not the case, the principal could increase t(θ)

keeping r(θ) unchanged. This implies that the individual rationality constraint becomes

V (θ) =
∫ θ

θ
I(s|s) ≥ 0 for all θ ∈ Θ. Since I(θ|θ) is non-decreasing in θ, then an incentive

and avoidance compatible mechanism Γ is individually rational if and only if I(θ|θ) ≥ 0

since the net information rent I(·|·) is non-decreasing. Consequently, the principal’s

problem is to solve

max
(r;m)

E [ψr(θ)r(θ) + ψm(θ)m(θ)] , (MAX)

subject to

(θ − θ′) [I(θ|θ)− I(θ′|θ)] ≥ −c(a∗(θ′|θ)), (IAC)

I(θ|θ) ≥ 0 (IR)

for all θ, θ′ ∈ Θ. That is, the only difference to the maximization problem without

avoidance is that (IC) is replaced by (IAC).

60



Let us start analyzing the optimal mechanism under avoidance by asking when the

mechanism given in Theorem 1 is incentive and avoidance compatible. We know that in

an environment without avoidance the net information rent I(θ|θ) is non-decreasing in

θ in the optimal mechanism (see Theorem 1). Therefore, for any over report, (IAC) is

satisfied and we need to only check when (IAC) holds for all θ′ ≤ θ. To that end, let us

go through mechanically all the possible deviations in mechanism Γ given in Theorem 1

and check which types have profitable deviations under avoidance.

First, clearly, if an agent with any type θ ∈ Θ reports θ′ ∈ [θ, θm) she receives zero

surplus. This cannot be profitable for any agent since the mechanism in Theorem 1 is

individually rational. We can thus consider under reports to interval [θm, θ̄] from hereafter.

Consider an agent with a type θ ∈ [θm, θ̄]. She receives the maximal information

rent with a truthful report: I(θ|θ) = 1. Therefore, all under-reports yield her something

worse than the truthful report no matter whether the agent engage in avoidance or not.

Consequently the mechanism is incentive and avoidance compatible for all agents with

type θ ∈ [θm, θ̄].

Let us then consider the second highest type interval [θr, θ
m). An agent with a type in

this interval receives net information rent 1−φm̄. If the agent under reports θ′ ∈ [θr, θ
m)

and engages in avoidance, her net information rent is 1. Consequently, (IAC) is violated

and the mechanism in Theorem 1 does not satisfy (IAC). Let us then suppose that C ≥
m̄φ(θm− θr) and hence an agent with type θ ∈ [θr, θ

m) does not find it optimal to engage

in avoidance with report θ′ ∈ [θr, θ
m). However, if she reports θ′ ∈ [θm, θr) and invests

in avoidance, she receives net information rent of r̄. This violates (IAC) unless we have

C ≥ (2r̄ − 1)(θm − θm). That is, if C ≥ max{m̄φ(θm − θr), (2r̄ − 1)(θm − θm)}, then the

mechanism in Theorem 1 is incentive and avoidance compatible for an agent with type

θ ∈ [θr, θ
m).

Lastly, consider an agent with type θ ∈ [θm, θr). With a truthful report she receives no

information rent and hence (IAC) is violated only if the agent finds it optimal to engage

in avoidance with a report θ′ ∈ [θm, θr). We thus need to have C ≥ m̄φ(θr − θm) for

the mechanism in Theorem 1 to be incentive and avoidance compatible for an agent with

type θ ∈ [θm, θr).

To sum up our brute force deductions, we get the following corollary.

Corollary 3. The optimal mechanism given by Theorem 1 is incentive and avoidance

compatible, and hence optimal, if the marginal cost of avoidance satisfies:

C ≥ r̄max{θm − θr, θr − θm, (2− r̄−1)(θm − θm)}, (3.22)
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for which the sufficient condition is

C ≥ m̄φ(θm − θm). (3.23)

The sufficient condition C ≥ m̄φ(θm − θm) plays a crucial role in our analysis later

on since it states that if the agent does not find it optimal to engage in avoidance with

types and reports in the monitoring interval [θm, θ
m), then the mechanism is incentive

and avoidance compatible.

If the avoidance costs are small and the condition is Corollary (3) is not satisfied, then

the regulator is forced to give up on some of the monitoring: when C approaches zero,

the agent always finds it optimal to engage in avoidance in order to prevent the principal

from extracting information rent by monitoring. This drives the level of monitoring or

the length of monitoring interval to zero and we end up to the standard take-it-or-leave-it

offer without verification (Theorem 1).

For the rest of the paper we focus on the optimal mechanism design with low avoidance

and monitoring costs.

Assumption 1. C < r̄max{θm − θr, θr − θm, (2− r̄−1)(θm − θm)} and θm < θm.

Unfortunately these are the only closed-form results that we can provide without

making any other simplifying assumptions; the degree of freedom of choosing functions

(r,m) : Θ → [0, 1]2 is large when the individual rationality and incentive and avoid-

ance compatibility constraints are binding. For instance, one could choose the level of

monitoring so low that it guarantees that the optimal avoidance remains zero for any

off-equilibrium report. Or, on the other hand, the regulator could shrink the monitoring

interval so small, that the agent would never engage in avoidance within this interval.

Together with these two possibilities and all their combinations, the principal could also

decrease the allocation probability in order to boost the information rent extraction for

small monitoring and marginal punishment levels. That is, the regulator can try to tackle

the avoidance by many different ways, which makes the finding of the solution to the

problem given in (MAX) relatively demanding.

Without going to the numerical solutions, we take here another path and assume for

simplicity that the regulator can only decide whether to allocate or not and whether to

monitor or not. In other words, we assume for the rest of this section that r : Θ → {0, 1}
and m : Θ → {0, m̄} with some constant m̄ ≤ min{1, φ−1} which guarantees that the net

information rent remains non-negative under monitoring. In other words, the regulator is

prohibited to use stochastic allocation and she can only decide whether or not to monitor

the agent with the success probability m̄.
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Assumption 2. (r,m) : Θ → {0, 1} × {0, m̄}, where m̄ ≤ min{1, φ−1}.

This simplification implies that the regulator can tackle the avoidance only by changing

the intervals of types which are monitored and allocated the object. Before going to

the optimal mechanism under this assumption, let us introduce a proper benchmark

mechanism in an environment without avoidance. This result is a direct implication of

Theorem 1.

Corollary 4. Assume an environment without avoidance or suppose that Assumption 1

does not hold. Under Assumption 2 and relatively inexpensive monitoring (θm < θm), the

optimal mechanism is given by the physical allocation

r(θ) =

0, θ ∈ [θ, θm)

1, θ ∈ [θm, θ̄],
(3.24)

by the monitoring

m(θ) =

m̄, θ ∈ [θm, θ
m)

0, otherwise,
(3.25)

and by the transfers

t(θ) =


0, θ ∈ [θ, θm)

θm + m̄φ(θ − θm), θ ∈ [θm, θ
m)

θm + m̄φ(θm − θm), θ ∈ [θm, θ̄],

(3.26)

where m̄ ≤ min{1, φ−1} and θm, θr, and θ
m are the same as in Theorem 1.

In comparison with the optimal mechanism given by Theorem 1, the optimal mecha-

nism under Assumption 2 gives more information rent for the agent. Now an agent with

type θ ∈ [θm, θr) receive positive equilibrium payoff also if m̄φ < 1; the regulator cannot

decrease the allocation probability in order to get the whole surplus. This implies that

now there is no jump in the equilibrium transfers at θr. That is to say, under Assumption

2 the agent is offered higher allocation probability r and lower transfers t than in the

optimal mechanism without Assumption 2.

Next we introduce the optimal mechanism under avoidance.
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Theorem 2. Under Assumptions 1 and 2, the optimal mechanism Γa is given by the

physical allocation

ra(θ) =

1, θa ≤ θ ≤ θ̄

0, otherwise,
(3.27)

by the monitoring

ma(θ) =

m̄, θa ≤ θ < θa

0, otherwise,
(3.28)

and by the transfers

ta(θ) =


0, θ ∈ [θ, θm)

θa + m̄φ(θ − θa), θ ∈ [θa, θ
a)

θa + m̄φ(θa − θa), θ ∈ [θa, θ̄],

(3.29)

where

θa = arg max
θ′a∈Θ: θ′a+

C
φm̄

≤θ̄

(∫ θ̄

θ′a

ψr(θ)dF (θ) +

∫ θ′a+
C
φm̄

θ′a

ψm(θ)m̄dF (θ)

)
. (3.30)

and θa = θa +
C
φm̄

such that [θa, θ
a] ⊆ [θm, θ

m] for θm < θm.

Since there is avoidance only if there is monitoring, the optimal mechanism with avoid-

ance is the mechanism given by Corollary 4 except the bounds for the physical allocation

and monitoring are adjusted such that the agent never finds it optimal to engage in

avoidance for types and reports in interval [θa, θ
a). The determination of interval [θa, θ

a]

is illustrated by Figure 3.4b: the regulator chooses θa in order to maximize the sum of

the red and dark blue area minus the light blue area.
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(a) Without avoidance.
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(b) With avoidance.

Figure 3.4: The principal’s expected profits using an optimal enforcement mechanism
without avoidance (left) and using an optimal enforcement mechanism with avoidance
(right).

In comparison with the optimal mechanism in an environment without avoidance

given by Corollary 4, we observe that avoidance has two implications. First, the optimal

monitoring interval is more narrow than without avoidance. This gives the agent more

information rent which is profitable for the agent since it decreases the expected transfers.

Second, the share of the types for whom the regulator allocates is smaller than without

avoidance. This is harmful for agents with types θ ∈ [θm, θa) who do not get the alloca-

tion. If the latter negative effect dominates the former positive effect ex ante, the agent’s

expected equilibrium payoff is lower in the optimal mechanism with avoidance than with-

out avoidance. In words, avoidance may hurt also the agent by making the mechanism

more inefficient ex ante.

Proposition 9. Under Assumption 2 and with weak enforcement, i.e. m̄φ < 1, the

agent’s ability to engage in avoidance can make both, the principal and the agent worse-

off ex ante.

This result holds only with a relatively small marginal fine or monitoring m̄φ < 1. If

the enforcement was strong, i.e. m̄φ = 1, the principal could extract all information rent

from the types that are monitored. In this case, avoidance has only positive effects for the

agent ex ante since types θ ∈ [θa, θ] receive positive utility by paying transfers θa ≤ θm,

whereas without avoidance agents θ ∈ [θm, θ] pay θm ≥ θa. This can be seen by setting

m̄φ = 1, and observing that ta(θ) = t(θ) = θ for all θ ∈ [θ, θa] and θa(θ) = θa < t(θ) for

all θ ∈ [θa, θ], where ta given by Theorem 2 and t given by Corollary 4.

Although avoidance decreases the expected transfers, it is not true ex post if the

enforcement is weak. Since with avoidance the principal allocates now only for all types

θ ≥ θa ≥ θm she can exclude agents with low type θ < θa by asking high prices. Hence,
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avoidance actually increases the ex-post transfers for some agents. To be more precise, for

ta given by Theorem 2 and t given by Corollary 4 we have ta(θ) > t(θ) for all θ ∈ [θa, θ̂
a],

where θ̂a = θa + 1−m̄φ
m̄φ

(θa − θm) > θa and m̄φ < 1. That is to say, all types θ ≤ θ̂a are

worse-off with avoidance than without avoidance.

The equilibrium ex-post transfers are illustrated in Figure 3.5. The blue dashed line

is the optimal take-it-or-leave-it-offer, the red solid line is the optimal transfers without

avoidance, and the black dotted line is the optimal transfers with avoidance. From here

we observe that if F assigns relatively much mass for types θ ≤ θ̂a than for types θ > θ̂a,

then the negative effect of avoidance dominates the positive effect and we would result in

the outcome of Proposition 9.

θ θm θa θr θa θm θ̄
θ

θr

θ̄

θ

45°
t(θ)
ta(θ)
θr

Figure 3.5: Optimal take-it-or-leave-it-offer (blue dashed line), optimal transfers without
avoidance (red solid line), and optimal transfers with avoidance (black dotted line).

