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Abstract

In our submission to the SIGMORPHON 2022
Shared Task on Morpheme Segmentation, we
study whether an unsupervised morphological
segmentation method, Morfessor, can help in
a supervised setting. Previous research has
shown the effectiveness of the approach in semi-
supervised settings with small amounts of la-
beled data. The current tasks vary in data size:
the amount of word-level annotated training
data is much larger, but the amount of sentence-
level annotated training data remains small.
Our approach is to pre-segment the input data
for a neural sequence-to-sequence model with
the unsupervised method. As the unsupervised
method can be trained with raw text data, we
use Wikipedia to increase the amount of train-
ing data. In addition, we train multilingual
models for the sentence-level task. The re-
sults for the Morfessor-enriched features are
mixed, showing benefit for all three sentence-
level tasks but only some of the word-level
tasks. The multilingual training yields con-
siderable improvements over the monolingual
sentence-level models, but it negates the effect
of the enriched features.

1 Introduction

Current use of subword segmentation in neural
natural language processing (NLP) with unsuper-
vised segmentation methods such as BPE (Sennrich
et al., 2015), SentencePiece (Kudo and Richardson,
2018), and Morfessor (Creutz and Lagus, 2002; Vir-
pioja et al., 2013) mainly focuses on finding short
and frequent subwords that give good performance
in the NLP application, while putting less weight
on linguistic correctness. The level of segmentation
varies by the frequency of the word: frequent words
retain their affixes, while rare words, such as rare
proper names, are heavily segmented into syllable-
like units or even characters. These methods typi-
cally perform surface segmentation, meaning that

the subwords can be concatenated back into the sur-
face form of the word without any transformation
to account for phonological processes

e.g. profibrotic 7→ pro ++ fibr ++ ot ++ ic.

However, when linguistic fidelity is of
importance—for example because the segments
are analyzed statistically as opposed to using a neu-
ral model—a supervised segmentation method may
be more suitable. The goal is to output morphemes,
the smallest meaning-bearing linguistic units. In
canonical morphological segmentation (Kann
et al., 2016), instead of segmenting into surface
forms of morphemes, the different allomorphs are
mapped into a single canonical form, reversing any
phonological changes.

e.g. profibrotic 7→ pro ++ fibre ++ osis ++ ic.

It is not always possible to give a single correct
analysis for any particular surface form. A sur-
face form may be homonymous, with inflections
or derivations from two or more lemmas. In order
to disambiguate the meanings to choose a single
analysis from several alternatives, it is necessary to
use the surrounding sentence context. In Task 2 of
this shared task, such sentence level segmentation
is performed.

e.g. she rose up 7→ she rise ++ ed up

a red rose 7→ a red rose.

Word-level morpheme segmentation is more
widely studied than sentence-level morpheme seg-
mentation. In part, the focus on word level segmen-
tation is due to the historically limited ability of
models to exploit all of the available context. With
neural sequence to sequence (seq2seq) models, this
limitation can easily be lifted. Limited availability
of labeled data for the sentence level task provides
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a second reason for the popularity of word-level
segmentation.

This work presents the AUUH (Aalto University
- University of Helsinki) team submission to the
SIGMORPHON 2022 Shared Task on Morpheme
Segmentation (Batsuren et al., 2022). In this shared
task, the imbalance of training data persists. For
the word-level Task 1, there is ample training data,
ranging from 15 000 labeled words for the low-
est resourced language, Mongolian, to hundreds of
thousands of words for the higher resourced lan-
guages. Task 1 has between 3 and 30 times as much
data as in sentence-level Task 2. In addition to the
labeled data, an order of magnitude more unlabeled
data can easily be sourced.

Considering that these types of data are available
in very different amounts, there is an opportunity to
improve especially the sentence-level performance
by exploiting the other types of data. In this work,
we use large amounts of unlabeled data to enrich
the input with features from an unsupervised seg-
mentation model. This feature set augmentation ap-
proach, which combines the strengths of generative
and discriminative models, has previously been ap-
plied for word-level surface segmentation (Ruoko-
lainen et al., 2014; Grönroos et al., 2019). Addi-
tionally, we use the word-level labeled data through
multi-task and multi-lingual training.

Our systems are fully data-driven and language-
independent, requiring no linguistic resources be-
yond the training data. All the software used in the
systems has open-source implementations.

2 Methods

Our approach for the shared tasks consists of a neu-
ral seq2seq model, enrichment of data with features
learned in an unsupervised manner, and multi-task
and multilingual training. We submitted six differ-
ent configurations, which we refer to as Systems
A–F in the following.