Finally, we give an example that ratifies Proposition 9. In the example we derive the

necessary cutoff types for the closed-form solutions to the optimal mechanism with and

without avoidance under Assumptions 1 and 2 such that the type distribution is assumed

to be uniform.

Example 5. (Optimal Mechanisms with a Uniform Distribution.) Let us suppose that

Assumption 2 holds and F (θ) = θ for all θ ∈ Θ = [0, 1] — that is, the agent’s type is

uniformly distributed on the unit interval. For simplicity, assume that the monitoring is

costless, m̄ = 1, α = 0, and C,φ < 1.

After some algebra, one can show that the boundaries are given by θr =
1
2
, θm = 1−φ

2−φ
,

θm = 1, θa =
1−C
2

, and θa = 1−C
2

+C
φ
when C ≤ φ

2−φ
, which ensures that [θa, θ

a] ⊂ [θm, θ
m].

The agent’s expected equilibrium payoff in the optimal enforcement mechanism without
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avoidance (Proposition 1) is given by∫ 1

0

V (θ)dθ =

∫ 1

θm

∫ θ

θm

(1− φ) dsdθ =
1− φ

2(2− φ)2
. (3.31)

The agent’s expected equilibrium payoff in the optimal enforcement mechanism with

avoidance (Theorem 2) is given by∫ 1

0

V a(θ)dθ =

∫ θa

θa

∫ θ

θa

(1− φ) dsdθ +

∫ 1

θa

(∫ θa

θa

(1− φ)ds+

∫ θ

θa
ds

)
dθ (3.32)

=
φ+ C2(4− 3φ)− 2Cφ

8φ
. (3.33)

Lastly, the agent’s expected equilibrium payoff in the optimal standard mechanism, i.e.

with a take-it-or-leave-it-offer θr = 1/2 is 1
8
(can be also derived from (3.31) by setting

φ = 0).

It is easy to verify that with a small marginal fine and some marginal cost of avoid-

ance, say φ = 1/3 and C = 1/10, the expected payoff for the agent in the optimal enforce-

ment mechanism with avoidance is lower than that in the optimal enforcement mechanism

without avoidance. Hence, the agent’s ability to engage in avoidance hurts not only the

principal, but also the agent in this case.

3.4 Discussion

Generally speaking, in this paper we study a contracting problem in which the principal

can use monitoring and punishments to enforce the agent to choose a certain contract. We

approach this problem from the perspective of mechanism design with costly verification.

We derive the optimal regulatory policies with and without avoidance, respectively.

One of most serviceable application of our model is an emission regulation problem

similar to that, for instance, in Bontems and Bourgeon (2005). In this case r is defined as

the amount of abatement that the regulator wants a firm to decrease its pollution, θ as

a privately known abatement cost by the firm, t as the subsidy from the regulator to the

firm, m(1−a) as the probability that the regulator learns the firm’s abatement costs, and

φ(θ′ − θ) as the fines that are imposed when the firm reports costs θ′ under true costs θ.

That is, all the elements of the emission regulation model are oppositely beneficial to the

players in comparison with the model used in the analysis. This inversion is analogous to

that in procurement auctions.

Theorem 1 implies that without avoidance the regulator offers contracts from the

following four categories:
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1. (No abatement, no subsidies, no monitoring);

2. (Partial abatement, small cost-based subsidies, monitoring);

3. (Full abatement, intermediate cost-based subsidies, monitoring);

4. (Full abatement, a high fixed subsidy, and no monitoring).

The contracts in these categories are designed such that firms with high costs are ex-

cluded from the enforcement by the first category. Firms with intermediate abatement

costs choose either partial of full abatement contracts from the second or third category

accordingly to their costs. Firms with low abatement costs choose a full abatement with

a high fixed subsidy and receive the greatest benefits from the regulation.

If the regulator’s enforcement is strong, there is no need of offering partial abatement;

with efficient monitoring and sufficiently high penalties all intermediate firms are also

enforced to the full abatement. This further decreases the regulator’s monitoring costs

and leads to the higher social welfare than with weak enforcement.

If the agent can engage in avoidance — that is, the agent can decrease the probability

of getting caught from taking a wrong contract, contracting becomes less favorable for

the regulator. First, abatements are enforced less frequently, and secondly, the regulator

expects to pay higher subsidies than without avoidance. These results emerge from the

fact that avoidance makes monitoring less effective and the regulator finds it optimal

to decrease the number of contracts in the intermediate category. Consequently, there

are more contracts in Category 1 which results in that the less firms are asked to abate

their pollution. Moreover, since avoidance decreases the number of monitored contracts,

deviations are more desirable for the firms with low abatement costs. As a result, the reg-

ulator must increase the subsidy in Category 4 in comparison with the optimal regulation

contracts without avoidance.

In the language of mechanism design, the firm’s ability to engage in avoidance (i)

increases the firm’s information rent, and (ii) makes the optimal mechanism less efficient

ex ante (abatement are enforced less often). The former effect is good for the firm and

the latter is not (since then there is no subsidies). Surprisingly, if the inefficiency effect

decreases the firm’s ex-ante payoffs more than the information rent effect increases it,

then avoidance is disadvantageous not only to the regulator, but also to the firm ex ante

(see Proposition 9 and Example 5).

In real-life we observe many phenomena of monitoring and avoidance. We discover indi-

viduals and firms who hide their income to offshore banks and then misreport their wealth

to tax officials (tax evasion); we have automobile manufactures who install softwares into
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their vehicles in order to conceal nitrogen oxide (NOx) emissions in emission tests (see

United States Environmental Protection Agency (EPA) (2015));14 we detect misreported

customs declarations and many cunning ways of trying to cover up the true contents

of packages or containers from customs (tariff evasion); we see firms allocating jobs to

persons with fake certificates; and the list goes on.

All of these examples have a common thread: the principal wants the agents to be com-

pliant, but the agents are capable of deceiving the principal’s verification mechanism in

order to advantage themselves. As we have shown in this paper, if the regulation mech-

anisms are designed without taking avoidance into account, compliance (and incentive

compatibility) may fail.

In this paper, we design the optimal mechanisms in a linear and more or less stylized

setup. How does the optimal mechanism change if we assumed different verification

probability or punishment functions? What if avoidance costs are not known to the

principal? Furthermore, in many instances avoidance is also a crime. What happens if

we assumed that the punishments are conditional on avoidance as well? These questions

are left for further studies.

Appendix: Omitted Proofs

In some of the proofs in this section we use the more general notation which was introduced

in Section 3.2. In this way we want to highlight that many of our results apply also to

a more general class of models. In addition, using the more general notation helps us to

stress which assumptions are pivotal for the results.

The Proof of Proposition 6

Let an arbitrary choice set be denoted by Z ⊆ [0, 1] × R ×M× Θ × A =: Y such that

z = (r, t,m, σ, a) ∈ Z, where σ ∈ Θ is the agent’s report and a ∈ A the agent’s choice of

avoidance. In other words, the principal designs a menu Γ = {r(σ), t(σ),m(σ)}σ∈Θ from

where the agent chooses a contract by reporting σ and engages in a at the same time.

The agent’s parameterized objective function UA : Y ×Θ → R is given by

UA(z, θ) = v(r, θ)− t− p(m, a)Φ(σ, θ)− c(a) (3.34)

= θr − t−m(1− a)φ(θ − σ)− Ca. (3.35)

14Volkswagen sold around 500,000 cars fitted with so-called ’defeat devices’ that are designed to reduce
emissions of nitrogen oxide (NOx) under test conditions. When they got caught, they had to pay a fine
of $4.3bn.
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Let the value function be given by

V (θ) = sup
z∈Z

UA(z, θ) (3.36)

and the optimal choice correspondence by

Z∗(θ) = {z ∈ Z : UA(z, θ) = V (θ)}. (3.37)

The value function, V , is absolutely continuous and differentiable almost everywhere,

and so by the Fundamental Theorem of Calculus: V (θ) = V (θ) +
∫ θ

θ
V ′(s)ds. Moreover,

since UA(z, θ) is differentiable in θ, we have by the Envelope Theorem that

V ′(θ) = vθ(r(σ
∗(θ)), θ)− p(m(σ∗(θ)), a∗(θ))Φθ(σ

∗(θ), θ) (3.38)

= r(σ∗(θ))−m(σ∗(θ))(1− a∗(θ))φ (3.39)

almost everywhere and thus the equilibrium payoffs are

V (θ) = V (θ) +

∫ θ

θ

[vθ(r(σ
∗(s)), s)− p(m(σ∗(s)), a∗(s))Φθ(σ

∗(s), s)] ds (3.40)

= V (θ) +

∫ θ

θ

[r(σ∗(s))−m(σ∗(s))(1− a∗(s))φ] ds, (3.41)

for any z∗(θ) = (r(σ∗(θ)), t(σ∗(θ)),m(σ∗(θ)), σ∗(θ), a∗(θ)) ∈ Z∗(θ) (see Milgrom and Segal

(2002), Theorem 2). Denote r∗(θ) := r(σ∗(θ)), t∗(θ) := t(σ∗(θ)), and m∗(θ) := m(σ∗(θ)).

Consequently, the equilibrium transfers are given by

t∗(θ) = v(r∗(θ), θ)− p(m∗(θ), a∗(θ))Φ(σ∗(θ), θ)− c(a∗(θ))

− V (θ)−
∫ θ

θ

[vθ(r
∗(s), s)− p(m∗(s), a∗(s))Φθ(σ

∗(s), s)] ds (3.42)

= θr∗(θ)−m∗(θ)(1− a∗(θ))φ(θ − σ∗(θ))− Ca∗(θ)

− V (θ)−
∫ θ

θ

[r∗(s)−m∗(s)(1− a∗(s))φ] ds. (3.43)

Substituting (3.43) into the principal’s ex-post equilibrium payoff (before verification)

we get

UP (z
∗(θ), θ) = t∗(θ) + p(m∗(θ), a∗(θ))Φ(σ∗(θ), θ)− κ(m∗(θ)) + αV (θ) (3.44)

= v(r∗(θ), θ)− (1− α)V (θ)− κ(m∗(θ))− c(a∗(θ))
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− (1− α)

∫ θ

θ

[vθ(r
∗(s), s)− p(m∗(s), a∗(s))Φθ(σ

∗(s), s)] ds (3.45)

= θr∗(θ)− (1− α)V (θ)−Km∗(θ)− Ca∗(θ)

− (1− α)

∫ θ

θ

[r∗(s)−m∗(s)(1− a∗(s))φ] ds (3.46)

≤ θr∗(θ)− (1− α)V (θ)−Km∗(θ)

− (1− α)

∫ θ

θ

[r∗(s)−m∗(s)φ] ds. (3.47)

From here we observe that the principal prefers contracts in which a∗(θ) = 0 since the

marginal fines are positive with respect to the type (Φθ(σ, θ) ≥ 0); if the agent engage in

avoidance, the principal’s information rent extraction by monitoring decreases. Moreover,

since the principal and the agent both have quasi-linear utilities in monetary variables

(t and Φ) and the punishment function is additively separable (Φθ(σ, θ) is independent

of σ), equilibrium payoffs of both players are independent of the agent’s report σ. This

last observation is crucial since it allows us to consider only truthful equilibria by the

following rationale.

In any mechanisms in which the avoidance is zero in equilibrium, the equilibrium

payoffs are

UA(z(σ
∗(θ)), θ) = V (θ) +

∫ θ

θ

[r(σ∗(s))−m(σ∗(s))φ] ds, (3.48)

UP (z(σ
∗(θ)), θ) = θr(σ∗(θ))− (1− α)V (θ)−Km(σ∗(θ)) (3.49)

− (1− α)

∫ θ

θ

[r(σ∗(s))−m(σ∗(s))φ] ds, (3.50)

for the agent and the principal, respectively, all θ ∈ Θ. Then by implementing a direct

mechanism (r̂(·), t̂(·), m̂(·)) = (r(σ∗(·)), t(σ∗(·)),m(σ∗(·))) we induce the same outcomes

and payoffs for both players. This direct mechanism is incentive and avoidance compatible

by the optimality of σ and by the fact that the optimal avoidance with truthful report is

zero. To see this, assume the opposite: there is a θ′ ̸= θ such that

Ui(ẑ(θ
′), θ) > Ui(ẑ(θ), θ), (3.51)

for either i ∈ {A,P}. However, since ẑ(θ′) = z(σ∗(θ′)) we get from (3.51) that Ui(z(σ
∗(θ′)), θ) >

Ui(z(σ
∗(θ)), θ), which contradicts the optimality of σ∗. Hence, the direct mechanism given

by r̂ must be incentive and avoidance compatible.

We have thus argued that the optimal class of direct mechanisms for the principal
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is given by mechanisms in which avoidance is zero in equilibrium. Furthermore, all the

outcomes of any mechanism in this class can be implemented by a truthful mechanism

which also belongs to this class. That is to say, it is without loss of optimality to restrict

our attention to truthful direct mechanisms among all direct mechanisms.15

Proof of Theorem 1

The principal’s objective function (3.9) is a continuous and linear function in (r;m) on a

compact and convex vector space (see Figure 3.6). This implies that the optimal mecha-

nism must occur at an extreme point.

The individual rationality requires that I(θ|θ) ≥ 0 for all θ ∈ Θ (see Lemma 3). This

is satisfied if (r(θ),m(θ)) ∈ E for all θ ∈ Θ, where

E = {(0, 0), (1, 0), (1, m̄), (r̄, m̄)} (3.52)

is the set of individual rational extreme points, where m̄ := min{1, φ−1} and r̄ :=

min{1, φ}.
With the mechanism at the first extreme point, (0, 0), the principal does not allocate or

monitor; at the second extreme point (1, 0), the principal uses only the physical allocation

and not monitoring; at the third extreme point (1, m̄) the principal allocates the object

with probability 1 and adjust the monitoring to level m̄ which equals 1 if φ ≤ 1 and φ−1

if φ > 1 (noisy monitoring); and at the fourth extreme point (r̄, m̄), the mechanism is

the same as the third one if φ > 1 and (φ, 1) if φ ≤ 1. In the latter case the principal

chooses maximal monitoring and decreases the probability of physical allocation as low as

possible but still satisfy the individual rationality constraint. In conclusion, the principal

may find it optimal to use stochastic physical allocation or stochastic monitoring in some

instances.

The extreme points E are depicted in Figure 3.6. If the marginal fine φ > 1, then (r;m)

belongs to the blue area which is the convex hull of points {(0, 0), (0, 1), (1, φ−1)}. As for
φ′ ≤ 1 a physical allocation and monitoring pair (r;m) belongs to the union of the blue

and the red area which is the convex hull of extreme points {(0, 0), (1, 0), (1, 1), (φ′, 1)}.
15This result generalizes to indirect mechanisms in the same fashion as in Mookherjee and Png (1990).

It, however, necessitates that the punishment function can be transformed in terms of arbitrary reports
and there are no punishments or rewards in equilibrium (in either indirect or direct mechanisms).
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(0, 0)

(1, 1)

(1, 0)

(φ′, 1)

(1, φ−1)

r

m

Figure 3.6: Individually rational extreme points with φ > 1 and φ′ ≤ 1.

The finding of optimal mechanism is now significantly easier: we need to choose the

extreme points that maximize the principal’s objective function point-wise for θ and check

whether this satisfies the incentive compatibility constraint.16

Let the agent’s virtual valuation with given mechanism (r,m) be denoted by

Ψ(θ|r,m) := ψr(θ)r(θ) + ψm(θ)m(θ). (3.53)

That is, Ψ is a function that measures the surplus that can be extracted from the agent

minus the monitoring costs. Let us next consider (3.53) at each of our four extreme points

E . The first extreme point yields

Ψ(θ|0, 0) = 0

and the second

Ψ(θ|1, 0) = θ − (1− α)
1− F (θ)

f(θ)
,

which is the virtual valuation in the standard mechanism. At the third extreme point we

have

Ψ(θ|1, m̄) = θ − (1− φm̄)(1− α)
1− F (θ)

f(θ)
−Km̄,

and at the last one we get

Ψ(θ|r̄, m̄) = θr̄ −Km̄.

16Note that

max
(r;m)

E [ψr(θ)r(θ) + ψm(θ)m(θ)] ≤ E
[

max
r(θ),m(θ)

(ψr(θ)r(θ) + ψm(θ)m(θ))

]
.

Hence, if we can maximize the objective function point-wise, we get also a solution that maximizes the
expected value.
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These last two ones are the virtual valuations in which the regulator can use monitoring

to extract some extra surplus from the agent in comparison with the first two one. The

difference between Ψ(θ|1, m̄) and Ψ(θ|r̄, m̄) is that in the latter one the principal decreases

the probability of the allocation in order to extract the full information rent from the

agent. This is however a costly strategy for the regulator because then she also makes

the allocation uncertain.

Next we compare Ψ(θ|0, 0), Ψ(θ|1, 0),Ψ(θ|1, m̄), and Ψ(θ|r̄, m̄) at each θ and choose

the mechanism that gives the maximal value and check whether the incentive compatibility

constraint is satisfied. That is, the optimal mechanism candidate is given by the upper

envelope of Ψ(θ|r(θ),m(θ)) which we denote by Ψ̄(θ). The regularity of F implies that

Ψ(θ|r(θ),m(θ)) is non-decreasing for any choice (r(θ),m(θ)) ∈ E since α ∈ [0, 1] and

1 − φm̄ ∈ [0, 1]. This makes Ψ̄(θ) convex. The upper envelope of functions Ψ(θ|r̄, m̄) is

illustrated in Figure 3.7.

θ̄

θm θr θm

θ
θ

Ψ
Ψ(θ|0, 0)
Ψ(θ|r̄, m̄)
Ψ(θ|1, m̄)
Ψ(θ|1, 0)
Ψ̄(θ)

Figure 3.7: Principal’s objective with different extreme values.

Let us define

θm := inf {θ ∈ Θ : Ψ(θ|0, 0) ≤ Ψ(θ|r̄, m̄)} (3.54)

= inf

{
θ ∈ Θ : θ ≥ K

φ

}
(3.55)

θr := inf {θ ∈ Θ : Ψ(θ|0, 0) ≤ Ψ(θ|1, 0)} (3.56)

= inf

{
θ ∈ Θ : θ ≥ (1− α)

1− F (θ)

f(θ)

}
(3.57)

θm := inf {θ ∈ Θ : Ψ(θ|1, m̄) ≤ Ψ(θ|1, 0)} (3.58)

= inf

{
θ ∈ Θ :

K

φ
≥ (1− α)

1− F (θ)

f(θ)

}
. (3.59)
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It is also straightforward to show that Ψ(θ|r̄, m̄) ≥ Ψ(θ|1, m̄) for θ ≤ θr and Ψ(θ|r̄, m̄) ≤
Ψ(θ|1, m̄) for θ ≥ θr (note that if φ > 1, then Ψ(θ|r̄, m̄) = Ψ(θ|1, m̄) = Ψ(θ|1, φ−1)).

Therefore, our candidate for the optimal mechanism as the upper envelope of Ψ(θ|r(θ),m(θ))

can be determined by choosing (r;m) in the following way

(r(θ),m(θ)) =



(0, 0), θ ∈ [θ, θm)

(r̄, m̄), θ ∈ [θm, θr)

(1, m̄), θ ∈ [θr, θ
m)

(1, 0), θ ∈ [θm, θ̄].

(3.60)

for θ ≤ θm ≤ θr ≤ θm ≤ θ̄. It is easy to confirm that under this mechanism r(·)−m(·)φ
is non-negative and non-decreasing. Hence, whenever we have θ ≤ θm ≤ θr ≤ θm ≤ θ̄,

the mechanism given in (3.60) is incentive compatible and individually rational and thus

optimal among all mechanisms.

Lastly, it might be the case that θm ≥ θm. This occurs if either (i) monitoring is costly

or (ii) fines are small. If (i) is true, then it is profitable for the principal to use the take-

it-or-leave-it offer θr rather than to invest in expensive monitoring. If (ii) is true, then

the principal’s information extraction is ineffective and thus an increase in transfers by

monitoring is smaller than its costs (again monitoring is relatively costly). Consequently,

in both cases the optimal mechanism is the standard take-it-or-leave-it-offer θr without any

additional enforcement. This can be seen by observing that max{Ψ(θ|0, 0),Ψ(θ|1, 0)} ≥
max{Ψ(θ|r̄, m̄),Ψ(θ|1, m̄)} whenever θm ≥ θm for all θ ∈ Θ.

Proof of Lemma 3

Without loss of generality, let θ ≥ θ′. Then the incentive and avoidance compatibility

requires that

θr(θ)− t(θ) ≥ θr(θ′)− t(θ′)−m(θ′)(1− a∗(θ′|θ))φ(θ − θ′)− Ca∗(θ′|θ) (3.61)

θ′r(θ′)− t(θ′) ≥ θ′r(θ)− t(θ)−m(θ)(1− a∗(θ|θ′))φ(θ′ − θ)− Ca∗(θ|θ′), (3.62)

where the optimal avoidance a∗ is given by (3.18). Since θ ≥ θ′, the optimal avoidance

for type θ with report θ′ is zero: a∗(θ|θ′) = 0. Then, by summing up the inequalities we

get that

(θ − θ′) (I(θ|θ)− I(θ′|θ)) ≥ −Ca∗(θ′|θ), (3.63)
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or

(θ − θ′) (I(θ|θ)− I(θ′|θ′)) ≥ a∗(θ′|θ) (m(θ′)φ(θ − θ′)− C) , (3.64)

where I(θ′|θ) = r(θ′) − m(θ′)(1 − a∗(θ′|θ))φ. Since a∗(θ′|θ) = 1 iff m(θ′)φ(θ − θ′) ≥ C

and zero otherwise, the right-hand side of inequality (3.64) is non-negative. This implies

that I(·|·) is non-decreasing.

Proof of Proposition 8

By definition, the mechanism Γ is incentive and avoidance compatible if and only if for

all θ, θ′ ∈ Θ we have

u(x(θ), θ) ≥ u(x(θ′), θ)− p(m(θ′), a∗(θ′|θ))Φ(θ′, θ)− c(a∗(θ′|θ)). (3.65)

We know from the proof of Proposition 6 that the equilibrium transfers in a truthful

mechanism are

t(θ) = v(r(θ), θ)− V (θ)−
∫ θ

θ

[vθ(r(s), s)− p(m(s), 0)Φθ(s, s)] ds. (3.66)

By substituting these into the inequality in (3.65) we observe∫ θ

θ′
[vθ(r(s), s)− p(m(s), 0)Φθ(s, s)] ds

≥
∫ θ

θ′
[vθ(r(θ

′), s)− p(m∗(θ′), a∗(θ′|θ))Φθ(θ
′, θ)] ds− c(a∗(θ′|θ)). (3.67)

Let I(θ′|θ) := vθ(r(θ
′), θ)− p(m(θ′), a∗(θ′|θ))Φθ(θ

′, θ) and rewrite (3.67) as follows∫ θ

θ′
(I(s|s)− I(θ′|θ)) ds ≥ −c(a∗(θ′|θ)). (3.68)

Obviously, if (θ − θ′) [I(θ|θ)− I(θ′|θ)] ≥ −c(a∗(θ′|θ)) for all θ′, θ ∈ Θ, then (3.68) is

satisfied. Conversely, we know by the proof of Lemma 3, that in every incentive and

avoidance compatible mechanism we have

(θ − θ′) [I(θ|θ)− I(θ′|θ)] ≥ −c(a∗(θ′|θ)) (3.69)

for all θ′, θ ∈ Θ, which completes the proof.
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Proof of Theorem 2

By Lemma 3 we know that in all incentive and avoidance compatible mechanism the net

information rent is non-decreasing. Hence, our candidate for the optimal mechanism is

(ra(θ),ma(θ)) =


(0, 0), θ ∈ [θ, θa)

(1, m̄), θ ∈ [θa, θ
a)

(1, 0), θ ∈ [θa, θ̄],

(3.70)

for some θ ≤ θa ≤ θa ≤ θ̄. By the similar structure as the optimal mechanism in Corol-

lary 4, we know that the incentive and avoidance compatibility is satisfied for all other

type-report pairs but θ, θ′ ∈ [θa, θ
a] such that θ′ ≤ θ and a∗(θ′|θ) = 1 (see the proof of

Theorem 1). Moreover, the individual rationality is satisfied for all θ ∈ Θ. We can thus

proceed by finding optimal interval [θa, θ
a] under which (IAC) is satisfied.