2.1 Seq2seq model

We apply a sequence-to-sequence (seq2seq) model
to map from character sequences to character se-
quences. In our baseline models, the input is the
character sequence of the surface form of the word.
In our enriched models, the surface form is aug-
mented with predicted segmentation boundary sym-
bols. In all cases, the output is the sequence of
canonical morphemes and segmentation boundary
symbols, decoded on character level. We treat the

boundary marker “@@” as a single symbol1. In
the original output format, the morphemes are sep-
arated by a space, which we simply ignore in the
seq2seq data and add back in the detokenization
step. Our seq2seq models are implemented using
the Marian NMT (Junczys-Dowmunt et al., 2018)
Neural Machine Translation framework.

Even though the amount of data is of a stan-
dard size for segmentation, it is small compared
to typical machine translation data sets. Therefore,
when designing the neural network architectures,
we experiment with neural architectures from the
literature on low-resource neural machine transla-
tion.

Following Sennrich and Zhang (2019), our mod-
els C–F use a bidirectional GRU bideep (Miceli
Barone et al., 2017) architecture. We modify the
architecture slightly by lowering the embedding
dimension from 512 to 128, as we have a character-
level model instead of a subword model.

Inspired by Araabi and Monz (2020), we try re-
ducing the capacity of Transformer-base (Vaswani
et al., 2017) to better suit the small data setting,
reducing the number of layers in both encoder
and decoder to 5, reducing the feed-forward di-
mension to 512, reducing the number of attention
heads to 2, increasing dropout to 0.3, adding 0.1 tar-
get dropout (and in our implementation 0.1 source
dropout as well), and increasing label smoothing
to 0.5. However, in preliminary experiments this
performed worse than Transformer-base. Instead,
a smaller Transformer-base modification, which
we title Transformer-basemod, where we reduce
the feed-forward dimension to 1024, and add 0.1
source and target dropout, yields our best Trans-
former results in preliminary experiments.

For the monolingual word-level tasks we use
the bideep GRU architecture, as that architecture
worked reliably even with limited data. For the
multi-task, multi-lingual models A–B, which are
trained with considerably more data overall, we use
the Transformer-basemod architecture.

The seq2seq models are trained for 50 epochs
with the cross-entropy loss, with early stopping
based on validation criterion improvement stalling.
As a validation criterion, we use the official eval-
uation F-measure. This choice yielded consistent
improvements over the cross-entropy criterion in
preliminary experiments.

1For clarity, represented later in the paper as a single sym-
bol @.
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Figure 1: Feature enrichment process.

2.2 Enrichment with unsupervised features
The feature enrichment process is shown in Fig-
ure 1. For training the unsupervised features,
the training data consists of a large word list ex-
tracted from an unlabeled corpus. Morfessor Base-
line (Creutz and Lagus, 2002; Virpioja et al., 2013),
an unsupervised generative model, is trained using
the unlabeled data only.

The words in the labeled training set are first pre-
segmented using the Morfessor Baseline model.
The predicted segmentation is turned into features
by adding a reserved unicode character at the pre-
dicted segmentation boundaries, and then concate-
nating to form the new input string.

For example, the input string “subneural” is
segmented by Morfessor as

subneural 7→ s u b ⊔ n e u r a l.

The seq2seq model then takes this feature represen-
tation as input, and outputs the canonical segmen-
tation:

s u b ⊔ n e u r a l 7→ s u b @ n e u r o n @ a l.

At decoding time a two-step procedure is used:
first the features for the desired words are produced
using the Morfessor Baseline model. The final
segmentation can then be decoded from the seq2seq
model.

The idea is that the features from the unsuper-
vised generative model allow the statistical patterns
found in the large unannotated data to be exploited.
Two tasks remain for the seq2seq model to learn:
determining when the predictions of Morfessor are
reliable in order to correct its mistakes, and finding
the mapping from predicted surface morphemes to

the canonical forms of morphemes. We hypoth-
esize that these two tasks are easier to learn as
part of a pipeline system, compared to learning
the mapping from the unsegmented surface form
into canonical morphemes directly as an end-to-end
task.

2.2.1 Morfessor
Morfessor is a family of language-independent un-
supervised and semi-supervised morpheme seg-
mentation models. The first variant, later called
Morfessor Baseline, was introduced by Creutz and
Lagus (2002). It is an unsupervised algorithm that
makes use of a context-insensitive maximization
criterion based on unigram probabilities. A Python
implementation and extensions were provided by
Virpioja et al. (2013) with further improvements
by Grönroos et al. (2020). Further unsupervised
variants introduce context-sensitive segmentation,
identifying possible prefixes, stems and suffixes as
a biproduct. The so-called Morfessor Categories-
MAP model (Creutz and Lagus, 2005, 2007) pro-
duces a hierarchical segmentation structure, which
later evolved into a flat structure in Morfessor Flat-
Cat (Grönroos et al., 2014). Kohonen et al. (2010)
extended to semi-supervised learning for situations
where small amounts of linguistic gold standard
analyses are available.