Optimal interval [θa, θ
a]. Let us assume that the agent finds it optimal to engage in

avoidance with some θ, θ′ ∈ [θa, θ
a). Then (IAC) condition

(θ − θ′)(r(θ)−m(θ)φ− r(θ′) +m(θ′)(1− a∗(θ′|θ))φ) ≥ −Ca∗(θ′|θ) (3.71)

is satisfied only if

C ≥ m̄φ(θ − θ′). (3.72)

However, since the optimal avoidance is one iff m̄φ(θ− θ′) > C, we have a contradiction.

In other words, there cannot be avoidance for θ, θ′ ∈ [θa, θ
a).

Since the regulator prefers monitoring for all reports θ′ ∈ [θa, θ
a] ⊂ [θm, θ

m], she wants

the optimal interval [θa, θ
a] to be as broad as possible, but still keeping the avoidance zero.

Therefore, the optimal upper bound can be determined by setting C ≥ φm̄(θa − θa)

to hold as equality:

θa = θa +
C

φm̄
. (3.73)

Now the agent never engages in avoidance with any θ, θ′ ∈ [θa, θ
a) =

[
θa, θa +

C
φm̄

)
and

the mechanism given in (3.70) satisfies (IAC).

Lastly, we need to choose the lower bound θa such that the principal’s objective is
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maximized. To that end, the optimal lower bound is given by

θa = arg max
θ′a∈Θ: θ′a+

C
φm̄

≤θ̄

(∫ θ̄

θ′a

ψr(θ)dF (θ) +

∫ θ′a+
C
φm̄

θ′a

ψm(θ)m̄dF (θ)

)
. (3.74)
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Chapter 4

Bilateral Trade with Interdependent

Values

Abstract

We study a market for ’lemons’ from the perspective of mechanism design in a bilateral

trade setup. The closed-form solution for the seller-optimal safe mechanism under one-

sided private information is provided. We show that a seller can disclose the quality of

the goods by controlling the supply of her goods; high-quality sellers want their goods

to be scarce and expensive and low-quality sellers abundant and cheap. In this way,

sellers can differentiate their products from each other and maximize their payoffs. We

extend this model to two-sided private information and give a novel characterization of

the seller-optimal safe mechanism in this setup. It turns out that if there is two-sided

asymmetric information, then the seller finds it optimal to engage in price signalling

instead of quantity signaling. This is the least-cost way for the seller to signal her private

information to the buyer.1

Keywords : Informed Principal, Bilateral Trade, Mechanism Design, Interdependent Val-

ues.

JEL: D42, D82.

1I am grateful to my advisors, Juuso Välimäki and Hannu Vartiainen, for continual guidance. For
helpful comments, I thank Daniel Hauser, Topi Hokkanen, Bengt Holmström, Eric Maskin, Jan Knoepfle,
Klaus Kultti, Pauli Murto, Petteri Palonen, Ulviyya Pekkarinen, Juuso Toikka, and Takuro Yamashita.
I am grateful to the audience at the Helsinki GSE microeconomics seminars, the V SEIO Course on
Game Theory, the 2nd URV Workshop on Game Theory, The 26th Spring Meeting of Young Economists
2022, The 2022 North American Summer Meeting of the Econometric Society, The 33rd Stony Brook
International Conference on Game Theory 2022, and The 49th EARIE Annual Conference for useful
feedback.

79



4.1 Introduction

Mechanism design by an informed principal studies contracting problems where the prin-

cipal has some private information about the object that she is allocating to agents. This

kind of asymmetric information structure is present in many economic circumstances;

practically almost all firms or sellers have some relevant information about their products

that their customers or buyers do not know. For example, if a car owner is selling her

used car, she may want to conceal the information about the car’s quality from potential

buyers. However, the seller’s choice of how to sell the car may still signal something about

her private information to the buyers. Thus, the seller faces the following dilemma: How

to optimally choose a selling mechanism that may reveal some substantive information to

buyers?

In this paper, we study a market for ’lemons’ from the perspective of mechanism

design. We assume that there are a single seller and a single buyer. The seller maximizes

her payoffs by designing a selling mechanism to allocate her goods to the buyer. The

valuations of the goods for the seller and the buyer are interdependent. That is, the seller

has some payoff-relevant information for the buyer. This approach generalizes Akerlof’s

(1970) famous model by considering a large class of selling mechanisms.

We focus on seller’s utility-maximizing mechanisms that are incentive compatible and

individually rational (incentive feasible hereafter) even though the seller’s type was com-

mon knowledge. These mechanisms are called optimal safe mechanisms by Myerson

(1983). Seller-optimal safe allocations form an important class of mechanisms, since they

correspond to the least-cost separating equilibria of the mechanism selection game.2

Theorem 3 provides the closed-form solution for the seller-optimal safe mechanism

under one-sided private information. It turns out that sellers can disclose their private

information by controlling the supply of goods; high-quality sellers want their goods to

be scarce and expensive and low-quality sellers abundant and cheap. In this way, differ-

ent types of sellers can differentiate their products from each other and maximize their

payoffs. However, since the whole capacity of the goods is not traded, the seller’s private

information leads to a deadweight loss. These findings support the early observations of

Akerlof in the markets for lemons; among all safe mechanisms, the monopolist finds it

optimal to strictly decrease the quantity of high-quality products. However, the analysis

in this paper reveals that the market never collapses for a high-quality seller because of

2Maskin and Tirole (1992) show that under discrete type spaces, certain sorting assumptions, and
quasi-linear utilities, the optimal safe mechanism gives weakly higher interim utility for the seller than
any other incentive feasible mechanism. Nishimura (2022) characterizes the set of prior beliefs for which
the seller-optimal safe mechanism is undominated by any other incentive compatible and individually
rational mechanism. This result provides a necessary and sufficient condition for the existence of a strong
solution (undominated safe mechanism) introduced by Myerson (1983).

80



the possibility of credible signaling.

We extend our analysis to a two-sided private information model where also the buyer

has some private information. Theorem 4 provides a novel characterization of the seller-

optimal safe mechanism in this setup. From this characterization we can elucidate the

signaling costs of the seller and their connection to the surplus extraction. It turns out

that the seller finds it optimal to increase the equilibrium prices from the second-best

counterpart where the seller’s type is common knowledge. In other words, instead of

engaging in quantity-signaling, the seller signals her private information to the buyer buy

asking higher prices than it would be optimal if she was not informed. In this way, the

seller makes the signaling credible: By decreasing the expected probability of trade, she

gives up some of her payoffs.

Finally, we show that if there was a trustworthy mediator who can verify the seller’s

type to the buyer, then it would always be profitable for the seller to outsource the trade

for the mediator. This is due to the fact that the seller-optimal safe mechanism under

one-sided private information gives the seller always greater payoff than that under two-

sided private information. Therefore, a mediator who can verify the seller’s type can

benefit from the payoff difference between these two seller-optimal safe mechanisms. The

mediator’s solution allocates always all the goods, and hence there is no inefficiency by

the private information of the seller. Moreover, this mediator-agreement is profitable also

for the seller if the price paid by the mediator to the seller minus the brokerage paid by

the seller to the mediator is greater than the expected profit that the seller would receive

by organizing the trade by herself.

This paper is organized as follows. First, in Sections 4.2 and 4.3, we build the model

and introduce the results, respectively. After that, in Section 4.4, we compare our results

to the mediator’s solution, which determines the seller’s valuation for the full disclosure

of information or perfect verification. We elaborate the connection of our results to the

earlier literature in Section 4.5. Our findings provide some novel rationales for different

types of economic behavior, such as joint ownership agreements, part-time employment

contracts, or unused production capacities. Section 4.6 discusses these applications in

more detail. Appendix 4.6 is devoted to the proofs of our results.

4.2 Preliminaries

We focus on the following principal-agent model. The principal is a seller, S, who has

an object for sale. The agent is a buyer, B, who is willing to buy the object. Player

i ∈ {S,B} has privately known type ti ∈ Ti := [ti, ti] ⊂ R+. We denote a type profile by

t = (tS, tB) ∈ TS × TB =: T . The seller’s beliefs about the type of buyer, tB, are given by
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distribution FB with full support on TB. The buyer’s prior beliefs about the seller’s type,

tS, are given by a distribution FS with full support on TS. We assume that tS and tB are

independently distributed and that FB is regular, i.e. 1−FB(tB)
fB(tB)

is strictly decreasing in tB.

The types of the players form the valuations of the object for each player in the

following fashion. The buyer’s valuation of the object is given by function vB(t) = tB +

αBtS and the seller’s valuation by vS(t) = αStS where αi ≥ 0 for i ∈ {B, S}. That is,

αi determines the importance of the seller’s type for Player i. For simplicity, we assume

that the seller’s valuation is independent of the buyer’s type.

Player i’s ex-post utility is given by the function ui : X × T → R for i ∈ {B, S} such

that

uB(x; t) = vB(t)q − p (4.1)

uS(x; t) = p− vS(t)q, (4.2)

where x = (q, p) and X := [0, 1] × R. The quantity of goods is denoted by q, and the

seller’s capacity of the goods is normalized to unity.3 The price paid by the buyer to the

seller is given by p.

By the Revelation Principle, we can focus on direct revelation mechanisms (see, e.g.,

Myerson (1981, 1982) or Sugaya and Wolitzky (2021)). That is, an equilibrium of any

indirect mechanism with given beliefs corresponds to a truthful equilibrium of a direct

revelation mechanism (DRM).

Let G be the set of all DRMs and Γ = (T, x) ∈ G be an arbitrary direct mechanism,

where x = (q, p) is given by the functions (q, p) : T → X.

The timing of the game is as follows. First, the valuations t ∈ T are drawn inde-

pendently according to the distributions FS and FB. After learning her type, the seller

designs a mechanism and commits to it. The buyer updates her beliefs about the seller’s

type based on the observed mechanism and decides whether or not to participate in the

mechanism. If the buyer decides not to participate, the game ends and both players re-

ceive their outside options, which are normalized to zero. If the buyer participates in the

mechanism, both players report their types to the mechanism and the outcomes of the

designed game realize. The timing of the game is similar to that in Myerson (1983) and

Maskin and Tirole (1990, 1992).

By Myerson (1983) it is without loss of generality to focus on mechanisms that will not

convey information to the buyer; all types of the seller choose the same mechanism. This

3Alternatively we can consider a single divisible good. We could also use a model where the seller’s
ex-post utility is given by p − vS(t)(1 − q) without affecting our results. However, by sticking to the
canonical model, we can also interpret q as the probability of trade.
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property is called the Inscrutability Principle of Myerson (1983). The justification of this

claim is based on the fact that the seller does not need to communicate any information to

the buyer by her choice of mechanism, because she can always build such communication

into the process of the mechanism itself.