In this work, we focus on using Morfessor Base-
line, leaving comparison of different Morfessor
variants for future work.

2.2.2 Training data
For training the Morfessor models, we use the offi-
cial word-level training sets, sentence-level train-
ing sets for the languages that had them available,
and, in addition, Wikipedia dumps from 2022-04-
01. The word-level data is added as is. From the
sentence-level data, we include tokens that con-
tained only letters in a script suitable for the lan-
guage (Cyrillic for Mongolian, and Latin for En-
glish and Czech). Wikipedia dumps are processed
with wikiextractor (Attardi, 2015). Only
those tokens that have the correct script (Cyrillic
for Mongolian and Russian, Latin for the rest) are
included. In addition, to further reduce non-words
and foreign words, we restrict word length to 40,
word frequency to 3 for English and 2 for the rest,
and either include only lowercase words (English)
or lowercase the words (rest).

Finally, the words from the different sources are
combined together for training Morfessor. The
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Wikipedia Task 1 Task 2 total

labels unlabeled word-level sentence-level

ces 1097041 30694 4890 1107515
eng 466490 458692 15700 779878
fra 1502818 252671 0 1649688
hun 1356328 742239 0 1937213
ita 1171105 369208 0 1417499
lat 224277 705862 0 914135
mon 101136 15171 4961 108668
rus 2148379 627367 0 2483749
spa 1402977 688672 0 1942361

Table 1: Numbers of unique word forms in the training data sets.

frequencies of the words are ignored in training.
Table 1 shows the numbers of unique word forms
in the data sets.

We observe that with the exception of the Czech
language, all subtasks of this shared task consist
of canonical segmentation. For some words, the
label sequence concatenates directly into the sur-
face form, i.e. the canonicalization mapping of
each morpheme is the identity function. The pro-
portion of training words having this property vary
by language, from 7.6% for Italian to 99.7% for
Latin. However, for the Czech language, all the
words in the training data have this property of
concatenating directly into the surface form. As
the Czech language does exhibit allomorphy (see
e.g. Ševčı́ková, 2018), we conclude that the task
for Czech was surface segmentation rather than
canonical segmentation.

2.2.3 Hyper-parameter tuning
We use grid search to find the optimal corpus
weight hyper-parameter for the Morfessor mod-
els. We test values in the range from 0.001 to
2.0. The word-level development sets are used
for evaluation. However, the official evaluation
scripts expect canonical segmentation, while Mor-
fessor produces surface segmentation. Thus we
rely on the EMMA-2 evaluation method and maxi-
mize the F1-score between the model and reference
segmentations.2 EMMA-2, proposed by Virpioja
et al. (2011), is a variant of the EMMA (Evaluation
Metric for Morphological Analysis) introduced by
Spiegler and Monson (2010). Both methods solve
the problem of comparison of two different label

2Implementation available at https://github.com/
svirpioj/morphometrics.

sets by creating a mapping between the predicted
and reference labels. The original EMMA method
finds one-to-one assignment between the labels us-
ing the Hungarian algorithm, but the computational
complexity prevents using it for large test sets. In
contrast, EMMA-2 makes separate one-to-many
assignments when calculating the precision and
recall.

2.3 Multi-task and multilingual training

We train models that use two types of multi-task
objectives. In the first one, we combine the word-
level Task 1 with the sentence-level Task 2. In the
second one, we train a multilingual model with the
concatenation of all languages available in Task 2.

To distinguish tasks from each other, we use
task selector tokens prefixed to the input, similar
to Johnson et al. (2017). The language selector
token is first, if used, and then in word tasks a
special token is used. Sentence tasks do not have a
separate selector token: no selector token implies a
sentence task.

The multilingual model is then finetuned for an
additional 50 epochs on each individual language.
In a preliminary experiment, the additional train-
ing time did not by itself yield a better model. In
finetuning, the sentence-level and word-level multi-
task objective was kept. We finetuned models sep-
arately with word- and sentence-level validation
data.

2.4 Systems

Table 2 lists the differences between the systems.
In the official competition, some of our submit-

ted systems were trained on slightly different data
than we intended, due to human error, and some
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Morfessor features Architecture Multilingual Multitask

System A ✓ Transformer-basemod ✓ ✓
System B – Transformer-basemod ✓ ✓
System C ✓ Bideep GRU – ✓
System D – Bideep GRU – ✓
System E ✓ Bideep GRU – –
System F – Bideep GRU – –

Table 2: Differences between the six submitted systems.

systems were missing simply due to running out
of time. The results in this description paper have
been produced with corrected systems. The results
that changed, or were added after the competition
deadline, are marked with the symbol ⋆ in the ta-
bles.

3 Results

Tables 3 and 4 list the results of Tasks 1 and 2 re-
spectively. Systems A and B, C and D, and E and
F each form comparable pairs, where the former
(e.g. System A) uses Morfessor-enriched features,
and the latter (e.g. System B) is the same system
without enriched features. In the result tables, these
comparable pairs are separated with horizontal di-
vider lines.

Some of our systems have the highest score of
all shared task participants in specific subcategories
of the evaluation. Our system B has the highest F1-
score (96.31%) and lowest Levenshtein distance
(1.39) for the English sentence-level task. Our
system A has the highest F1-score (93.23%) for
the English word-level evaluation category 001,
i.e. compound words without inflectional or deriva-
tional affixes.

Tables 5 and 6 show Task 1 results by morpho-
logical category, for systems A–B and E–F respec-
tively. For English, Russian, and Hungarian, the
system using the Morfessor-enriched features per-
forms better for most categories involving com-
pounding, in particular the 001 category (only com-
pounding). Of the languages in this shared task,
only Hungarian and English vocabularies contain
a substantial portion of compound words (17.32%
and 6.79% respectively).

4 Discussion

The multilingual model without Morfessor-
enriched features (System B) gives the best results
in both tasks for the three languages (ces, eng, mon)

for which we trained such a system. When using
multilingual training, the Morfessor-enriched fea-
tures are not beneficial. The unsupervised features
may be less useful with the increased amount of
training data in the multilingual setup, and varying
granularities of the unsupervised segmentations for
the different languages could confuse the multilin-
gual model.

Without multilingual training, the results for en-
riched features are inconclusive for the word-level
task, but clearly beneficial for the sentence-level
task. The enriched features give better results for 5
languages (ces, eng, rus, mon, hun) in Task 1 and
all three languages (ces, eng, mon) in Task 2.

Consistent with previous work (Grönroos et al.,
2019), we find that Morfessor-features are use-
ful for modeling the boundary between compound
parts, which is challenging for supervised discrimi-
native models on their own.

Except for the corpus weight hyper-parameter of
the Morfessor model, we did not tune many param-
eters of the setup, such as thresholds for the words
in the Wikipedia dumps, different weightings for
the corpora, or use of the word frequencies in Mor-
fessor training. More extensive optimization could
lead to some improvements for the unsupervised
features. It would also be possible to use the part of
the data, for which the canonical morphemes cor-
respond to surface morphemes as annotations for
training semi-supervised Morfessor variants (Ko-
honen et al., 2010).

It is possible that using a different β for the Fβ-
score may result in better tuning. Finding the opti-
mal value for β is left for future work. While com-
putationally more burdensome, instead of search-
ing for the best Fβ-score of EMMA-2 for Morfes-
sor’s output, some parameters could also be opti-
mized on the results of the final seq2seq model.
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ces eng fra ita lat rus mon hun spa

System A† 93.65 92.32 - - - - 98.19 - -
System B ⋆93.68 ⋆93.24 - - - - ⋆98.29 - -

System E† 90.71 87.10 90.78 92.39 98.71 94.33 96.06 ⋆98.36 ⋆96.22
System F 90.28 86.40 90.81 92.56 98.85 93.68 95.32 98.34 97.25

Table 3: Word-level (Task 1) results (F1-measure [%]) on the official test sets. Results marked with ⋆ were not
submitted to the official competition. Systems marked with † use Morfessor features.

ces eng mon

System A† 88.60 96.22 82.19
System B 90.42 96.31 82.59

System C† ⋆59.77 ⋆93.44 ⋆74.08
System D ⋆59.08 88.07 ⋆71.82

System E† 61.92 85.04 72.67
System F 51.47 82.34 66.38

Table 4: Sentence-level (Task 2) results (F1-measure
[%]) on the official test sets. Results marked with ⋆
were not submitted to the official competition. Systems
marked with † use Morfessor features.

5 Conclusions

We find that Morfessor-enriched features are ben-
eficial for the sentence-level tasks, but see mixed
results for the word-level tasks. The multilingual
training yields considerable improvements for both
tasks, but it negates the effect of the enriched fea-
tures.
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