We focus on safe mechanisms that are incentive compatible and individually rational

for the buyer and the seller even thought the seller’s type was common knowledge. Hence,

by the Revelation and Inscrutability Principles, the seller’s optimization problem can be

written as follows:

Program I: max
Γ∈G

EtB (uS(x(t); t)) for all tS ∈ TS (OBJ)

subject to

EtB (uS(x(t); t)) ≥ EtB (uS(x(tB, t
′
S); t)) for all tS, t

′
S ∈ TS (S-IC)

EtB (uS(x(t); t)) ≥ 0 for all tS ∈ TS (S-IR)

uB(x(t); t) ≥ uB(x(t
′
B, tS); t) for all tB, t

′
B ∈ TB (B-EPIC)

uB(x(t); t) ≥ 0 for all tB ∈ TB (B-EPIR)

with given off-equilibrium beliefs of the buyer. Constraints (S-IC) and (S-IR) are the

seller’s interim incentive compatibility and participation constraints, respectively, whereas

constraints (B-EPIC) and (B-EPIR) are the buyer’s ex-post incentive compatibility and

participation constraints, respectively. In other words, the program above gives us a safe

mechanism Γ ∈ G that maximizes each seller’s interim payoffs subject to the incentive

compatibility and individual rationality constraints. Since the same mechanism is optimal

for each seller type, all sellers choose this mechanism, and thus the choice of the mechanism

does not reveal any information about the sellers’ types.

Let the buyer’s ex-post utility with a given DRM Γ = (T, x) be given by the following

value function

VB(t) = max
t′B∈TB

(vB(t)q(t
′
B, tS)− p(t′B, tS)) , (4.3)

for all t ∈ T . Similarly, let the seller’s interim utility be given by the following value

function

VS(tS) = max
t′S∈TS

EtB (p(tB, t
′
S)− vS(t)q(tB, t

′
S)) , (4.4)

for all tS ∈ TS.
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Program I can equivalently be written as follows.

Lemma 4. The seller-optimal safe mechanism is given by the following maximization

problem:

Program II: max
q:T→[0,1]

EtB

(
J(t)q(t)− VB(tB, tS)

)
for all tS ∈ TS (4.5)

subject to

EtB

(
J(tB, t

′
S)q(tB, t

′
S)− αS

∫ tS

t′S

q(tB, s)ds

)
= VS(tS) + VB(tB, t

′
S) (4.6)

EtB (q(tB, ·)) nonincreasing, (4.7)

q(·, t′S) nondecreasing, (4.8)

p(tB, t
′
S) = vB(tB, t

′
S)q(tB, t

′
S)− VB(tB, t

′
S)−

∫ tB

tB

q(s, t′S)ds (4.9)

for all t′S ∈ TS, where

J(t) = vB(t)−
1− FB(tB)

fB(tB)
− vS(t), (4.10)

for all t ∈ T .

4.3 Optimal Safe Mechanisms

We divide this section in two. First, we analyze the model where only the seller has private

information. After that, we focus on models with two-sided asymmetric information where

both players have privately known types.

4.3.1 One-Sided Private Information

Let us start our analysis by stating the obvious: When both types tB and tS are common

knowledge, the seller-optimal safe mechanism is the following.

Remark 1. Assume that t is common knowledge, i.e. T = {tB} × {tS}. The unique

seller’s utility maximizing safe mechanism ΓF =
(
T, xF

)
∈ G is given by the allocation

rule

qF (t) =

1, S(t) ≥ 0

0, otherwise,
(4.11)
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where S(t) = vB(t)− vS(t), and by the transfer rule

pF (t) = vB(t)q
F (t), (4.12)

for all t ∈ T .

That is, when the types are common knowledge and the trade is profitable for the

seller, the seller receives the whole surplus S(t) and the whole capacity of the goods are

traded: qF (t) = 1.

Remark 1 gives us an important benchmark for our next-presented main result. When

the buyer’s type tB is common knowledge, but the type tS is private information of the

seller, the seller’s utility maximizing safe mechanism is given by the following theorem.

Theorem 3. Assume that tB is common knowledge, i.e. TB = {tB}. The unique seller’s

utility maximizing safe mechanism ΓFI =
(
T, xFI

)
∈ G is given by the allocation rule

qFI(t) =


(

S(t)
S(tB ,tS)

)λ
, if S(t) ≥ 0 and S(tB, tS) > 0

0, otherwise,
(4.13)

where S(t) = vB(t)− vS(t) and λ := αB

αS−αB
, and by the pricing rule is

pFI(t) = vB(t)q
FI(t), (4.14)

for all t ∈ T . The mechanism Γ is unique only if αS > 0.

Remark 2. If αB = αS = α, then the allocation rule given by Theorem 3 becomes

qFI(t) =

exp
{

−α(tS−tS)

tB

}
, if S(t) ≥ 0 and tB > 0

0, otherwise,
(4.15)

for all t ∈ T .

Theorem 3 states that whenever the seller’s type is unknown to the buyer, the optimal

mechanism no longer allocates the whole capacity to the buyer as in Remark 1. The

allocation rule given in (4.13) is strictly lower than unity for all types of seller tS > tS

when αB > 0. Only a seller with the lowest possible type, tS, allocates all goods to the

buyer and receives her first-best outcome. In other words, the seller’s private information

results in a deadweight loss. Moreover, the allocation rule (4.13) is strictly decreasing in

the seller’s type tS for all αB > 0. That is, the higher the type of the seller, the lower the

quantity offered, and the greater is the inefficiency. Furthermore, the optimal allocation

85



rule (4.13) is increasing in the buyer’s type: the more the buyer values the allocation, the

greater the quantity allocated to the buyer.

To see these results, observe that the optimal allocation rule (4.13) is a function of

the total surplus

S(t) = vB(t)− vS(t),

where vB(t) is the buyer’s gain from the trade and vS(t) is the seller’s (opportunity) cost

of allocating the goods to the buyer. When αS > αB, the total surplus S decreases in

tS and the exponent λ > 0. As for αS < αB, the surplus S is increasing in tS, but the

exponent λ is negative. Hence, the weighted surplus ratio
(

S(t)
S(tB ,tS)

)λ
is always below

unity and decreases in tS.

If the seller’s type is not payoff relevant for the buyer — that is, αB = 0, then the

mechanism given in Theorem 3 reduces back to full-information allocation where the seller

gets the whole surplus and all goods are traded. In other words, if the information content

of a proposed mechanism is irrelevant to the buyer, then there is no need to take this into

account when designing the mechanism.

Remark 3. If the buyer’s valuation of the goods is independent of the seller’s type, that

is, αB = 0, then the seller receives her first-best outcome and the allocation is efficient.

If the seller’s type is relevant only for the buyer, that is, αS = 0, then the seller-optimal

safe mechanism yields the same utility for all seller types. This is the only way to keep

the mechanism incentive compatible for the seller.

Remark 4. Assume that the seller values the goods at zero, i.e. αS = 0, then the seller-

optimal safe mechanism given by Theorem 3 becomes

qFI(t) =
vB(tB, tS)

vB(t)
(4.16)

with the price rule pFI(t) = vB(t)q
FI(t) = vB(tB, tS) for all t ∈ T . That is, all seller-types

receive the same payoff vB(tB, tS) in equilibrium.

This seller-optimal safe mechanism is not unique. A mechanism q(t) = 1 and p(t) =

vB(tB, tS) is clearly incentive feasible and yields the seller the same payoff as the mecha-

nism given in Remark 4.16. However, it gives the buyer strictly positive payoff if tS > tS.

Hence, the seller-optimal safe mechanism given in Theorem 3 is unique only if αS > 0.

The optimal mechanism given in Theorem 3 is ex post individually rational for the

buyer. This is an important feature of the optimal mechanism since this allows us to make

the following interpretation. A seller of type tS offers a contract (q(t), p(t)), where the
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quantity qFI and the price pFI are given by Theorem 3. Since this allocation is unique for

each seller type tS ∈ TS, it perfectly reveals the seller’s type to the buyer. Because this

mechanism is incentive compatible and individually rational even though the seller’s type

was known (safe), it is feasible, and the buyer accepts the proposed allocation. In other

words, high-type sellers can signal their private information to the buyer by decreasing

their supply and asking high prices. Decreasing the quantity of goods leads to an inefficient

allocation. However, in this way, the seller’s signaling is credible and the buyer perfectly

learns the seller’s type. We can thus call the seller-optimal safe mechanism the least-cost

separating equilibrium whenever S(t) ≥ 0 for all t ∈ T .4

The equilibrium transfers given by (4.14) are increasing in tB, and hence in qFI (recall

that qFI is increasing in tB). Since the seller does not always sell the whole capacity of

the goods, the relevant magnitude for pricing is the price per quantity, i.e., the unit price

for a single good. One can show by a straightforward, albeit arduous, calculus that the

price per quantity pFI(t)
qFI(t)

= vB(t) is nondecreasing in both tB and tS for t ∈ T such that

S(t) ≥ 0. This further implies that pFI(t)/qFI(t) is increasing in qFI meaning that the

seller is selling the goods with a premium; the more the buyer wants to buy the goods,

the higher the price per quantity that the buyer needs to pay.

We know that S(t) is increasing in αB, which gives us a clear implication of how αB

affects the cutoff types when to allocate at all. This still does not give us the complete

effect of αB on qFI (and so on pFI) since
(

S(t)
S(tB ,tS)

)λ
is not decreasing in αB for all t ∈ T .

We can only conclude that as αB reaches zero, the offered quantity converges point-wise to

an indicator function qFI(t)|αB=0 (see Figure 4.1). That is, once αB gets small and so the

seller’s private information less relevant to the buyer, the closer the optimal mechanism

goes to a take-it-or-leave-it-offer.

For the seller’s interdependence parameter αS the connection is clear: S(t) and
(

S(t)
S(tB ,tS)

)λ
both decrease in αS and, therefore, qFI and pFI decrease in αS. This is intuitive, since

the more the seller values the goods, the less she wants to trade them to the buyer.

Figures 4.1 and 4.2 illustrate the comparative statics of the optimal mechanism of an

informed seller. In Figure 4.1, the seller’s type, tS, and the interdependence parameter,

αS, are fixed, and the optimal allocation rule given by Theorem 3 is plotted as a function

of the buyer’s type, tB. In Figure 4.2, the same plot is made in terms of tS with fixed tB

and αS. In both figures, the allocation rule q is depicted with six different interdependence

parameters of the buyer: αB ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}.
4Decreasing the quantity of the goods is similar kind of signaling as in Crawford and Sobel (1982)

where the cost of signaling is created endogenously to achieve equilibria with partial sorting.
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Figure 4.1: Optimal allocation rule with a fixed tS ∈ TS.
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Figure 4.2: Optimal allocation rule with a fixed tB ∈ TB.

4.3.2 Two-Sided Asymmetric Information

Assume next that both players have private types. For concreteness, in this section we

make the following assumption.

Assumption 3. vB(tB, tS) ≥ αStS ≥ vB(tB, tS)− 1
fB(tB)

for all tS ∈ TS.

The first inequality in Assumption 3 guarantees that for all types of sellers, it is

profitable to trade per se; there are some buyers who are willing to buy from any seller.

The latter inequality says that the virtual valuation of the lowest-type buyer is smaller

than the seller’s own valuation, and hence it is never optimal to allocate for the lowest-

type buyer. For example, if tB = 0, αS ≥ αB, and tB ≥ (αS − αB)tS, Assumption 3 is

satisfied since fB(tB) > 0 for all tB ∈ TB.

Let us first state the well-known benchmark: the seller-optimal safe mechanism when

the seller’s type is known but the buyer is informed. This mechanism can be imple-
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mented by the canonical take-it-or-leave-it-offer (see Myerson (1981) and Mussa and Rosen

(1978)).

Corollary 5. Assume that tS is common knowledge, i.e. TS = {tS}. Under Assumption

3, the seller-optimal safe mechanism ΓS =
(
T, xS

)
is given by the allocation rule

qS(t) =

1, if tB ≥ bS(tS),

0, otherwise
(4.17)

and the price rule pS(t) = vB(b
S(tS), tS)q

S(t), where bS : TS → TB solves

vB(b
S(tS), tS)−

1− FB(b
S(tS))

fB(bS(tS))
− αStS = 0 (4.18)

for all tS ∈ TS such that bS(·) is non-decreasing.

When both players are informed, the seller’s expected utility-maximizing safe mecha-

nism is characterized by Theorem 4.

Theorem 4. Under Assumptions 3, the seller-optimal safe mechanism ΓSI =
(
T, xSI

)
is

given by the allocation rule

qSI(t) =

1, if tB ≥ bSI(tS),

0, otherwise
(4.19)

and the price rule pSI(t) = vB(b
SI(tS), tS)q

SI(t), where bSI : TS → TB is strictly increasing

in tS and solves the seller’s incentive feasibility conditions (4.6) and (4.7). Moreover, if

αi > 0 for both i ∈ {B, S}, then bIS is always greater than bS which given by Corollary 6

except at tS when they are equal.

If bSI is differentiable almost everywhere, then it is given by the following differential

equation

vB(b
SI(tS), tS)−

1− FB(b
SI(tS))

fB(bSI(tS))
[1 + c(tS)]− αStS = 0 (4.20)

for all tS ∈ TS and bSI(tS) = bS(tS) where

c(tS) =
αB

∂
∂tS
bSI(tS)

(4.21)

is the signaling cost such that c(tS) = 0.
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This characterization helps us to understand the role of the seller’s private informa-

tion: when bSI is differentiable, the only difference from the optimal mechanism given

by Corollary 6 is the term c(tS) that we call signalling costs. The function c is the ratio

between the buyer’s interdependence parameter αB and the derivative of the cutoff type

bSI . That is, the more relevant is the seller’s private information for the buyer, the more

the seller needs to invest in credible signalling. The signaling costs are strictly positive

for all tS > tS when αB > 0.

Equation (4.20) represents the net virtual valuation which measures the surplus that

can be extracted from that buyer. In equation (4.20), the buyer’s information rent term
1−FB(tB)
fB(tB)

is multiplied by the signaling costs. This signifies the fact that the seller’s pri-

vate information comes with a cost; the seller needs to give up on some of her surplus

extraction in order to signal her private information to the buyer. This has the following

interpretation. Due to the strictly positive signaling costs, it is straightforward to see

that bSI(tS) > bS(tS) for all tS > tS when αB > 0. That is, the seller finds it optimal to

increase the prices pSI to signal her type to the buyer. This is in the stark contrast with

Theorem 3: If there are two-sided private information, then it is optimal for the seller to

engage in price-signaling instead of quantity-signaling.

If the buyer’s utility is independent of the seller private information, then the seller

does no need to engage in signaling and the signaling costs are zero.

Remark 5. If αB = 0, the signaling costs are zero and all sellers receive their second-best

allocations given by Corollary 5.

The signaling costs for the lowest-type seller are zero. The rationale for this observa-

tion is the following. It is never optimal for a seller to try to mimic the lowest-type seller

because this would lead to the lowest transfers. Indeed, all seller have incentives to report

upwards and therefore the lowest-type seller does not need to invest in costly signaling.

Remark 6. Property bSI(tS) = bS(tS) guarantees that the lowest-type seller receives her

second-best allocation given by Corollary 6.

If the seller does not value the goods at all, we observe the similar effects as in Remark

4: the only mechanism that is incentive compatible for the seller is the one that gives all

the seller equal payoffs.

Corollary 6. Assume that the seller values the goods at zero, that is, αS = 0. Then all

the seller types receive the same payoff as the lowest-type seller who gets her second best

allocation. That is, the optimal cutoff type for the buyer b(tS) solves∫ tB

bSI(tS)

J(t)dFB(tB) = VS(tS). (4.22)
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Again this mechanism can be implemented in a couple of ways: (1) by solving bSI

from (4.22) or from (4.20), which gives as the least-cost separating equilibrium or (2)

by making a take-it-or-leave-it-offer pSI(t) = bS(tS) + αBtS to the buyer, which gives us

a pooling equilibrium. Both mechanisms yield the each seller type the same expected

payoff, but the latter gives the buyer always a weakly greater payoff than the first one.

We illustrate this by an example.

Example 6. Assume that Fi(ti) = ti on [0, 1] for i ∈ {B, S} and αB = 1 and αS = 0.

Now the net virtual valuation becomes

J(t) = vB(t)−
1− FB(tB)

fB(tB)
− vS(t) = 2tB − 1 + tS,

for all t ∈ T .

The optimal cutoff can be solved from differential equation (4.20):

b(tS) + tS − (1− b(tS))(1 + 1/b′(tS)) = 0. (4.23)

This has a unique increasing solution

bSI(tS) =
1

2

(
1− tS +

√
c1 + tS(tS + 2)

)
(4.24)

where c1 is a constant. We know that initially bSI(0) = bS(0) = 1
2
(which can be solved

from Corollary 6). Hence, we must have c1 = 0.

Alternatively, we can solve bSI from∫ 1

bSI(tS)

(2tB − 1 + tS)dtB =
1

4
, (4.25)

from where we can solve the same cutoff type as above:

bSI(tS) =
1

2

(
1− tS +

√
tS(tS + 2)

)
(4.26)

for all tS ∈ [0, 1].

The equilibrium payoffs become:

VS(tS) =
1

4
(4.27)

VB(t) = tB − bSI(tS). (4.28)

However, if all the seller just pooled to the lowest-type seller’s mechanism, then they would
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receive payoffs:

VS(tS) =
1

4
(4.29)

VB(t) = tB − bSI(0), (4.30)

where bSI(0) = 1
2
< bSI(tS) for all tS > 0.

Let us give a short example that summarizes and illustrates our findings under different

kinds of information structure.

Example 7. Consider a symmetric model: Fi(ti) = ti on [0, 1] and αi = 1 for i ∈ {B, S}.
Now the net virtual valuation becomes

J(t) = vB(t)−
1− FB(tB)

fB(tB)
− vS(t) = 2tB − 1

for all t ∈ T . This is independent of tS and non-negative for for all tB ≥ 1
2
.

Let us derive the seller-optimal safe mechanisms in the following four information

structures: (1) full-information, (2) informed buyer, (3) informed seller, and (4) informed

buyer and seller, respectively.

CASE 1. (Full Information.) Suppose that both tB and tS are common knowledge. Then

the seller-optimal mechanism is to sell the whole capacity of the goods at a price vB(t).

CASE 2. (Informed Buyer.) Assume that tB is private information of the buyer who

knows the seller’s type tS. By Corollary 5 we know that it is optimal for the seller to ask

price vB(2, tS) = 1/2 + tS. That is, all buyer’s that have type tB greater than tB accept

the offer.

CASE 3. (Informed Seller.) Let us then focus on the case where tB is common knowledge

and tS is private information of the seller. By Theorem 3 and Remark 2 the seller-optimal

safe mechanism is given by the allocation rule

q(t) = exp{− tS
tB

} (4.31)

and the price per quantity p(t)/q(t) = tB + tS for all t ∈ T . From this we observe that

the higher the seller’s type, the less she offers the goods to the buyer. The trade occurs

with probability 1 since the buyer’s valuation is always greater than the seller’s valuation,

but the seller’s private information rent results in inefficiency: the whole capacity is not

traded.
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A seller of the lowest type sells the entire capacity at a price tB. The highest-type seller

offers quantity q(tB, 1) = exp{− 1
tB
}∈ [0, 1/e] at unit prices p(tB, 1)/q(tB, 1)= tB + 1∈

[1, 2].

CASE 4. (Informed Buyer and Seller.) Assume that ti is private information of Player

i. From Theorem 4 we observe that bSI is given by the following differential equation:

bSI(tS)− (1− bSI(tS))

(
1 +

1
∂

∂tS
bSI(tS)

)
= 0 (4.32)

or

∂

∂tS
bSI(tS) =

1− bSI(tS)

2bSI(tS)− 1
(4.33)

for all tS ∈ (0, 1). Since this is a continuous first-order nonlinear differential equation

with an initial value bSI(0) = bS(0) = 1
2
, it has the following unique solution:

bSI(tS) = 1 +
1

2
W (2 exp{c1 − tS}) , (4.34)

where W is the Lambert W function. We know that W (−1/e) = −1 and hence our cutoff

becomes

bSI(tS) = 1 +
1

2
W (− exp{−1− tS}) , (4.35)

for all tS ∈ TS by the initial condition. Note that

∂

∂tS
bSI(tS) =

−W (− exp{−1− tS})
2(1 +W (− exp{−1− tS}))

−→ +∞ (4.36)

as tS → 0 since W (−1/e) = −1. That is, limtS→0 c(tS) = 0 and hence bSI(0) = bS(0) = 1
2
.

The cutoff functions bS and bSI are illustrated in Figure 4.3. From here we observe

that bSI increases first concavely indicating that the signaling costs are also concavely

increasing in tS.
5

5Note that
∂2

(∂tS)2
bSI(tS) =

W (− exp{−1− tS})
2(1 +W (− exp{−1− tS}))3

≤ 0

for all tS ∈ TS .
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Figure 4.3: Optimal cutoff functions.
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Figure 4.4: Signalling costs.

4.4 Trading with a Mediator

Suppose that there is a trustworthy mediator (a broker) who arranges the trade. Assume

that the mediator is able to verify the seller’s type without any extra costs and always

reveals it honestly to the buyer. For concreteness, let the buyer be uninformed. The

following arguments are generalized to the two-sided private information model.

The mediator must design a mechanism that gives the seller weakly better payoff than

the mechanisms given in Theorem 3, or otherwise the seller arranges the trade by herself.

However, the highest expected payoff that the mediator can receive from the trade is

given by the mechanisms given in Remark 1. Therefore, the mediator can make the buyer

a take-it-or-leave-it offer vB(t) = tB + αBtS and pay the seller r(t) + αBtS, where r(t)

satisfies

r(t) + αBtS − αStS ≥ S(t)qFI(t) (4.37)
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where qFI is given by Theorem 3. That is, in the mediated mechanism the whole capacity

of goods is traded and there is no deadweight loss.

When receiving r(tS) + αBtS from the mediator, the seller receives at least the same

utility that she would have received by settling the trade herself. When the buyer receives

the offer from the mediator who reliably verifies the seller’s type, she accepts the offer.

The mediator profits the spread between the price she receives from the buyer and the

price she pays to the seller: tB − r(t) ≥ 0.6

The same reasoning applies to the case where the buyer has a private type. In this

case, the mediator makes a take-it-or-leave-it offer bS(tS) + αBtS to the buyer and pays

the seller a price that is at least as high as bSI(tS) + αBtS. This is a profitable deal for

all parties.

Proposition 10. Outsourcing the trade to a third party is a weakly dominant strategy

for the seller ex ante. The optimal mechanism designed by a trustworthy mediator who

can verify the seller’s type is a take-it-or-leave-it offer given by Corollary 6 (or Remark

1 under one-sided asymmetric information) to the buyer with a brokerage that is smaller

than the difference between the seller’s payoffs in mechanisms given by Corollary 6 and

Theorem 4 (or between Remark 1 and Theorem 3 under one-sided private information).

That is, if the seller has the ability to perfectly disclose her private information via

the mediator to the buyer at some cost, then it is profitable for the seller to do so if the

brokerage is sufficiently low. If the verification is costly, then both the mediator and the

seller accept the mediated mechanism in which the expected brokerage is greater than the

expected verification costs but smaller than the expected difference between the seller’s

payoffs in mechanisms given by Corollary 6 and Theorem 4 (or between Remark 1 and

Theorem 3 under one-sided private information).

4.5 Related Literature

One of the closest articles to ours is Koessler and Skreta (2016). Koessler and Skreta

consider a bilateral trade setup in which the buyer’s valuation of the object is a function

of the buyer’s and seller’s types. The types are private information of the players, which

leads to an informed seller problem similar to our setup. Koessler and Skreta assume

that the value of the object for the seller is type-independent and hence does not affect

the seller’s incentives (in our model αS = 0). Koessler and Skreta (2016) show that in an

6Since the mediator can verify the seller’s type, the incentive compatibility for the seller can be
enforced by giving the seller 0 payment if t′S ̸= tS and r(tS) + αBtS if t′S = tS .
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ex-ante revenue-maximizing equilibrium, the seller benefits from her private information.7

This result holds for a larger set of equilibrium allocations than strong solutions, since

the ex-ante optimal allocation is not safe in general.

Koessler and Skreta (2019) study an informed-principal problem where the valuations

of the seller and the buyer are interdependent similarly to our setup. They show that

when the seller’s information can be certified, there is an ex ante profit-maximizing selling

procedure that is an equilibrium of the mechanism proposal game. Certifiability has two

effects: on the one hand, it relaxes the seller’s incentive constraint for certifiable reports

and, on the other hand, makes deviations from noncertifiable reports more effective: a

seller with high type has strong incentives to reveal that her product is valuable for the

buyer. Due to the costless certifiability, the seller can always achieve at least as good

outcome as in the case where her type was common knowledge.

Nishimura (2022) extends some of the results by Maskin and Tirole (1992) for bilat-

eral asymmetric information. Nishimura’s model is slightly more general than ours but

coincides in two respects: (i) the utility functions are quasilinear in transfers, and (ii) the

valuation functions of the players are additively separable in types. He characterizes the

RSW (Rotchild-Stiglitz-Wilson) allocations for arbitrary posterior beliefs and provides

conditions under which the RSW allocations are undominated. In other words, Theorem

2 in Nishimura (2022) states a necessary and sufficient condition under which a strong

solution exists. Moreover, Nishimura shows that the equilibrium allocations passing the

intuitive criterion (see Cho and Kreps (1987)) are interim-payoff-equivalent to the RSW

allocations.

Mechanism design with an informed principal has been first studied by Myerson (1983)

on whose shoulders we are standing in this paper. Myerson introduces several pivotal solu-

tion concepts for our analysis, such as safe mechanisms, strong solutions, and inscrutabil-

ity of the principal. While Myerson analyzes a general model of multiple agents, Maskin

and Tirole (1990, 1992) study a single agent setup as in this paper. Maskin and Tirole

(1990) assume private values and Maskin and Tirole (1992) common values. Maskin and

Tirole (1990) shows that in the quasilinear case with private values, the principal neither

gains nor loses if her type is revealed to the agent before the reporting stage (Proposition

11), whereas Maskin and Tirole (1992) argue that this does no longer hold with common

values.

Mylovanov and Tröger (2012) generalize the approach of Maskin and Tirole (1990) in a

private values setup and establish the existence of equilibria. Mylovanov and Tröger (2014)

derive the equilibrium allocation characterization by imposing an additional structure of

7In the language of Myerson (1983), the set of ex-ante optimal allocations coincides with the set of
core mechanisms.
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transferable utility to Mylovanov and Tröger (2012).8

In an informed-principal problem, the contract (mechanism) is designed after the

principal privately learns her type or signal (interim contracts). Natural benchmarks to

interim contracts used in the literature are ex-ante and ex-post contracts — that is, con-

tracts designed before the principal learns her type or signal and contracts designed before

the agents learn the principal’s private information, respectively. The equivalence between

the outcomes of these three contracts (ex-ante, interim, and ex-post) is shown in many

private values environments: first in Maskin and Tirole (1990) with risk-neutral players

and transferable utilities and later, for example, in Tan (1996), Yilankaya (1999), Skreta

(2011), and Mylovanov and Tröger (2014). However, Fleckinger (2007) and Mylovanov

and Tröger (2014) show that the equivalence does not generally hold in private-value mod-

els.9 One of the main contributions of Maskin and Tirole (1992) is that they show that

the equilibrium set of a mechanism selection game coincides with the set of allocations

that weakly dominate the RSW allocations. That is, if a RSW allocation is dominated

by some other mechanism, then the RSW mechanism gives the seller the worst outcome

of the mechanism selection game.

Cella (2008) studies mechanism selection by an informed principal and a single agent

with correlated types. Cella shows that the principal can extract extra information rent

from the agent in comparison with the ex-post contracts. Skreta (2011) considers optimal

information disclosure by an informed principal who maximizes her expected revenue

after observing a vector of signals correlated with the agents’ valuations. Skreta shows

that under general allocation environments under agents with interdependent values it

is optimal for the principal to disclose no information. This is in stark contrast to our

results which say that under a slight interdependence in the principal’s and the agent’s

values, it is optimal for the principal to fully disclose her private information. Based

on our interpretation, that arises from the assumption that the seller’s valuation for the

object is zero in Skreta (2011), whereas in our model this is not the case.

Severinov (2008) provides conditions under which an ex-post efficient solution ex-

ists in an informed principal problem under interdependent values (among all players).

Balkenborg and Makris (2015) studies undominated mechanisms designed by an informed

principal who has common values with the agent.

Jullien and Mariotti (2006) consider a second-price auction with an informed seller

who announces an informative reserve price in advance. Jullien and Mariotti characterize

8Utility is transferable if one player can transfer part of its utility to another player without any
additional cost.

9Mylovanov and Tröger (2012, 2014) provide a comprehensive survey of the informed principal liter-
ature with private values.
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the equilibria of the game (see Cai et al. (2007) and Tsuchihashi (2020) for reserve price

signaling). Zhao (2018) studies optimal auction design by an informed seller and observes

that reserve price signaling is optimal for the seller. Both, Jullien and Mariotti (2006) and

Zhao (2018), find that the optimal reserve price is higher than that in the full-information

case where the seller’s type is common knowledge. In a multi-agent model, Zhao (2018)

shows that there exists a solution to the optimization problem in (4.5) such that the

seller’s interim allocation probability is strictly decreasing in tS and strictly less than that

in the optimal mechanism when the seller’s type tS is common knowledge except for the

lowest-type seller (Zhao (2018), Theorem 1 and Proposition 4).

Informed principal problems in moral-hazard environments are studied, for instance,

by Beaudry (1994), Jost (1996), Benabou and Tirole (2003), Kaya (2010), and Wagner

et al. (2015). For more recent studies in this field, see Mekonnen (2021) and Clark (2022a

and 2022b). Particularly, Clark (2022b) shows that there can be equilibria that do not

principal-payoff-dominate the optimal safe outcomes when moral hazard is present.

There is extensive literature on auctions and mechanism design with interdependent

values by an uninformed seller. The revenue rankings of auctions with interdependent

values between buyers are pioneered by Milgrom and Weber (1982). Crémer and McLean

(1985, 1988) show that the seller is capable of extracting the full surplus from the buyers

if the valuations of the buyers are interdependent (1985) or the signals of the buyers’

valuations are correlated (1988).10 This mechanism is usually referred to as the general-

ized Vickrey-Clarke-Groves mechanism, which is later studied, for example, by Ausubel

(1999), Dasgupta and Maskin (2000), and Perry and Reny (2002). Their focus is on ef-

ficient design under interdependent values as in Holmström and Myerson (1983), Jehiel

and Moldovanu (2001), Fieseler et al. (2003), Mezzetti (2004), and Li (2017). Revenue-

maximizing mechanisms with interdependent values are studied, e.g., in Myerson (1981)

and Roughgarden and Talgam-Cohen (2016). For bargaining with interdependent values,

one can see, for instance, Deneckere and Liang (2006) and Fuchs and Skrzypacz (2013).

The crucial feature in these bargaining models is typically that the uninformed party

makes all the offers.

10McAfee et al. (1989) assume that the signals are continuously distributed and that the buyers assign
the same value to the object. They show that almost all surplus can be extracted also in this case.
Myerson (1981) was the first to point out that the full surplus extraction may be possible if the signals
of the buyers’ valuations are correlated.
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4.6 Discussion

In this paper we have analyzed bilateral trade with an indormed seller. We observe that

if a seller has payoff-relevant information for a buyer, then the seller finds it optimal to

decrease the offered quantity in order to credibly signal her type to the buyer. If the

seller’s type is common knowledge, then the optimal mechanism is a take-it-or-leave-it

offer for the whole capacity.

The model analyzed here is adjustable for many applications. Next, we exemplify how

our results generalize to explain some well-known economic phenomena.

Market for Lemons. In the spirit of Akerlof (1970), consider a market for goods of

unknown quality tS. There are buyers who are willing to buy a unit quantity of the goods

at a maximum price vB(t) = tB + αBtS. That is, the ex-post valuation of the buyers is a

combination of the buyers’ private type tB and the quality of the goods tS, which is the

private information of a seller. The seller’s production costs are given by vS(t)q = tSq,

and the production capacity is limited to unity (by normalization). Based on Theorem

3, only a seller who has the lowest quality, tS, supplies the entire capacity and sellers

with higher qualities engage in production shortage; the supplier signals the quality of

the goods to buyers by not producing the entire capacity. This signaling behavior gives

one rationale for the deficiency of new high-quality or luxury goods.11

An alternative lemon story can be found in advertising models. Suppose that a mo-

nopolist chooses a share q of demand that she can capture by investing in advertising.

The production costs of quality tS are given by vS(t)q = tSq. According to Theorem 3,

the most efficient way for a high-quality monopolist to signal its type is to engage a low

level of demand-enhancing advertising. This behavior predicts a negative relationship

between advertising and product quality (see Figure 4.2).12

In both examples, low-quality products are the most widely supplied. This indicates

similar market outcomes as in Akerlof (1970): only lemons are traded, and the market

for the highest quality goods is marginal. In this paper, we derive the optimal selling

mechanism among all possible selling mechanisms (by the Revelation Principle). There-

fore, our findings suggest that there is less trade with a high-quality seller in any kind of

circumstances (no matter what the selling strategy is), and this is the best she can get

even with the full monopoly power.

11For quality signaling via product scarcity see Stock and Balachander (2005). Stock and Balachander
show that a high-quality monopoly firm that signals quality by inducing shortage can make more profit
than using price alone.

12To some extent this prediction is supported by advertising literature. Many of these studies can be
found in Bagwell (2007), which provides comprehensive empirical and theoretical surveys on advertising
and quality literature.
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Joint-Ownership. In the partnership models, there are two or more parties who initially

own some shares of the company. The partners have private information about their

valuations of the ownership and they want to renegotiate the shares of the company

in order to achieve a profitable balance of ownership for all parties (see, for instance,

Cramton et al. (1987), Jehiel and Pauzner (2006), and Loertscher and Wasser (2019)).

Our model can be interpreted as the origin of this story: how the joint ownership was

formed in the first place. Consider an entrepreneur who initially owns all shares of her

company and is willing to sell a share q to a buyer at price p. The seller has private

information about the profitability of the firm. The buyer’s valuation of full ownership is

given by a weighted sum of her own profitability tB and the seller’s private information

about the firm’s current profitability tS. In this case, the seller wants to signal that the

firm has high profitability by offering a partial ownership to the buyer; owning a share of

the company, the seller can credibly reveal the profitability of the company to the buyer.13

Part-time Employment. Consider a worker (seller) who offers to work a share q of

her working hours in a company (buyer). The productivity of the worker is partly known

by the firm and partly known by the worker herself. The worker proposes a part-time

contract of employment in order to signal that she is competent and profitable in her

current position and, thus, also for the firm. In this way, the worker chooses the optimal

allocation of her work load: she works share q of her working hours in the new company

and share 1 − q in her current position. It is profitable for the worker to negotiate such

a contract since there are positive externalities in the firm’s production (recall that by

interdependence vB(t) = tB + αBtS) and so the company is willing to pay a high salary

for the worker.

Trading with Externalities. Consider next a trade between two firms, {B, S}. The

firms’ profits are negatively interacted (e.g. due to competition) such that firm i’s profit

is given by π̂i = ri − αiπ̂j, where ri is firm i’s gains from the trade and π̂j is the profit of

the rival firm multiplied by an externality parameter αi. By presuming that αi ∈ [0, 1)

we can solve the reduced-form profits of the trade: πi := (1−αiαj)π̂i = ri−αirj for both

13This example generalizes to applications in which there is a seller who owns an asset (or unity mass
of assets), which profitability is private information of the seller. The seller determines the asset pricing
scheme and decides the share of assets that she retains. The finance literature, e.g. the papers that
consider Ininitial Public Offerings (IPOs), have documented signaling motives of entrepreneurs in these
kinds of setup. Leland and Pyle (1977) were the first who theoretically showed that the retention of
firm ownership by the entrepreneur can signal the firm’s characteristics. Later, the empirical results by
Downes and Heinkel (1982) show that firms in which entrepreneurs retain high fractional ownership do
indeed have a higher value. These findings support the hypotheses of Leland and Pyle (1977) and our
paper.
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i ∈ {B, S}.14

Assume next that firm S is selling goods to firm B. The profits of the trade are given

by rB(x; t) = qtB−p and rS(x; t) = p−tSq, where an allocation x = (q, p) ∈ X = [0, 1]×R
is given by the quantity q ∈ [0, 1] and the price of the goods p ∈ R. The buyer’s valuation
of the goods, tB, and the seller’s marginal cost of producing the goods, tS, are private

information of the firms. The ex-post profits of the firms can be written as

uB(x; t) = (tB + αBtS) q − (1 + αB)p =: vB(t)q − pB (4.38)

uS(x; t) = (1 + αS)p− (tS + αStB) q =: pS − vS(t)q. (4.39)

This is indeed the model we consider in this paper, except that the prices are given by

pi = (1 + αi)p for both i ∈ {B, S}. Therefore, Theorem 3 can be generalized into this

example: If the buying firm, B, receives negative externalities from the trade, the selling

firm, S, finds it profitable to decrease the quantity offered to the firm B. In this way, the

firm S can efficiently signal its production costs to the firm B.

Bargaining. Consider a continuous-time bargaining problem with transfers. Let the

common discount factor be δ ∈ (0, 1). Then reformulate the optimal mechanism given by

Theorem 3 as follows: (q(t), p(t)) =
(
q̂(t;T (t))e−δT (t), p̂(t;T (t))e−δT (t)

)
, where q̂(t;T )e−δT (t)

and p̂(t;T (t))e−δT (t) are the discounted allocation probability and price in period T (t)

given by the report t, respectively. By setting q̂(t;T (t)) = 1 whenever q(t) is positive, we

get T (t) = − log q(t)/δ. This gives us the following interpretation of the optimal mecha-

nism: the seller rejects to sell the object until time T (t) = − log q(t)/δ has passed. The

price of the object in period T (t) is given by p̂(t;T (t)) = p(t)/q(t). By postponing the

trade, the seller can signal her private information for the buyer. This is credible because

waiting is also costly for the seller by the discount factor.

Mineral Rights. Lastly, consider a government that owns the mineral rights to exploit

an area for the minerals it harbors. There is a single potential firm whose value of the

rights is determined by its own productivity tB and the amount of minerals in the area,

tS, which is private information of the government. If the firm cannot verify the amount

of minerals in the area prior to contracting, the government finds it optimal to signal

this information to the firm by offering a joint ownership of the minerals. However, it

is profitable for both parties to let the firm acquire information about the amount of

14This is essentially a model of socially interacted agents. The model can be found from Becker’s
(1974) seminal article ”A Theory of Social Interactions”, where Becker introduces an economic theory
under social interactions. The theory incorporates a general treatment of interactions in the theory of
consumer demand in order to explain, for instance, intrafamily relations, charity, merit goods, and envy
and hatred.
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minerals, and the government is even willing to pay for the acquisition of information if

it is relatively inexpensive for her (Proposition 10).15

All the examples given above offer a simplistic and shallow standpoint to the applications,

which are certainly more intrinsic than we have illustrated here. Our intention is not to

give an unequivocal explanation to these phenomena but rather to highlight some possible

implications of an informed principal to some of the well-known frameworks.

Appendix: Proofs

Proof of Lemma 4

Let the buyer’s ex-post utility with a given DRM Γ = (T, x) be given by the following

value function

VB(t) = max
t′B∈TB

(vB(t)q(t
′
B, tS)− p(t′B, tS)) . (4.40)

By the standard envelope theorem argument (see Milgrom and Segal (2002)) we know

that a DRM Γ = (T, x) is ex-post incentive compatible for the buyer iff the equilibrium

transfers are given by

p(t) = vB(t)q(t)− VB(tB, tS)−
∫ tB

tB

q(s, tS)ds (4.41)

and q(·, tS) is nondecreasing for all tS ∈ TS.

The seller’s interim utility is given by the following value function

VS(tS) = max
t′S∈TS

EtB (p(tB, t
′
S)− vS(t)q(tB, t

′
S)) . (4.42)

By the envelope theorem for the seller’s value function, we know that V ′
S(tS) =

−EtB (q(tB, tS)) almost everywhere (a.e.) at the truthful equilibrium. Then, by the

fundamental theorem of calculus, the seller’s interim equilibrium utility becomes the fol-

lowing

VS(tS) = VS(tS) + αS

∫ tS

tS

EtB (q(tB, s)) ds. (4.43)

15On information acquisition in mechanism design and auctions with interdependent values see, for
instance, Bergemann and Välimäki (2002, 2005) and Bergemann et al. (2009).
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It is straightforward to show that a DRM Γ = (T, x) is interim incentive compatible for

the seller iff the seller’s interim utility is given by (4.43), and EtB (q(tB, ·)) is nonincreasing.
By substituting the transfers (4.41) into the seller’s value function (4.42), and inter-

changing the order of integration, we observe that the seller’s equilibrium utility can be

written as

VS(tS) = EtB

(
J(t)q(t)− VB(tB, tS)

)
, (4.44)

where J(t) = vB(t)− 1−FB(tB)
fB(tB)

− vS(t) is the net virtual valuation with given t ∈ T . This

finishes the proof.

Proof of Theorem 3

Let us assume that tB is commonly known — that is, TB = {tB}. Then the equilibrium

transfers are given by (4.43):

p(t) = vS(t)q(t) + VS(tS) + αS

∫ tS

tS

q(tB, s)ds (4.45)

for all t ∈ T . It is straightforward to show that a mechanism Γ = (T, x) is incentive

compatible for the seller iff the equilibrium transfers satisfy (4.45) and EtB [q(tB, ·)] is
non-increasing. Consequently, the seller’s problem is to design a mechanism Γ ∈ G to

maximize p(t) − vS(t)q(t) subject to (4.45), q(tB, ·) non-increasing, and the buyer’s ex-

post individual rationality constraint vB(t)q(t) − p(t) ≥ 0 for all t ∈ T . By substituting

(4.45) into the buyer’s participation constraint, we observe

(vB(t)− vS(t)) q(t) ≥ VS(tS) +

∫ tS

tS

q(tB, s)ds, (4.46)

must hold for all t ∈ T . This implies that we must have q(t) = 0 for all t ∈ T such that

vB(t) < vS(t). For t ∈ T such that vB(t) ≥ vS(t), it is optimal for the seller to choose

a mechanism such that (4.46) holds at equality; otherwise the seller could increase her

payoffs by increasing the prices (see Zhao (2018) and Maskin and Tirole (1992)). The

binding individual rationality constraint forms the following integral equation:

S(t)q(t) = VS(tS) +

∫ tS

tS

q(tB, s)ds, (4.47)

where S(t) = vB(t)− vS(t) for all t ∈ {t′ ∈ T : S(t′) ≥ 0}.
The equation in (4.47) is a linear Volterra’s integral equation of the second kind for tS
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which has a unique continuous solution.16 It is straightforward to verify that the following

function is the solution to (4.47):

q(t) = β(tB)S(t)
λ, (4.48)

for some β(tB) ∈ R, where λ := αB

αS−αB
for αS ̸= αB.

It is optimal for the seller to set q(t) as high as possible, and so we must have q(tB, tS) =

1 for tB ≥ t∗B(tS) := inf{t′B ∈ TB : S(t′B, tS) ≥ 0} at the optimum. That is, the lowest-

type seller receives the same payoff as in the case where her type was common knowledge

(see, e.g., Maskin and Tirole (1992), Zhao (2018), and Nishimura (2022)). This gives us

the boundary condition from which we can solve β(tB) =
1

J(tB ,tS)λ
.

Consequently, the optimal safe mechanism with an uninformed buyer is given by

q(t) =


(

S(t)
S(tB ,tS)

)λ
, if J(t) ≥ 0

0, otherwise,
(4.49)

where S(t) = vB(t)− vS(t) and λ := αB

αS−αB
.

Lastly, write

(
S(t)

S(tB, tS)

)λ

=

1 +

αB(tS−tS)

tB−(αS−αB)tS

λ

λ

. (4.50)

We know that limn→∞
(
1 + x

n

)n
= ex, and so the expression in (4.50) converges to

exp

(−α(tS − tS)

tB

)
(4.51)

when αB → αS = α for tB > 0.

Proof of Corollary 5

From the optimization problem given by Lemma 4, we can conclude that whenever tS is

common knowledge, i.e. TS = {tS}, the constraints (4.6) and (4.7) are redundant. Then

the optimal mechanism can be solved point-wise from the optimization problem since the

point-wise solution solution satisfies the monotonicity constraint (4.8).

16To be more precise, this can be a linear Volterra’s integral equation of the third kind since if tS =
t∗S(tB) := sup{t′S ∈ TS : S(tB , t

′
S) ≥ 0} we may have S(t) = 0, which causes discontinuity to the kernel

of the integral equation. However, since this is only a single point and both sides of (4.47) are zero at
tS = t∗S(tB), this means that any q∗ satisfies (4.47) at that point. See the original paper of Evans (1911)
for a more detailed analysis of Volterra’s integral equations of the second kind with discontinuous kernels.
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Proof of Theorem 4

By Zhao (2018), Corollary 1 and Proposition 4, the seller-optimal mechanism is a cutoff-

mechanism:

q(t) =

1, if tB ≥ bSI(tS),

0, otherwise
(4.52)

for all t ∈ T and some continuous and stictly increasing function bSI : TS → TB. The

pricing rule is given by (4.9). Note that by Assumption 3 the expected probability of

trade is never unity for any seller type, i.e., bSI > tB.

To see this property of the seller-optimal safe mechanism, consider the optimization

problem given by Lemma 4 for an arbitrary tS ∈ TS. The objective function is linear

and hence concave in q. Let F be the set of all functions q : T → [0, 1] that satisfies

conditions (4.6) and (4.8). Let F has the L1 norm and endow it with the metric induced

by this norm. The set F is convex since both these constraints are convex in q; the convex

combination of two non-decreasing functions is non-decreasing, and the convexity of (4.6)

is given by the fact that it is continuous and linear in q. The set F is also compact by

Helly’s Selection Theorem and the bounded convergence theorem of Lebesgue integration.

Hence, by the Extreme Point Theorem, a function q ∈ F takes the form of (4.52) for

almost all t ∈ T . The fact that bSI is continuous and stictly increasing comes from the

fact that αB ≥ 0. For more detailed arguments and proof of this result, see Zhao (2018).

By the standard optimality argument, we must have VB(tB, tS) = 0 for all tS ∈ TS;

otherwise the seller could increase the equilibrium transfers. Then, by the assumption

that bSI is differentiable, the seller’s incentive compatibility constraint is satisfied iff

∂

∂m

∫ tB

bSI(tS+m)

(
vB(tB, tS +m)− 1− FB(tB)

fB(tB)
− αStS

)
dFB(tB)

∣∣∣
m=0

= 0 (4.53)

or

vB(b
SI(tS), tS)−

1− FB(b
SI(tS))

fB(bSI(tS))

[
1 +

αB

∂
∂tS
bSI(tS)

]
− αStS = 0 (4.54)

for all tS ∈ TS.

Since 1−FB(tB)
fB(tB)

strictly decreasing and non-negative, we must have
1−FB(bSI(tS))

fB(bSI(tS))
> 0.

Moreover, by Zhao (2018) the seller-optimal safe mechanism satisfies bSI(tS) = bS(tS),

where bS is given by Corollary 6. These two conditions imply that we must have limtS→tS
∂

∂tS
bSI(tS) =

+∞ when αB > 0.
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Lastly, by Assumptions 3 and 1−FB(tB)
fB(tB)

strictly decreasing in tB, we know that bSI(tS) ∈
TB for all tS ∈ TS. Hence, condition (4.54) is well-defined.
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